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Abstract. Let S be a closed oriented surface of genus g ≥ 0 and let Q be
a connected component of a stratum in the moduli space Q(S) of area one
meromorphic quadratic differentials on S with n ≥ 0 simple poles or in the
moduli space H(S) of abelian differentials on S. For a compact subset K of

Q(S) or of H(S), we show that the asymptotic growth rate of the number of
periodic orbits for the Teichmüller flow Φt on Q which are entirely contained
in Q−K equals the entropy of the action of Φt on Q minus one provided that
3g − 3 + n ≥ 5.

1. Introduction

For a closed oriented surface S of genus g ≥ 0, the moduli space Q(S) of area
one meromorphic quadratic differentials with at most simple poles which are not
squares of holomorphic one-forms decomposes into strata. Such a stratum is the
subset of Q(S) which consists of all quadratic differentials with the same number
n ≥ 0 of simple poles and the same number ℓ ≥ 0 of zeros of the same order mi

(1 ≤ i ≤ ℓ). A stratum Q is a real hypersurface in a complex algebraic orbifold of
complex dimension

h(Q) = 2g − 2 + ℓ+ n.

Similarly, for g ≥ 2 the moduli space H(S) of area one abelian differentials
on S decomposes into strata. A stratum is the subset of H(S) which consists of
holomorphic one-forms with the same number s > 0 of zeros of the same oder
ki. A stratum Q is a real hypersurface in a complex algebraic orbifold of complex
dimension

h(Q) = 2g − 1 + s.

The Teichmüller flow Φt acts on Q(S) and H(S), and this action preserves the
strata. Each stratum contains periodic orbits, and these orbits can be counted:
Namely, for a subset A of Q(S) or of H(S) and a number R > 0 denote by nA(R)
the number of period orbits in A of length at most R. Then for any component Q
of a stratum we have [H13]

nQ(R) ∼
1

h(Q)R
eh(Q)R (R→ ∞).
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This result rests on the work of Eskin, Mirzakhani and Rafi [EMR12], see also
[H11], who showed that for every ǫ > 0 there is a compact subset K of Q with
the property that the growth rate of the number of periodic orbits in Q which are
entirely contained in Q−K is at most h(Q)− 1 + ǫ.

The goal of this work is to show that this estimate is sharp.

Theorem 1. Let Q be a component of a stratum of area one meromorphic quadratic
differentials with n poles on a closed surface of genus g ≥ 0 where 3g − 3 + n ≥ 5
or of a stratum of area one abelian differentials on a surface of genus g ≥ 3. Then
for every compact set K ⊂ Q(S) we have

lim inf
r→∞

1

r
log nQ−K(r) ≥ h(Q)− 1.

Note that the Teichmüller flow on the space Q(1;−1) of meromorphic quadratic
differentials with a single pole on a torus T 2 can be identified with the geodesic
flow on the unit tangent bundle of the modular surface SL(2,Z)\H2. Thus in this
case, there is a compact set K which is intersected by every periodic orbit for the
Teichmüller flow.

The main tool for the proof of Theorem 1 is the construction of combinatorial
models for components of strata of abelian or quadratic differentials using train
tracks. In [H11] we use these models to construct a new symbolic coding for the
Teichmüller flow on strata. In forthcoming work, we use the models to investigate
the principal boundary of strata and, more generally, the adherence of strata of
abelian differentials in the extension of the sheaf of holomorphic differentials to the
Deligne Mumford compactification of moduli space.

Our method can also be applied to construct orbits in a given stratum with an
arbitrarily prescribed recursion behavior to compact subsets of moduli space. An
example for this is given in the following statement. For its formulation, for a point
x in the moduli space M(S) of Riemann surfaces let syst(x) be the systole of x, i.e.
the minimal length of a closed geodesic for the hyperbolic metric determined by x.

Theorem 2. Let Q be a component of a stratum of area one meromorphic (or
abelian) differentials on a surface of genus g ≥ 0 with m ≥ 0 simple poles. If
3g − 3 +m ≥ 5 then there is an orbit γ : [0,∞) → T (S) defined by a differential
with uniquely ergodic vertical measured geodesic lamination and such that

lim sup
t→∞

1

t
log syst(γ(t)) < 0.

The organization of the paper is as follows. Section 2 and Section 3 is devoted
to the construction of combinatorial models for components of strata which con-
sist of train tracks associated to strata. In Section 4 we use the classification of
components of strata by Kontsevich and Zorich [KZ03] (for strata of abelian dif-
ferentials) and Lanneau [L08] (for strata of quadratic differentials which are not
squares of holomophic one-forms) to construct for each component of a stratum
some train tracks with specific properties. These train tracks are used in Section
6 to prove Theorem 1. The short Section 5 collects those dynamical properties of
the Teichmüller flow on compact subsets of strata needed in Section 6.
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2. Train tracks and geodesic laminations

In this section we summarize some constructions from [PH92, H09] which will be
used throughout the paper. Furthermore, we introduce a class of train tracks which
will be important in the later sections, and we discuss some of their properties.

2.1. Geodesic laminations. Let S be an oriented surface of genus g ≥ 0 with
n ≥ 0 punctures and where 3g − 3 + n ≥ 2. A geodesic lamination for a complete
hyperbolic structure on S of finite volume is a compact subset of S which is foliated
into simple geodesics. A geodesic lamination λ is called minimal if each of its half-
leaves is dense in λ. Thus a simple closed geodesic is a minimal geodesic lamination.
A minimal geodesic lamination with more than one leaf has uncountably many
leaves and is called minimal arational. Every geodesic lamination λ consists of a
disjoint union of finitely many minimal components and a finite number of isolated
leaves. Each of the isolated leaves of λ either is an isolated closed geodesic and
hence a minimal component, or it spirals about one or two minimal components
[CEG87].

A geodesic lamination λ on S is said to fill up S if its complementary regions
are all topological disks or once punctured monogons or once punctured bigons.
Here a once puncture monogon is a once punctured disk with a single cusp at
the boundary. A maximal geodesic lamination is a geodesic lamination whose
complementary regions are all ideal triangles or once punctured monogons.

Definition 2.1. A geodesic lamination λ is called large if λ fills up S and if more-
over λ can be approximated in the Hausdorff topology by simple closed geodesics.

Since every minimal geodesic lamination can be approximated in the Hausdorff
topology by simple closed geodesics [CEG87], a minimal geodesic lamination which
fills up S is large. However, there are large geodesic laminations with finitely many
leaves.

The topological type of a large geodesic lamination ν is a tuple

(m1, . . . ,mℓ;−m, p) where 1 ≤ m1 ≤ · · · ≤ mℓ,
∑

i

mi = 4g − 4 +m, m+ p = n.

Here ℓ ≥ 1 is the number of complementary regions which are topological disks,
and these disks are mi + 2-gons (i ≤ ℓ). There are m once punctured monogons
and p once punctured bigons. Let

LL(m1, . . . ,mℓ;−m, p)
be the space of all large geodesic laminations of type (m1, . . . ,mℓ;−m, p) equipped
with the restriction of the Hausdorff topology for compact subsets of S.
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A measured geodesic lamination is a geodesic lamination λ together with a trans-
lation invariant transverse measure. Such a measure assigns a positive weight to
each compact arc in S with endpoints in the complementary regions of λ which
intersects λ nontrivially and transversely. The geodesic lamination λ is called
the support of the measured geodesic lamination; it consists of a disjoint union
of minimal components. The space ML of all measured geodesic laminations on
S equipped with the weak∗-topology is homeomorphic to S6g−7+2n × (0,∞). Its
projectivization is the space PML of all projective measured geodesic laminations.

The measured geodesic lamination µ ∈ ML fills up S if its support fills up
S. This support is then necessarily connected and hence minimal, and for some
tuple (m1, . . . ,mℓ;−m, p), it defines a point in the set LL(m1, . . . ,mℓ;−m, p). The
projectivization of a measured geodesic lamination which fills up S is also said to
fill up S.

There is a continuous symmetric pairing ι : ML×ML → [0,∞), the so-called
intersection form, which extends the geometric intersection number between simple
closed curves.

2.2. Train tracks. A train track on S is an embedded 1-complex τ ⊂ S whose
edges (called branches) are smooth arcs with well-defined tangent vectors at the
endpoints. At any vertex (called a switch) the incident edges are mutually tangent.
Through each switch there is a path of class C1 which is embedded in τ and contains
the switch in its interior. A simple closed curve component of τ contains a unique
bivalent switch, and all other switches are at least trivalent. The complementary
regions of the train track have negative Euler characteristic, which means that
they are different from disks with 0, 1 or 2 cusps at the boundary and different
from annuli and once-punctured disks with no cusps at the boundary. We always
identify train tracks which are isotopic. Throughout we use the book [PH92] as the
main reference for train tracks.

A train track is called generic if all switches are at most trivalent. For each
switch v of a generic train track τ which is not contained in a simple closed curve
component, there is a unique half-branch b of τ which is incident on v and which
is large at v. This means that every germ of an arc of class C1 on τ which passes
through v also passes through the interior of b. A half-branch which is not large
is called small. A branch b of τ is called large (or small) if each of its two half-
branches is large (or small). A branch which is neither large nor small is called
mixed.

Remark: As in [H09], all train tracks are assumed to be generic. Unfortunately
this leads to a small inconsistency of our terminology with the terminology found
in the literature.

A trainpath on a train track τ is a C1-immersion ρ : [k, ℓ] → τ such that for
every i < ℓ − k the restriction of ρ to [k + i, k + i + 1] is a homeomorphism onto
a branch of τ . More generally, we call a C1-immersion ρ : [a, b] → τ a generalized
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trainpath. A trainpath ρ : [k, ℓ] → τ is closed if ρ(k) = ρ(ℓ) and if precisely one of
the half-branches ρ[k, k + 1/2], ρ[ℓ− 1/2, ℓ] is large.

A generic train track τ is orientable if there is a consistent orientation of the
branches of τ such that at any switch s of τ , the orientation of the large half-branch
incident on s extends to the orientation of the two small half-branches incident on s.
If C is a complementary polygon of an oriented train track then the number of sides
of C is even. In particular, a train track which contains a once punctured monogon
component is not orientable (see p.31 of [PH92] for a more detailed discussion).

A train track or a geodesic lamination η is carried by a train track τ if there is
a map F : S → S of class C1 which is homotopic to the identity and maps η into τ
in such a way that the restriction of the differential of F to the tangent space of η
vanishes nowhere; note that this makes sense since a train track has a tangent line
everywhere. We call the restriction of F to η a carrying map for η. Write η ≺ τ if
the train track η is carried by the train track τ . Then every geodesic lamination ν
which is carried by η is also carried by τ .

A train track fills up S if its complementary components are topological discs
or once punctured monogons or once punctured bigons. Note that such a train
track τ is connected. Let ℓ ≥ 1 be the number of those complementary components
of τ which are topological disks. Each of these disks is an mi + 2-gon for some
mi ≥ 1 (i = 1, . . . , ℓ). The topological type of τ is defined to be the ordered tuple
(m1, . . . ,mℓ;−m, p) where 1 ≤ m1 ≤ · · · ≤ mℓ and m (or p) is the number of
once punctured monogons (or once punctured bigons); then

∑
imi = 4g − 4 +m

and m + p = n. If τ is orientable then m = 0 and mi is even for all i. A train
track of topological type (1, . . . , 1;−m, 0) is called maximal. The complementary
components of a maximal train track are all trigons, i.e. topological disks with
three cusps at the boundary, or once punctured monogons.

A transverse measure on a generic train track τ is a nonnegative weight function
µ on the branches of τ satisfying the switch condition: for every trivalent switch s
of τ , the sum of the weights of the two small half-branches incident on s equals the
weight of the large half-branch. The space V(τ) of all transverse measures on τ has
the structure of a cone in a finite dimensional real vector space, and it is naturally
homeomorphic to the space of all measured geodesic laminations whose support is
carried by τ . The train track is called recurrent if it admits a transverse measure
which is positive on every branch. We call such a transverse measure µ positive,
and we write µ > 0 (see [PH92] for more details).

A subtrack σ of a train track τ is a subset of τ which is itself a train track. Then
σ is obtained from τ by removing some of the branches, and we write σ < τ . If b is
a small branch of τ which is incident on two distinct switches of τ then the graph σ
obtained from τ by removing b is a subtrack of τ . We then call τ a simple extension
of σ. Note that formally to obtain the subtrack σ from τ − b we may have to delete
the switches on which the branch b is incident.

Lemma 2.2. (1) A simple extension τ of a recurrent non-orientable connected
train track σ is recurrent. Moreover,

dimV(τ) = dimV(σ) + 1.
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(2) An orientable simple extension τ of a recurrent orientable connected train
track σ is recurrent. Moreover,

dimV(τ) = dimV(σ) + 1.

Proof. If τ is a simple extension of a train track σ then σ can be obtained from τ
by the removal of a small branch b which is incident on two distinct switches s1, s2.
Then si is an interior point of a branch bi of σ (i = 1, 2).

If σ is connected, non-orientable and recurrent then there is a trainpath ρ0 :
[0, t] → τ − b which begins at s1, ends at s2 and such that the half-branch ρ0[0, 1/2]
is small at s1 = ρ0(0) and that the half-branch ρ0[t− 1/2, t] is small at s2 = ρ0(t).
Extend ρ0 to a closed trainpath ρ on τ − b which begins and ends at s1. This
is possible since σ is non-orientable, connected and recurrent. There is a closed
trainpath ρ′ : [0, u] → τ which can be obtained from ρ by replacing the trainpath
ρ0 by the branch b traveled through from s1 to s2. The counting measure of
ρ′ on τ satisfies the switch condition and hence it defines a transverse measure
on τ which is positive on b. On the other hand, every transverse measure on σ
defines a transverse measure on τ . Thus since σ is recurrent and since the sum of
two transverse measures on τ is again a transverse measure, the train track τ is
recurrent as well. Moreover, we have dimV(τ) ≥ dimV(σ) + 1.

Let p be the number of branches of τ . Label the branches of τ with the numbers
{1, . . . , p} so that the number p is assigned to b. Let e1, . . . , ep be the standard
basis of Rp and define a linear map A : Rp → R

p by A(ei) = ei for i ≤ p − 1
and A(ep) =

∑
i ν(i)ei where ν is the weight function on {1, . . . , p − 1} defined

by the trainpath ρ0. The map A is a surjection onto a linear subspace of Rp of
codimension one, moreover A preserves the linear subspace V of Rp defined by the
switch conditions for τ . In particular, the corank of A(V ) in V is at most one.
But A(V ) is contained in the space of solutions of the switch conditions on σ and
consequently its corank in V is at least one.

Together we obtain that indeed dimV(τ) = dimV(σ) + 1. This completes the
proof of the first part of the lemma. The second part follows in exactly the same
way, and its proof will be omitted. �

As a consequence we obtain

Corollary 2.3. (1) dimV(τ) = 2g − 2 + ℓ + m + p for every non-orientable
recurrent train track τ of topological type (m1, . . . ,mℓ;−m, p).

(2) dimV(τ) = 2g − 1 + ℓ + p for every orientable recurrent train track τ of
topological type (m1, . . . ,mℓ; 0, p).

Proof. The disk components of a non-orientable recurrent train track τ of topolog-
ical type (m1, . . . ,mℓ;−m, p) can be subdivided in 4g−4+m− ℓ steps into trigons
by successively adding small branches. The once punctured bigon components can
be subdivided into a trigon and a once punctured monogon. A repeated application
of the first part of Lemma 2.2 shows that the resulting train track η is maximal
and recurrent. Since for every maximal recurrent train track η on a surface with
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n = m+ p punctures we have dimV(η) = 6g− 6+ 2n (see [PH92]), the first part of
the corollary follows from the formula in the first part of Lemma 2.2.

To show the second part of the corollary, let τ be an orientable recurrent train
track of type (m1, . . . ,mℓ; 0, p). Then mi is even for all i. Add a branch b0 to τ
which cuts some complementary component of τ into a trigon and a second polygon
with an odd number of sides. The resulting train track η0 is not recurrent since a
trainpath on η0 can only pass through b0 at most once. However, we can add to η0
another small branch b1 which cuts some complementary component of η0 with at
least 4 sides into a trigon and a second polygon such that the resulting train track
η is non-orientable and recurrent. The inward pointing tangent of b1 is chosen in
such a way that there is a trainpath traveling through both b0 and b1. The counting
measure of any simple closed curve which is carried by η gives equal weight to the
branches b0 and b1. But this just means that dimV(η) = dimV(τ) + 1 (see the
proof of Lemma 2.2 for a detailed argument). By the first part of the corollary, we
have dimV(η) = 2g − 2 + ℓ + p+ 2 and consequently dimV(τ) = 2g − 1 + ℓ+ p as
claimed. �

Definition 2.4. A train track τ of topological type (m1, . . . ,mℓ;−m, p) is fully re-
current if τ carries a large minimal geodesic lamination ν ∈ LL(m1, . . . ,mℓ;−m, p).

Note that by definition, a fully recurrent train track is connected and fills up
S. The next lemma gives some first property of a fully recurrent train track τ .
For its proof, recall that there is a natural homeomorphism of V(τ) equipped with
the euclidean topology onto the closed subspace of ML of all measured geodesic
laminations carried by τ .

Lemma 2.5. A fully recurrent train track τ is recurrent.

Proof. A fully recurrent train track τ of type (m1, . . . ,mℓ;−m, p) carries a minimal
large geodesic lamination ν ∈ LL(m1, . . . ,mℓ;−m, p). The carrying map ν → τ
induces a bijection between the complementary components of τ and the comple-
mentary components of ν. In particular, a carrying map ν → τ is surjective. Now
a minimal geodesic lamination supports a transverse measure, and such a trans-
verse measure defines a positive transverse measure on τ . In other words, τ is
recurrent. �

There are two simple ways to modify a fully recurrent train track τ to another
fully recurrent train track. Namely, if b is a mixed branch of τ then we can shift
τ along b to a new train track τ ′. This new train track carries τ and hence it
is fully recurrent since it carries every geodesic lamination which is carried by τ
[PH92, H09].

Similarly, if e is a large branch of τ then we can perform a right or left split of τ
at e as shown in Figure A below. The new small branch in the split track is called
the diagonal of the split. A (right or left) split τ ′ of a train track τ is carried by
τ . If τ is of topological type (m1, . . . ,mℓ;−m, p), if ν ∈ LL(m1, . . . ,mℓ;−m, p) is
minimal and is carried by τ and if e is a large branch of τ , then there is a unique
choice of a right or left split of τ at e such that the split track η carries ν. In
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particular, η is fully recurrent. Note however that there may be a split of τ at e
such that the split track is not fully recurrent any more (see Section 2 of [H09] for
details).

Figure A

The following observation is useful for the understanding of fully recurrent train
tracks.

Lemma 2.6. (1) Let e be a large branch of a fully recurrent non-orientable
train track τ . Then no component of the train track σ obtained from τ by
splitting τ at e and removing the diagonal of the split is orientable.

(2) Let e be a large branch of a fully recurrent orientable train track τ . Then the
train track σ obtained from τ by splitting τ at e and removing the diagonal
of the split is connected.

Proof. We begin with the proof of the first part of the lemma. Thus let τ be a fully
recurrent non-orientable train track of topological type (m1, . . . ,mℓ;−m, p). Let e
be a large branch of τ and let v be a switch on which the branch e is incident. Let
σ be the train track obtained from τ by splitting τ at e and removing the diagonal
branch of the split. The train tracks τ1, τ2 obtained from τ by a right and left split
at e, respectively, are simple extensions of σ.

We argue by contradiction and we assume that σ contains an orientable con-
nected component σ1 (not necessarily distinct from σ). Let bi ⊂ τi − σ be the
diagonal of the split which modifies τ to τi (i = 1, 2). Since τ is fully recurrent, it
can be split at e to a fully recurrent train track and hence at least one of the train
tracks τi is recurrent. Assume that this holds true for τ1. Then there is a trainpath
ρ : [0, k] → τ1 with ρ[0, 1] = b1 and ρ[1, 2] ∈ σ1 which recurs to b1. Let j ≥ 2 be
the smallest number bigger than one such that ρ[j, j + 1] = bi. Then ρ[j − 1, j]
equals the branch ρ[1, 2] traveled through in opposite direction, moreover we have
ρ[1, j] ⊂ σ1. Since σ1 is orientable, this is impossible. This contradiction shows the
first part of the lemma.

The second part of the lemma follows from the same argument since a split of
an orientable train track is orientable. �

Example: 1) Figure B shows a non-orientable recurrent train track τ of type
(4; 0, 0) on a closed surface of genus two. The train track obtained from τ by a split
at the large branch e and removal of the diagonal of the split track is orientable
and hence τ is not fully recurrent. We show in Section 3 that this corresponds to
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the following result of Masur and Smillie [MS93]: Every quadratic differential with
a single zero and no pole on a surface of genus 2 is the square of a holomorphic
one-form.

F

e

Figure B

2) To construct an orientable recurrent train track of type (m1, . . . ,mℓ; 0, 0)
which is not fully recurrent let S1 be a surface of genus g1 ≥ 2 and let τ1 be an
orientable fully recurrent train track on S1 with ℓ1 ≥ 1 complementary components.
Choose a complementary component C1 of τ1 in S1, remove from C1 a disk D1 and
glue two copies of S1 −D1 along the boundary of D1 to a surface S of genus 2g1.
The two copies of τ1 define a recurrent disconnected oriented train track τ on S
which has an annulus complementary component C.

Choose a branch b1 of τ in the boundary of C. There is a corresponding branch
b2 in the second boundary component of C. Glue a compact subarc of b1 contained
in the interior of b1 to a compact subarc of b2 contained in the interior of b2 so that
the images of the two arcs under the glueing form a large branch e in the resulting
train track η. The train track η is recurrent and orientable, and its complementary
components are topological disks. However, by Lemma 2.6 it is not fully recurrent.

To each train track τ which fills up S one can associate a dual bigon track τ∗

(Section 3.4 of [PH92]). There is a bijection between the complementary compo-
nents of τ and those complementary components of τ∗ which are not bigons, i.e.
disks with two cusps at the boundary. This bijection maps a component C of τ
which is an n-gon for some n ≥ 3 to an n-gon component of τ∗ contained in C, and
it maps a once punctured monogon or bigon C to a once punctured monogon or
bigon contained in C. If τ is orientable then the orientation of S and an orientation
of τ induce an orientation on τ∗, i.e. τ∗ is orientable.

There is a notion of carrying for bigon tracks which is analogous to the notion of
carrying for train tracks. Measured geodesic laminations which are carried by the
bigon track τ∗ can be described as follows. A tangential measure on a train track τ
of type (m1, . . . ,mℓ;−m, p) assigns to a branch b of τ a weight µ(b) ≥ 0 such that
for every complementary k-gon of τ or once punctured bigon with consecutive sides
c1, . . . , ck and total mass µ(ci) (counted with multiplicities) the following holds
true.

(1) µ(ci) ≤ µ(ci−1) + µ(ci+1).

(2)
∑k+j−1

i=j (−1)i−jµ(ci) ≥ 0, j = 1, . . . , k.
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The complementary once punctured monogons define no constraint on tangential
measures. Our definition of tangential measure on τ is stronger than the definition
given on p.22 of [PH92] and corresponds to the notion of a metric as defined on
p.184 of [P88]. We do not use this terminology here since we find it unfortunate.

The space of all tangential measures on τ has the structure of a convex cone
in a finite dimensional real vector space. By Lemma 2.1 of [P88], every tangential
measure on τ determines a simplex of measured geodesic laminations which hit τ
efficiently. The supports of these measured geodesic laminations are carried by
the bigon track τ∗, and every measured geodesic lamination which is carried by τ∗

can be obtained in this way. The dimension of this simplex equals the number of
complementary components of τ with an even number of sides. The train track τ
is called transversely recurrent if it admits a tangential measure which is positive
on every branch.

In general, a measured geodesic lamination ν which hits τ efficiently does not
determine uniquely a tangential measure on τ either. Namely, let s be a switch of τ
and let a, b, c be the half-branches of τ incident on s and such that the half-branch a
is large. If β is a tangential measure on τ and if ν is a measured geodesic lamination
in the simplex determined by β then it may be possible to drag the switch s across
some of the leaves of ν and modify the tangential measure β on τ to a tangential
measure µ 6= β. Then β − µ is a multiple of a vector of the form δa − δb − δc where
δw denotes the function on the branches of τ defined by δw(w) = 1 and δw(a) = 0
for a 6= w.

Definition 2.7. Let τ be a train track of topological type (m1, . . . ,mℓ;−m, p).

(1) τ is called fully transversely recurrent if its dual bigon track τ∗ carries a
large geodesic lamination ν ∈ LL(m1, . . . ,mℓ;−m, p).

(2) τ is called large if τ is fully recurrent and fully transversely recurrent.

For a large train track τ let V∗(τ) ⊂ ML be the set of all measured geodesic lam-
inations whose support is carried by τ∗. Each of these measured geodesic lamina-
tions corresponds to a family of tangential measures on τ . With this identification,
the pairing

(1) (ν, µ) ∈ V(τ)× V∗(τ) →
∑

b

ν(b)µ(b)

is just the restriction of the intersection form on measured lamination space (Section
3.4 of [PH92]). Moreover, V∗(τ) is naturally homeomorphic to a convex cone in a
real vector space. The dimension of this cone coincides with the dimension of V(τ).

The following observation is an immediate consequence of Lemma 2.2 and the
above discussion.

Proposition 2.8. (1) A simple extension of a large non-orientable train track
is large.

(2) An orientable simple extension of a large orientable train track is large.
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From now on we denote by LT (m1, . . . ,mℓ;−m, p) the set of all isotopy classes
of large train tracks on S of type (m1, . . . ,mℓ;−m, p).

Section 3 of [H09] contains a method to construct large train tracks. Namely, for
a fixed choice of a complete hyperbolic metric on S of finite volume and numbers
a > 0, ǫ > 0 there is a notion of a-long train track which ǫ-follows a large geodesic
lamination λ. The following is an immediate consequence of Lemma 3.2 of [H09].

Lemma 2.9. Let λ ∈ LL(m1, . . . ,mℓ;−m, p); then for sufficiently small ǫ, an
a-long train track τ which ǫ-follows λ is contained in LT (m1, . . . ,mℓ;−m, p).

3. Strata

For a closed oriented surface S of genus g ≥ 0 with n ≥ 0 marked points (punc-

tures) let Q̃(S) be the bundle of marked area one holomorphic quadratic differentials
with either a simple pole or a regular point at each of the marked points and no
other pole over the Teichmüller space T (S) of marked complex structures on S.

Fix a complete hyperbolic metric on S of finite area. An area one quadratic differ-
ential q ∈ Q̃(S) is determined by a pair (λ+, λ−) of measured geodesic laminations
which jointly fill up S (i.e. we have ι(λ+, µ) + ι(λ−, µ) > 0 for every measured ge-
odesic lamination µ) and such that ι(λ+, λ−) = 1. The vertical measured geodesic
lamination λ+ for q corresponds to the equivalence class of the vertical measured
foliation of q. The horizontal measured geodesic lamination λ− for q corresponds
to the equivalence class of the horizontal measured foliation of q.

For m ≤ n, p = n −m and ℓ ≥ 1, an ℓ-tuple (m1, . . . ,mℓ) of positive integers

1 ≤ m1 ≤ · · · ≤ mℓ with
∑

imi = 4g−4+m defines a stratum Q̃(m1, . . . ,mℓ;−m, p)
in Q̃(S). This stratum consists of all marked area one quadratic differentials withm
simple poles, p regular marked points and ℓ zeros of order m1, . . . ,mℓ. We require
that these differentials are not squares of holomorphic one-forms. The stratum is a
real hypersurface in a complex manifold of dimension

(2) h = 2g − 2 + ℓ+m+ p.

The closure in Q̃(S) of a stratum is a union of components of strata. Strata are
invariant under the action of the mapping class group Mod(S) of S and hence

they project to strata in the moduli space Q(S) = Q̃(S)/Mod(S) of quadratic

differentials on S. We denote the projection of the stratum Q̃(m1, . . . ,mℓ;−m, p) by
Q(m1, . . . ,mℓ;−m, p). The strata in moduli space need not be connected, but their
connected components have been identified by Lanneau [L08]. A stratum in Q(S)
has at most two connected components. The number of components of the stratum
Q(m1, . . . ,mℓ;−m, p) equals the number of components of Q(m1, . . . ,mℓ;−m, 0).

Similarly, let H̃(S) be the bundle of marked area one holomorphic one-forms
over Teichmüller space T (S) of S. Each of the marked points of S is required to
be a regular point for the differential. In particular, the bundle is non-empty only
if g ≥ 1. For an ℓ-tuple k1 ≤ · · · ≤ kℓ of positive integers with

∑
i ki = 2g − 2,

the stratum H̃(k1, . . . , kℓ;n) of marked area one holomorphic one-forms on S with
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ℓ zeros of order ki (i = 1, . . . , ℓ) and n regular marked points is a real hypersurface
in a complex manifold of dimension

(3) h = 2g − 1 + ℓ+ n.

It projects to a stratum H(k1, . . . , kℓ;n) in the moduli space H(S) of area one
holomorphic one-forms on S. Strata of holomorphic one-forms in moduli space
need not be connected, but the number of connected components of a stratum is
at most three [KZ03].

We continue to use the assumptions and notations from Section 2. For a large
train track τ ∈ LT (m1, . . . ,mℓ;−m, p) let

V0(τ) ⊂ V(τ)
be the set of all measured geodesic laminations ν ∈ ML whose support is carried
by τ and such that the total weight of the transverse measure on τ defined by ν
equals one. Let

Q(τ) ⊂ Q̃(S)

be the set of all marked area one quadratic differentials whose vertical measured
geodesic lamination is contained in V0(τ) and whose horizontal measured geodesic
lamination is carried by the dual bigon track τ∗ of τ . By definition of a large train
track, we have Q(τ) 6= ∅.

The next observation relates Q(τ) to components of strata.

Lemma 3.1. Let τ ∈ LT (m1, . . . ,mℓ;−m, p) and let q ∈ Q(τ). If the support
of the vertical measured geodesic lamination is contained in LL(m1, . . . ,mℓ;−m, p)
then q ∈ Q̃(m1, . . . ,mℓ;−m, p), and q is an abelian differential if and only if τ is
orientable.

Proof. A marked area one quadratic differential z ∈ Q̃(S) defines a singular eu-
clidean metric on S of area one. A singular point for z is a zero or a pole or one of
the p ≥ 0 regular marked points. A saddle connection for z is a geodesic segment
for this singular euclidean metric which connects two singular points and does not
contain a singular point in its interior. A separatrix is a maximal geodesic segment
or ray which begins at a singular point and does not contain a singular point in its
interior.

The complex structure on S determines a complete finite area hyperbolic metric
g on S. Let ξ be the support of the vertical measured geodesic lamination of z.
By [L83], the geodesic lamination ξ can be obtained from the vertical foliation of
z by cutting S open along each vertical separatrix and straightening the remaining
leaves so that they become geodesics for g. In particular, up to homotopy, a vertical
saddle connection s of z is contained in the interior of a complementary component
C of ξ which is uniquely determined by s.

Let τ ∈ LT (m1, . . . ,mℓ;−m, p) be non-orientable. Let q ∈ Q(τ), with vertical
measured geodesic lamination µ ∈ V0(τ) whose support supp(µ) is contained in
LL(m1, . . . ,mℓ;−m, p). Then supp(µ) is non-orientable since otherwise τ inherits
an orientation from supp(µ). Since supp(µ) ∈ LL(m1, . . . ,mℓ;−m, p), the orders
of the zeros of the quadratic differential q are obtained from the orders m1, . . . ,mℓ
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by subdivision. Moreover, q ∈ Q̃(m1, . . . ,mℓ;−m, p) if and only if this subdivision
is trivial.

By slightly moving the regular marked points in S we may assume that no regular
marked point is the endpoint of any saddle connection. Then the subdivision is
trivial if and only if q does not have any vertical saddle connection.

The choice of the hyperbolic metric on S identifies the universal covering of S
with the hyperbolic plane H2, and it identifies the fundamental group π1(S) of S
with a group of isometries of H2. Assume to the contrary that q has a vertical
saddle connection s. Let q̃ be the lift of q to a quadratic differential on H2 and let
s̃ ⊂ H2 be a preimage of s.

The preimage ζ ⊂ H2 of supp(µ) is a closed π1(S)-invariant set of geodesic lines
in H2. Since µ fills up S, the complementary components of ζ are finite area ideal
polygons and half-planes which are the components of the preimages of the once
punctured monogons and the once punctured bigons of S − µ. As discussed above,
up to homotopy the saddle connection s̃ of q̃ is contained in a complementary
component C̃ of ζ which is an ideal polygon with finitely many sides, and it is
determined by s̃.

Remove a small open disk Di about each of the punctures ui of S such that the
closures of these disks are pairwise disjoint and do not contain any zero of q. A
vertical or horizontal geodesic arc γ on S not passing through any of the points ui
can be homotoped with fixed endpoints to a path entirely contained inK = S−∪iDi

whose length with respect to the singular euclidean metric defined by q equals the
length of γ up to a universal multiplicative constant. On K, the singular euclidean
metric is uniformly equivalent to the hyperbolic metric g. Therefore a lift to H2

of a biinfinite vertical or horizontal geodesic is a uniform quasi-geodesic for the
hyperbolic metric. Such a quasi-geodesic has well defined endpoints in the ideal
boundary ∂H2 of H2 (see also [L83, PH92]).

Choose an orientation for the saddle connection s̃. There are two oriented ver-
tical geodesic lines α0, β0 for the metric defined by q̃ which contain the saddle
connection s̃ as a subarc and which are contained in a bounded neighborhood of a
side α, β of C̃. The geodesics α0, β0 are determined by the requirement that their
orientation coincides with the given orientation of s̃ and that moreover at every
singular point x, the angle at x to the left of α0 (or to the right of β0) for the
orientation of the geodesic and the orientation of H2 equals π (see [L83] for details
of this construction).

The ideal boundary of the closed half-plane of H2 which is bounded by α (or β)

and which is disjoint from the interior of C̃ is a compact subarc a (or b) of ∂H2

bounded by the endpoints of α (or β). The arcs a, b are disjoint (or, equivalently, the

sides α, β of C̃ are not adjacent). A horizontal geodesic line for q̃ which intersects
the interior of the saddle connection s̃ is a quasi-geodesic in H2 with one endpoint
in the interior of the arc a and the second endpoint in the interior of the arc b. Since
the length of s̃ is positive, the weight placed on s̃ by the transverse measure for the
horizontal foliation of q̃ is positive. This means that the support of the horizontal
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measured geodesic lamination of q̃ contains geodesics with one endpoint in the arc
a and the second endpoint in b.

Since the topological types of the support of µ and of τ coincide, a carrying map
F : supp(µ) → τ is surjective and induces a bijection between the complementary
components of supp(µ) and the complementary components of τ . In particular,
the projections to S of the geodesics α, β determine two non-adjacent sides of a
complementary component Cτ of τ .

On the other hand, by construction of the dual bigon track τ∗ of τ (see [PH92]), if
ρ : (−∞,∞) → τ∗ is any trainpath which intersects the complementary component
Cτ of τ then every component of ρ(−∞,∞) ∩ Cτ is a compact arc with endpoints
on adjacent sides of Cτ . In particular, a lift to H2 of such a trainpath is a quasi-
geodesic in H2 whose endpoints meet at most one of the two arcs a, b ⊂ ∂H2.
Now the support of the horizontal measured geodesic lamination ν of q is carried
by τ∗. Therefore every leaf of the support of ν determines a biinfinite trainpath
on τ∗. A lift to H2 of such a leaf does not connect the arcs a, b ⊂ ∂H2. But we
observed above that the support of the horizontal measured geodesic lamination
of q̃ contains geodesics connecting a to b. This is a contradiction and shows that
indeed q ∈ Q̃(m1, . . . ,mℓ;−m, p).

We are left with the case that τ ∈ LT (m1, . . . ,mℓ; 0, p) is orientable. If µ is a
geodesic lamination which is carried by τ , then µ inherits an orientation from an
orientation of τ . The orientation of τ together with the orientation of S determines
an orientation of the dual bigon track τ∗ (see [PH92]). Therefore any geodesic
lamination carried by τ∗ admits an orientation, and if (µ, ν) jointly fill up S and
if µ is carried by τ , ν is carried by τ∗ then the orientations of µ, ν determine
the orientation of S and the quadratic differential q of (µ, ν) is the square of a
holomorphic one-form. Together with the first part of this proof, the lemma follows.

�

As in the introduction, let Φt be the Teichmüller flow on Q̃(S) and on Q(S). We
use Lemma 3.1 to show

Proposition 3.2. (1) For every large non-orientable train track

τ ∈ LT (m1, . . . ,mℓ;−m, p) there is a component Q̃ of the stratum

Q̃(m1, . . . ,mℓ;−m, p) such that for every δ > 0 the set {Φtq | q ∈ Q(τ), t ∈
[−δ, δ]} is the closure in Q̃(S) of an open subset of Q̃.

(2) For every large orientable train track τ ∈ LT (m1, . . . ,mℓ; 0, n) there is a

component Q̃ of the stratum H̃(m1/2, . . . ,mℓ/2, n) such that for every δ > 0

the set {Φtq | q ∈ Q(τ), t ∈ [−δ, δ]} is the closure in H̃(S) of an open subset

of Q̃.

Proof. Let τ ∈ LL(m1, . . . ,mℓ;−m, p) and let µ ∈ V0(τ), with support supp(µ) ∈
LL(m1, . . . ,mℓ;−m, p). If ν ∈ V∗(τ) then the measured geodesic laminations µ, ν
jointly fill up S (since the support of ν is different from the support of µ and supp(µ)
fills up S) and hence if ν is normalized in such a way that ι(µ, ν) = 1 then the pair

(µ, ν) defines a point q ∈ Q(τ). By Lemma 3.1, we have q ∈ Q̃(m1, . . . ,mℓ;−m, p).
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Define the strong unstable manifold W su(q) of a quadratic differential q ∈ Q̃(S)
to consist of all quadratic differentials whose horizontal measured foliation coincides
with the horizontal measured foliation of q up to isotopy preserving the regular
marked points and Whitehead moves.

The strong stable manifold W ss(q) is defined to be the image of W su(−q) under
the flip F : q → −q. For a component Q̃ of a stratum in Q̃(S) and for q ∈ Q̃,
define the strong unstable (or strong stable) manifoldW su

Q̃
(q) (orW ss

Q̃
(q)) to be the

connected component containing q of the intersection W su(q)∩Q̃ (or W ss(q)∩Q̃).

Then W i
Q̃
(q) is a manifold of dimension h(Q̃) − 1 (i = ss, su). The manifolds

W su
Q̃

(q) (or W ss
Q̃
(q)) define a foliation of Q̃ which is called the strong unstable (or

the strong stable) foliation.

Let P(µ) ⊂ PML be the open set of all projective measured geodesic laminations
whose support is distinct from the support of µ. Then the assignment ψ which
associates to a projective measured geodesic lamination [ν] ∈ P(µ) the area one
quadratic differential q(µ, [ν]) with vertical measured geodesic lamination µ and
horizontal projective measured geodesic lamination [ν] is a homeomorphism of P(µ)

onto a strong stable manifold in Q̃(S).

By Corollary 2.3 and the fact that the dimension of V∗(τ) coincides with the
dimension of V(τ), the projectivization PV∗(τ) ⊂ PML of V∗(τ) is homeomorphic

to a closed ball in a real vector space of dimension h(Q̃) − 1, and this is just the

dimension of a strong stable manifold in a component of Q̃(m1, . . . ,mℓ;−m, p).
Therefore by Lemma 3.1 and invariance of domain, there is a component Q̃ of the
stratum Q̃(m1, . . . ,mℓ;−m, p) such that the restriction of the map ψ to PV∗(τ) is
a homeomorphism of PV∗(τ) onto the closure of an open subset of a strong stable

manifold W ss
Q̃
(q) ⊂ Q̃.

The above argument also shows that if z ∈ Q(τ) is defined by ζ ∈ V0(τ), ν ∈
V∗(τ) and if the support of ν is contained in LL(m1, . . . ,mℓ;−m, p) then we have

z ∈ Q̃(m1, . . . ,mℓ;−m, p). If P̃ denotes the component of Q̃(m1, . . . ,mℓ;−m, p)
containing z then for every point [β] in the projectivization PV(τ) of V(τ), the pair
([β], ν) defines a quadratic differential which is contained in the strong unstable
manifold W su

P̃
(z). The set of these quadratic differentials equals the closure of an

open subset of W su
P̃

(z).

The set of quadratic differentials q with the property that the support of the ver-
tical (or of the horizontal) measured geodesic lamination of q is minimal and of type

(m1, . . . ,mℓ;−m, p) is dense and of full Lebesgue measure in Q̃(m1, . . . ,mℓ;−m, p)
[M82, V86]. Moreover, this set is saturated for the strong stable (or for the strong
unstable) foliation. Thus by the above discussion, the set of all measured geodesic
laminations which are carried by τ (or τ∗) and whose support is minimal of type
(m1, . . . ,mℓ;−m, p) is dense in V(τ) (or in V∗(τ)). As a consequence, the set of all
pairs (µ, ν) ∈ V(τ)×V∗(τ) with ι(µ, ν) = 1 which correspond to a quadratic differ-

ential q ∈ Q̃(m1, . . . ,mℓ;−m, p) is dense in the set of all pairs (µ, ν) ∈ V(τ)×V∗(τ)

with ι(µ, ν) = 1. As closures of distinct components of Q̃(m1, . . . ,mℓ;−m, p) are
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disjoint, this implies that the set Q(τ) is contained in the closure of a compo-

nent Q̃ of the stratum Q̃(m1, . . . ,mℓ;−m, p). Moreover, by reasons of dimension,
{Φtq | q ∈ Q(τ), t ∈ [−δ, δ]} contains an open subset of this component. This
completes the proof of the proposition. �

The next proposition is a converse to Proposition 3.2 and shows that train tracks
can be used to define coordinates on strata.

Proposition 3.3. (1) For every q ∈ Q̃(m1, . . . ,mℓ;−m, p) there is a large
non-orientable train track τ ∈ LT (m1, . . . ,mℓ;−m, p) and a number t ∈ R

so that Φtq is an interior point of Q(τ).

(2) For every q ∈ H̃(k1, . . . , ks;n) there is a large orientable train track τ ∈
LT (2k1, . . . , 2ks; 0, n) and a number t ∈ R so that Φtq is an interior point
of Q(τ).

Proof. Let q ∈ Q̃(m1, . . . ,mℓ;−m, p) and assume first that q does not have any
horizontal cylinders.

Let Σ = {u1, . . . , us} (s = ℓ + m + p) be the singular set of q, i.e. the union
of the zeros and poles and marked regular points. For each i choose a closed disk
neighborhood Di of ui with smooth boundary in such a way that these disks are
pairwise disjoint. We may assume that the vertical separatrices issuing from ui
intersect ∂Di transversely. Then the connected component containing ui of the
intersection with Di of each such separatrix is a compact connected arc with one
endpoint ui and the second endpoint on ∂Di. The union of these arcs is a connected
graph Gi embedded in Di which either is a compact arc with one endpoint on ∂Di

(in the case that ui is a pole of q) or a compact arc with two endpoints on ∂Di

which contains ui in its interior (if ui is a marked regular point of q) or a tree with
a single non-univalent vertex (in the case that ui is a zero of q).

For each i replace the graph Gi by a connected train track ηi in Di with stops
on ∂Di as shown in Figure C. We require that ηi is transverse to the horizontal
foliation. There is a single complementary component Ci of Di − ηi whose closure
is contained in the interior of Di. This component contains ui. The cusps of the
component are the trivalent vertices of ηi. For each stop of ηi, the branch containing
the stop is contained in Gi and connects the stop to a cusp of Ci. The component
Ci is a once punctured monogon if ui is a pole, a once punctured bigon if ui is a
regular marked point, or an mi + 2-gon if ui is a zero of order mi.

Let η be the union of the train tracks with stops ηi; this union consists of ℓ+m+p
connected components, and it contains

∑
i(mi+2)+m+2p univalent vertices. The

graph η is transverse to the horizontal foliation of q. Note that η also is transverse
to the straight line foliation on S defined by any direction which is sufficiently close
to the horizontal direction.

Let w be a stop of the train track with stops η and let ζ be a neighborhood of
w in the branch e of η containing w. We orient ζ so that it goes from the stop
w to its second endpoint which is an interior point of e. By construction, ζ is
contained in a vertical separatrix of q. Each point on ζ is the starting point of a
horizontal geodesic arc which locally lies to the left of ζ. These arcs are contained
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in a horizontal strip R, i.e. a rectangle foliated by horizontal arcs. Extend the strip
horizontally until its first intersection point with η as shown in Figure D. This is
possible since ∪iCi is a neighborhood of the critical set of q, the area of q equals
one and the width of R is positive. As η is transverse to the horizontal foliation,
via a small deformation we may assume that either the side s of R opposite to ζ
is contained in a component of η, or that the interior of the side s contains a stop
of η which divides s into two subarcs, one arc contained in η and the second arc
contained in S − η.

Assume first that the side s is contained in the interior of a component of η
and that it is disjoint from ζ. Then s is contained in the interior of an embedded
trainpath of η. Deform the arc ζ within R and glue it to s in such a way that
the resulting path is smooth and transverse to the horizontal foliation as shown in
Figure D.

If the side s contains a stop v of η in its interior but is disjoint from ζ then
there is a subarc ζ ′ of s which is a neighborhood of the stop v in the branch f of
η containing v. The above construction, applied to ζ ′ with reversed orientation,
yields a subrectangle of R with one side a compact subarc of ζ contained in in the
interior of ζ. Now simply exchanges the roles of s∩ η and ζ and glue ζ ′ to a subarc
of ζ as before.

If s intersects ζ then note that since there are no horizontal cylinders, the end-
point w of ζ which is a stop either is mapped to an interior point of ζ, or it is
mapped to a point disjoint from ζ. In the first case we simply decrease the size of
ζ and assure in this way that the side opposite to ζ of the new rectangle is disjoint
from ζ. Otherwise we reverse the roles of the side s and of ζ as before.

Inductively we decrease in this way the number of univalent vertices of the train
track η. After finitely many such steps we obtain a bigon track τ̂ on S without
stops. Such a bigon track has all properties of a train track except that there
may be complementary components which are bigons, i.e. disks with two cusps
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on the boundary. By construction, the horizontal measured lamination of q hits τ̂
efficiently, and it is transverse to τ̂ .

We claim that τ̂ carries the vertical measured geodesic lamination λ of q. Namely,
the vertical measured foliation of q is transverse to the horizontal rectangles. This
implies that two vertical geodesics for the flat metric defined by q which pass
through the same horizontal rectangle used in the construction bound an embedded
foliated rectangle up to the first intersection point of a vertical arc in the germ of a
rectangle with a singular point. By construction, this implies that the lamination
λ is carried by τ̂ .

We collapse the bigon track τ̂ to a train track τ as follows. Let α, β be two
sides of a closed bigon B in τ̂ , oriented in such a way that they have the same
starting point. Assume that the bigon lies to the right of α with respect to the
orientation of α and the orientation of S. Note that this makes sense although the
interior of β may intersect the interior of α and B may not be homeomorphic to
a disk. For x ∈ α follow the horizontal trajectory through x to the right until its
first intersection point ψ(x) with the boundary of B; then ψ(x) ∈ β. Since the
horizontal foliation of q does not have cylinders, we have ψ(x) 6= x and hence the
horizontal arc connecting x to ψ(x) is not a loop. Thus we can collapse this arc to
a single point, and this collapsing process can be made to depend continuously on
x. Simultaneously collapsing all of these arcs defines a contraction of the bigon B
to a single arc.

Successively do this with every bigon; once again, this is possible since there
are no horizontal cylinders. The result is a train track τ on S. The horizontal
measured geodesic lamination of q hits τ efficiently, and the vertical measured
geodesic lamination of q is carried by τ . Each complementary component of τ
contains precisely one singular point of q, and the component is a k + 2-gon if
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and only if the singular point is a zero of order k. This yields that τ is large, of
type (m1, . . . ,mℓ;−m, p) and implies the proposition in the case that the horizontal
foliation of q does not contain cylinders.

Finally consider a differential q whose horizontal foliation contains cylinders.
Recall a direction for q which is sufficiently close to the horizontal foliation is
transverse to the initial train track with stops η. Now the set of directions for q
such that the foliation of q in this direction is minimal and filling is dense. Thus
we can replace the horizontal foliation in the above construction by the foliation
in a nearby direction without cylinders. The resulting train track then has all the
required properties. �

We summarize the discussion in this section as follows.

Let Q be a component of a stratum Q(m1, . . . ,mℓ;−m, p) of Q(S) (or of a
stratum H(m1/2, . . . ,mℓ/2; p) of H(S)). Then there is a collection

LT (Q̃) ⊂ LT (m1, . . . ,mℓ;−m, p)
of large marked train tracks τ of the same topological type as Q such that for every
τ ∈ LT (Q̃) the set

Q̂(τ) = ∪tΦ
tQ(τ)

contains an open subset of the preimage Q̃ of Q in Q̃(S) (or in H̃(S)). A quadratic

differential q̃ ∈ Q̃(S) is contained in the closure of Q̃ if and only if there a train

track τ ∈ LT (Q̃) and a number t ∈ R such that Φtq̃ ∈ Q(τ).

The set LT (Q̃) is invariant under the action of the mapping class group. Its
quotient LT (Q) under this action is finite and is called the set of combinatorial
models for Q.

Lemma 3.4. Let Q be a component of a stratum, with preimage Q̃ in Q̃(S), let

τ ∈ LT (Q̃) and let η be a large train track of the same topological type as τ which

is carried by τ . Then η ∈ LT (Q̃).

Proof. A point in Q(τ) is defined by a pair (λ, ν) where λ ∈ V0(τ) and where ν is
a measured geodesic lamination which is carried by the dual bigon track τ∗ of τ . If
we choose λ in such a way that its support supp(λ) is of the same topological type
as τ and such that λ is carried by the train track η, then up to rescaling, (λ, ν)

defines a differential in Q̃(η). �

Define
LL(Q̃) ⊂ LL(m1, . . . ,mℓ;−m, p)

to be the set of all large geodesic laminations of the same topological type as Q̃
which are carried by some train track τ ∈ LT (Q̃). The set LL(Q̃) is invariant
under the action of the mapping class group, and we denote its quotient space by
LL(Q).

We conclude this section with relating train tracks τ ∈ LT (Q̃) to laminations

λ ∈ LL(Q̃). To this end choose a complete hyperbolic metric on S of finite volume.
Using this metric, for any geodesic lamination λ on S and all a > 0, ǫ > 0, there is
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a notion of an a-long train track τ on S which ǫ-follows λ (see Section 3 of [H09]).
The topological type of τ coincides with the topological type of λ. If λ contains
a minimal component which is a simple closed curve c, then τ contains c as an
embedded subtrack.

The following is now fairly immediate from the above discussion.

Corollary 3.5. Let τ ∈ LT (Q̃) and let λ be a large geodesic lamination of the
same topological type as τ which is carried by τ . Then for sufficiently small ǫ > 0,
an a-long train track η which ǫ-follows λ is contained in LT (Q̃).

Proof. By Lemma 3.3 of [H09], for sufficiently small ǫ an a-long train track η which
ǫ-follows λ is carried by τ , moreover it is large. The corollary now follows from
Lemma 3.4. �

4. Components of strata: Combinatorial models

Section 3 can be viewed as a construction of a combinatorial model for every
component Q of a stratum in Q(S) or in H(S). The purpose of this section is to
refine this construction and obtain models for specific types of degenerations of the
stratum.

We begin with introducing the degenerations we are interested in. The frame-
work for these degenerations is in the spirit of the “you see what you get” partial
compactification of strata introduced in [MW15]. Although we will not make use
of the work in [MW15], we reproduce Definition 2.2 of [MW15]. In its formulation,
Σi is the singular set of the quadratic differential qi on the Riemann surface Xi.

Definition 4.1. Say that (Xj , qj ,Σj) converges to (X, q,Σ) if there are decreasing
neighborhoods Uj ⊂ X with ∩Uj = Σ such that the following holds. There are
maps gj : X − Uj → Xj that are diffeomorphisms onto their range, such that

(1) g∗j (qj) converges to q in the compact open topology on X − Σ.
(2) The injectivity radius at points not in the image of gj goes to zero uniformly

in j.

With this definition, we allow to erase zero area components of a limiting surface
with nodes.

Next we introduce two specific types of degenerating sequences which will be
used in the sequel.

1) The shrinking half-pillowcase:

Let q be a quadratic differential on a surface S of genus g ≥ 0 with n ≥ 0 marked
points and vertical foliation F . Choose a point p on S and cut S open along a subarc
α of F issuing from p of length s > 0. There are u+2 choices of such arcs where u
is the multiplicity of the zero at p (i.e. u = −1 means that p is a simple pole, and
u = 0 means that p is a regular point). The cut open surface has a vertical circle
as boundary. Glue a foliated cylinder C to this circle whose opposite boundary
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is divided into two arcs of the same length which are identified to form half of a
pillowcase as shown in Figure E. This does not change the genus of S, but it adds

two punctures to S, and it increases the multiplicity of each of the endpoints of α
by one. Note that for the fixed point p and the fixed (vertical) direction at p, the
half-pillowcase is described by three real parameters: Its width (the circumference
of the cylinder, or, equivalently, twice the length of the cutting arc), its height and
the position of one of the simple poles on the top of the half-pillowcase determined
by the choice of a point on the (oriented) cutting arc α.

We call a sequence of quadratic differentials containing a half-pillowcase whose
widths tend to zero and which degenerate in the sense of Definition 4.1 to the
surface with the half-pillowcase removed a shrinking half-pillowcase. We require
that the areas of the half-pillowcases (which is the product of the width and the
height) tend to zero.

2) The shrinking cylinder:

Choose again a quadratic differential with vertical foliation F . Cut the surface
open along two vertical arcs of the same length and glue the two boundary circles
to the two boundary circles of a flat cylinder. The genus of the resulting surface
S′ equals the genus of S plus one. The core curve of the cylinder in S′ is non-
separating.

We call a sequence of surfaces containing a cylinder which degenerates to the
surface with nodes obtained by shrinking the width and the area of the cylinder to
zero a shrinking cylinder.

Our goal is to construct combinatorial models for quadratic differentials which
are suited to describe these two types of degenerations. These models will then be
used to construct periodic orbits in the thin part of moduli space.

As in the previous sections, we denote by S a closed oriented surface of genus
g ≥ 0 with n marked points. Fix a number m ≤ n so that 3g − 3 +m ≥ 5. When
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discussing quadratic differentials on S we will distinguish between m simple poles
(punctures) and p = n−m regular marked points.

Definition 4.2. An essential simple closed curve c on S is called elementary if
either

a) c is non-separating or
b) m ≥ 2 and c decomposes S into a surface S0 and a twice punctured disk.

An elementary pair is a pair (c1, c2) consisting of disjoint elementary curves c1, c2
on S. If both c1 and c2 are non-separating then we require that S − (c1 ∪ c2) is
connected.

Since 3g−3+m ≥ 5 by assumption, the complement S−(c1∪c2) of an elementary
pair in S contains a (unique) component which is not a three holed sphere. In the
sequel we tacitly identify a complementary component of a curve c in S (or any
curve system) with its metric completion, i.e. we view S − c as a surface with
boundary. We hope that this simplification of notation does not lead to confusion.

Definition 4.3. A primitive vertex cycle for a large train track τ is a simple closed
curve c embedded in τ which consists of a large branch and a small branch.

If c is a primitive vertex cycle in τ then there are two half-branches incident
on the two switches of τ in c which are not contained in c. Since τ is large by
assumption, these two half-branches lie on the two different sides of c in an annulus
neighborhood of c in S. Namely, otherwise there is a complementary component
of τ containing a simple closed curve which is neither contractible nor homotopic
into a puncture.

We call a primitive vertex cycle of a train track τ clean if its underlying simple
closed curve c is elementary and if moreover a branch b which is incident on a switch
in c and which is not contained in c satisfies one of the two following conditions.

(1) b is a small branch not contained in the boundary of a bigon with one
marked point.

(2) m ≥ 2, c is separating and b is contained in the twice punctured disk
component of S − c.

As there are two types of elementary curves, there are two types of clean vertex
cycles. To relate these types to the degeneration of quadratic differentials, note that
removing a clean vertex cycle c and all its adjacent branches from a train track τ
yields a train track τ ′ on the complementary component S0 of S − c which is not a
three holed sphere.

Type I: The shrinking half-pillowcase.

If m ≥ 2 and if c is a separating clean vertex cycle of τ then there is a com-
plementary component C for the train track τ ′ on S0 which is an annulus whose
core curve is homotopic to c. There is a component γ of ∂C embedded in τ ′, and
this component contains at least one cusp (since otherwise τ has a complementary
component which is a bigon).
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Let S′
0 be the surface obtained from S0 by replacing the boundary circle of S0

by a marked point (puncture). The genus of S′
0 coincides with the genus of S, and

the number of marked points has decreased by one. If the component γ of ∂C
contains at most two cusps then τ ′ is a large train track on S′

0 which determines a
stratum of differentials on S′ = S′

0. Note that this case corresponds to a shrinking
half-pillowcase obtained by opening a vertical arc which is not adjacent to a zero in
the limiting differential. If γ contains at least three cusps then remove from S′

0 the
marked point enclosed by γ and denote the resulting surface by S′. In both cases,
τ ′ is a large train track on the surface S′.

Type II: The shrinking cylinder.

If c is a non-separating clean vertex cycle of τ then then both branches incident
on c are small. The genus of the surface with boundary S0 obtained from S by
cutting open along c equals g− 1. Let S′

0 be obtained from S0 by replacing the two
boundary circles (which are copies of c) by a marked point. As before, τ ′ defines a
large train track on the surface S′ which either coincides with S′

0 or is obtained from
S′
0 by removing one or both of the special marked points. These choices depend on

the number of cusps of the complementary components of c in τ ′.

Let Q be a component of a stratum of quadratic or abelian differentials. Call a
train track τ in special form for Q if τ ∈ LT (Q) and if there is an elementary pair
(c1, c2) for S with the following additional property.

(∗) τ contains each of the curves c1, c2 as a clean vertex cycle.

The rest of this section is devoted to the construction of train tracks in spe-
cial form for all components of strata. Note first that a component of a stratum
Q(m1, . . . ,mℓ;−m, p) is obtained from a component of Q(m1, . . . ,mℓ;−m, 0) by
marking p regular points. In particular, for fixed p the forgetful map

Q(m1, . . . ,mℓ;−m, p) → Q(m1, . . . ,mℓ;−m, 0)
induces a bijection of connected components. Moreover, by induction, a train track
in special form for a component Q of Q(m1, . . . ,mℓ;−m, p) can be obtained from
a train track in special form η for a component Q′ of Q(m1, . . . ,mℓ;−m, p − 1)
by cutting η open along a compact subarc in the interior of a branch b which is
disjoint from the two elementary primitive vertex cycles and any adjacent branch
and inserting a marked point in the resulting bigon. This shows

Lemma 4.4. Assume that for each component of Q(m1, . . . ,mℓ;−m, 0) and each
component of H(k1, . . . , ks; 0) there is a train track in special form. Then for ev-
ery p ≥ 0 and each component of Q(m1, . . . ,mℓ;−m, p) and each component of
H(k1, . . . , ks; p) there is a train track in special form.

As a consequence, we only have to analyze components without regular marked
points.

For simplicity, write Q(m1, . . . ,mℓ;−m) instead of Q(m1, . . . ,mℓ;−m, 0), and
write H(k1, . . . , ks) instead of H(k1, . . . , ks; 0).
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The idea is to start with explicit train tracks for components of small strata and
modify these train tracks to train tracks for all strata. The first type of modification
consists in subdividing complementary components as follows.

Let C be a complementary component of a train track η which is a disk with
k ≥ 4 cusps on its boundary ∂C. Then C can be subdivided into two components
by adding a small branch which connects two non-adjacent sides of the component.
The resulting train track τ is a simple extension of η as defined in Section 2. If
η is orientable and if the number of cusps of ∂C at least six then this subdivision
can be done in such a way that the components have an even number of cusps and
that τ is orientable as well. By Proposition 2.8, if τ, η are either both orientable
or both non-orientable then τ is large if and only if this holds true for η. In the
sequel we always choose subdivisions of complementary components of orientable
train tracks in such a way that the resulting train track is orientable.

Following [L08], strata of quadratic differentilals with at least three simple poles
are connected. We use this fact to observe

Lemma 4.5. Components of strata of differentials on the two-sphere S2 with m ≥ 6
punctures or on the two-torus T 2 withm ≥ 4 punctures admit a train track in special
form.

Proof. Figure F shows large train tracks in special form for strata of differentials
on S2 with a single zero and six or seven simple poles. To construct train track in
special from for strata of differentials with a single zero and at least 8 simple poles
just attach more copies of a circle enclosing two punctures and containing a mono-
gon to one of the two train tracks shown in Figure F. Train tracks in special form
for arbitrary strata of differentials on S2 with at least five simple poles are obtained
from the train tracks for strata with a single zero by subdivision of complementary
components.

Figure G shows large train tracks containing at least two primitive vertex cycles,
one of which is clean, for the three and four punctured torus. To construct train
tracks in special form for a torus with at least four punctures, attach more copies of a
circle enclosing two punctures and containing a monogon. As before, train tracks in
special form for arbitrary strata of differentials on the torus with at least four simple
poles are constructed from these train tracks by subdivision of complementary
components. �

Call a component of a stratum of abelian or quadratic differentials hyperelliptic
if it consists of differentials on hyperelliptic surfaces which are invariant under the
hyperelliptic involution. Lemma 4.5 is used to show

Lemma 4.6. Let Q be a hyperelliptic component of a stratum of quadratic or
abelian differentials on a surface of genus at least three. Then there is a train track
τ in special form for Q.

Proof. Let Q be a hyperelliptic component of a stratum of quadratic differentials on
a surface S of genus g ≥ 3 with m ≥ 0 punctures. Such a hyperelliptic component
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Figure Fc1 c2

m=3
m=4
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c1

c1

c2
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Figure G

is obtained by pull-back of a stratum Q̂ of quadratic differentials on the sphere S2

with a double branched cover.

By the main result of [L04] (see also Theorem 1.2 of [L08]), the component Q̂
consists of differentials with at least 6 poles, and the cover is ramified at at all or
at all but one of the poles.
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Let η be a train track in special form for Q̂ as constructed in Lemma 4.5. Then
η contains two clean vertex cycles c1, c2 which cut from the punctured sphere two
twice punctured disks P1, P2.

Choose the branched covering in such a way that it is ramified at each of the
punctures in P1, P2. The preimage of η under this covering is an embedded graph
η̂ in the surface S. The preimage of the vertex cycle ci consists of two embedded
simple closed curves which bound an embedded annulus Ai. The annulus Ai con-
tains the preimage in η̂ of the two punctures in the pair of pants with boundary
ci as shown in the middle part of Figure H. It is subdivided into two bigons with
an interior marked point by the preimage of the intersection of η with the pair of
pants-component of S − ci. The marked point is a preimage of one of the ramifi-
cation points. Remove these marked points and the branches in the interior of the
annulus Ai and identify the two boundary circles of Ai as shown in Figure H so
that they form a single simple closed curve vi (i = 1, 2).

Ci

Ai

Figure H

Collapse each remaining bigon in η̂ containing a single preimage of a ramification
point to a single arc as described above. The resulting graph τ is a large train track
in S which is contained in LT (Q̃). The train track τ contains the curves vi as
primitive vertex cycles. By construction, the curves vi are non-separating and do
not form a bounding pair, i.e they define an elementary curve system. Moreover,
since ci is a clean primitive vertex cycle for η, the primitive vertex cycle vi is clean
for τ .

The same reasoning also applies for hyperelliptic components of abelian differ-
entials. Namely, in this case the branched cover defining the component is ramified
at each of the simple poles on the two-sphere, i.e. at at least 8 simple poles. The
above argument then shows that there is a train track in special form for the com-
ponent. �

To treat non-hyperelliptic components we construct from a large train track η of
topological type (m1, . . . ,mℓ;−m) on a surface of genus g ≥ 0 with m punctures a
train track τ of type (m1, . . . ,mℓ +4;−m) on a surface of genus g+1 by attaching
a handle as follows.

The train track η has a complementary polygon P with mℓ+2 sides. Attach two
arcs b1, b2 of class C1 to the interior of two branches of η which are contained in two
different sides of the polygon P in such a way that b1, b2 are disjoint and embedded
in P . Attach a simple closed curve ci ⊂ P of class C1 to the arc bi which meets bi
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only at its free endpoint and is tangent to bi (i = 1, 2). We require that the curves
c1, c2 are disjoint and bound disjoint embedded disks D1, D2 in the interior of P .

Remove the interiors of the disks D1, D2 from P . The boundary of the resulting
surface consists of the curves c1, c2. Glue c1 to c2 with a diffeomorphism which
reverses the boundary orientation of Di. The result is a surface of genus g+1 with
m punctures which carries a train track τ of topological type (m1, . . . ,mℓ+4;−m).
It contains the image of the curves ci under a glueing map as a clean vertex cycle.
Note that if η is orientable, then for a suitable choice of the arcs b1, b2 the train
track τ is orientable as well (see Figure J). In the sequel we always assume that
the construction preserves orientability if applicable. We then call τ the train track
obtained from η by attaching a handle.

Lemma 4.7. The train track τ obtained from η by attaching a handle is large.
Moreover, it is orientable if and only if this holds true for η.

Proof. By construction, the train track τ is orientable if and only if this holds true
for η. Moreover, η can be viewed as a subtrack of τ .

Now η is a large train track and hence it carries a minimal large geodesic lamina-
tion of type (m1, . . . ,mℓ;−m). This geodesic lamination defines a minimal geodesic
lamination λ0 on τ . The train track τ contains a primitive vertex cycle c0 which
is disjoint from λ0 and which is the image of the curves c1, c2 under the glueing
process. The union λ0 ∪ c0 is a geodesic lamination carried by τ . This lamination
is not large, but it is a sublamination of a large geodesic lamination which is the
union of λ0 ∪ c0 with two isolated leaves which pass through the two branches of τ
connecting c0 to the subtrack η and which spiral from one side about λ0, from the
other side about c0. Thus τ carries a large geodesic lamination. The same argu-
ment also shows that the dual bigon track τ∗ carries a large geodesic lamination.
In other words, τ is large. �

For the construction of train tracks in special form for all components of strata
we use the classifiction of components due to Kontsevich and Zorich [KZ03] (for
abelian differentials) and Lanneau [L08] (for quadratic differentials).

Proposition 4.8. (1) For every g ≥ 4 the stratum H(2g − 2) has three con-
nected components. One of these components is hyperelliptic, the other two
are distinguished by the parity of the spin structure they define.

(2) The stratum H(4) has two components. One of the components is hyperel-
liptic, the other consists of abelian differentials defining an odd spin struc-
ture.

(3) H(2) is connected.
(4) For every g 6= 3, 4 and every m ≥ 0 the stratum Q(4g − 4 + m;−m) is

connected.
(5) The strata Q(12; 0) and Q(9;−1) have two connected components, and

Q(4; 0) = ∅,

We are now ready to show
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Proposition 4.9. Let Q be a non-hyperelliptic component of a stratum of quadratic
or abelian differentials on S where 3g − 3 +m ≥ 5. Then there is a train track τ
in special form for Q.

Proof. We divide the proof of the proposition into four steps. The case g = 0 and
g = 1 is covered by Lemma 4.5.

Step 1: Strata of quadratic differentials with at least three poles.

By the classification of Lanneau [L08], every stratum in moduli space consisting
of meromorphic quadratic differentials with at least three poles is connected. Thus
for m ≥ 3 and any g ≥ 2, we can construct a large train track in special form for
the stratum Q(4g−4+m;−m) by attaching handles to train tracks in special form
on the torus as described in Lemma 4.7. These train tracks can be subdivided to
train tracks in special form for any stratum of quadratic differentials with at least
three poles.

Step 2: Strata of abelian differentials with a single zero.

The moduli space H(2) of abelian differentials with a single zero on a surface of
genus 2 is connected. It consists of differentials which define an even spin structure
Figure I below shows a large train track η ∈ LT (H(2)).

(see [KZ03]).

Figure I

For g = 3, the stratum H(4) consists of two components. One of these compo-
nents is hyperelliptic. The two components are distinguished by the parity of the
spin structure they define [KZ03]. The parity of the spin structure for the hyperel-
liptic component is even. By Lemma 4.6 it suffices to show that we can attach to
the train track η in Figure I a handle in such a way that the resulting train track
belongs to a component with odd spin structure. To this end we compute from a
large train track τ ∈ LT (Q) the parity of the spin structure of the component Q.

The parity of the spin structure defined by an abelian differential ω can be
calculated as follows (see p.643 of [KZ03]). For a smooth simple closed curve α on
S not passing through a zero of ω define indα ∈ Z to be the total change of angle
between the tangent of α and the vector tangent to the vertical foliation of ω. Let
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{αi, βi | i = 1, . . . , g} be any system of 2g smooth simple closed curves which define
a symplectic basis for H1(S,Z) with the above property. Then

ϕ(ω) =

g∑

i=1

(indαi
+ 1)(indβi

+ 1)(mod 2).

This formula enables us to calculate the parity using a train track. Namely,
a large orientable train track τ of type (4g − 4; 0) has a single complementary
component C which is a 4g-gon. Let α be a smooth simple closed curve on S which
intersects τ transversely in finitely many points contained in the interior of some
branches of τ . Define the index rτ (α) ∈ Z/2Z of α as follows.

Choose a numbering of the sides of the complementary region of τ in counter-
clockwise order. Choose also an orientation of α. A transverse intersection point
p ∈ α ∩ τ is contained in precisely two sides s1, s2 of C. Write r(p) = s2 − s1 +
1 (mod 2) = s1 − s2 + 1 (mod 2) and define

rτ (α) =
∑

p

r(p) ∈ Z/2Z.

Note that if α′ is isotopic to α with an isotopy which moves some subarc of α across
a switch then this number is unchanged, and the same holds true if α is fixed and
τ is modified by a split.

Choose smooth simple closed curves {αi, βi | i = 1, . . . , g} which define a sym-
plectic basis of H1(S,Z). Assume that each of the curves αi intersects τ in finitely
many points which are contained in the interior of some branch of τ . Define

ϕ(τ) =

g∑

i=1

(rτ (αi) + 1)(rτ (βi) + 1) ∈ Z/2Z

and call this number the parity of the spin structure of τ .

Recall that τ is a large train track with a single complementary component C.
If the train track η is obtained from τ by attaching a handle then the parity of the
spin structure of η can be calculated from the parity of the spin structure of τ as
follows. There is a primitive vertex cycle α1 for η which is disjoint from τ (it goes
around the handle). This vertex cycle α1 satisfies rη(α1) = 0 since up to homotopy,
it has a unique intersection point with η which is contained in one of the small
branches adjacent to the primitive vertex cycle α1. Then this intersection point is
contained in two consecutive sides of the complementary component of η.

There is a second curve β1 in the handle which intersects α1 in a single point,
and it intersects η in a single point q as well. Let si, sj (i < j) be the sides of the
complementary component C of τ at which branches of η − τ are attached. If we
choose sj = si + 1 then Figure J shows that rη(β1) = 0.

The curves on S used to calculate the parity of the spin structure for τ can
be chosen to be disjoint from η − τ viewed as a subgraph of the complementary
component C. Then the indices of the curves used for τ do not change mod 2 and
hence the parity of the spin structure of η is opposite to the parity of the spin
structure for τ . In particular, attaching a handle to the train track shown in Figure
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I results in a train track in special form for the component of H(4) with odd spin
structure. Thus together with the construction for hyperelliptic components, we
obtain a train track in special form for each of the two components of H(2).

Using again Proposition 4.8, for k ≥ 3 the two different non-hyperelliptic compo-
nents of H(2k) are distinguished by the parity of the spin structure they define. It
follows from the above discussion that attaching a handle to a train track in special
form for a component of H(2k−2) with even (or odd) spin structure is a train track
in special form for a component of H(2k) with odd (or even) spin structure. Now
it is easy to see that a train track for a hyperelliptic component can only arise by
this construction from a train track for a hyperelliptic component. Since the parity
of the spin structure of a hyperelliptic component is even, none of the two train
tracks arising from attaching a handle to one of the train tracks in special form
for a component of H(4) is a train track for a hyperelliptic component. Thus by
induction beginning with H(4), we conclude in this way that for each k ≥ 1 and for
each non-hyperelliptic component of H(2k) there is a train track in special form.

Step 3: Strata of quadratic differentials with a single zero and at most two poles.

By the classification of Lanneau [L08], strata of quadratic differentials with a
single zero and at most two poles are connected.

To obtain a train track in special form for this stratum on a surface of genus
g = 2 with m = 2 punctures, attach to the train track shown in Figure I a circle
as shown in Figure F enclosing two once-puncture monogons. Similarly, to obtain
a train track in special form for a stratum with a single zero and a single pole on
a surface of genus 3, attach a train track in special form on a surface of genus 3 a
once punctured monogon.

A train track in special form for a stratum in higher genus can be obtained by
attaching handles to the train track for genus 2 or 3.



COUNTING PERIODIC ORBITS IN THE THIN PART OF STRATA 31

Step 4: Subdividing complementary components.

Following [L08], we say that a component Q of a stratum in Q(S) for a surface S
of genus g ≥ 2 is adjacent to a component Q0 of another stratum if Q0 is contained
in the closure Q of Q in Q(S). Here we allow that poles merge with zeros and
disappear.

Lanneau [L08] showed that with the exception of one sporadic component in each
of the strata Q(9;−1), Q(3, 6;−1), Q(3, 3, 3;−1), any non-hyperelliptic component
of a stratum with at least two distinct types of zeros or poles is adjacent toQ(4g−4).
For such a component, train tracks in special form can be obtained from train
tracks in special form for components of strata with a single zero by subdivision of
complementary components.

For the completion of the proof of the proposition we are left with the investi-
gation of the sporadic components in genus g = 3, 4 as listed in the classification of
Lanneau [L08].

The sporadic component for g = 4 is a component of Q(12) which can be checked
explicitly. The sporadic component of Q(3, 3, 3;−1) is adjacent to the sporadic
component of Q(3, 6;−1), and the sporadic component of Q(3, 6;−1) is adjacent
to the sporadic component of Q(9;−1) [L08]. Using Step 2 above, it is therefore
enough to construct a train track with the required properties which belongs to the
sporadic component of Q(9;−1). However, the sporadic component of Q(9;−1)
admits a quadratic differential with a two-cylinder-decomposition which can be
used to construct a train track as required (compare the table in [L08]). This
completes the proof of the proposition. �

Remark 4.10. Although we use the classification result of Kontsevich-Zorich and
of Lanneau in our construction, the construction can be used to give a alternative
proof for the classification.

5. Periodic orbits in compact subsets of strata

In this short section we collect some results from [H13] in a form needed in
Section 6. We continue to use the notations from sections 1-4.

The number k > 0 of branches of a large train track τ ∈ LT (m1, . . . ,mℓ;−m, p)
only depends on the topological type of τ . A numbering of the branches of τ defines
an embedding of the cone V(τ) of transverse measures on τ onto a closed convex
cone in R

k determined by the switch conditions. For the standard basis e1, . . . , ek
of Rk, this embedding associates to a measure µ ∈ V(τ) the vector

∑
i µ(i)ei ∈ R

k

where we identify a branch of τ with its number. If σ ≺ τ then the transformation
V(σ) → V(τ) induced by a carrying map σ → τ is linear in these coordinates.

The mapping class group Mod(S) acts on marked train tracks by precomposition
of marking. If ϕ ∈ Mod(S) is such that ϕ(τ) ≺ τ then the composition of the
isomorphism V(τ) → V(ϕτ) = ϕ(V(τ)) with a carrying map V(ϕτ) → V(τ) is given
by a linear map

A(ϕ, τ) : Rk → R
k.
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By the Perron Frobenius theorem, a (k, k)-matrix A with non-negative entries
admits an eigenvector with non-negative entries. The corresponding eigenvalue α
is positive. If some power of A is positive, then the generalized eigenspace for α is
one-dimensional, and α is bigger than the absolute value of any other eigenvalue
of A. We call an eigenvector with nonnegative entries for the eigenvalue α of A a
Perron Frobenius eigenvector.

The following lemma is Corollary 3.2 of [P88]. For its formulation, recall that a
pseudo-Anosov mapping class admits an invariant cotangent line in the Teichmüller
space of abelian or quadratic differentials.

Lemma 5.1. Let τ ∈ LT (m1, . . . ,mℓ;−m, p) and let ϕ ∈ Mod(S) be such that
ϕ(τ) ≺ τ and that the matrix A(ϕ, τ) is positive. Then ϕ is pseudo-Anosov. The

unit cotangent line of its axis is contained in the stratum Q̃(m1, . . . ,mℓ;−m, p),
and it intersects Q(τ). The vertical measured geodesic lamination of ϕ is a Perron
Frobenius eigenvector of the matrix A(ϕ, τ).

Proof. It follows from Corollary 3.2 of [P88] that ϕ is pseudo-Anosov and that the
attracting fixed point for its action on PML is the projectivization of a Perron-
Frobenius eigenvector λ of the matrix A(ϕ, τ). Moreover, the unit cotangent line of
the axis of ϕ intersects Q(τ). Since A(ϕ, τ) is positive by assumption, the Perron
Frobenius eigenvector λ is unique up to scale and positive. The support of λ (viewed
as a measured geodesic lamination) is minimal and of type (m1, . . . ,mℓ;−m, p).
Then a quadratic differential contained in the unit cotangent line of the axis of ϕ
is contained in Q̃(m1, . . . ,mℓ;−m, p). �

In general, it is not easy to detect whether or not for two large train tracks
τ, η ∈ LT (m1, . . . ,mℓ;−m, p) there is some ϕ ∈ Mod(S) so that ϕ(η) ≺ τ , even
if the stratum Q(m1, . . . ,mℓ;−m, p) in moduli space is connected. We need the
following simple technical lemma to overcome this difficulty. For its formulation,
as in Section 2, for a component Q̃ of a stratum Q̃(m1, . . . ,mℓ;−m, p) we write

τ ∈ LT (Q̃) if τ ∈ LT (m1, . . . ,mℓ;−m, p) and if moreover the set Q(τ) ⊂ Q̃(S) is

contained in the closure of Q̃. Recall also from Section 2 the definition of the set
LL(Q̃) and of an a-long train track which ǫ-follows a lamination λ ∈ LL(Q̃).

Denote by Stab(Q̃) the stabilizer of Q̃ in Mod(S). A splitting and shifting se-
quence of a train track τ is a sequence of modifications by splitting or shifting
moves. If η is carried by τ then τ can be connected to η by a splitting and shifting
sequence [PH92].

Lemma 5.2. There are numbers κ > 0, ǫ > 0 with the following property. Let Q̃
be a component of a stratum in Q̃(S) and let λ ∈ LL(Q̃). Let τ ∈ LT (Q̃) be an

a-long train track which ǫ-follows λ and let σ ∈ LT (Q̃) be carried by τ . Then there

is some ϕ ∈ Stab(Q̃) such that ϕ(τ) ≺ σ and such that σ can be connected to ϕ(τ)
by a splitting and shifting sequence of length at most κ.

Proof. Define the combinatorial type of a large train track τ on S to be an orbit
of τ under the action of the mapping class group (compare Section 2). Let Q̃
be a component of Q̃(m1, . . . ,mℓ;−m, p) and let LT (Q) be the finite set of all
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combinatorial types of large train tracks τ ∈ LT (Q̃). Denote by [τ ] the element of

LT (Q) which is represented by the train track τ ∈ LT (Q̃).

For [σ], [τ ] ∈ LT (Q) define [σ] < [τ ] if there is a representative of [σ] which
is carried by a representative of [τ ]. By construction and equivariance under the
action of the mapping class group, if [η] < [σ] and [σ] < [τ ] then [η] < [τ ]. We
clearly also have [τ ] < [τ ] for all [τ ] and hence < is a partial order.

Let λ ∈ LL(Q̃) and let C(λ) ⊂ LT (Q) be the set of all combinatorial types of
large train tracks admitting a representative which carries λ. Let [τ ] ∈ C(λ) be a
combinatorial type so that the number n of elements [σ] ∈ C(λ) with [σ] < [τ ] is
minimal among all elements with [τ ] < [η]. Now if [σ] < [τ ] and if [τ ] 6< [σ], then by
minimality, there are at least n elements in C(λ) distinct from [τ ] which are smaller
than [τ ]. This is impossible and consequently [τ ] < [σ].

Choose representatives σ ≺ τ of the topological types [σ], [τ ]. Then there is some
ϕ ∈ Mod(S) so that ϕ(τ) ≺ σ. By invariance under the action of the mapping class
group and the fact that the number of elements in LT (Q) is finite, the length of a
splitting and shifting sequence connecting σ to ϕ(τ) can be chosen to be uniformly
bounded.

To summarize, if [τ ] is a minimal combinatorial type as above, then any repre-
sentative of [τ ] has the properties stated in the lemma and hence the same holds
true for any representative of a combinatorial type [σ] with [σ] < [τ ]. On the other
hand, as λ is carried by τ , by Lemma 3.3 of [H09] there is an a-long large train
track η which carries λ and ǫ-follows λ and which is carried by τ . Then [η] < [τ ]
and therefore η has the properties stated in the lemma. �

We call a train track τ ∈ LT (Q̃) with the properties stated in Lemma 5.2

essential for the component Q̃. It seems likely that every η ∈ LT (Q̃) is essential

for Q̃, however we do know this, and we will not need this in the sequel.

Let T (S) be the Teichmüller space of S. The translation length of a pseudo-
Anosov element ϕ ∈ Mod(S) is the minimal Teichmüller distance between a point
x ∈ T (S) and its image under ϕ. The translation length of ϕ only depends on the
conjugacy class of ϕ.

For a set A of conjugacy classes of pseudo-Anosov elements in Mod(S) define
the growth gr(A) as follows. For R > 0 let n(A, R) be the number of elements in
A consisting of conjugacy classes of translation length at most R and let

gr(A) = lim inf
R→∞

1

R
log n(A, R).

The following statement is now an easy consequence of the results in [H13]. For

its formulation, let τ ∈ LT (Q̃) and let ϕ ∈ Mod(S) be a pseudo-Anosov element

with ϕ(τ) ≺ τ so that the cotangent line of the axis of ϕ is contained in Q̃. Then
there is a quadratic differential q ∈ Q(τ) which is contained in the cotangent line
of the axis of ϕ. There is a bijection between the complementary components of
τ and the singular points of the quadratic differential q. In general, ϕ permutes
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these singular points, but a fixed multiple of ϕ fixes each of the singular points. Or,
equivalently, ϕ fixes each of the complementary components of τ .

Proposition 5.3. Let Q̃ be a component of the stratum Q̃(m1, . . . ,mℓ;−m, p). For
τ ∈ LT (Q̃) and c > 0 let A(τ, c) be the set of all conjugacy classes of pseudo-Anosov

elements ϕ ∈ Stab(Q̃) with the following properties.

a) ϕ(τ) ≺ τ .
b) The matrix A(ϕ, τ) is positive, and the ratios of the entries of A(ϕ, τ) are

bounded from above by c.
c) ϕ fixes each of the complementary components of τ .

There is a number c = c(Q̃) > 0 such that whenever τ is essential for Q̃, then the

growth of A(τ, c) is not smaller than h(Q̃).

Proof. Let τ be essential for Q̃. Then U = ∪t∈ǫ,ǫ)Φ
tQ(τ) ∩ Q̃ is an open subset of

Q̃. Choose a point ζ ∈ U which projects to a periodic point for the Teichmüller
flow on moduli space. This periodic point is defined by a mapping class ϕ with
ϕ(τ) ≺ τ . We may assume that the matrix A(ϕ, τ) is positive. In particular, if
β ∈ Mod(S) is such that βτ ≺ τ then by Lemma 5.1, ϕ ◦ β is pseudo-Anosov, with
positive matrix A(ϕ, τ)A(β, τ). The matrix A(β, τ) is non-negative.

We claim that there is a number c > 0 not depending on β such that the ratios
of the entries of the matrix

A = A(ϕ, τ)A(β, τ)A(ϕ, τ)

are bounded from above by c.

Namely, let ℓ > 0 be the maximum of the ratios of the entries of the matrix
A(ϕ, τ). Then up to a factor of at most ℓ, the entries in each line of the matrix
A(β, τ)A(ϕ, τ) coincide with a fixed multiple of the sum of the entries of the matric
A(β, τ) in the same line. In particular, the matrix A(β, τ)A(ϕ, τ) is positive, and
the ratios of its entries in a fixed line are bounded from above by ℓ.

Similarly, up to a factor of at most ℓ, the entries in each row of the matrix A
coincide with a fixed multiple of the sum of the entries of A(β, τ)A(ϕ, τ) in the
same row. By the discussion in the previous paragraph, this implies that the ratios
of the positive matrix A are bounded from above by ℓ2.

On the other hand, as ∪t∈(−δ,δ)Φ
tQ(τ) is an open subset of Q̃ for any δ > 0, the

main result of [H13] shows that the growth rate of periodic orbits through Q(τ)

equals the dimension h(Q̃). The above calculation shows that concatentation at
the beginning and the end with the fixed orbit defined by ϕ adjusts the ratios of
the entries of the corresponding matrices without changing the growth rate.

With the same argument, we can also achieve that the complementary compo-
nents of τ are all fixed by the pseudo-Anosov mapping classes we found. �
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6. Periodic orbits in the thin part of strata

In this section we only consider strata of differentials without marked regular
points. Our main goal is to prove Theorem 1 from the introduction. Thus strata
of abelian differentials are defined on surfaces without punctures. Strata of differ-
entials with marked regular points will however be used in the proof.

Let S be a surface of genus g ≥ 0 with m ≥ 0 punctures where 3g − 3 +m ≥
5. Recall that a quadratic (or abelian) differential q ∈ Q̃(S) defines a singular
euclidean metric of area one on the surface S with singularities at the zeros and at
the poles of the differential. There is a unique finite volume complete hyperbolic
metric on S for the underlying conformal structure.

Define the systole of this hyperbolic metric to be the smallest length of a simple
closed geodesic. We write T (S)ǫ ⊂ T (S) for the set of all marked complete hyper-
bolic metrics on S of finite volume whose systole is at least ǫ. The mapping class
group acts properly and cocompactly on T (S)ǫ.

The q-length of an essential simple closed curve c (i.e. a simple closed curve
which is not contractible and not freely homotopic into a puncture) is defined to
be the infimum of the lengths with respect to the singular euclidean metric of any
curve which is freely homotopic to c.

The following observation is an easy consequence of invariance under the action
of the mapping class group and cocompactness. A much stronger and more precise
version is due to Rafi [R14]. For its formulation, let

P : Q̃(S) → T (S)

be the canonical projection which associates to a marked quadratic differential its
underlying marked hyperbolic metric.

Lemma 6.1. For every ǫ > 0 there is a number δ = δ(S, ǫ) > 0 with the following

property. Let q ∈ Q̃(S) and assume that there is an essential simple closed curve
on S of q-length at most δ; then Pq 6∈ T (S)ǫ.

Proof. By the collar lemma for hyperbolic surfaces, every cusp of a hyperbolic
surface has a standard embedded neighborhood. Such a neighborhood is home-
omorphic to a punctured disk. The hyperbolic distance between any two such
cusp neighborhoods is bounded from below by a universal positive constant. Every
simple closed geodesic for the hyperbolic metric is contained in the compact com-
plement K of the union of these neighborhoods. For every ǫ > 0 and every surface
in T (S)ǫ, the diameter of K is bounded from above by a constant only depending
on ǫ and the topological type of S.

By Lemma 3.3 of [Mi94], for every ǫ > 0 there is a number L = L(ǫ) > 1 such

that for every q ∈ Q̃(S) with Pq ∈ T (S)ǫ, the singular euclidean metric defined
by q is L-bilipschitz equivalent to the hyperbolic metric on the compact set K. By
the choice of the standard neighborhoods of the cusps, for every hyperbolic surface
whose systole is at least ǫ, every essential simple closed curve on S intersects the
set K in a union of arcs whose hyperbolic length is bounded from below by some
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fixed number c > 0 only depending on the topological type of S and on ǫ. Then
the q-length of any essential simple closed curve on S is not smaller than c/L. This
shows the lemma. �

For ǫ > 0 define

Q̃(ǫ) = {q ∈ Q̃(S) | Pq ∈ T (S)ǫ}.
The sets Q̃(ǫ) are invariant under the action of Mod(S) on Q̃(S). Their projections

Q(ǫ) = Q̃(ǫ)/Mod(S) ⊂ Q(S)

to Q(S) are compact and satisfy Q(ǫ) ⊂ Q(δ) for ǫ > δ and ∪ǫ>0Q(ǫ) = Q(S).

For a component Q of a stratum of quadratic or abelian differentials and for
ǫ > 0 let

nǫ(Q) ≥ 0

be the asymptotic growth rate of the number of closed orbits for the Teichmüller
geodesic flow which are contained in Q and which do not intersect Q(ǫ). Our goal
is to show that nǫ(Q) ≥ h(Q)− 1 for all ǫ.

The strategy is to use a combinatorial control on an invariant subset of the
Teichmüller flow with a train track τ in special form for Q. We recall the important
properties of τ .

(1) τ contains two clean vertex cycles c1, c2. Either the surface S − c1 − c2
is connected, or it consists of a connected component N which is different
from a sphere with at most three holes or a torus with at most one hole
and one or two additional components which are twice punctured disks.

(2) Let S0 (or S1, S2) be the surface which is obtained from the component of
S − c1 − c2 (or of S − c1, S − c2) different from a sphere with at most three
holes by replacing the boundary circles by punctures. Then the graph σ0
on S0 (or σ1, σ2 on S1, S2) obtained by removing from τ all branches which
are incident on a switch in c1 ∪ c2 (or incident on a switch in c1, c2) is a
connected train track with at least one large branch.

We showed in Section 4 that there is a component Q1 of a stratum for the surface
S1 (possibly with marked regular points) such that σ1 ∈ LT (Q̃1) where Q̃1 is the

preimage of Q1. In particular, ∪tΦ
tQ(σ1) contains an open subset of Q̃1. The

component Q1 is determined as follows.

Case 1: m ≥ 2 and the simple closed curve c1 is separating.

Then c1 bounds a twice punctured disk. There is a simple closed curve α em-
bedded in the train track σ1 (however with cusps) which is freely homotopic to
c1. Viewing σ1 as a train track on the surface S1, the curve α encloses the added
marked point on S1 (which replaces the circle c1). We require that a differential in
Q1 has

• a simple pole at this marked point in the case that α has a single cusp,
• a regular point if α is a bigon or
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• a zero if α has at least three cusps (in which case we remove the marked
point).

Recall from the introduction the dimension h(Q1) of the complex algebraic orb-
ifold containing Q1 as a real hypersurface. We have h(Q1) = h(Q) − 2. A de-
generation of differentials in Q to a differential in Q1 corresponds to a shrinking
half-pillowcase.

Case 2: The curve c1 is non-separating

Then S−c1 has two boundary components. Each of these boundary components
is contained in a complementary component of σ1 (these components may coincide).
If there are two distinct such components then each of them is an annulus. One
boundary component of such an annulus is the curve c1, and the second boundary
component α is contained in σ1. As before, put a simple pole on the marked point
which replaces the curve c1 if α is a mongon, a regular marked point if α is a bigon
and a zero if α contains at least three cusps. Once again, h(Q1) = h(Q) − 2. A
degeneration of differentials in Q to a differential in Q1 corresponds to a shrinking
cylinder.

Our goal is to use the growth estimate from Section 5 for periodic orbits in Q1

which are defined by pseudo-Anosov mapping classes with train track expansion σ1.
Such orbits can be thought of as defined by reducible mapping classes on S. We
then concatenate these mapping classes in a controlled way with a pseudo-Anosov
element for S with train track expansion τ . The next technical observation is fairly
immediate from Lemma 5.2.

Lemma 6.2. τ can be chosen such that the train track σ1 is essential for Q1.

Proof. Let η be in special form for Q, with clean primitive vertex cycles c1, c2, and
let λ be a large geodesic lamination of the same topological type as τ which is
carried by τ and contains c1, c2 as minimal components. We may assume that λ
has three minimal components, and that one of the components fills S0. Then the
lamination obtained from λ by removing the minimal component c1 and the leaves
spiraling about c1 is a large lamination on S1 which is contained in LL(Q1).

By Lemma 5.2, for sufficiently small ǫ > 0 an a-long train track which ǫ-follows
λ has the required property. �

For i = 0, 1, 2 and for the train tracks σi choose elements ϕi ∈ Mod(Si) with
the properties stated in Proposition 5.3 for the numbers ci = c(Qi). Since these
elements are required to fix each of the complementary components of σi, for i = 1, 2
they can be extended to elements of the mapping class group of S − ci fixing ci
pointwise. Such an extension in turn can be viewed as a reducible element of
Mod(S).

Now the mapping class group of a punctured surface is a quotient of the mapping
class group of a surface with boundary, so a choice for an extension as described in
the previous paragraph is by no means unique. We use the ambient train track τ
to construct a specific extension as follows.
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Lemma 6.3. There is a natural choice of an extension of ϕi to an element of
Mod(S) defined by a splitting and shifting sequence of τ which does not involve a
split at any branch in τ − σi.

Proof. By construction, there are at most two small branches b1, b2 which connect
σi to the primitive vertex cycle ci.

Now let e be a large branch of σi. Then e defines a trainpath on τ of length
at most three. There is a modification of τ by a sequence of shifts and splits at
branches contained in σi such that the modified train track τ ′ is large and contains
e as a large branch. Then a split of σi at e can be viewed as a split of τ ′ at e,
and the split track contains ci as a clean vertex cycle. By induction, we obtain a
splitting and shifting sequence of τ as required. �

In the sequel we will always identify the map ϕi with this particular extension,
i.e. we simply view ϕi as a reducible mapping class with ϕiτ ≺ τ and such that
there is a carrying map ϕiτ → τ which is the identity on τ − σi. The map ϕ0 is
viewed as a reducible element of Mod(S) fixing c1 ∪ c2 pointwise.

In the statement of the following lemma, ◦means composition, i.e. a◦b represents
the mapping class obtained by applying b first followed by an application of a. The
mapping class group acts by precomposition of marking from the right on the
space of marked train tracks. Thus with this convention, (ϕ ◦ ψ)(τ) is the train
track obtained from τ by first changing the marking with ψ−1 and afterwards with
ϕ−1.

As we will need this many times in the sequel, we explain now how the composi-
tion ϕ◦ψ acts on the cone V(τ) of transverse measures on τ . Namely, view as before
V(τ) as a cone in a linear subspace of the vector space R

k with basis the branches
of τ . Since ψτ ≺ τ , the map ψ induces a linear mapping A(ψ, τ) of Rk preserving
V(τ). Then the action of ϕ ◦ ψ is defined by the product matrix A(ϕ, τ)A(ψ, τ).

Lemma 6.4. For every k > 0 the mapping class

ζ(k) = (ϕk
0 ◦ ϕ2 ◦ ϕk

0) ◦ (ϕk
0 ◦ ϕ1 ◦ ϕk

0)

is pseudo-Anosov.

Proof. Note first that ζ(k)(τ) ≺ τ for all k. Namely, by assumption on ϕi we
have ϕi(τ) ≺ τ (see the above discussion) and hence by invariance of the carrying
relation under the action of the mapping class group and induction, we conclude
that

ζ(k)(τ) = (ϕk
0 ◦ ϕ2 ◦ ϕ2k

0 ◦ ϕ1)(ϕ
k
0(τ)) ≺ ϕk

0(τ) ≺ τ.

Now ζ(k)2 is pseudo-Anosov if and only if this is true for ζ(k). Thus by Lemma
5.1, it suffices to show that the matrix

A(ζ(k)2, τ) = A(ϕk
0 , τ) · · ·A(ϕ1, τ)A(ϕ

k
0 , τ)

is positive. This is equivalent to stating that a carrying map ζ(k)2τ → τ maps
every branch of ζ(k)2τ onto τ .
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Let k be the number of branches of τ and let Rk be the real vector space spanned
by the branches of τ . Write R

k = R
ℓ0 ⊕ R

ℓ1 ⊕ R
ℓ2 where R

ℓ0 is spanned by the
branches of τ contained in σ0 and where for i = 1, 2 the vector space Rℓi is spanned
by the branches of σi − σ0.

For i = 1, 2 define

Ai = A(ϕk
0 ◦ ϕi ◦ ϕk

0 , τ).

The matrix A1 preserves the decomposition R
k = R

ℓ0+ℓ1 ⊕ R
ℓ2 and therefore with

respect to the basis consisting of the branches of τ , it is in block form. The square
matrix which describes the action of A1 on R

ℓ0+ℓ1 is positive, and the square matrix
which describes the action on R

ℓ2 is the identity. The same holds true for A2, with
the roles of ℓ1 and ℓ2 exchanged.

Since ℓ0 > 0, this implies that the image of a basis vector of Rℓ0+ℓ1 under the
matrix A2A1 is a positive vector in R

k. Similarly, the image of a basis vector in
R

ℓ0+ℓ2 under the matrix A1A2 is a positive vector in R
k and hence the matrix

A2A1A2A1 is indeed positive. This is what we wanted to show. �

The periodic orbits in the ǫ-thin part of the strata we are going to count are
defined by pseudo-Anosov classes of the form described in Lemma 6.4 where we
let ϕ1 vary and fix k and ϕ0, ϕ2. This construction is carried out in the next
proposition which completes the proof of Theorem 1 from the introduction.

Proposition 6.5. Let S be a closed surface of genus g ≥ 0 with m ≥ 0 punctures
and 3g − 3 +m ≥ 5. Then for every component Q of a stratum in Q(S) or H(S)
we have

nǫ(Q) ≥ h(Q)− 1.

Proof. Using the notations from Lemma 6.4, the carrying map ϕiτ → τ can be
chosen in such a way that it maps each branch of ϕiσi onto σi, and it induces the
identity on τ − σi.

By Proposition 5.3 and the construction, for i = 1, 2 there is a number ai > 0
with the following property. Let µ be a measured geodesic lamination on S which
is carried by ϕi(σi) and which defines the transverse measure µi ∈ V0(σi); then
µi(b1)/µi(b2) ≤ ai for any two branches b1, b2 of σi.

This implies the existence of a number a > 0 with the following property. Let
µ be any measured geodesic lamination which is carried by ϕiτ . Assume that the
transverse measure on ϕiτ defined by µ is not supported in ϕiτ − ϕiσi. Let µ0 be
the measure on τ induced from µ by a carrying map ϕiτ → τ and let µ0(σi) be the
total weight of the restriction of µ0 to σi. Then

µ0(bi) ≥ 2aµ0(σi)

for every branch bi of σi (i = 1, 2).

For ǫ ∈ (0, 12 ) and i = 0, 1, 2 let Ci(ǫ) be the closed subset of V0(τ) containing
all transverse measures ν with the following properties.
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(1) The sum of the ν-weights over all branches of τ which are not contained in
σi is at most ǫ.

(2) For any branch bi of σi < τ we have ν(bi) ≥ a.

Note that the set Ci(ǫ) is not empty by the above choice of the number a. Also,
by the second property above, we have ν(σ0) ≥ a for every ν ∈ Ci(ǫ) and i = 1, 2.

As in the proof of Lemma 6.4, let

R
k = R

ℓ0 ⊕ R
ℓ1 ⊕ R

ℓ2

be the vector space generated by the branches of τ . The subspace R
ℓ0 is generated

by the branches of τ contained in σ0. A point ν ∈ Ci(ǫ) (i = 0, 1, 2) is a non-negative
vector v(ν) ∈ R

k with the property that the coordinates of the basis elements in
R

ℓ0 + R
ℓi are bounded from below by a > 0 and that the sum of the coordinates

equals one.

Let as before A(ϕ0, τ) be the matrix which describes the action of ϕ0 on V(τ).
There is an induced action on V0(τ) by rescaling of the total mass; we denote this

action by Â(ϕ0, τ). We claim that there is a constant u > 0 only depending on ϕ0

such that for every ǫ > 0, for every k ≥ −u log ǫ and for i = 1, 2 we have

Â(ϕ0, τ)
k(Ci(ǫ)) ⊂ C0(ǫ).

We show the claim for i = 1, the claim for i = 2 follows in exactly the same way.
Thus let ν ∈ C1(ǫ). Recall first that by the choice of the number a > 0, we have
ν(σ0) ≥ a.

The matrix A(ϕ0, τ) preserves the decomposition R
k = R

ℓ0 ⊕ R
ℓ1 ⊕ R

ℓ2 and
hence it is in block form. The square matrix A0 which defines the action on R

ℓ0

is positive, and the square matrix defining the action on R
ℓ1 ⊕ R

ℓ2 is the identity.
Let ‖A0‖ be the operator norm of A0 with respect to the norm |v| = ∑

i |vi|. By
positivity, there is a number δ > 0 such that the smallest entry of A0 is not smaller
than δ‖A0‖. Note that 1/δ is just the largest ratio of any two entries of A0.

Let α > 1 be the Perron Frobenius eigenvalue of A0. Since ν(σ0) ≥ a, by
eventually decreasing δ, for k ≥ 1 we have

ϕk
0(ν)(σ0) ≥ aδαk,

moreover ϕk
0(ν)(τ − σ0) ≤ 1− a. Therefore for

k ≥ (log(2(1− a))− log(aδǫ))/ log(α)

we have ϕk
0(ν)(σ0) ≥ 2ϕk

0(ν)(τ − σ0)/ǫ. It now follows from the assumptions on ϕ0

that indeed ϕk
0(ν)/ϕ

k
0(ν)(τ) ∈ C0(ǫ).

By definition of the maps ϕi, we also have Â(ϕi, τ)(C0(ǫ)) ⊂ Ci(ǫ) for i = 1, 2.
Together we deduce the existence of a number k(ǫ) ∼ − log ǫ > 0 such that for
k > k(ǫ), the set C0(ǫ) is invariant under the map which assigns to a measured
geodesic lamination 0 6= µ ∈ V(τ) the normalized image of ζ(k)µ ∈ V(ζ(k)τ) under
a carrying map V(ζ(k)τ) → V(τ). In particular, if k > k(ǫ) and if q ∈ Q(τ) is
contained in the ζ(k)-invariant flow line of the Teichmüller flow then the vertical
measured geodesic lamination λ of q is contained in C0(ǫ) by invariance.



COUNTING PERIODIC ORBITS IN THE THIN PART OF STRATA 41

The q-length of the simple closed curve ci is contained in the interval

[
1√
2
(ι(λ, ci) + ι(ν, ci)), ι(λ, ci) + ι(ν, ci)]

where λ, ν is the vertical and the horizontal measured geodesic lamination of q,
respectively. The intersection numbers ι(λ, ci), ι(ν, ci) can be estimated as follows.

By Lemma 2.5 of [H06], the intersection of λ with the simple closed curve on S
defined by the embedded trainpath ci ⊂ τ − σi on τ is bounded from above by the
sum of the λ-weights of the branches of τ −σi. As λ ∈ C0(ǫ), this intersection is at
most ǫ.

The support of the vertical (or horizontal) measured geodesic lamination of a
quadratic differential q is invariant under the action of the Teichmüller flow Φt,
and its transverse measure scales with the scaling constant et/2 (or with the scal-
ing constant e−t/2- note that this means that the length of the vertical measured
geodesic lamination is decrasing along a flow line of the Teichmüller flow).

Let κ > 1 be such that κλ ∈ V0(ϕ
k
0ϕiϕ

k
0(τ)). By the above argument, we have

kλ(ϕk
0ϕ1ϕ

k
0(τ − σ1)) < ǫ and therefore

ι(κλ, ϕk
0ϕ1ϕ

k
0(c1)) ≤ ǫ.

Since ϕk
0ϕ1ϕ0k(c1) = c1, for every s ≤ 2 log κ the intersection number between c1

and the vertical measured geodesic lamination of Φsq is at most ǫ.

As the transverse measure of the horizontal measured geodesic lamination for
a quadratic differential is decreasing along the Teichmüller flow, to show that the
Φsq-length of c1 is at most 2ǫ for every 0 ≤ s ≤ 2 log κ it now suffices to show that
ι(ν, c1) ≤ ǫ where ν is the horizontal measured geodesic lamination of q.

By construction, the carrying map ϕ2τ ≺ τ maps every branch of ϕ2(σ2) onto
σ2. This implies the following. Let χ < 1 be such that the total weight of the
measured geodesic lamination χλ on ϕ−1

2 ϕ−k
0 τ = η equals one. Then the χλ-weight

of every branch in ϕ−1
2 c1 = ϕ−1

2 ϕ−k
0 (c1) is bounded from below by the number a

introduced in the beginning of this proof.

The intersection number ι(χλ, χ−1ν) = ι(λ, ν) can be calculated as
∑

b

ω(χλ, b)ω∗(χ−1ν, b)

where the sum is over all branches b of ϕ−1
2 ϕ−k

0 (τ) = η and ω(χλ, b) and ω∗(χ−1ν, b)
are the weights of b for the transverse or tangential measure determined by χλ, χ−1ν
[PH92]. As this intersection number equals one, we have ω∗(χ−1ν, b) ≤/ a for every

branch b of the subtrack ϕ−1
2 ϕ−k

0 (σ2). Now c1 is embedded in σ2 and therefore
the total weight of c1 with respect to the tangential measure on τ defined by ν is
at most 2χ/a (recall that c1 is an embedded subtrack of τ consisting of precisely
two branches). As χ = χ(k) → 0 (k → ∞), for sufficiently large k the intersection
number between ν and c1 is smaller than ǫ.

To summarize, by the scaling properties for the transverse measures of the ver-
tical and horizontal measured geodesic laminations under the Teichmüller flow, for
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sufficiently large but fixed k > 0, for the number κ > 0 determined above and for
0 ≤ t ≤ 2 log κ, the Φtq-length of the curve c1 does not exceed 2ǫ.

Let u > 0 be such that the total weight of uλ on ζ(k)τ equals one. The same
argument as above shows that the Φtq-length of ϕk

0ϕ1ϕ
k
0(c2) is less than ǫ for

2 log κ ≤ t ≤ 2 log u. Together we conclude that indeed, the orbit defined by ζ(k) is
entirely contained in the set of differentials which admit an essential simple closed
curve of length at most 2ǫ.

We are left with estimating the number of periodic orbits of the form ζ(k) as
above where we fix ϕ0 and ϕ2 and vary ϕ1. To this end let T (ϕ1) > 0 be the
translation length of the pseudo-Anosov map ϕ1 acting on the surface S − c1. We
claim that there is a constant β > 0 only depending on k (and the choice of ϕ0, ϕ2)
such that the translation length of ζ(k) is contained in the interval [0, T (ϕ1) + β].

Namely, the translation length of ζ(k) is the logarithm of the Perron Frobe-
nius eigenvalue of the matrix A(τ, ζ(k)) which determines ζ(k). Now this Perron
Frobenius eigenvalue does not exceed the operator norm ‖A(ζ(k), τ)‖ of the matrix
A(ζ(k), τ). This operator norm in turn is bounded from above by

‖A(τ, ζ(k))‖ ≤ ‖A1‖‖B‖
where ‖A1‖ is the operator norm of the matrix A1 = A(ϕ1, σ1) defining the map
ϕ1 (which coincides with the operator norm of A(ϕ1, τ)) and where ‖B‖ is the
operator norm of the linear map A(τ, ϕ2k

0 ϕ2ϕ
2k
0 ). On the other hand, by the choice

of ϕ1 there is a universal constant κ > 0 such that

|T (ϕ1)− log ‖A1‖| ≤ κ.

The claim follows.

By Proposition 5.3, the asymptotic growth of the number of conjugacy classes of
pseudo-Anosov elements in Mod(S1) which satisfy the requirements in the proposi-
tion equals h(Q)− 2. Let D be the Dehn twist about the curve c1 in the direction
determined by τ . By construction, we have Dkτ ≺ τ for all k ≥ 0. If m ≤ eT (ϕ1)

then the above discussion shows that the map ϕk
0 ◦ϕ2 ◦ϕ2k

0 ◦Dm ◦ϕ1 ◦ϕk
0 satisfies

the requirements in the proposition.

This implies that simultaneous twisting about c1 adds one to the counting of the
orbits constructed above and completes the proof of the proposition. �

Remark 6.6. The stable length of a pseudo-Anosov element g ∈ Mod(S) on the
curve graph C(S) of S is defined to be

sl(g) = lim
k→∞

1

k
d(gkc, c).

This does not depend on the choice of c ∈ C(S).

Bowditch [Bw08] showed that there is an integer ℓ > 0 only depending on the
topological type of S such that the stable length on the curve graph of every pseudo-
Anosov element ϕ is rational with denominator ℓ. The stable length of each of the
(infinitely many) pseudo-Anosov elements ζ(k) constructed in the proof of Propo-
sition 6.5 is at most 2.
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A similar argument also yields Theorem 2 from the introduction.

Proposition 6.7. For every component Q of a stratum as in Proposition 6.5 there
is a Teichmüller geodesic with uniquely ergodic vertical measured geodesic lamina-
tion whose projection to moduli space escapes with linear speed to infinity.

Proof. We argue as in the proof of Proposition 6.5. Namely, choose simple closed
curves c1, c2 as in the proof of Proposition 6.5 and fix pseudo-Anosov elements ϕi

of Si with the properties stated in the proof.

Let τ be a large train track as in the proof of Proposition 6.5, with subtracks σi.
Let Ai = A(ϕi, σi) and denote by ‖Ai‖ the operator norm of A. Choose a sequence
of numbers (ki) such that for each i,

ki ≥ 2
∑

j≤i−1

kj .

Let ψi = ϕ1◦ϕki

0 ◦ϕ2◦ϕki

0 . Then for each i we have ψiτ ≺ τ . Write ζk = ψk◦· · ·◦ψ1.
We claim that ∩kζkV(τ) consists of a single ray.

To see that this is the case, note from the proof of Proposition 6.5 that for
each i a carrying map (ψi+1 ◦ ψi)τ → τ maps every branch of (ψi+1 ◦ ψi)τ onto τ
and its normalization contracts distances in the cone V0(τ) with a factor which is
independent of i. This implies immediately that ∩kζkV(τ) consists of a single ray.
In particular, a point on this ray is a uniquely ergodic measured geodesic lamination
which fills up S.

To show linear escape in moduli space, let λ ∈ V0(τ) be the normalized measured
geodesic lamination contained in this ray and let ν be a measured geodesic lamina-
tion which fills and hits τ efficiently. Then the pair (λ, ν) determines a quadratic

differential q. Let ℓ > 0 and let a > 0 be such that the measure ea/2λ on ϕkℓ

0 ψℓ−1(τ)
is normalized. Then the arguments in the proof of Lemma 6.5 show that the in-
tersection of the curve ϕkℓψℓ−1c1 with the lamination ea/2λ is at most ce−a/2, and
similarly for the intersection with e−a/2ν. This yields the proposition. �

Remark 6.8. By the main result of [CE07], there is a number ǫ > 0 so that if
a Teichmüller geodesic in moduli space escapes into the cusp with a speed of at
most ǫ log t, then the vertical measured geodesic lamination of a differential on the
geodesic is uniquely ergodic. The above example implies that one can construct
differentials with uniquely ergodic vertical measured laminations and arbitrarily
prescribed excursions into the cusp.
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[H06] U. Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, in

“Spaces of Kleinian groups” (Y. Minsky, M. Sakuma, C. Series, eds.), London Math.
Soc. Lec. Notes 329 (2006), 187–207.
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