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Abstract. Let γ be a periodic Reeb orbit of self-linking number lk(γ) on
the boundary of a compact strictly convex body C ⊂ C2. We show that the
Seifert genus of γ equals 1

2
(lk(γ)+1). In particular, γ is unknotted if and only

if lk(γ) = −1.

1. Introduction

Consider the complex two-dimensional vector space C
2 with the standard sym-

plectic form defined in standard real coordinates by ω0 =
∑2

i=1 dxi ∧ dyi. This
symplectic form is the differential of the one-form

λ0 =
1

2

2
∑

i=1

(xidyi − yidxi).

For every compact convex body C ⊂ C
2 containing the origin in its interior, with

smooth boundary Σ, the restriction λ of λ0 to Σ defines a smooth contact form on
Σ. This means that λ ∧ dλ is a volume form on Σ.

The Reeb vector field of the contact structure λ is the smooth vector field X on Σ
defined by λ(X) = 1 and dλ(X, ·) = 0. The Reeb flow on Σ generated by the Reeb
vector field X admits periodic orbits

Ra78
[Rab78]. In fact, Hofer, Wysocki and Zehnder

showed that the Reeb flow on Σ either admits precisely two or infinitely many
periodic orbits (Theorem 1.1 of

HWZ98
[HWZ98]). If the Reeb flow admits two periodic

orbits then these orbits are unknotted.

To each periodic Reeb orbit γ on Σ we can associate its self-linking number lk(γ)
which is defined as follows. Let S ⊂ Σ be a Seifert surface for γ, i.e. S is a smooth
embedded oriented surface in Σ whose oriented boundary equals γ. Since γ is a
Reeb orbit, there is a natural identification of the restriction to γ of the oriented
normal bundle of S in Σ with a real line subbundle NS of the contact bundle
ξ = ker(λ). Since ξ is oriented, NS defines a trivialization of ξ|γ. The self-linking
number lk(γ) of γ is the winding number with respect to NS of a trivialization of ξ
over γ which extends to a trivialization of ξ on Σ. Eliashberg

eliash
[Eli92] showed that

the self-linking number of a periodic Reeb orbit on Σ is always an odd integer.

In
HH09
[HH09] the self-linking number of a periodic Reeb orbit γ on Σ is related to

the symplectic geometry of the compact convex body C. Namely, let D ⊂ C be the
closed unit disc with boundary ∂D. Define the tangential index tan(f) of a smooth
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immersion f : (D, ∂D) → (C, γ) with only interior transverse self-intersection points
to be the number of such transverse self-intersection points, counted with signs and
multiplicities. Then

lk(γ) = 2tan(f) − 1

for any such immersed symplectic disc in C with boundary γ, i.e. an immersion
f : (D, ∂D) → (C, γ) with the additional property that the pull-back f∗ω0 of the
symplectic form ω0 on C

2 vanishes nowhere and defines the canonical orientation
on D (Theorem 1 of

HH09
[HH09]). Moreover, such an immersed symplectic disc with

boundary γ always exists.

The Seifert genus g(η) of a knot η is defined to be the smallest genus of a Seifert
surface for η. Eliashberg

eliash
[Eli92] showed that lk(γ) ≤ 2g(γ) − 1 for every periodic

Reeb orbit γ on Σ. We show

thm1 Theorem. Let γ be a periodic Reeb orbit on the boundary Σ of a compact strictly
convex body C ⊂ C

2. Then the Seifert genus of γ equals (lk(γ) + 1)/2.

As an immediate corollary of the theorem we obtain

corollary1 Corollary 1. A periodic Reeb orbit on Σ is unknotted if and only if its self-linking
number equals −1.

For a period Reeb orbit γ on Σ there is another invariant, the Maslov index.
Hofer, Wysocki and Zehnder

HWZ98
[HWZ98] proved that the Maslov index of γ is at

least three. Moreover, there exists a periodic Reeb orbit of Maslov index three and
self-linking number −1. Theorem 2 of

HH09
[HH09] and Corollary

corollary1
1 imply the following

result of Hainz
H07
[H07].

corollary2 Corollary 2. If the principal curvatures of Σ are pointwise 1/4-pinched then a
periodic Reeb orbit γ of Maslov index 3 is unknotted.

Eliashberg
eliash
[Eli92] constructed for every k > 0 a transverse unknot on the stan-

dard three-sphere S3 whose self-linking number equals −2k − 1. Our result shows
that such a knot can not occur as a Reeb orbit on the boundary Σ of a compact
convex body in C

2 containing the origin in its interior (note that the radial diffeo-
morphism S3 → Σ maps the contact distribution on S3 to the contact distribution
on Σ and preserves self-linking numbers of transverse knots).

The main idea for the proof of the theorem is as follows. Let Ĵ be a smooth
almost complex structure on C

2 which is compatible with the symplectic form,
i.e. such that ω0(·, Ĵ ·) is a Riemannian metric on C

2. Assume that there is a Ĵ-
holomorphic disc f : (D, ∂D) → (C, γ) bounding γ. With a small perturbation one
can guarantee that f is an immersion

MD91
[McD91]. Then f is symplectic, and every

self-intersection point of f is positive. In particular, there are precisely 1
2 (lk(γ)+1)

such self-intersection points. From this it easily follows that the slice genus of γ
(which is not bigger than the Seifert genus) does not exceed 1

2 (lk(γ) + 1).

For the construction of such an almost complex structure Ĵ and a Ĵ-pseudo-
holomorphic disc with boundary γ we use minimal discs whose existence is always
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guaranteed. The major part of this work is devoted to control topological properties
of such minimal discs.

In Section 3 we establish a sufficient condition for an immersed minimal disc
in C

2 to be symplectic. This condition restricts the behavior of the disc along its
boundary and requires the vanishing of a topological invariant, the winding of the
disc. In Section 4 we construct for any Reeb orbit γ on the boundary of a compact
convex body C a minimal disc of vanishing winding with boundary γ. This disc
is symplectic and has 1

2 (lk(γ) + 1) positive self-intersection points, counted with

multiplicities. This implies that the slice genus of γ does not exceed 1
2 (lk(γ) + 1).

In Section 5, we introduce a glueing procedure for links. The results of Section 4
and Section 5 are used in Section 6 to control the Seifert genus of γ.

2. Self-linking and winding

In this section we summarize some constructions and results from
HH09
[HH09] in the

form needed for the proof of the main result.

Let D ⊂ C be the closed unit disc with connected boundary ∂D = S1.

boundaryreg Definition 2.1. A smooth map f : D → C
2, i.e. a map which is smooth up to

and including the boundary, is called boundary regular if the singular points of f
are contained in the interior of D, i.e. if there is a neighborhood A of ∂D in D such
that the restriction of f to f−1(f(A)) is an embedding. The map f is called locally
boundary regular if there is a neighborhood A of ∂D in D such that the restriction
of f to A is an embedding.

Clearly a boundary regular map is locally boundary regular.

Let J be the standard complex structure on C
2 and let 〈, 〉 be the (real) euclidean

inner product which is J-invariant. Call a real two-dimensional subspace V ⊂ C
2

admissible if JV ∩V ⊥ = {0} where V ⊥ denotes the orthogonal complement of V . If
V is admissible then for each 0 6= X ∈ V the pair (X,π(JX)) is a basis of V where
π : C

2 → V is the orthogonal projection. The thus defined orientation of V does
not depend on X and will be called canonical. An admissible subspace V ⊂ C

2 is
symplectic.

A complex structure Ĵ on C
2 is called compatible with the euclidean inner prod-

uct 〈, 〉 if Ĵ preserves 〈, 〉. The complex structure is called positive if it defines the
orientation on C

2 determined by the standard complex structure J . The following
simple observation relates admissible planes to compatible complex structures.

compatible Lemma 2.2. For every admissible plane V ⊂ C
2 there is a unique positive complex

structure JV on C
2 which is compatible with the euclidean inner product such that

V is JV -invariant and that the orientation of V induced by JV is the canonical
orientation. For every 0 6= X ∈ C

2 the non-oriented angle between JX and JV X
is smaller than π/2.
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Proof. There is a unique complex structure J0 on V which is compatible with the
restriction of the euclidean inner product and which defines the canonical orienta-
tion. Since the orthogonal complement V ⊥ of V is also admissible, J0 can uniquely
be extended to a complex structure JV on C

2 which is compatible with the eu-
clidean inner product and which induces the canonical orientation on V ⊥. This
complex structure is necessarily positive.

To show the last part of the lemma, note that if the claim does not hold true
then by continuity there is a vector 0 6= X ∈ C

2 such that 〈JV X,JX/rangle =
0. Since both JV , J are compatible, this implies that 〈J(JV X), JV (JV X)〉 =
0 = 〈JV (JX), J(JX)〉. Now the vectors X,JX, JV X,JJV X span C

2 and hence
〈JY, JV Y 〉 = 0 for all Y . However, this is impossible because JV preserves the
admissible plane V . �

admissible Definition 2.3. A smooth locally boundary regular map f : D → C
2 is called

boundary holomorphic (or admissible) if for each z ∈ ∂D the tangent plane of f(D)
at f(z) is J-invariant (or admissible) and if its canonical orientation coincides with
the orientation induced from the orientation of D.

For every smooth embedded oriented curve γ in C
2 the orthogonal complement

N of the complex line subbundle of TC
2|γ spanned by the tangent of γ is a complex

line bundle over γ. This bundle admits a preferred trivialization ρ which is deter-
mined as follows. Let f : (D, ∂D) → (C2, γ) be any boundary regular boundary
holomorphic map. We require that the restriction of f to ∂D is an orientation
preserving homeomorphism onto γ. Glue N to the trivial bundle D × C over D
with the trivialization ρ. The resulting (locally defined) 4-manifold Wρ admits an
almost complex structure extending the complex structure J of C

2. Denote by S0

the closed oriented 2-sphere obtained by glueing two copies of D along the bound-
ary with an orientation reversing diffeomorphism. There is a natural extension
f0 : S0 → Wρ of f . We require that the evaluation on S0 of the first Chern class
of the tangent bundle of Wρ equals 2. This does not depend on the choice of a
boundary regular boundary holomorphic map (D, ∂D) → (C2, γ) (see Section 2 of
HH09
[HH09] for a detailed discussion).

In fact, let M : C
2 → C

2 be the complex anti-linear map (z1, z2) → (−z̄2, z̄1).
Note that M defines a complex structure on C

2 which preserves the euclidean inner
product 〈, 〉. We have

preferred Lemma 2.4. The winding of the preferred trivialization ρ of N with respect to the
trivialization defined by Mγ′(t) equals one.

Proof. Let f : (D, ∂D) → (C2, γ) be any boundary regular boundary holomorphic
immersion. LetX be a nowhere vanishing vector field onD. Then (df(X),Mdf(X))
is a global complex trivialization of the pull-back f∗TC

2 of the tangent bundle of
C

2. By definition, this implies that Mdf(X)|∂D is the preferred trivialization of
the normal bundle of f(D) over f(∂D). Since M is anti-holomorphic, the lemma
follows (compare

HH09
[HH09]). �
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For a boundary regular boundary holomorphic map f : D → C
2 the self-

intersection number Int(f) of f is defined as follows. Let ρ be the preferred triv-
ialization of the normal bundle of f(D) over f(∂D) = γ. Use ρ to construct the
almost complex manifold Wρ as above and extend f to a map f0 : S0 → Wρ. The
self-intersection number Int(f) of f then is the self-intersection number of f0(S0)
in Wρ. Note that the self-intersection number is also defined for boundary regular
admissible maps D → C

2 (see
HH09
[HH09] for details and compare with

MD91
[McD91]).

Next we look at topological invariants of boundary regular immersions. Namely,
assume that the boundary regular immersion f : D → C

2 has a finite number of
self-intersections, each of them transverse and contained in the interior of D. Define
the tangential index tan(f) of f to be the number of such self-intersection points
counted with signs and multiplicities. If a boundary regular immersion f : D → C

2

has self-intersection points which are not transverse then it can be perturbed with
a homotopy of boundary regular immersions to an immersion with only transverse
double points whose tangential index is independent of the perturbation (see e.g.
MD91
[McD91]).

There are also topological invariants of locally boundary regular boundary holo-
morphic or admissible immersions. For such an immersion f : D → C

2, the normal
bundle of f(D) is the normal bundle of TD in the pull-back f∗TC

2. Its restriction
to γ is naturally identified with the orthogonal complement of the complex line
subbundle of TC

2|γ spanned by γ′. Thus the restriction to γ of the normal bundle
of f(D) is equipped with the preferred trivialization.

winding Definition 2.5. The winding number wind(f) of a locally boundary regular bound-
ary holomorphic (or admissible) immersion f : (D, ∂D) → (C2, γ) is the winding
number of the preferred trivialization of the normal bundle of f(D) over f(∂D) = γ
with respect to a trivialization which extends to a global trivialization of the normal
bundle of f(D).

Proposition 3.4 of
HH09
[HH09] is an adjunction formula for immersed boundary reg-

ular boundary holomorphic (or admissible) discs in C
2.

intofdiscs Proposition 2.6.

Int(f) = wind(f) + 2tan(f)

for any boundary regular boundary holomorphic (or admissible) immersion f : D →
C

2.

Let f : D → C
2 be an immersion. A complex point for f is a point x ∈ D so

that the tangent plane of f(D) at f(x) is a complex line in TC
2. The complex

point is called holomorphic if the orientation of TxD coincides with the orientation
given by the complex structure of C

2, and it is called anti-holomorphic otherwise.
A small deformation of the map f ensures that complex points are isolated in the
interior of D.

The index of an isolated complex point x in the interior of D is defined as follows.
The bundle f∗TC

2 contains the tangent bundle TD of D as a real two-dimensional
subbundle. Denote by V the orthogonal complement of TD in f∗TC

2 with respect
to the euclidean metric and let π : f∗TC

2 → V be the orthogonal projection. If
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v is a smooth local section of TD near the isolated complex point x, then π(Jv)
has an isolated zero at x. The index of x is defined to be the degree of the zero
(or the winding number of π(Jv) about x) with respect to a smooth trivialization
of V near x. This is well defined since the orientation of TD and the orientation
of f∗TC determine an orientation of the bundle V by requiring that the oriented
bundle f∗TC

2 coincides with the oriented sum TD ⊕ V .

Define d−(f) to be the sum of the indices of the anti-holomorphic points of f(D).
The next observation is a version of Proposition 3.4 of

HH09
[HH09].

lkcompute Proposition 2.7. Let f : D → C
2 be a locally boundary regular boundary holomor-

phic (or admissible) immersion with only isolated anti-holomorphic points. Then

wind(f) = 2d−(f).

Proof. Let f : D → C
2 be a locally boundary regular boundary holomorphic im-

mersion with only isolated anti-holomorphic points. Choose a global nowhere van-
ishing section X of TD. If M : C

2 → C
2 is the complex anti-linear map used in

Lemma
preferred
2.4 then df(X),Mdf(X) define a global complex trivialization of f∗TC

2.
This trivialization in turn defines a trivialization f∗G = D ×G(2, 4) of the bundle
f∗G over D whose fibre at a point x is the Grassmannian G(2, 4) of oriented real
two-dimensional linear subspaces of the fibre of f∗TC

2 = C
2 at x. The map which

associates to x ∈ D the oriented tangent plane of D at x defines a section of this
bundle and hence it defines a continuous map Gf : D → G(2, 4). Since f is bound-
ary holomorphic, the image under f of the boundary of D is a single complex line.
Thus Gf determines a map into G(2, 4) from the two-sphere obtained from D by
collapsing the boundary to a single point. As a consequence, it defines an element
[Gf ] in the second homology group H2(G(2, 4),Z) of the Grassmannian G(2, 4).

Since G(2, 4) = S2×S2, the integral homology group H2(G(2, 4),Z) decomposes
as Z1 ⊕ Z2 where Zi is infinite cyclic (i = 1, 2). Here the group Z1 is generated
by the complex projective line CP 1 of all oriented complex lines in C

2, and Z2 is
generated by the tangent bundle of the two-sphere S2 ⊂ R

3 ⊂ C
2 (see the beginning

of Section 3 of
HH09
[HH09]). Let C2(Gf) be the component of the homology class [Gf ]

in the subgroup Z2. By Proposition 3.4 of
HH09
[HH09], if we view C2(Gf) as an element

in Z then we have

wind(f) = 2C2(Gf).

On the other hand, C2(Gf) is the number of intersection points of TD with the
bundle of anti-holomorphic complex lines in f∗TC

2 counted with signs and multi-
plicities (i.e. complex lines with the orientation induced by the complex structure
−J , see the discussion in Section 3 of

HH09
[HH09]). Now each anti-holomorphic point of

f is contained in the interior ofD. Moreover, if f has only isolated anti-holomorphic
points, each of index ±1, then the anti-holomorphic points are precisely the inter-
section points of TD with the bundle of anti-holomorphic lines in TC

2, and the
sign of the intersection of each such point is just the sign of the anti-holomorphic
point (see the discussion at the end of Section 3 in

CT97
[CT97]). In other words, we

have C2(Gf) = d−(S). This shows the proposition for locally boundary regular
boundary holomorphic maps.
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If f is locally boundary regular and admissible then f can be deformed to a locally
boundary regular boundary holomorphic immersion f ′ with wind(f ′) = wind(f)
and the additional property that the numbers of anti-holomorphic points counted
with signs and multiplicities of f, f ′ coincide. The proposition follows. �

Call a smooth almost complex structure Ĵ on C
2 = R

4 compatible with the
euclidean inner product 〈, 〉 if 〈, 〉 is fibre-wise Ĵ-invariant. A two-dimensional linear

subspace V ⊂ TC
2 is called admissible for Ĵ if ĴV ∩V ⊥ = {0} where as before, V ⊥ is

the orthogonal complement of V . Ĵ-boundary holomorphic or Ĵ-admissible locally
boundary regular maps are naturally defined as well, and the above discussion
carries over without modification to Ĵ-admissible maps. In particular, for a locally
boundary regular Ĵ-admissible immersion f : D → C

2 the Ĵ-winding is defined.
Note that if f is admissible for the usual complex structure J as well then this
Ĵ-winding may be distinct from wind(f), the winding of f for J (compare

HH09
[HH09]).

3. Minimal admissible discs

The strategy for the proof of the theorem from the introduction is to show that
minimal discs in C

2 which bound a given Reeb orbit on the boundary of a compact
convex body C ⊂ C

2 have the same topological properties as holomorphic discs. In
this section we establish some first properties of such minimal discs. In particular,
we establish a sufficient condition for such a disc to be symplectic.

As in Section 2, let D ⊂ C be the closed unit disc. A minimal disc whose bound-
ary is a smooth embedded oriented simple closed curve γ in C

2 is a continuous map
f : (D, ∂D) → (C2, γ) satisfying the minimal surface equation and such that the
boundary ∂D of D is mapped with an orientation preserving homeomorphism onto
γ. There is no reference to a specific parametrization of γ. Particular examples of
such minimal discs are discs which minimize the area among all discs with oriented
boundary γ.

The parametrization of a minimal disc f : (D, ∂D) → (C2, γ) with smooth
boundary γ is smooth up to the boundary

S88
[S88, Theorem 5.1]. However, a minimal

disc f : (D, ∂D) → (C2, γ) may have isolated branch points and may even have
branch points on the boundary. For the remainder of this section, we only consider
locally boundary regular minimal discs, i.e. minimal discs which bound smooth
embedded curves and which do not have branch points on the boundary.

Even though a locally boundary regular minimal disc f : D → C
2 may have

interior branch points, it admits well defined tangent planes everywhere varying
smoothly with p ∈ D

DHKW91
[DHKW91]. Therefore the tangent bundle TD of D can

naturally be identified with a subbundle of the pull-back f∗TC
2. In particular, if

f is admissible then the winding number wind(f) of f is defined.

minissymp Proposition 3.1. A locally boundary regular admissible minimal disc f : D → C
2

with wind(f) = 0 is symplectic.
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Proof. Let f : (D, ∂D) → (C2, γ) be a locally boundary regular admissible minimal
disc with wind(f) = 0. Our goal is to show that f is symplectic.

Recall from Section 2 the definition of a holomorphic and an antiholomorphic
complex point of an immersed disc f : D → C

2. By
web1
[Web84, Proposition 2], a min-

imal surface either is holomorphic, anti-holomorphic or has only isolated complex
points. As an admissible minimal disc is symplectic near its boundary it can not
be anti-holomorphic. Holomorphic discs are necessarily symplectic. Thus it suffices
to consider the case that f has only isolated complex points.

As in Section 2, for a complex point p of f the index ind(p) of p is defined. For
a minimal disc, the index is always negative. At a complex branch point, the index
coincides with the negative of the branching order

web1
[Web84]. By Proposition

lkcompute
2.7 we

have wind(f) = 2
∑

p ind(p) where the sum is over all anti-holomorphic points of

f . Thus since wind(f) = 0 by assumption, f does not have any anti-holomorphic
complex points.

We use the arguments of
chewo
[CW83] and

wolf
[Wol89]. Namely, let j be the standard

complex structure on the tangent bundle TD of the disc D. We also define a
(1,0)-form Φ ∈ Γ(T ∗D ⊗ C), so that

ds2 = Φ ◦ Φ

is the metric on TD induced by f . As in
chewo
[CW83], we choose a unitary (1, 0)-coframe

{ω1, ω2} in T ∗
C

2 ⊗ C such that on TD we have

f∗ω1 = cos
α

2
Φ, f∗ω2 = sin

α

2
Φ,

for some function α : D → R. This function is differentiable away from complex
points and continuous on D. Then we have

ds2 = f∗(ω1 ◦ ω1 + ω2 ◦ ω2)

Furthermore, the symplectic form ω0 and the induced volume form i
2Φ ∧ Φ on

TD satisfy

f∗ω0 = f∗
(

i

2
(ω1 ∧ ω1 + ω2 ∧ ω2)

)

=
i

2
cos(α)Φ ∧ Φ.

Since f is conformal it suffices to show that cos(α) > 0, i.e. that α ∈ (−π
2 ,

π
2 ).

As in
wolf
[Wol89] we define

u : R → R

α 7→ ln
(

tan
(α

2

))

.

Let {pi} be the complex points of the minimal disc. According to Wolfson, on
D − {pi} we have

∆(u ◦ α)Φ ∧ Φ = ∂∂(u ◦ α) = −iRic = 0,

where Ric is the Ricci-form on C
2 and hence vanishes. Therefore

u ◦ α : D − {pi} → R

is a harmonic function. Since the disc is symplectic near the boundary and since by
the above observation there are no anti-holomorphic points, we have α|S1∪{pi} ∈
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(−π
2 ,

π
2 ). Since u is monotone in α and since u ◦ α attains its maximum and its

minimum on the boundary of D − {pi}, the extrema of α lie on the boundary as
well. Therefore α ∈ (−π

2 ,
π
2 ) on D. This proves that every tangent plane of the disc

f is an admissible and hence symplectic subspace of the tangent space of C
2. �

By Proposition
minissymp
3.1, for a minimal locally boundary regular admissible disc f :

(D, ∂D) → (C2, γ) with wind(f) = 0 and for every z ∈ D, the tangent plane
df(TzD) of f(D) at f(z) is admissible, and its canonical orientation coincides with
the orientation induced from the orientation of D.

We use this observation to show that a boundary regular admissible minimal im-
mersion f : D → C

2 with wind(f) = 0 has only positive transverse self-intersection
points. The following lemma is the main technical tool for this purpose.

signofselfint Proposition 3.2. Let s → fs : D → C
2 (s ∈ [a, b]) be an arc of minimal immer-

sions which is continuous in the C3-topology. Assume that for each s the map fs is
locally boundary regular and admissible, that fa is an embedding with wind(fa) = 0
and that fb is boundary regular. Then every self-intersection point of fb is positive.

Proof. Self-intersection points of minimal immersed discs in C
2 are transverse and

hence isolated. Therefore the number of self-intersection points (counted without
sign but with multiplicity) of an immersed locally boundary regular minimal disc
in C

2 is finite.

Let
s→ fs : D → C

2 (s ∈ [a, b])

be an arc of minimal immersions as in the lemma. In particular, both fa and fb

are boundary regular, and every disc fs is locally boundary regular and admissible.
Then for every s the winding number wind(fs) of fs is defined. Since the discs fs

depend continuously on s in the C3-topology, wind(fs) depends continuously on s.
Now wind(fa) = 0 by assumption and therefore wind(fs) = 0 for all s. Proposition
minissymp
3.1 then shows that each of the discs fs is symplectic.

Let D0 ⊂ C be the open unit disc with closure D. By transversality, if t ∈ [a, b]
and if x0 6= y0 ∈ D0 are such that ft(x0) = ft(y0) then there is a connected
neighborhood U of t in [a, b] and there are unique continuous maps

x : U → D, y : U → D

with x(t) = x0, y(t) = y0 such that x(s) 6= y(s) and fs(x(s)) = fs(y(s)) for all
s ∈ U . The sign of the corresponding self-intersection point of the disc fs does not
depend on s.

Let r ∈ [a, b] be the infimum of all numbers s ∈ [a, b] so that the curves x, y are
defined on the interval [s, t]. We claim that up to exchanging x0 and y0, as s ց r
we have |x(s)| → 1.

Namely, otherwise we can find a sequence sj ց r so that |x(sj)| → ρ1 < 1 and
|y(sj)| → ρ2 < 1. After passing to a subsequence we may assume that x(sj) →
x̃ ∈ D0, y(sj) → ỹ ∈ D0. By continuity, we have fr(x̃) = fr(ỹ). Since each of
the discs fs is a locally boundary regular immersion depending continuously on
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s in the C3-topology, necessarily x̃ 6= ỹ. In particular, fr has a self-intersection
point and hence r > a since fa is an embedding by assumption. Then there is a
connected neighborhood V ⊂ [a, b] of r such that the points x̃, ỹ can be developed
into continuous arcs x̃(s), ỹ(s) (s ∈ V ) so that fs(x̃(s)) = fs(ỹ(s)) for all s ∈ V .
Since self-intersection points of minimal immersed discs are isolated, these arcs have
to contain the points x(sj), y(sj) for sufficiently large j. However, this violates the
definition of r.

Extending the self-intersection arcs x(s), y(s) in the same way as s increases we
conclude the following. If x0 6= y0 ∈ D0 and t ∈ (a, b] are such that ft(x0) = ft(y0)
then up to exchanging x0 and y0, there are unique continuous maps

s→ x(s) ∈ D, s→ y(s) ∈ D (s ∈ [α, β] ⊂ (a, b])

through x(t) = x0, y(t) = y0 with the following properties.

i) x(α) ∈ ∂D and x(s) 6= y(s) ∈ D0 for all s ∈ (α, β).
ii) fs(x(s)) = fs(y(s)) for all s.
iii) Either β = b or x(β) ∈ ∂D or y(β) ∈ ∂D.

We call the pair (x, y) of maps x, y : [α, β] → D a pair of maximal self-intersection
arcs. For each fixed s, there are only finitely many pairs of maximal self-intersection
arcs passing through s.

For r ∈ (0, 1) let Dr ⊂ D be the closed disc of radius r in C. By continuous
dependence of the discs fs on s in the C3-topology and compactness, for each ν > 0
there are only finitely many pairs (x, y) of maximal self-intersection arcs so that
both x, y intersect D1−ν .

If f : D → C
2 is a minimal disc and if E ⊂ D is an embedded subdisc with

smooth boundary then the composition of f |E with a uniformizing biholomorphic
map D → E is a minimal disc. This disc is uniquely determined by f and a three-
point condition for the uniformizing map. Since moreover boundary regular and
admissible discs form an open set of discs in the C3-topology, we can deform the
arc of minimal discs s → fs by pushing the boundary of D slightly inside D with
a deformation depending smoothly on s which equals the identity for s = a, s = b
and such that the resulting arc of minimal discs, again denoted by fs (s ∈ [a, b]),
has the properties stated in the proposition together with the following additional
properties.

a) There are only finitely many pairs of maximal self-intersection arcs.
b) For every s ∈ [a, b], every self-intersection of fs is contained in a pair of

maximal self-intersection arcs.
c) For every s ∈ [a, b], there is at most one pair of maximal self-intersection

arcs which has an endpoint at s.

We now show the statement of the proposition for arcs of minimal discs which
satisfy the assumption in the proposition as well as properties a),b),c) above. For
this we proceed by induction on the number of pairs of maximal self-intersection
arcs. If there is no such pair of arcs then fb is an embedding and there is nothing
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to show, so assume that the statement holds true whenever there are at most k− 1
pairs of maximal self-intersection arcs for some k ≥ 1.

Let s → fs : D → C
2 (s ∈ [a, b]) by an arc of minimal discs satisfying the

assumptions in the proposition as well as properties a),b),c) which contains k pairs
of maximal self-intersection arcs. If fb is an embedding then there is nothing to
show, so assume that there are m ≥ 1 pairs of maximal self-intersection arcs ending
at b. In particular, fb has exactly m double points. Let (x1, y1), . . . , (xm, ym)
be these pairs, ordered in such a way that for j > i, the starting points si, sj of
the pairs (xi, yi), (xj , yj) satisfy sj > si. The sign of the self-intersection point
fs(xi(s)) = fs(yi(s)) does not depend on s.

By properties a),b),c) above, there is a number β > sm such that for every
t ∈ (sm, β], the disc ft is boundary regular. Let n ≥ m be the number of double
points of fβ . By the choice of sm, there is an injection of the set of self-intersection
points of fb into the set of self-intersection points of fβ preserving signs. Thus it
suffices to show that each self-intersection point of fβ is positive. In other words,
for the induction step it suffices to consider the case that the interval (sm, b) does
not contain an endpoint of a pair of maximal self-intersection arcs. In the sequel
we assume that this is indeed the case.

Using again the properties a),b) above, there is a number σ < sm such that for
each s ∈ [σ, sm) the disc fs is boundary regular. Then for s ∈ [σ, sm), the disc fs

contains preciselym−1 transverse double points. By the induction hypothesis, each
of these double points is positive. Since each transverse self-intersection point of a
boundary regular immersion contributes to the tangential index, we have tan(fb) =
m if the self-intersection point fb(xm(b)) = fb(ym(b)) is positive, and tan(fb) =
m− 2 otherwise.

Since the discs fs are locally boundary regular and depend continuously on s in
the C3-topology, there is a number ν0 > 0 so that for each s the restriction of fs to
D − D1−2ν0

is an embedding. By continuity and compactness, there is a number
ν < ν0/2 which is sufficiently small that xi(s), yi(s) ∈ D1−4ν for all s ∈ [σ, b] and
all i ≤ m − 1. We also require that the pair (xm, ym) of maximal self-intersection
arcs is such that xm(sm) ∈ ∂D and ym[sm, b] ⊂ D1−4ν .

By Proposition
minissymp
3.1 and and Lemma

compatible
2.2, there is a unique positive complex

structure Ĵ on C
2 such that the tangent plane df(Tym(sm)D) is Ĵ-invariant. Since

fs is admissible for each s, Lemma
compatible
2.2 shows that for all s and all z ∈ ∂D the

non-oriented angle between the inner normal of ft(D) at ft(z) and Ĵ(Z) where Z
is the oriented tangent of the curve ft(∂D) at ft(z) is strictly smaller than π.

For s ∈ [a, b] let R(s) be the ruled surface defined by the smooth curve fs(∂D)
and the lines whose direction at fs(u) (u ∈ ∂D) is the image of the oriented tangent

of fs(∂D) at fs(u) under the complex structure Ĵ . With respect to the natural
parametrization, these ruled surfaces R(s) depend continuously on s in the C2-

topology. By the implicit function theorem, R(s) contains an embedded Ĵ-boundary
holomorphic annulus A(s) which depends continuously on s in the C2-topology. A
neighborhood of A(s) in C

2 is naturally diffeomorphic to a neighborhood of A(s)
in its normal bundle in C

2.
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Since the discs fs are admissible and depend continuously on s in the C3-
topology, up to perhaps making ν smaller we may assume that for each s the annulus
fs(D−D1−2ν) can be represented as a graph over the embedded Ĵ-boundary holo-
morphic annulus A(s). This implies that there is a deformation Ft of the disc ft

(t ∈ [σ, b]) obtained by flattening the graph over A(s) near the outer boundary
circle fs(∂D) with the following properties.

(1) Fσ = fσ, Fb = fb.
(2) For each t, Ft is a locally boundary regular admissible immersion which

depends continuously on t in the C2-topology.
(3) For all t the restriction of Ft to D −D1−2ν is an embedding.
(4) Ft|D1−ν = ft|D1−ν and Ft(∂D) = ft(∂D) for all t.
(5) There is an open connected neighborhood U of sm in (σ, b) such that for

every t ∈ U the map Ft is Ĵ-boundary holomorphic.

Properties (3) and (4) and the choice of ν imply in particular that for s ∈ [σ, b] −
{sm} the map Fs is a boundary regular immersion. Moreover, there is a single
point xm(sm) ∈ ∂D such that Fsm

(xm(sm)) ∈ Fsm
(D0), more precisely we have

Fsm
(xm(sm)) = Fsm

(ym(sm)) = fsm
(xm(sm)) = fsm

(ym(sm))

where ym(sm) ∈ D1−4ν .

Since for s ∈ [σ, sm) the map Fs is a boundary regular immersion depending
continuously on s in the C2-topology, the tangential index tan(Fs) is defined and
does not depend on s. In fact, we have

tan(Fs) = tan(Fσ) = tan(fσ) = m− 1

for s ∈ [σ, sm). Similarly, for t ∈ (sm, b] the tangential index of Fs is defined and

tan(Ft) = tan(Fb) = tan(fb).

As a consequence, we have tan(Fs) = tan(Fσ) ± 1 for s > sm. This shows that the
self-intersection point Fsm

(xm(sm)) = Fsm
(ym(sm)) contributes to the tangential

index of Fb and hence of fb according to its sign (and provided that it is transverse).

However, since self-intersections of minimal discs are always transverse, the
planes dFsm

(Txm(sm)D), dFsm
(Tym(sm)D) are Ĵ-complex lines which do not coin-

cide. In particular, they are transverse. Since Ĵ is positive, this implies that the self-
intersection point Fsm

(xm(sm)) = Fsm
(ym(sm)) = fsm

(xm(sm)) = fsm
(ym(sm)) is

positive. This completes the induction step and shows the proposition. �

We use Proposition
minissymp
3.1 and Proposition

signofselfint
3.2 to show

likeholo Corollary 3.3. Let f : D → C
2 be a boundary regular admissible minimal immer-

sion with wind(f) = 0 and only transverse double points. Then f(D) has precisely
tan(f) self-intersection points.

Proof. Let f : D → C
2 be a boundary regular minimal immersion as in the propo-

sition. Then f has a finite number of interior self-intersection points. For r ≤ 1 let
Dr ⊂ D ⊂ C be the closed disc of radius r. After perhaps precomposing f with
a biholomorphic automorphism of D we may assume that whenever x, y ∈ D are
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such that f(x) = f(y) then |x| 6= |y|. Then by the discussion following the proof
of Proposition

minissymp
3.1, for every r ∈ (0, 1] the minimal disc fr : D → C

2 defined by
fr(x) = f(rx) is locally boundary regular and admissible. Moreover fr depends
continuously on r in the C3-topology.

For sufficiently small r, say for all r ≤ r0, the map fr is an embedding with
wind(fr) = 0, moreover f1 = f is boundary regular by assumption. Thus the arc of
discs s→ fs (s ∈ [r0, 1]) satisfies the assumptions in Proposition

signofselfint
3.2. The corollary

follows. �

4. Minimal discs bounding Reeb orbits

The main goal of this section is to construct for a periodic Reeb orbit γ on
the boundary Σ of a compact strictly convex body C a minimal admissible disc
f : (D, ∂D) → (C, γ) with wind(f) = 0. We obtain such a disc as the endpoint of
an arc of harmonic maps which are all locally boundary regular and admissible and
with vanishing winding number.

Assume that C contains 0 in its interior. The restriction λ to Σ of the radial
one-form λ0 on C

2 defined as in the introduction by (λ0)p(Y ) = 1
2 〈Jp, Y 〉 (p ∈

C
2, Y ∈ TpC

2) vanishes nowhere and defines a smooth contact structure on Σ.

The differential dλ0 of λ0 is just the usual symplectic form ω0 on C
2. Let N be

the outer normal field of Σ ⊂ C
2. The Reeb vector field X on Σ is given by

X(p) = ϕ(p)JN(p)

where

ϕ(p) =
2

〈p,N(p)〉
> 0.

Namely, for p ∈ Σ we have

dλp(X, ·) = ϕ(p)ω0(JN(p), ·) = −ϕ(p)〈N(p), ·〉 = 0

on TpΣ and

λp(X) =
1

2
〈Jp,X〉 =

1

2
ϕ(p)〈Jp, JN(p)〉 = 1.

In particular, a boundary regular map f : D → C
2 whose oriented boundary f(∂D)

is a periodic Reeb orbit on Σ, which meets Σ transversely along f(∂D) and maps
a neighborhood of ∂D into C is admissible.

For an oriented Jordan curve γ, we denote by f : (D, ∂D) → (C2, γ) a minimal
disc whose boundary f |∂D is an orientation preserving parametrization of γ. Since
the boundary Σ of the compact convex body C is smooth, a periodic Reeb orbit γ
on Σ is smooth as well. Thus the existence of a minimal disc f : (D, ∂D) → (C2, γ)
with boundary γ is guaranteed by a classical general existence result (Theorem
4.10 of

S88
[S88]; we refer to Struwe’s book for more information and for references)

which can be stated as follows. Every rectifiable Jordan curve in R
n (n ≥ 3) is the

boundary of an absolute area minimizing minimal disc in R
n. By the maximum

principle, f(D − ∂D) is contained in the interior of C.
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The next lemma shows that a minimal disc which bounds a Reeb orbit γ on the
boundary Σ of a compact strictly convex body C is boundary regular, i.e. it does
not have branch points on the boundary

MW95
[MW95].

branchpoints Lemma 4.1. Let γ ⊂ Σ be a smooth knot. Then a minimal disc f : (D, ∂D) →
(C, γ) does not have branch points on ∂D, and it intersects Σ transversely along γ.

Proof. We follow the proof of the corollary after Theorem 4.5 in
MW95
[MW95]. Namely,

by the maximum principle, f maps the interior ofD into the interior of C. Moreover,
f is smooth up to and including the boundary (see

S88
[S88]). Since C is strictly convex,

there is a smooth regular function u : C → R which vanishes on Σ, which is convex
near Σ and negative in the interior of C. Then v = u ◦ f is subharmonic near ∂D,
vanishes on ∂D and is negative in the interior of D. By Lemma 3.4 of

GT83
[GT83], the

differential dv vanishes nowhere along ∂D. Since f is conformal, this implies that
f is an embedding near ∂D which intersects Σ transversely along γ. �

For the remaineder of this section denote by Ĵ a smooth almost complex structure
on C

2 which is compatible with the euclidean inner product. Call a smooth knot
ξ on the boundary Σ of a compact convex body C a Ĵ-Reeb orbit if Ĵ(ξ′(t)) is (up
to scale) an inner normal for Σ at ξ(t). We reserve the terminology Reeb orbit for

a Reeb orbit in the usual definition. If f : (D, ∂D) → (C2, ξ) is admissible for Ĵ

then we denote the winding of f with respect to Ĵ by windĴ(f). As an immediate
consequence of Lemma

branchpoints
4.1 we obtain

minisadmis Corollary 4.2. Let γ be a periodic Ĵ-Reeb orbit on the boundary Σ of the compact
stricly convex body C. Then a minimal disc f : (D, ∂D) → (C, γ) is boundary

regular and admissible for Ĵ .

By Corollary
minisadmis
4.2, if γ is a periodic Reeb orbit on Σ then the winding number of

every minimal disc f : (D, ∂D) → (C, γ) is defined.

To construct a minimal disc f : (D, ∂D) → (C, γ) with vanishing winding num-
ber, we need some technical facts about minimal surfaces in C

2. For m ≥ 1 denote
by Cm(S1,C2) the Banach space of maps S1 → C

2 of class Cm, equipped with the
Banach norm ‖ ‖Cm . Denote by the same symbol ‖ ‖Cm the Banach norm on the
space of maps D → C

2 of class Cm. The conformal group PSL(2,R) naturally
acts on the space of minimal discs with boundary γ by precomposition. Since this
action is triply transitive on the boundary ∂D of D, a representative of an orbit
under this action can be chosen by a three-point-condition (see

S88
[S88] for details).

closeofmin Lemma 4.3. Let m ≥ 1, let γ ∈ Cm+1(S1,C2) be an embedded closed curve and
let ǫ > 0. Then there is a number δ > 0 with the following property. If γ̂ ∈
Cm+1(S1,C2) satisfies ‖γ − γ̂‖Cm+1 ≤ δ then for every minimal disc f̂ : D → C

2

with boundary γ̂ which is normalized by a three-point condition there is a minimal

disc f : D → C
2 with boundary γ and ‖f − f̂‖Cm ≤ ǫ.

Proof. For the proof of the lemma we argue by contradiction and we assume that
there is some embedded closed curve γ ∈ Cm+1(S1,C2) for which the lemma does
not hold. Then there is a number ǫ > 0 and sequence of curves {γi} ⊂ Cm+1(S1,C2)
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which converge as i→ ∞ to γ with the following properties. For every i there is a
minimal disc fi : D → C

2 with boundary γi which is normalized by a three-point
condition and such that ‖fi − f‖Cm ≥ ǫ for every minimal disc f : D → C

2 with
boundary γ.

By Theorem 5.1 of
S88
[S88], for every α ∈ (0, 1) the Cm,α-norms of the discs fi

are uniformly bounded. Thus by the Arzela-Ascoli theorem, for a fixed number
α ∈ (0, 1) we may assume up to passing to a subsequence that the discs fi converge
as i→ ∞ in Cm,α(D,C2) to a disc f : D → C

2. This disc has to satisfy the minimal
surface equation, and its boundary equals γ. However, this is a contradiction. �

As a corollary we conclude

immersionenough Corollary 4.4. Let γ be a periodic Ĵ-Reeb orbit on the boundary Σ of a compact
strictly convex body C. Then for every m ≥ 1, ǫ > 0 there is a number δ > 0
with the following property. If γ̃ ∈ Cm+1(S1,C2) satisfies ‖γ − γ̃‖Cm+1 ≤ δ then

a minimal disc f̃ : (D, ∂D) → (C2, γ̃) is boundary regular and admissible for Ĵ .

Moreover, if f̃ is normalized by a 3-point condition then there is a minimal disc
f : (D, ∂D) → (C, γ) with ‖f − f̃‖Cm ≤ ǫ and windĴ(f̃) = windĴ(f).

Proof. Fix a number m ≥ 1. The set of all minimal discs f : (D, ∂D) → (C, γ)
which are normalized by a 3-point condition is compact in the Cm-topology. By
Corollary

minisadmis
4.2, each of these discs is boundary regular and admissible. Therefore

there is a number σ > 0 such that for each minimal disc f : (D, ∂D) → (C, γ) and
for each z ∈ ∂D the following holds true. Let Z be the (oriented) derivative of γ
at z. Then the non-oriented angle between the inner normal of f(D) at f(z) and

ĴZ is at most π/2− σ. Thus there is a number ǫ > 0 such that every minimal disc

f̃ with ‖f̃ − f‖Cm ≤ ǫ for some minimal disc f : (D, ∂D) → (C2, γ) is boundary

regular and admissible for Ĵ . Moreover, its winding with respect to Ĵ coincides
with the winding of f . The corollary now follows from Lemma

closeofmin
4.3. �

A minimal disc f : D → C
2 is a harmonic map which is moreover conformal.

A harmonic map D → C
2 is uniquely determined by its boundary values. In fact,

for any smooth parametrized curve γ : S1 → C
2 there is a unique harmonic map

f : D → C
2 with f |∂D = γ. We observe

arcsofharmonic Lemma 4.5. There is a number m ≥ 2 with the following property. Let t → ft :
D → C

2 (t ∈ [0, 1]) be an arc of harmonic maps which is continuous in the Cm-
topology. Assume that there is an arc t → Jt of smooth almost complex structures
on C

2 depending continuously on t such that the following holds true.

(1) For each t, ft is locally boundary regular and admissible for Jt.
(2) f0 is an immersion whose winding with respect to J0 vanishes.
(3) f1 is an immersion.

Then the winding of f1 with respect to J1 vanishes.
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Proof. Harmonic maps depend smoothly on their boundary curves. Thus if f :
D → C

2 is a harmonic locally boundary regular map which is admissible for a
smooth almost complex structure Ĵ on C

2 then whenever f̃ : D → C
2 is harmonic,

with f̃ |∂D sufficiently close to f |∂D in the C2-topology, then f̃ is locally boundary

regular and admissible for Ĵ . Moreover, if f is an immersion and if Ĵ = J , then f̃
is an immersion with wind(f̃) = wind(f).

Each coordinate function of a harmonic map h : D → C
2 is harmonic. Thus we

can write h = (h1, h2) where hi : D → C is a harmonic map. Such a harmonic map
is uniquely determined by its parametrized boundary curve hi(∂D).

A branch point of a harmonic map u : D → C is a point x ∈ D such that
the differential du(x) vanishes. By Theorem 1.19 of

BT81
[BT81], paths of harmonic

maps D → C which are continuous in the Cm-topology for sufficiently large m can
be approxiated arbitrarily closely in the C3-topology by paths of harmonic maps
without branchpoints which are continuous in the C3-topology. (What is shown
precisely is that the set of maps with branchpoints is of codimension 2 in any
Sobolev space of maps D → C involving weak derivatives of high enough order.)

As a consequence of this discussion, for the purpose of the lemma we may assume
without loss of generality that each of the harmonic maps ft in the statement of
the lemma can be written in the form ft = (f1

t , f
2
t ) where the maps f i

t : D → C are
harmonic without branch points and depend continuously on t in the C3-topology.
In particular, there is a number c > 0 such that for all t and for each x ∈ D the
biggest eigenvalue of the self-adjoint operator (df i

t )
∗ ◦ df i

t (x) is at least c (i = 1, 2).

For x ∈ D and t ∈ [0, 1] let ρt(x) be the smallest eigenvalue of the self-adjoint
operator (dft)

∗ ◦dft(x). The function (t, x) → ρt(x) is continuous. Since each of the
maps ft is locally boundary regular, by perhaps making c smaller we may assume
that there is a neighborhood A of ∂D in D so that for each x ∈ A and each t we
have ρt(x) ≥ c. We may moreover assume that ρ0(x) ≥ c, ρ1(x) ≥ c for every x ∈ D
(recall that the harmonic maps f0, f1 are immersions by assumption).

Choose a smooth function ϕ : R → [0, π/2] such that ϕ(s) = π/2 for s ≤ c/8 and
ϕ(s) = 0 for s ≥ c/4. For u ∈ [0, π/2] let O(u) be the counter-clockwise rotation in
C by the angle u.

Let t ∈ [0, 1], x ∈ D be such that ρt(x) ≤ c/4. Then x ∈ D − A and there is a
unit tangent vector X ∈ TxD with

〈dft(X), dft(X)〉 = 〈df1
t (X), df1

t (X)〉 + 〈df2
t (X), df2

t (X)〉 ≤ c/4.

Since the largest eigenvalue of the map (df i
t )

∗ ◦ df i
t (x) is at least c, this means that

the unoriented angle between X and an eigenvector for (df i
t )

∗◦df i
t (x) for the largest

eigenvalue is at least π/4 (i = 1, 2). Thus for all t, x the linear map

Lt(x) = (df1
t (x), df2

t (x) ◦O(ϕ(ρt(x))) : TxD → Tf(x)C
2

has the property that the smallest eigenvalue of (Lt(x))
∗ ◦Lt(x) is not smaller than

c/8 independent of t, x. The assignment (t, x) → Lt(x) is continuous.

As a consequence, for each t ∈ [0, 1] the map x → Lt(x) defines a section
αt : D → f∗t TC

2 of the bundle f∗t TC
2 by associating to x ∈ D the plane αt(x) =
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Lt(x)TxD. This section depends continuously on t, and it coincides with the tangent
plane map of ft within the annulus A. In particular, for each t this section is
admissible for the almost complex structure Jt. This means that the winding of αt

can be defined as the winding of the preferred trivialization of the normal bundle of
ft over ft(∂D) for the almost complex structure Jt with respect to a trivialization
which extends to a global trivialization of the normal bundle of the subbundle of
f∗t TC

2 defined by the section αt. By continuity of the maps t → αt and t → Jt,
this winding in turn depends continuously on t. Since α0, α1 is just the tangent
plane map of f0, f1 and since by the assumption in the lemma the winding of f0
with respect to J0 vanishes we conclude that the winding of f1 with respect to J1

vanishes as claimed. �

In Lemma
arcsofharmonic
4.5, we assumed the existence of a continuous arc t → Jt of smooth

almost complex structures so that for each t the harmonic map ft is locally bound-
ary regular and admissible for Jt. In our main application, the existence of such an
arc of almost complex structures will be a consequence of the following criterion.
For its formulation, let D0 ⊂ C be the open unit disc. A smooth local hyper-
surface containing a smooth Jordan curve γ : S1 → C

2 is a smooth embedding
Γ : S1 × D0 → C

2 such that Γ(s, 0) = γ(s) for all s ∈ S1. For m ≥ 2 the set of
such embeddings can be equipped with the Cm-topology. In Lemma

localhyper
4.6 below, a

normal field of a hypersurface in C
2 is a vector field along the hypersurface which

is everywhere orthogonal to the tangent bundle of the hypersurface.

localhyper Lemma 4.6. For m ≥ 2 let t → Γt ∈ Cm(S1 × D0,C2) be an arc of smooth
local hypersurfaces (t ∈ [0, 1]) which is continuous in the Cm-topology. For each
t write γt(s) = Γt(s, 0). Assume that for each t there is a unit normal field n(t)
of Γt(S

1 × D0) depending continuously on t such that for all t, s the unoriented
angle between Jγ′t(s) and nt(γt(s)) is strictly smaller than π. Then there is an
arc t → Jt of smooth almost complex structures on C

2 depending continuously
on t which are compatible with 〈, 〉 and such that for all t, s the vector Jtγ

′
t(s) is

orthogonal to Γt(S
1 × D0). Moreover, if for some t ∈ [0, 1] and all s the vector

Jγ′t(s) is orthogonal to Γt(S
1 ×D0) then Jt = J .

Proof. Let E ⊂ D0 be the open disc of radius 1/2. Since for each t the map
Γt : S1 × D0 → C

2 is a smooth embedding depending continuously on t in the
Cm-topology, there is an arc of embeddings t→ Ψt ∈ S1 ×E× (−1, 1) → C

2 which
is continuous in the Cm-topology and such that for each t the restriction of Ψt to
S1 × E × {0} coincides with the restriction of Γt.

By assumption, for each t, s the angle between the vector Jγ′t(s) and the normal
n(t, s) = nt(γt(s)) is strictly smaller than π. As a consequence, there is an arc
u → Yt,s(u) of complex structures on Tγt(s)C

2 (u ∈ [0, 1]) such that the following
holds true.

(1) Yt,s(u) is compatible with the euclidean inner product 〈, 〉.
(2) Yt,s(u) depends continuously on t, s, u.
(3) Yt,s(0) = J for all t, s.
(4) For all t, s, the linear span of γ′t(s) and n(t, s) is an Yt,s(1)-complex line.
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For the construction of such a deformation, connect Jγ′t(s)/‖Jγ
′
t(s)‖ to n(t, s)

in the sphere of unit vectors in Tγt(s)C
2 orthogonal to γ′t(s) by the unique shortest

geodesic parametrized proportional to arc length on [0, 1]. This arc depends con-
tinuously on t, s and determines an arc of complex structures on Tγt(s)C

2 which
are compatible with 〈, 〉 and depend continuously on s, t, u. Namely, such a com-
plex structure Y is uniquely determined by a Y -invariant two-dimensional linear
subspace, an orientation on this subspace and the requirement that the orientation
induced on Tγt(s)C

2 by Y is the standard orientation (see the proof of Lemma
compatible
2.2).

Let ψ : E × (−1, 1) → [0, 1] be a smooth compactly supported function with
ψ(0) = 1. For t ∈ [0, 1] and for x ∈ E × (−1, 1) define Jt(Ψt(s, x)) = Yt,s(ψ(x)).
Then t→ Jt is an arc of almost complex structures as required. �

The following corollary is the version of Lemma
arcsofharmonic
4.5 which we are going to use.

For its formulation, call a minimal disc f : D → C
2 generic if f can be approximated

in the C2-topology by minimal immersions.

arcsofharmonic2 Corollary 4.7. There is a number m ≥ 2 with the following property. Let γ be a
periodic Ĵ-Reeb orbit on the boundary Σ of a compact convex body C. Assume that
there is an arc t → ht (t ∈ [0, 1]) of harmonic maps D → C

2 and an arc t → Jt

of smooth almost complex structures on C
2 depending continuously on t with the

following properties.

(1) ht depends continuously on t in the Cm-topology.
(2) Each almost complex structure Jt is compatible with the euclidean inner

product, and J1 = Ĵ .
(3) Each of the maps ht is locally boundary regular and admissible for the almost

complex structure Jt.
(4) h0 is an embedding, with vanishing winding for J0, and h1|∂D is an orien-

tation preserving parametrization of γ.

Then there is a generic minimal disc f : (D, ∂D) → (C, γ) with windĴ(f) = 0.

Proof. By Theorem 4.14 of
BT81
[BT81], for all sufficiently large m ≥ 3 the set of em-

bedded curves γ̃ of class Cm+1 with the property that every minimal disc with
boundary γ̃ is an immersion is open and dense in the Cm+1-topology. (This state-
ment is inasmuch incorrect as Böhme and Tromba use Sobolev spaces to define the
topology on the space of Jordan curves. However, the number of weak derivatives
which are controlled by the Sobolev norm used can be chosen to be arbitrarily
large so that the density statement also applies to the Cm+1-topology which is all
what we need. Alternatively, we could use Sobolev spaces directly which would
not change anything but has some notational disadvantages.) Let γ be a periodic
Reeb orbit on the boundary Σ of a compact convex body C. Let δ > 0 is as
in Corollary

immersionenough
4.4, let k > 1/δ and let γk be such a curve with the property that

‖γk − γ‖Cm+1 < 1/k < δ.

By perhaps decreasing δ we may assume that there is a continuous arc t →
ζt ∈ Cm+1(S1,C2) (t ∈ [1, 2]) which connects γ = ζ1 to γk = ζ2 and such that
for each t, the curve ζt is contained in the boundary Σt of a compact strictly
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convex body depending continuously on t in the C2-topology. The hypersurface
can be represented as the graph of a smooth function Σ → R with sufficiently small
derivatives of order ≤ m. We may moreover assume that for each t there is a smooth
almost complex structure Jt with J1 = J which is compatible with the euclidean
inner product 〈, 〉 and such that for each s ∈ S1 and all t the vector Jtζ

′
t(s) is

orthogonal to Σt (compare the discussion in the proof of Lemma
localhyper
4.6). Then every

minimal disc with boundary γk is admissible for J2. By the choice of γk, it is
also admissible for J . By perhaps making δ even smaller we may assume that the
winding of such a minimal disc with respect to J2 coincides with its winding with
respect to J .

Let h1 : D → C
2 be the harmonic map as in 3) of the corollary and let h2 =

fk : (D, ∂D) → (C2, γk) be a minimal disc. Connect h1 to h2 by an arc t → ht

(t ∈ [1, 2]) of harmonic maps whose boundaries are smooth parametrizations of the
curves ζt depending continuously on t in the Cm+1-topology. Since for each t the
curve ζt is contained in the boundary Σt of a compact strictly convex body, by the
maximum principle each of the maps ht is boundary regular and admissible for Jt

(compare Lemma
branchpoints
4.1 and its proof). The concatenation of this arc of harmonic

maps with the arc u→ hu (u ∈ [0, 1]) whose existence is assumed in the corollary is
an arc of harmonic maps which is continuous in the Cm-topology. This arc connects
h0 to the minimal disc h2 = fk and satisfies the assumptions in Lemma

arcsofharmonic
4.5. Thus

by Lemma
arcsofharmonic
4.5, we have wind(fk) = 0.

Now by passing to a subsequence, we may assume that the minimal discs fk

converge as k → ∞ in C2(D,C2) to a minimal disc f : (D, ∂D) → (C2, γ). By
definition, this disc is generic, and by Corollary

immersionenough
4.4, we have wind(f) = 0 as

claimed. �

The following proposition is the main technical result of this note.

windingnb Proposition 4.8. Let γ be a periodic Reeb orbit on the boundary Σ of a compact
strictly convex body C. Then there is a generic minimal disc f : (D, ∂D) → (C, γ)
with boundary γ and with wind(f) = 0.

Proof. Let γ be a periodic Reeb orbit on the boundary Σ of a compact strictly con-
vex body C. Our goal is to construct an arc of harmonic maps with the properties
stated in Corollary

arcsofharmonic2
4.7 for γk. We divide this construction into four steps.

Step 1:

In a first preliminary step, we slightly deform the Reeb orbit γ near γ(0), γ(π)
to move it into a suitable normal form which is convenient for technical reasons.

Reparametrize γ on S1 = [−π, π]/ ∼ proportional to arc length. Then the
second derivative of γ points inside of C. Let P0, Pπ ⊂ C

2 be the affine plane
through γ(0), γ(π) whose tangent space at γ(0), γ(π) is spanned by γ′(0), γ′′(0) and
γ′(π), γ′′(π). Since γ is a Reeb orbit and Σ is strictly convex, these planes are
admissible.
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There is an arc u → γu of smooth embedded curves in C
2 through γ0 = γ

which is continuous in the C2-topology and with the following additional property.
For each u > 0 there is a number δ(u) > 0 so that γu[−2δ(u), 2δ(u)] and γu[π −
2δ(u), π + 2δ(u)] are circular arcs in P0, Pπ. We may also assume that there is a
deformation u → Σu which is continuous in the C2-topology (so that each of the
hypersurfaces Σu is a graph over Σ of a smooth function which varies continuously
with u in the C2-topology) and such that γu ⊂ Σu.

By Lemma
localhyper
4.6 we may assume that there is a continuous family u→ Ju of smooth

almost complex structures which are compatible with 〈, 〉 so that J0 = J and that
for each u and each s ∈ S1 the vector Juγ

′
u(s) is normal to Σu. For sufficiently

small u the hypersurface Σu is the boundary of a compact strictly convex body in
C

2. Thus by convexity, a minimal disc f̃ with boundary γu is admissible for the
almost complex structure Ju.

By Corollary
immersionenough
4.4, for sufficiently small u a minimal disc f̃ with boundary γu is

admissible for the complex structure J , and its winding coincides with the winding
of a minimal disc f with boundary γ. Moreover, wind(f̃) also coincides with the

winding of f̃ with respect to Ju. As a consequence, it suffices to construct for
sufficiently small u a minimal disc f̃ with boundary γu whose winding with respect
to Ju vanishes. In other words, we may replace γ by γu, Σ by Σu and J by Ju for
small u we may assume without loss of generality that there is a number δ0 > 0
such that γ[−2δ0, 2δ0] and γ[π − 2δ0, π − 2δ0] are circular arcs in admissible affine

planes P0, Pπ. Write γ̂ = γu and Ĵ = Ju for some fixed small u > 0 which will be
decrased several times in the course of this argument. The first such adjustment is
as follows.

If γ is a Reeb orbit then for t ∈ (0, π) the tangents γ′(t), γ′(−t) of γ at t,−t
satisfy

langle (1) 〈Jγ′(t),Xt〉 > 0, 〈Jγ′(−t),Xt〉 < 0

(compare the proof of Lemma 4.1 of
HH09
[HH09]). By choosing u sufficiently small we

may assume that inequality (
langle
1) also holds true for the curve γ̂, with the standard

complex structure J .

Step 2:

For the construction of the arc of harmonic maps as in Corollary
arcsofharmonic2
4.7 we first

construct an arc of Jordan curves t→ νt (t ∈ [δ0, π− δ0]) in C
2 which are piecewise

smooth, with two breakpoints, and whose smooth pieces depend continuously on
t in the Cm+1-topology. The curve νδ0

is a smooth circle in the admissible affine
plane P0, and νπ−δ0

= γ up to parametrization. These curves will be modified
in Step 3 to curves which serve as boundary arcs for the harmonic maps we are
looking for.

For t ∈ [δ0, π − δ0] let ℓt be the oriented line segment connecting γ̂(t) to γ̂(−t).
To simplify the notations, we do not specify a parametrization of ℓt at the moment.
The unit tangent Xt ∈ TC

2 of ℓt depends smoothly on t. By the choice of γ̂, the
two-dimensional linear subspace of Tγ̂(t)C

2 spanned by γ̂′(t),Xt is admissible, and

similarly for the two-dimensional linear subspace of Tγ̂(−t)C
2 spanned by γ̂′(−t),Xt.
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For t ∈ [δ0, 2δ0] the line segment ℓt is contained in the admissible plane P0.
Moreover, since the arc
hatgamma[−2δ0, 2δ0] ⊂ P0 is a segment of a circle, we have Xs = Xt for s, t ∈
[δ0, 2δ0] (as vectors with respect to the canonical trivialization of TC

2). Let Y ∈
TP0 be the unit normal of ℓδ0

in P0 which is determined by the requirement that
the basis Xδ0

, Y of TP0 defines the canonical orientation. Since P0 is admissible,
the angle between Y and JXδ0

is smaller than π/2. Thus Y can be connected
to JX2δ0

= JXδ0
by a unique geodesic segment of minimal length in the two-

dimensional sphere of all unit vectors in C
2 which are orthogonal to Xδ0

. The
span of X2δ0

with each point on this geodesic segment is an admissible plane. Let
t → Yt (t ∈ [δ0, 2δ0]) be a smooth map connecting Y = Yδ0

to Y2δ0
= JX2δ0

which
is constant near its endpoints and whose trace equals the trace of this geodesic
segment. Similarly, define an arc t → Yt (t ∈ [π − 2δ0, π − δ0]) which connects the
vector Yπ−2δ0

= JXπ−2δ0
to the oriented normal Yπ−δ0

of Xπ−δ0
in the admissible

plane Pπ. For t ∈ [2δ0, π − 2δ0] define Yt = JXt. Then t → Yt is a smooth arc of
unit vectors.

The hyperplane Ht ⊂ C
2 which contains the line segment ℓt and is orthogonal

to Yt intersects γ̂ transversely at the points γ̂(t), γ̂(−t). The hyperplane Ht de-
pends smoothly on t. It decomposes the convex body C into two convex subsets
whose closures C−

t , C
+
t depend continuously on t in the Hausdorff topology for

compact subsets of C
2. Here we denote by C−

t the compact convex body whose
boundary ∂C−

t contains the points γ̂(s), γ̂(−s) for s < t sufficiently close to t. Since
〈γ̂′(t), JXt〉 < 0, by definition of the hyperplanesHt the vector Yt is the unit normal
of Ht which points inside of the compact convex body C−

t .

For t ∈ [δ0, π− δ0] let x(t) ∈ Ht ∩C be the midpoint of the line segment ℓt ⊂ Ht

connecting γ̂(t) to γ̂(−t). Note that x(t) depends smoothly on t. For r > 0, s ∈ R

let Sr,s,t ⊂ C
2 be the distance sphere of radius r about the point x(t) + sYt (where

by abuse of notation we write x(t) + sYt to denote the point of oriented distance
s from x(t) on the oriented line through x(t) whose tangent equals Yt). For every
sufficiently large r > 0, say for all r ≥ r0 independent of t ∈ [δ0, π − δ0], there is a
unique number σ(r, t) > 0 such that Sr,σ(r,t),t contains the points γ̂(t), γ̂(−t). We
also assume that for r ≥ r0 the intersection Sr,σ(r,t),t ∩Σ is a smooth 2-sphere (i.e.
this intersection is transverse). This is possible since as r → ∞, the hypersurfaces
Sr,σ(r,t),t converge locally uniformly in the Ck-topology to the hyperplane Ht for
any k > 0.

Choose a smooth function r : [δ0, π − δ0] → (0,∞) so that r(δ0) is the radius of
the circle containing γ̂[−2δ0, 2δ0] in the affine plane P0, that r is strictly increasing
on [δ0, 2δ0] and that r(t) ≥ r0 for all t ∈ [2δ0, π − δ0]. Then there is a unique
continuous function t ∈ [δ0, π − δ0] → σ(t) ∈ R with the following properties.

(1) The sphere S(t) = Sr(t),σ(t),t contains the points γ(−t), γ(t).
(2) S(δ0) contains the circular arc γ[−2δ0, δ0].
(3) σ(t) > 0 for t ∈ [2δ0, π − 2δ0].
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For t ∈ [δ0, π − δ0] let B(t) be the compact ball of radius r(t) about x(t) + σ(t)Yt

with boundary sphere S(t) = Sr(t),σ(r(t),t),t. The intersection

B(t) ∩ C = C̃t

is a compact strictly convex body which depends continuously on t in the Hausdorff
topology for compact subsets of C

2.

For t ∈ [2δ0, π−δ0], the intersection S(t)∩Σ is a smooth two-dimensional sphere
which is a smooth submanifold of both S(t) and Σ. The singular 2-sphere S(t)∩Σ

decomposes ∂C̃t into two smooth 3-balls. One of these 3-balls is contained in S(t),
the other is contained in Σ. We may assume that there is a number ǫ > 0 such that
γ[−t,−t+ ǫ] ∪ γ[t− ǫ, t] ⊂ ∂C̃t for all t ∈ [2δ0, π − 2δ0]. We may moreover assume

that γ[−t, t] ⊂ ∂C̃t for t ∈ [δ0, 2δ0] and for t ∈ [π − 2δ0, π − δ0].

For t ∈ [2δ0, π − δ0] the points γ(−t), γ(t) are contained in an open hemisphere

of S(t). Let ℓ̃t ⊂ S(t) be the segment of a great circle in S(t) connecting γ(t)

to γ(−t) which is contained in this hemisphere. Then ℓ̃t ⊂ C̃t by construction,

moreover ℓ̃t is a segment of a Reeb orbit on S(t). For suitable parametrizations,

the arcs ℓ̃t depend smoothly on t. Moreover, this arc extends to an arc defined
on all of [δ0, π − δ0]. For t ∈ [δ0, 2δ0], ℓ̃t is contained in the intersection of S(t)
with an admissible plane through the center of the ball B(t), i.e. it is a great circle
transverse to the two-dimensional J-invariant subbundle of TS(t). In particular,

for all t the vector field Jℓ̃′t along ℓ̃t is transverse to S(t).

Let νt ⊂ S(t)∪Σ be the oriented Jordan curve which is composed of γ[−t, t] and

ℓ̃t. Up to parametrization, the curve νδ0
is a smooth circle in the plane P0. For each

t, the curve νt is smooth away from the points γ(t), γ(−t). The one-sided tangents
of νt at the two breakpoints are contained in an admissible plane in the tangent
space of C

2. Parametrize νt on S1 (represented as the interval [0, 2π] or [−π, π]
with endpoints identified) in such a way that the restriction of νt to [−π/2, π/2] is

a parametrization of ℓ̃t proportional to arc length. We also require that for m ≥ 2
as above, the arc νt[π/2, 3π/2] depends continuously on t in the Cm+1-topology
and that the norm of its tangent at an endpoint equals the norm of the tangent of
νt[−π/2, π/2]. There is a number ǫ < π/8 such that νt[−π/2− 2ǫ, π/2 + 2ǫ] ⊂ ∂C̃t

for all t.

Step 3:

Since the compact convex body C is fixed and since the spheres Ht ∩Σ intersect
the Reeb orbit γ at the points γ(t), γ(−t) transversely, for every a > 0 there is a
number κ(a) > 0 with the following property.

Let t ∈ [δ0, π − δ0] and let ζ be a connected subarc of νt[−π/2 − 2ǫ,−π/2] or
of ν[π/2, π/2 + 2ǫ] of length a. Assume that ζ is parametrized by arc length (but
not necessarily respecting the orientation) on the interval [0, a]. Let X ∈ Tζ(a)Σ be
a unit tangent vector whose non-oriented angle to the vector ζ ′(a) is smaller than

κ(a). Then there is a deformation of ζ[0, a] to a smooth arc ζ̃ : [0, a] → Σ∩∂C̃t on Σ

with the same endpoints which coincides with ζ near ζ(0) and such that ζ̃ ′(a) = X.



REEB ORBITS, CONVEXITY AND MINIMAL DISCS 23

Moreover, the vector field Jζ̃ ′(s) is transverse to Σ for all s. We may assume that

ζ̃ depends smoothly on ζ,X.

Similarly, by making κ(a) smaller we may assume that for every t ∈ [δ0, π − δ0],

for every subarc ζ : [0, a] → ℓ̃t of length a parametrized by arc length and for every

unit tangent vector X ∈ Tζ(a)S(t) there is a deformation ζ̃ : [0, a] → S(t) ∩ C of ζ
with the same endpoints which is transverse to the canonical contact structure and
such that ζ̃ ′(a) = X.

Choose a > 0 small enough that for each t ∈ [δ0, π− δ0] the length of each of the
arcs

νt[−π/2 − 2ǫ,−π/2 − ǫ], νt[−π/2 + ǫ,−π/2 + 2ǫ],

νt[π/2 − 2ǫ, π/2 − ǫ], νt[π/2 + ǫ, π/2 + 2ǫ]

is at least a.

For each t ∈ (δ0, π− δ0] the one-sided tangents at νt(−π/2), νt(π/2) of the arc νt

span an admissible plane in Tνt(π/2)C
2, Tνt(π)C

2. For t sufficiently close to δ0, this
plane is just the tangent plane of the affine plane P0. There is a number σ0 < ǫ/2
such that for each σ ∈ (0, σ0] the affine plane P (t) ⊂ C

2 (or Q(t) ⊂ C
2) which passes

through the points νt(−π/2 − σ), νt(−π/2), νt(−π/2 + σ) (or through the points
νt(π/2−σ), νt(π/2), νt(π/2+σ)) is admissible. Note that we have P (t) = Q(t) = P0

for t sufficiently close to δ0. As σ → 0, these affine planes converge to planes whose
tangent space at νt(−π/2), νt(π/2) contain the one-sided tangents of νt.

As a consequence, for sufficiently small σ the angle at νt(−π/2− σ), νt(π/2 + σ)
between the tangent of νt and the tangent of P (t)∩Σ, Q(t)∩Σ is at most δ(a), and
the angle at νt(−π/2 + σ), νt(π/2 − σ) between the tangent of νt and the tangent
of P (t)∩S(t), Q(t)∩S(t) is at most δ(a). The planes P (t), Q(t) are equipped with
a canonical orientation, and they depend smoothly on t.

Let Ĉt ⊂ C be a compact strictly convex body with smooth boundary ∂Ĉt

obtained by pushing the singular sphere S(t) ∩ Σ slightly inside C̃t. We assume
that the support of this deformation is small enough that

∂Ĉt ⊃ νt([−π/2−2ǫ, π/2+2ǫ]− [−π/2−σ/2,−π/2+σ/2]− [π/2−σ/2, π/2+σ/2]).

We also assume that Ĉt depends smoothly on t.

The intersections
D̂t = Ĉt ∩ P (t), Êt = Ĉt ∩Q(t)

are strictly convex discs in the oriented planes P (t), Q(t) with smooth oriented

boundary ∂D̂t, ∂Êt. The circle ∂D̂t contains a smooth oriented arc

ξt : [−π/2 − σ,−π/2 + σ] → P (t)

connecting ξt(−π/2− σ) = νt(−π/2− σ) to ξt(−π/2 + σ) = νt(−π/2 + σ), and the

circle ∂Êt contains a smooth oriented arc

ηt : [π/2 − σ, π/2 + σ] → Q(t)

connecting νt(π/2 − σ) to νt(π/2 + σ). The circles ξt, ηt depend smoothly on t.
By the choice of σ, the arcs ξt, ηt extend smoothly to smooth local deformations of
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νt[−π/2− 2ǫ,−π/2−σ], νt[π/2+σ, π+2ǫ] with the same endpoints which coincide
with νt near νt(−π/2− 2ǫ), νt(π/2 + 2ǫ). By the above discussion, we may assume

that these deformed arcs are contained in ∂Ĉt, that they are transverse to the two-
dimensional J-invariant subbundle of TĈt away from the planar arcs ξt, νt and that
they depend continuously on t in the Cm+1-topology. The concatenation of these
deformed arcs with the arc νt([π/2 + 2ǫ, 3π/2 − 2ǫ]) is a smooth arc ν̂t on ∂Ĉt ∪ Σ
depending continuously on t in the Cm-topology. Moreover by construction, for all
t we have

ν̂t[−π/2 − 2ǫ, π + 2ǫ] ⊂ ∂Ĉt, ν̂t[π/2 + ǫ, 3π/2 − ǫ] ⊂ γ ⊂ Σ

and ν̂δ0
⊂ P0 up to parametrization.

Up to modifying the parametrization, we also have

ν̂π−δ0
[−π/2 − ǫ, π/2 + ǫ] ⊂ Pπ

and ν̂π−δ0
[π/2 + ǫ, 3π/2 − ǫ] ⊂ γ(−π + 2δ0, π − 2δ0). In other words, ν̂π−δ0

is ob-
tained from γ by replacing the subarc γ[π − 2δ0, π + 2δ0] by a smooth arc which
is contained in Pπ and which is strictly convex with respect to the canonical ori-
entation. Moreover, this arc is contained in C ∩ Pπ. As a consequence, there is a
smooth extension t ∈ [π − δ0, π] → ν̂t such that for each t the curve ν̂t is a smooth
deformation of ν̂π−δ0

with the following properties.

i) ν̂t(s) = ν̂π−δ0
(s) for s ∈ [π/2 + ǫ, 3π/2 − ǫ].

ii) ν̂t|[−π/2 − ǫ, π/2 + ǫ] is a smooth strictly convex arc in Pπ.
iii) ν̂π = γ up to parametrization.

We claim that there is an arc t → Jt of smooth almost complex structures on
C

2 depending continuously on t ∈ [δ0, π] with the following properties.

a) Jπ = Ĵ .

b) For each t and all s ∈ S1, Jtν̂
′
t(s) is orthogonal to ∂Ĉt.

c) The winding with respect to Jδ0
of an embedding h : D → Pδ0

with bound-
ary h(∂D) = ν̂δ0

vanishes.

By construction, away from perhaps some compact subset in the interior of the
arcs ξt, ηt the vector field Jν̂′t[−π/2−2ǫ, π/2+2ǫ] is transverse to ∂Ĉt. However, the

arcs ξt, ηt are subarcs of the boundary of the strictly convex disc P (t)∩Ĉt, Q(t)∩Ĉt,
and the planes P (t), Q(t) ⊂ C

2 are admissible. Therefore the angle between Jξ′t, Jη
′
t

and the inner normal of ξt, ηt in P (t), Q(t) is strictly smaller than π/2. Moreover,

the inner normals of ξt, ηt in P (t), Q(t) are transverse to ∂Ĉt and therefore the

angles between these inner normals in P (t), Q(t) and the inner normal of ∂Ĉt is
strictly smaller than π.

Lemma
localhyper
4.6 now shows that there is a continuous arc t → Ĵt of almost complex

structures on C
2 which are compatible with 〈, 〉 and such that Ĵtν̂

′
t is orthogonal to

Ĉt for all t. Moreover, we may assume that Jπ = J . By the explicit construction
and the fact that ν̂δ0

is a smooth circle in the admissible plane P0, property c)
above holds true as well.

Step 4:
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In the last step, we construct a family of smooth parametrizations of the curves
ν̂t which serve as boundary curves for an arc of harmonic maps with the properties
in Corollary

arcsofharmonic2
4.7.

Let ψi : S1 → S1 (i ≥ 0) be a sequence of smooth orientation preserving diffeo-
morphisms beginning with the identity ψ0. We require that for each i ≥ 0, the re-
striction of ψi to [−π/2−ǫ, π/2+ǫ] is the identity and that ψ−1

i [−π/2−2ǫ, π/2+2ǫ] ⊂
ψ−1

i+1[−π/2− 2ǫ, π/2+2ǫ]. Moreover, we require that ∪iψ
−1
i [−π/2− 2ǫ, π/2+2ǫ] =

(−π, π).

For t ∈ [δ0, π] and for i ≥ 0 let αt,i : D → C
2 be the unique harmonic map with

αt,i(∂D) = ν̂t ◦ ψi as a parametrized curve. For z ∈ D − ∂D, we have

poisson (2) αt,i(z) =

∫

∂D

ν̂t ◦ ψi(x)dλz(x)

where λz is a measure on ∂D in the Lebesgue measure class depending smoothly
on z, and λz → δx weakly as z → x ∈ ∂D where δx is the Dirac mass at x. In
particular, αt,i is smooth in the interior of D and continuous up to and including
the boundary. For fixed i and fixed m ≥ 2 as above, the arc t→ αt,i is continuous
as an arc in the Banach space Cm(D,C2). By the maximum principle, αt,i(D) ⊂ C
for all t, i.

Using once more the maximum principle, as i → ∞ the maps αt,i converge
uniformly on compact subsets of the union of the interior of D with the boundary
arc (−π/2−ǫ, π/2+ǫ) to a map whose image in contained in Ĉt, and this convergence

is uniform in t. Since Ĉt is strictly convex, this implies that there is a number i > 0
and there is a neighborhood U of [−π/2 − ǫ, π/2 + ǫ] in D which is mapped by

αt,i into Ĉt for each t ∈ [δ0, π]. Namely, for each s ∈ [−π/2 − ǫ, π/2 + ǫ] there
is a linear functional ψs : C

2 → R with the property that ψs(ν̂t(s)) > ψs(v) for

all v ∈ Ĉt − {νt(s)}. The claim then follows from the Poisson formula (
poisson
2). Since

ν̂t[π/2 + ǫ, 3π/2 − ǫ] is contained in the boundary of the compact convex body
C for all t, by the maximum principle this implies that the harmonic map αt,i is
Jt-admissible for all t.

For t = δ0 the curve ν̂t ◦ψi is a smooth parametrization of a smooth round circle
in the affine plane P0. This implies that the map hδ0

is a diffeomorphism onto the
disc in P0 bounded by this circle. Thus by property c) above, the winding of hδ0

with respect to Jδ0
vanishes. The boundary of the map hπ is a parametrization of

the Reeb orbit γ. As a consequence, the arc of harmonic maps t→ ht satisfies the
requirements in Corollary

arcsofharmonic2
4.7. The proposition is proven. �

As a corollary we obtain

tan Corollary 4.9. Let γ be a periodic Reeb orbit on the boundary of a compact strictly
convex body C ⊂ C

2. Then γ bounds a symplectic disc with precisely 1
2 (lk(γ) + 1)

positive self-intersections, counted with multiplicities.

Proof. By Proposition
windingnb
4.8 and Corollary

minisadmis
4.2 there is a generic minimal admissible

disc f : (D, ∂D) → (C, γ) with wind(f) = 0. Since f is generic, it can be perturbed
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to an admissible minimal disc f̃ with vanishing winding and only transverse double
points. By Proposition

minissymp
3.1, the disc f̃ is symplectic.

Proposition
likeholo
3.3 shows that f̃ has precisely tan(f) self-intersection points counted

with multiplicities. By Proposition
intofdiscs
2.6 and invarianc under perturbation we have

tan(f̃) = 1
2 (lk(γ) + 1). Now f̃ can be slightly deformed near the boundary to a

symplectic disc with boundary γ and tan(f) transverse double points which shows
the corollary. �

linkone Corollary 4.10. If lk(γ) = −1 then γ bounds an embedded minimal symplectic
disc f : (D, ∂D) → (C, γ).

As another corollary, we obtain

slicegenus Corollary 4.11. The slice genus of γ does not exceed 1
2 (lk(γ) + 1).

Proof. By Corollary
tan
4.9, a periodic Reeb orbit on Σ bounds a boundary regular

symplectic disc f : (D, ∂D) → (C, γ) with tan(f) = 1
2 (lk(γ) + 1) self-intersection

points counted with multiplicities. Each of these self-intersection points has positive
self-intersection index. A small perturbation of f resolving the branch points to
transverse double points and resolving multiple self-intersection points to transverse
double points yields an immersed disc with precisely 1

2 (lk(γ) + 1) = tan(f) simple
transverse positive double points. Each of these double points can be removed with
a standard surgery. Such a surgery consists in removing a small neighborhood of the
double point which is homeomorphic to two discs intersecting transversely at their
midpoints and connecting the two boundary components of the resulting surface
by an embedded annulus. This amounts to adding for each transverse double point
a single handle to the minimal disc and changing the surface only in an arbitrarily
small neighborhood of the self-intersection point. With tan(f) such surgeries we
obtain an embedded surface S ⊂ C of genus tan(f) with boundary γ as claimed. �

Open questions: Is the slice genus of a periodic Reeb orbit γ on the boundary
Σ of a compact convex domain C ⊂ C

2 equal to (lk(γ) + 1)/2 (and hence coincides
with its Seifert genus)? Is such a periodic Reeb orbit concordant to an iterated
torus knot? Note that by a result of Kronheimer and Mrowka

KM93
[KM93], for torus

knots the slice genus and the Seifert genus coincide.

5. Glueing links

The main idea for the proof of the theorem in the introduction is as follows. Let
γ be a periodic Reeb orbit on the boundary Σ of a compact strictly convex body
C ⊂ C

2. We use a minimal disc constructed in Section 4 which is bounded by a small
perturbation of γ and has 1

2 (lk(γ)+1) positive transverse self-intersection points to
decompose the knot γ into links which can be investigated with a Morse theory type
construction. This decomposition is of geometric nature and not directly related to
the prime decomposition of γ, nor does it define an invariant of the knot.
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The purpose of this section is to introduce a glueing procedure for links (the in-
verse of the decomposition procedure) and to establish the elementary tools needed
for an application of this procedure in Section 6.

We begin with a simple observation about the linking of two knots. Two disjoint
knots α, β ⊂ Σ ∼ S3 are unlinked if β is contractible in Σ − α.

linkingnb Lemma 5.1. Let α, β ⊂ Σ be disjoint knots. If α is an unknot and if α, β bound
disjoint embedded discs in C then α, β are unlinked.

Proof. Let α, β be disjoint knots in Σ. Assume that α is an unknot. Then the
fundamental group of Σ − α is infinite cyclic and coincides with its first homology
group H1(Σ − α,Z) = Z. Up to a choice of sign, the linking number of α and β is
just β viewed as an element in this homology group. Therefore α, β are unlinked
if and only if the linking number of α and β vanishes. By a classical result in knot
theory (p. 136 of

R76
[R76]), this is the case if α, β bound disjoint embedded discs in

C. The lemma follows. �

Call a link ζ in Σ oriented if each component of ζ is oriented. We define an
oriented sum η♯ζ of an oriented link η with an oriented link ζ in Σ as follows.

Call an embedded arc α in an embedded three-dimensional compact ball Q ⊂ Σ
with endpoints on the boundary ∂Q of Q unknotted if α is contained in a smooth
embedded disc S ⊂ Q with boundary ∂S ⊂ ∂Q. Two unknotted disjoint arcs α1, α2

in Q with endpoints on ∂Q are called unlinked if α1, α2 are contained in a common
smooth embedded disc (S, ∂S) ⊂ (Q, ∂Q). Two unknotted unlinked arcs in Q with
interior in the interior of Q define a trivial (2, 2)-tangle in Q (see

Mu96
[Mu96]).

Let η, ζ ⊂ Σ be oriented links. Assume that η and ζ are disjoint (and hence η∪ζ
is a link). Let Q1, . . . , Qm ⊂ Σ be pairwise disjoint closed balls with the following
properties.

(1) For each i, the intersection of η ∪ ζ with Qi consists of two unknotted
unlinked arcs αi ⊂ η, βi ⊂ ζ.

(2) Let G be the finite graph whose vertices are the components of η ∪ ζ and
whose edges are defined as follows. For each i ≤ m there is an edge in G
which connects the component p of η containing αi to the component q of
ζ containing βi. Then G does not have cycles (i.e. G is a disjoint union of
trees). We call G the glueing graph of the oriented sum.

For each i let ξ1i be an unknotted arc in Qi which connects the endpoint of αi to
the starting point of βi, and let ξ2i be an unknotted arc in Qi which connects the
endpoint of βi to the starting point of αi. Assume that the arcs ξ1i , ξ

2
i are unlinked

and that the knot defined as the concatenation αi ◦ξ
1
i ◦βi ◦ξ

2
i (read from the left to

the right) is the unknot. Here starting point and endpoint of αi, βi are determined
by the orientation of η, ζ (see

Mu96
[Mu96]).

For each i remove the arcs αi, βi from η, ζ. Connect the endpoint of η − αi

(which is the starting point of αi) to the starting point of ζ − βi by the inverse of
the arc ξ2i , and connect the endpoint of ζ − βi to the starting point of ζ − αi by
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the inverse of ξ1i . The resulting link η♯ζ in Σ is obtained from η ∪ ζ by m surgeries
and will be called an oriented sum of η and ζ. It depends on many choices made
in the construction, but it is independent of the choice of the arcs ξ1i , ξ

2
i and of the

order in which the m surgeries are performed on η ∪ ζ. If each component ζi of ζ
intersects precisely one of the balls Qi then we call η♯ζ a ζ-injective oriented sum.
If η is a knot then a ζ-injective oriented sum η♯ζ is a knot. The usual connected
sum of two oriented knots is a special case of a ζ-injective oriented sum.

Example: Figure A below shows that both the figure eight knot (which is prime)
and the unknot can be obtained as a ζ-injective oriented sum of the unknot η with
the Hopf link ζ. More generally, any twisted double of the unknot can be obtained
in this way.

Figure A

The following simple observation is the main basic tool for our purpose. For
its formulation, call two disjoint links η, ζ ⊂ Σ unlinked (or splittable) if there are
disjoint compact balls B1, B2 ⊂ Σ such that η ⊂ B1, ζ ⊂ B2. A link ζ in Σ is trivial
if ζ is a union of pairwise unlinked unknots. If m ≥ 1 is the number of components
of ζ then ζ has a regular link diagram which consists of m disjoint circles in R

2.

trivialadd Lemma 5.2. Let ζ be a trivial oriented link and let η be an oriented link which is
unlinked with ζ.

(1) If η is a knot then a ζ-injective oriented sum η♯ζ is isotopic to η.
(2) If η ∪ ζ is a trivial link then an oriented sum η♯ζ is a trivial link.

Proof. Let ζ1, . . . , ζm be the components of the trivial link ζ. Assume first that η
is a knot and that η♯ζ is a ζ-injective oriented sum. Number the balls Qi in the
definition of the oriented sum in such a way that Qi∩ζi 6= ∅ for 1 ≤ i ≤ m. Assume
that αi = Qi ∩η, βi = Qi ∩ ζi and that βi meets the boundary ∂Qi of Qi only at its
endpoints. Since ζ is a union of pairwise unlinked unknots and η is unlinked with
ζ, the component ζi of ζ can be isotoped in Σ−η−∪j 6=i(ζj ∪Qj) to a loop ζ ′i which
is contained in Qi and which intersects the interior of Qi in the interior of the arc
βi. The closure of ζ ′i −βi is an arc in ∂Qi which is unlinked with αi. Replacing the
subarc αi of η as in the definition of the oriented sum η♯ζi results in a knot which is
isotopic to η. Thus attaching successively in m such steps the components of ζ to
η yields a knot η♯ζ which is isotopic to η. This shows the first part of the lemma.
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To show the second part of the lemma, we proceed by induction of the number n
of components of η ∪ ζ. If n = 2 then η, ζ are unlinked unknots, and by the second
requirement in the definition of an oriented sum (no cycles for the glueing graph
G), η♯ζ is obtained from η ∪ ζ by at most one surgery. Then either η♯ζ is a trivial
link with two components (if there is no surgery) or an unknot by the observation
in the previous paragraph. Thus assume that the statement is known for oriented
sums of unlinked trivial links with at most n0 − 1 ≥ 2 components.

Let η, ζ be unlinked trivial links so that η ∪ ζ has n0 components and let η♯ζ
be an oriented sum of η and ζ. We may assume that there is at least one surgery
in the construction of η♯ζ from η ∪ ζ. Let G be the glueing graph of the oriented
sum η♯ζ whose vertices are the components of η ∪ ζ. Let ηi, ζi be components of
η, ζ which are connected by an edge in G (where we view ηi, ζi as vertices of G)
and such that one of these components, say ζi, is a univalent vertex of G. Such a
component exists since G is a disjoint union of trees. Let Qi be the ball as in the
definition of an oriented sum which intersects ζi and ηi. Then ζi can be isotoped
in Σ − η − ∪j 6=i(ζj ∪ Qj) to a loop ζ ′i contained in Qi. By the observation in the
first paragraph of this proof, the link obtained from η ∪ ζ by a single surgery as
in the definition of an oriented sum which joins ζ ′i to the component ηi of η is a
union η′ ∪ ζ ′ of pairwise unlinked unknots with n0 − 1 connected components. The
oriented sum η♯ζ coincides with an oriented sum η′♯ζ ′ whose glueing graph G′ is
obtained from G by removing the vertex corresponding to ζi and the edge incident
on this vertex. In particular, G′ does not have cycles. The claim now follows from
the induction hypothesis and the fact that the surgeries in the construction of η♯ζ
can be performed in an arbitrary order. �

Remark: Without the second requirement in the definition of an oriented sum
of two oriented links, Lemma

trivialadd
5.2 does not hold. For example, a pretzel knot can

be obtained from two unlinked unknots by a surgery construction whose graph has
two vertices and three edges connecting them.

Define the Euler characteristic χ(η) of an oriented link η ⊂ Σ to be the largest
Euler characteristic of an oriented (possibly disconnected) embedded surface S ⊂ Σ
without closed components and with oriented boundary η. As an example, the
Euler characteristic of a trivial link ζ with ℓ ≥ 1 components equals χ(ζ) = ℓ.
The next lemma relates the Euler characteristic of a particular oriented sum to the
Euler characteristic of its components. For its formulation, define the Hopf link in
S3 ∼ Σ to be the intersection with S3 of two distinct complex lines in C

2.

hopflinkadd Lemma 5.3. Let ζ be an oriented Hopf link and let η be an oriented link which is
unlinked with ζ. Then

χ(η♯ζ) ≥ χ(η) − 2

for any ζ-injective oriented sum η♯ζ.

Proof. Since η, ζ are unlinked by assumption, we can find a two-sphere S2 ⊂ Σ
which separates Σ into two balls B1, B2 so that η ⊂ B1, ζ ⊂ B2. This implies that
there is an oriented surface S1 contained in B1 with oriented boundary η and Euler
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characteristic χ(S1) = χ(η). Since ζ is the Hopf link, there is an annulus S2 ⊂ B2

with boundary ζ.

Let η♯ζ be a ζ-injective oriented sum. Then η♯ζ is obtained by surgery on two
proper compact subarcs α1, α2 and β1, β2 of η, ζ which are contained in embedded
disjoint balls Q1, Q2 ⊂ Σ. Or, put differently, by connecting the arc αi to βi by an
embedded band Ei ⊂ Σ with oriented boundary (such a band can also be viewed
as a rectangle) contained in Qi and by removing the interior of Ei as well as the
interior of the sides αi, βi contained in η, ζ. The bands Ei (i = 1, 2) can be chosen
in such a way that they intersect the surfaces S1, S2 only in Ei ∩ (η∪ ζ). The union
S1 ∪ S2 ∪ E1 ∪ E2 is then an embedded surface S in Σ whose oriented boundary
equals η♯ζ.

For a suitable choice of a triangulation of Si with vi vertices, ei edges and fi

faces (i = 1, 2), the surface S admits a triangulation with v1+v2 vertices, e1+e2+6
edges and f1 + f2 + 4 faces. Thus the Euler characteristic χ(S) of S is

χ(S) = χ(S1) + χ(S2) − 2.

Since χ(S2) = 0 this shows that χ(η♯ζ) ≥ χ(S1) − 2 = χ(η) − 2 as claimed in the
lemma. �

Example: Both the unknot of Euler characteristic 1 and the Figure eight knot
of Euler characteristic −1 are oriented sums of an unknot and an unlinked Hopf
link. This shows that unlike in the case of connected sums of knots, in general
equality does not hold in Lemma

hopflinkadd
5.3.

6. The Seifert genus of periodic Reeb orbits

Using the assumptions and notations from the previous sections, the goal of this
section is to show that the Seifert genus of a periodic Reeb orbit γ on the boundary
Σ of a compact strictly convex body C ⊂ C

2 does not exceed 1
2 (lk(γ) + 1).

Let H ⊂ C
2 be a hyperplane which intersects the interior of C. Then H divides

C into two disjoint sets whose closures C1, C2 are compact convex bodies. We call
these compact convex bodies the components of the H-cut of C. The boundaries
∂C1, ∂C2 of C1, C2 are smooth away from the hypersphere Σ ∩H. Then ∂C1, ∂C2

admit a natural PL-structure which we use without further comments. An embed-
ded two-sphere in such a 3-dimensional PL–sphere M is a two-sphere S2 which is
embedded in M as a PL-submanifold. It divides M into two standard 3-balls and
has an open neighborhood homeomorphic to S2 × R.

Let η be an oriented link on ∂C1 and let ζ be an oriented link on ∂C2. We
define an oriented sum η♯ζ of η, ζ as follows. Choose a point x contained in the
interior of H ∩ C which is disjoint from both η, ζ. Remove from H ∩ C a small
open ball B centered at x whose boundary is a smooth embedded two-sphere and
whose closure is disjoint from η, ζ and contained in the interior of H ∩ C. Glue
the holed 3-spheres ∂C1 − B, ∂C2 − B along their boundaries with the obvious
identification map. The resulting PL-sphere Σ̃ (which is not embedded in C

2)
contains an oriented link whose isotopy class is independent of the choice of x and
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whose oriented components are the components of the links η, ζ. Note that in Σ̃,
the link η is separated from ζ by an embedded 2-sphere and hence η and ζ are
unlinked. An oriented sum η♯ζ is defined to be an oriented sum of the oriented
links η, ζ in Σ̃.

The next lemma is the basic tool for the decomposition of the Reeb orbit γ
as an oriented sum. It is more generally valid for piecewise linear knots and if
the boundary Σ of the compact convex body C is only piecewise smooth provided
that the hyperplane H in the statement of the lemma intersects Σ in an embedded
two-sphere and intersects γ transversely as PL-manifolds.

Hcut Lemma 6.1. Let γ : S1 = R/Z → Σ be a smooth oriented knot. Let H ⊂ C
2 be a

hyperplane which intersects Σ transversely in a two-sphere H ∩ Σ. Assume that γ
intersects H ∩ Σ in 2m points γ(si), γ(ti) for some s1 < t1 < · · · < sm < tm ⊂ S1

and that these intersection points are transverse. For each i ≤ m let ℓi ⊂ H ∩ C
be a smooth embedded oriented arc connecting γ(si) to γ(ti) which intersects H ∩Σ
transversely at γ(si), γ(ti) and which does not have any other intersection point
with H ∩ Σ. Assume also that the arcs ℓi are pairwise disjoint. The consecutive
concatenation of γ[ti, si+1] with ℓi+1 (0 ≤ i ≤ m− 1 and indices are taken modulo
m) defines an oriented knot η on the boundary ∂C1 of a component C1 of the H-
cut of C, and the concatenations of the arcs γ[si, ti] with the inverses of the arcs ℓi
(1 ≤ i ≤ m) define an oriented link ζ on the boundary ∂C2 of the second component
C2 of the H-cut of C. The knot γ is isotopic to a ζ-injective oriented sum η♯ζ.

Proof. Using the assumptions and notations in the lemma, assume that the arcs
ℓi ⊂ H ∩ C are parametrized on [0, 1], with ℓi(0) = γ(si). The arcs ℓi are smooth,
pairwise disjoint and embedded and hence they have open tubular neighborhoods in
H whose closures are pairwise disjoint and which are diffeomorphic to a three-ball
each. Since ℓi meets H∩Σ transversely at γ(si), there is for every δ ∈ (0, 1) an open
(topological) ball Bδ ⊂ H with smooth boundary which is contained in the interior
of H∩C, whose closure Bδ contains ℓi[0, δ] for each i and whose boundary is tangent
to H∩Σ at γi(si). Moreover, we can choose Bδ in such a way that Bδ ∩ℓi = ℓi(0, δ)
and that the arcs ℓi[0, δ] are unknotted and unlinked in Bδ (see the discussion in
Section 5). Such a ball can be constructed as a thickening of a finite connected
graph embedded in H ∩ B with vertices γi(si), ℓi(δ) and 2m − 1 edges containing
the arcs ℓi[0, si] as well as for each i a smooth embedded arc connecting γ(si) to
γ(si+1) whose interior is contained in the interior of H ∩ C.

Let C1, C2 be the components of the H-cut of C. Form the connected sum Σ̃δ

of ∂C1 and ∂C2 by removing the ball Bδ from ∂C1, ∂C2 and by identifying the
boundaries of ∂C1 −Bδ, ∂C2 −Bδ with the obvious identification map. The gluing
map identifies the point γ(si) in ∂C1 with the point γ(si) in ∂C2, and it identifies the
point ℓi(δ) in ∂C1 with the point ℓi(δ) in ∂C2. The three-balls ∂C1 −Bδ, ∂C2 −Bδ

contain 2m arcs η−∪iℓi(0, δ), ζi − ℓi(0, δ)(i = 1, . . . ,m) whose endpoints lie on the
boundary of ∂C1 − Bδ, ∂C2 − Bδ and are identified pairwise by the glueing map.
The resulting knot ξδ on Σ̃δ is a ζ-injective oriented sum of the oriented knot η on
∂C1 with the oriented link ζ on ∂C2.

Now the isotopy class of ξδ does not depend on δ, morever ξδ is clearly isotopic
to γ for δ sufficiently close to 1. This shows the lemma. �
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To apply Lemma
Hcut
6.1 for an estimate of the Seifert genus of a Reeb orbit γ on Σ

we have to characterize unknots in a way which is suitable for our purpose. The
following lemma provides such a description of the unknot. It is motivated by the
work of Milnor

Mil50
[Mil50] on the crookedness of knots. For its formulation, note that

for smooth function f : D → R (i.e. a function which is smooth up to and including
the boundary) a boundary point z ∈ ∂D is critical if the restriction of f to ∂D has
a critical point at z and if moreover df(n(z)) = 0 where n(z) is the inner normal of
D at z. In the sequel, a critical point of a smooth function on D may be a critical
boundary point.

basic Lemma 6.2. Let γ be a smooth knot on the boundary Σ of a compact strictly
convex body C ⊂ C

2. Assume that γ bounds a smooth embedded disc S ⊂ C which
is transverse to Σ along γ. Assume moreover that there is a (real) linear functional
ϕ : C

2 → R whose restriction to γ has a single minimum and a single maximum
and no additional critical point, and whose restriction to S does not have critical
points. Then γ is unknotted.

Proof. Let ϕ : C
2 → R be a linear functional whose restriction to γ has a sin-

gle maximum and a single minimum and no additional critical points, and whose
restriction ϕS to a smooth embedded disc S ⊂ C with boundary ∂S = γ does
not have critical points. Let ϕ(S) = [a, b] for some a < b. By assumption, every
s ∈ (a, b) is a regular value for ϕS , and ϕ−1

S (s) consists of a single smooth arc ℓs ⊂ S
connecting two points on γ = ∂S. Choose the orientation of ℓs in such a way that
the oriented normal of ℓs in the disc S points inside ϕ−1

S (s,∞). For s = a, b the set

ϕ−1
S (s) consists of a single point.

For each s ∈ (a, b) the hyperplane ϕ−1(s) intersects C in a compact ball Bs with
smooth boundary ∂Bs. The arc ϕ−1

S (s) is contained in Bs and it intersects ∂Bs

only at its endpoints. We claim that for each s ∈ (a, b) the arc ϕ−1
S (s) ⊂ Bs is

unknotted (see Section 5 for the definition of an unknotted arc in a smooth 3-ball
with endpoints on the boundary). To see that this is indeed the case note first
that since S is smooth by assumption and since ϕS does not have a critical point
at ϕ−1

S (b), the claim holds true for all s sufficiently close to b. Thus it suffices
to show that for all s ∈ (a, b) there is a neighborhood U of s in (a, b) such that
for t, u ∈ U the arcs ϕ−1

S (t) ⊂ Bt, ϕ
−1
S (u) ⊂ Bu are isotopic as (1, 1)-tangles (see

Mu96
[Mu96]). However, this can be seen as follows.

Let x ∈ ϕ−1
S (s) be an interior point and let ρ : [−ǫ, ǫ] → C be a compact

line segment through ρ(0) = x which is orthogonal to the hyperplanes ϕ−1(u).
Assume that ρ[−ǫ, ǫ] is contained in the interior of C. Let B(3) ⊂ ϕ−1(0) be the
standard unit ball in the hyperplane ϕ−1(0) which is bounded by the standard
two-sphere S2. Since C ∩ ϕ−1(ρ(u)) is convex for all u ∈ [−ǫ, ǫ] there is a natural
radial diffeomorphism ψu : B(3) → ϕ−1(ρ(u)) ∩ C depending continuously on u
in the Cm-topology for any m > 0. This diffeomorphism is determined by the
basepoint ρ(u) and fixed standard coordinates in ϕ−1(0). The coordinates translate
to coordinates on the affine hyperplane ϕ−1(u) with the zero at ρ(u). For each u
the arc ψ−1

u (ϕ−1
S (ρ(u))) is a (1, 1)-tangle in B(3). Since the surface S is smooth,

this tangle depends smoothly on u and hence all these tangles are isotopic.
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For δ > 0 and s ∈ [a, b− δ] let ηs,δ be the oriented knot on the boundary of the
compact convex body C ∩ ϕ−1[s, s+ δ] which consists of the arc ℓs, the inverse of
ℓs+δ and the two components of γ ∩ ϕ−1(s, s + δ). Note that ηa,b−a is isotopic to

γ. The knot ηs,δ bounds the disc ϕ−1
S [s, s+ δ] ⊂ S. Since γ is smooth, S ⊂ C is a

smooth embedded disc and the arcs ϕ−1
S (u) ⊂ ϕ−1(u)∩C are unknotted there is a

number ǫ > 0 such that for every s ∈ [a, b− ǫ], the knot ηs,ǫ is the unknot. (In fact,
it is easy to see that for sufficiently small ǫ > 0 the knot ηs,ǫ is the connected sum of
a knot K obtained from the arc ℓs by connecting its endpoints with an unknotted
arc and the knot −K obtained from K by reversing the orientation).

By Lemma
Hcut
6.1, applied to the knot ηa,2ǫ on the boundary of C ∩ ϕ−1[a, a+ 2ǫ]

(which is piecewise smooth) and the hyperplane ϕ−1(a + ǫ), the knot ηa,2ǫ is an
oriented sum of the unlinked unknots ηa,ǫ and ηa+ǫ,ǫ and hence by Lemma

trivialadd
5.2, ηa,2ǫ

is an unknot. Inductively we conclude in this way that for each k ≥ 0 the knot
ηa,kǫ is an unknot. This implies that indeed γ = ηa,b−a is unknotted. �

With the help of Lemma
basic
6.2 we can relate properties of a knot γ on Σ to geometric

properties of a disc in C with boundary γ. This idea is exploited in the next
proposition which is the main remaining step toward the proof of the theorem
from the introduction. For its formulation, for some p ≥ 2 define a 2p-pronged
singularity of a smooth real-valued function ϕ on a disc D ⊂ C to be a singularity
x for ϕ contained in the interior of D with the following property. There is an open
neighborhood U of x in D and there is a diffeomorphism ψ : U ⊂ D → ψ(U) ⊂ C

with ψ(x) = 0 and such that ϕ ◦ ψ−1(z) = Re(zp) for z near 0. We have

nolink Proposition 6.3. Let γ be a smooth knot on the boundary Σ of a compact strictly
convex body C ⊂ C

2. Assume that γ bounds a smooth embedded disc S ⊂ C which
is transverse to Σ along γ. Assume moreover that there is a (real) linear functional
ϕ : C

2 → R with the following properties.

(1) The restriction ϕS of ϕ to S has only finitely many critical points, each
contained in the interior of S.

(2) Each interior critical point of ϕS is a 2p-pronged singularity for some p ≥ 2.
(3) The only critical points of the restriction of ϕ to γ are non-degenerate local

minima and non-degenerate local maxima.

Then γ is unknotted.

Proof. Let Σ be the smooth boundary of a compact strictly convex body C ⊂ C
2.

Let γ be a smooth knot on Σ which bounds a smooth embedded disc S ⊂ C meeting
Σ transversely along γ. Let ϕ : C

2 → R be a linear functional with the properties
stated in the proposition. Our goal is to show that γ is unknotted.

For this the idea is as follows. The restriction ϕS = ϕ|S of ϕ to S has only finitely
many critical points. Each critical point is an interior 2p-pronged singularity. The
critical points of the restriction of ϕ to γ are non-degenerate local maxima and
non-degenerate local minima. Call c ∈ R a regular value for ϕS if ϕ−1(c) neither
contains a critical point of ϕS nor a critical point of the restriction of ϕ to γ.
Then for every regular value c for ϕS , the hyperplane H = ϕ−1(c) decomposes
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the disc S into finitely many subdiscs. The oriented boundary of each of these
subdiscs is composed of a nonempty finite collection of oriented subarcs of γ and
a finite collection of arcs which are embedded in S, with endpoints on γ. Discs
whose boundaries intersect (i.e. which contain the same component of ϕ−1

S (c) in
their boundary) are contained in distinct components of the H-cut of C. Thus the
oriented boundaries of the components of S − ϕ−1(c) define two oriented links η, ζ
on the two components of the H-cut of C. These links can be analyzed separately
using Lemma

linkingnb
5.1, Lemma

Hcut
6.1 and Lemma

basic
6.2. Up to isotopy, the oriented boundary

γ of S can be represented as an oriented sum of η, ζ.

In the sequel we call a point z ∈ S degenerate for ϕS if either z is a critical
point for ϕS or if z ∈ ∂S is a local maximum or a local minimum for the restriction
of ϕ to γ = ∂S. Let k be the number of degenerate points of ϕS counted with
multiplicities. We proceed by induction on k. In the case k = 2 there is a single
minimum and a single maximum of the restriction of ϕ to γ and no critical point for
ϕS and hence this case is covered by Lemma

basic
6.2. Thus assume that the statement

of the proposition holds true whenever there is a linear functional ϕ : C
2 → R with

the properties stated in the proposition such that for some k ≥ 3, ϕS = ϕ|S has at
most k − 1 degenerate points counted with multiplicities.

Let γ be a knot on Σ bounding a smooth embedded disc S ⊂ C. Assume that
there is a linear functional ϕ : C

2 → R whose restriction ϕS to S has k degenerate
points counted with multiplicities which are of the form described in the proposition.
With a small deformation of S we may assume that for each critical value s of ϕS

there is a single degenerate point z ∈ ϕ−1
S (s) and that each critical point of ϕS is

a 4-pronged singularity in the interior of S. Let [a, b] = ϕ(S).

For every regular value s ∈ [a, b] for ϕS let

ζs = ∂(ϕ−1
S [s,∞)), ηs = ∂(ϕ−1

S (−∞, s]).

Then ζs is an oriented link on the boundary ∂C+
s of the compact convex body

C+
s = C ∩ ϕ−1[s,∞),

and ηs is an oriented link on the boundary ∂C−
s of the compact convex body

C−
s = C ∩ ϕ−1(−∞, s].

The links ζs, ηs are composed of an even number of arcs. For each component of
ζs, ηs these arcs alternate between subarcs of γ and components of ϕ−1

S (s).

Call a local maximum (or a local minimum) z ∈ γ for ϕS (by this we mean that
z is a local maximum or minimum for the restriction of ϕ to γ) of type I if there
is a neighborhood U of z in S so that ϕS(y) < ϕS(z) (or ϕS(y) > ϕS(z)) for every
y ∈ U − {z}. Since ϕS does not have critical points at the boundary, z is a local
maximum of type I if and only if dϕ(n(z)) < 0 where n(z) is an inner normal of S
at z. A local maximum or local minimum for ϕS which is not of type I is called of
type II. If z is a local maximum of type II then we have dϕ(n(z)) > 0. Since by
assumption a critical point for the restriction of ϕ to γ is non-degenerate, a global
maximum for ϕS is of type I. Figure B below shows a local maximum of type II.

If z ∈ γ is any local maximum for ϕS of type I with ϕ(z) = s0 then the following
holds true. Let s < s0 be such that every degenerate point y of ϕS with critical



REEB ORBITS, CONVEXITY AND MINIMAL DISCS 35

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

S

Figure B

ϕ

value ϕS(y) ∈ [s, s0] is contained in γ and is a local maximum of type I. Then
the component of ϕ−1

S [s,∞) ⊂ S containing z is a subdisc of S not containing any
critical point of ϕS in its interior. The restriction of ϕ to the boundary of this
subdisc has a single local maximum.

Let c < b be the largest critical value for ϕS which is not the value of a local
maximum of type I. Let m ≥ 1 be the number of degenerate points for ϕS contained
in the interval (c,∞). Let s > c be such that there is no critical value for ϕS in
the interval (c, s]. By the discussion in the previous paragraph, the link ζs has the
following properties.

a) ζs consists of m components ζ1
s , . . . , ζ

m
s .

b) Each of the components ζi
s bounds a subdisc Si of S which does not contain

any critical point of ϕS in its interior.
c) For each i the restriction of ϕ to ζi

s has a single local maximum.

Since the restriction of ϕ to ζi
s has a single local maximum, the subset ζi

s∩ϕ
−1(s)

of ζi
s on which ϕ assumes its minimum is connected. Then ζi

s∩γ is connected as well.
The closed discs Si ⊂ S bounded by ζi

s are pairwise disjoint. Together this implies
that S − ∪iS

i is connected and hence the boundary ηs of S − ∪iS
i is connected.

The intersection ηs ∩ ϕ
−1(s) consists of m connected components.

The disc S intersects the hyperplane ϕ−1(s) transversely. Thus with a small
deformation of the compact convex body C+

s near C+
s ∩ ϕ−1(s) (by pushing the

boundary subset ∂C+
s ∩ ϕ−1(s) slightly outward so that the resulting compact

convex body is strictly convex, with smooth boundary) and of the knots ζi
s we may

assume that for each i the knot ζi
s on ∂C+

s satisfies the assumptions in Lemma
basic
6.2.

Thus by Lemma
basic
6.2, ζi

s is an unknot in the PL-sphere ∂C+
s . By Lemma

linkingnb
5.1, the

unknots ζi
s (1 ≤ i ≤ m) are pairwise unlinked and hence ζs is a trivial link. By

Lemma
Hcut
6.1, the knot γ is a ζs-injective oriented sum of ηs with the unlinked trivial

link ζs and hence by the first part of Lemma
trivialadd
5.2, γ is isotopic to ηs. Note that

s > c can be chosen arbitrarily close to c.

Let z ∈ S be the critical point for ϕS with critical value c. We distinguish three
cases.

Case 1: z ∈ γ is a local maximum for ϕS .

Then z is a local maximum for ϕS of type II.
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Let δ0 > 0 be sufficiently small that c is the only critical value for ϕS in the
interval [c − δ0, c + δ0]. For u ∈ [c − δ0, c] let Vu be the component of ϕ−1

S [u,∞)
which contains z. Since z is a local maximum of type II and ϕS does not have a
critical point at z, the component Vc of ϕ−1

S [c,∞) is an embedded subdisc of S whose
boundary ∂Vc intersects the hyperplane ϕ−1(c) in an embedded arc containing z in
its interior. To see this, extend the disc S smoothly beyond z so that the restriction
of ϕ to this extended disc S′ does not have a critical point at z. Then c is a regular
value for the restriction of ϕ to S′, and each degenerate point for the restriction
of ϕ to S′ with critical value contained in [c,∞) is a local maximum of type I, see
Figure B. For u ∈ [c − δ0, c) the component Vu is a subdisc of S whose boundary
is composed of four arcs. Two of these arcs are disjoint subarcs of γ. They are
connected by the two components β1

u, β
2
u of ∂Vu ∩ ϕ−1

S (u).

Let again S′ be a smooth enlargement of the disc S near z. Since S′ is smooth
there is a number δ < δ0 such that the (1, 1)-tangle Vc−δ ∩ ϕ−1(c + δ) in the ball
C ∩ ϕ−1(c + δ) is isotopic to the tangle Vc−δ ∩ ϕ

−1(c) and hence the latter tangle
is trivial. Moreover, this tangle is isotopic to a component of the intersection of S′

with ϕ−1(c− δ). Now the disc S′ can be chosen so that its boundary is contained
in the boundary of a compact convex body C ′ ⊃ C which is a smooth deformation
of C. As a consequence, for sufficiently small δ the boundary of the component of
S′ ∩ ϕ−1[c− δ, c+ δ]∩C ′ which intersects Vc is an unknot. On the other hand, for
sufficiently small δ is knot is isotopic to the boundary ξ of Vc−δ ∩ ϕ

−1[c− δ, c+ δ].
Now by Lemma

Hcut
6.1 and the above discussion, ∂Vc−δ is a knot in ∂C+

c−δ which is an
oriented sum of two unlinked unknots, namely the unknot ξ and the boundary of
Vc+δ, and hence it is an unknot by Lemma

trivialadd
5.2.

Every component of the link ζc−δ which is distinct from ∂Vc−δ bounds an em-
bedded subdisc of S in C+

c−δ so that the restriction of ϕ to this subdisc has a single
local maximum and no interior critical point. By Lemma

basic
6.2 (see the above discus-

sion), such a component is an unknot. Lemma
linkingnb
5.1 then implies as above that for

sufficiently small δ > 0 the link ζc−δ in C+
c−δ is a trivial link with m components

where as before, m ≥ 1 is the number of critical points of ϕS with critical value
strictly bigger than c.

The two components β1
c−δ, β

2
c−δ of ∂Vc−δ ∩ϕ

−1(c− δ) decompose the disc S into
three closed subdiscs W1, Vc−δ,W2 (see Figure B). The disc which contains both
arcs β1

c−δ, β
2
c−δ in its boundary is the disc Vc−δ. For sufficiently small δ, the link

ηc−δ on ∂C−
c−δ has two connected components η1

c−δ, η
2
c−δ. The component η1

c−δ is

contained in the subdisc W1 of S, and η2
c−δ is contained in the subdisc W2 of S.

Each of the knots ηi
c−δ (i = 1, 2) intersects the hyperplane ϕ−1(c − δ) in mi ≤

m connected components. One of these components is the arc βi
c−δ. Any other

component is the intersection with ϕ−1
S (c − δ) of a component of the link ζc−δ

which is distinct from ∂Vc−δ. Deform C−
c−δ to a compact strictly convex body with

smooth boundary by pushing ∂C−
c−δ∩ϕ

−1(c−δ) slightly outward in such a way that

the m+ 1 deformed components of ϕ−1
S (c− δ) ⊂ ∂C−

c−δ ∩ϕ
−1(c− δ) are embedded

arcs in S so that ϕ assumes a single local maximum on each of these deformed arcs.
This local maximum is of type I.
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After this deformation, the knots ηi
c−δ (i = 1, 2) on the boundary ∂C−

c−δ of the

compact convex body C−
c−δ satisfy the assumptions in the proposition for a subdisc

Si of S and the restriction of ϕ to this subdisc. Each critical point of ϕ|Si is a
critical point for ϕS . Each critical point for the restriction of ϕ to the boundary of
Si which is not one of the mi local maxima of type I produced in the deformation
process is a critical point for the restriction of ϕ to γ. Thus the restriction of ϕ
to Si has at most k − 1 degenerate points, and each of these degeneratel points
is of the form described in the proposition. Hence by the induction hypothesis,
ηi

c−δ is an unknot. Since the subdiscs S1, S2 of S which are bounded by η1
c−δ, η

2
c−δ

are disjoint, Lemma
linkingnb
5.1 shows that the unknots η1

c−δ, η
2
c−δ on ∂C−

c−δ are unlinked.
Therefore ηc−δ is a trivial link with two components.

By Lemma
Hcut
6.1 (more precisely, by its obvious modification which allows for η

to be disconnected), for small δ > 0 the knot γ is an oriented sum of the links
ζc−δ and ηc−δ with the following glueing graph G. The vertex ∂Vc−δ ⊂ ζc−δ of
G is connected to each of the two vertices η1

c−δ, η
2
c−δ by an edge. Any component

of ζc−δ different from ∂Vc−δ is connected to either η1
c−δ or η2

c−δ by a single edge,
and there are no other edges in G. In particular, the glueing graph G is a tree.
Now ηc−δ, ζc−δ are trivial links and hence by the second part of Lemma

trivialadd
5.2, γ is an

unknot. This completes the induction step in the case that z is a local maximum
for ϕS .

Case 2: z ∈ γ is a local minimum for ϕS .

We claim that in this case z is a local minimum of type II.

To see this assume otherwise. Let Q be the component of ϕ−1
S [c,∞) containing

z. Since by assumption the restriction of ϕ to γ is non-degenerate, the point z is
contained in the interior of a subarc of γ ∩ ∂Q. By assumption, all critical points
of ϕS contained in ϕ−1(c,∞) are local maxima of type I and therefore a local
maximum for the restriction of ϕS to Q is unique. Moreover, z is the only local
minimum for the restriction of ϕS to Q, and there are no interior critical points.
Then for each s the intersection of Q with ϕ−1(s) is connected and hence Q = S.
This implies that ϕS has a single local maximum and a single local minimum and
no other critical points. In particular, the number of critical points of ϕS equals 2
which violates the assumption that this number is at least 3. Thus indeed, z is a
local minimum for ϕS of type II.

As a consequence, there is a component α of ϕ−1
S (c) containing z in its interior.

The arc α intersects the boundary of two components S1, S2 of ϕ−1
S (c,∞). The

components S1, S2 are subdiscs of S which come together at z (see Figure B).

Let δ0 > 0 be sufficiently small that z is the only critical point for ϕS in ϕ−1
S [c−

δ0, c + δ0]. For δ ≤ δ0 there is a unique component Vc−δ of ϕ−1
S [c − δ,∞) which

contains S1 ∪ S2. As in the proof of Lemma
basic
6.2, the knot type of the boundary

∂Vc−δ of Vc−δ does not depend on δ ≤ δ0. However, it follows as in Case 1 above
that this knot is an oriented sum of the boundary of S1 with the boundary of S2.
Now the boundaries of S1, S2 are unlinked unknots and hence ∂Vc−δ is an unknot.
As a consequence, the link ζc−δ on ∂C+

c−δ is trivial, with m − 1 ≥ 1 components

where m ≥ 2 is the number of critical points of ϕS contained in ϕ−1(c,∞). The
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link ηc−δ on ∂C−
c−δ is connected, and it intersects ϕ−1

S (c − δ) in m − 1 connected
components. Moreover, γ is isotopic to ηc−δ.

Deform C−
c−δ slightly to a compact strictly convex body with smooth boundary

by pushing ∂C−
c−δ ∩ϕ

−1(c−δ) slighty outward and deform ηc−δ accordingly in such

a way that each of the components of ϕ−1
S (c− δ) is replaced by an arc in the disc

S containing a single local maximum for ϕ. The resulting knot on the boundary
of a compact convex body (which is isotopic to ηc−δ) satisfies the assumptions in
the proposition for a subdisc S0 of S and such that the restriction of ϕ to S0 has
k − 2 critical points counted with multiplicities. By the induction hypothesis, we
conclude that ηc−δ and hence γ is unknotted.

Case 3: The critical point z is contained in the interior of S.

As before, we assume that z is the only critical point with critical value c, and
that z is a 4-pronged singularity for ϕS . Then ϕ−1

S (c) consists of 4 smooth arcs
connecting z to ∂S = γ and perhaps an additional collection of pairwise disjoint
smooth arcs with endpoints on the boundary of S. The arcs which end at z divide
a small neighborhood of z in S into 4 regions. The values of the function ϕ are
alternating bigger and smaller than c in these regions. Thus for sufficiently small
δ > 0, the link ζc+δ on C+

c+δ = C ∩ ϕ−1[c + δ,∞) has 2 components α1, α2 which
come together at z as δ → 0. Moreover, the link ζc+δ is trivial.

There is a unique component ξ of the link ζc−δ on C ∩ ϕ−1[c − δ,∞) which is
an oriented sum of the components α1, α2 (in the sense discussed before). Since
the components αi are unlinked unknots, the knot ξ is an unknot. Moreover, ξ is
unlinked with the remaining components of ζc−δ.

As in Case 1) above, the knot ξ bounds a subdisc V of S. The closure of
S − V consists of two disjoint closed subdiscs S1, S2 of S. The link ηc−δ has
two components η1

c−δ ⊂ S1, η2
c−δ ⊂ S2. After a small deformation, the knot ηi

c−δ

satisfies the hypothesis in the proposition for a subdisc of the disc Si with the
linear functional ϕ whose restriction to Si has at most k− 1 critical points. By the
induction hypothesis, the knot ηi

c−δ is an unknot (i = 1, 2). As in Case 1) above,
this shows that γ is an oriented sum of mutually unlinked unknots and hence γ is
an unknot. This completes the proof of the proposition. �

Proposition
nolink
6.3 can be extended as follows.

knotdiagram Proposition 6.4. Let γ be a smooth knot on the boundary Σ of a compact convex
body C ⊂ C

2. Assume that there is a smooth boundary regular immersion f :
(D, ∂D) → (C, γ) which is transverse to Σ along γ and whose singular set consists
of k ≥ 0 double points. Assume moreover that there is a (real) linear functional
ϕ : C

2 → R with the following properties.

(1) ϕ ◦ f has only finitely many critical points.
(2) The critical points of the restriction of ϕ to γ are non-degenerate local

minima and maxima.
(3) Any interior critical point for ϕ ◦ f is a 2p-pronged singularity for some

p ≥ 2.
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Then the Seifert genus of γ is at most k.

Proof. Recall from Section 5 the definition of the Euler characteristic of an ori-
ented link ζ in Σ. We show the following slight extension of the statement in the
proposition.

Let γ ⊂ Σ be any link with components γ1, . . . , γℓ. Assume that for every
i ∈ {1, . . . , ℓ} there is a boundary regular immersion fi : (D, ∂D) → (C, γi) with

only transverse double points. Let
∐ℓ

i=1Di be the disjoint union of ℓ copies of the
disc D and let f :

∐

iDi → C
2 be the map whose restriction to the i-th copy Di

of D is the map fi. Assume that f has only finitely many transverse double points
(i.e. that for all i the intersection fi(D) ∩ (

⋃

j 6=i fj(D)) consists of finitely many

transverse double points). Let k ≥ 0 be the total number of all transverse double
points of the map f . Assume that there is a linear functional ϕ : C

2 → R such that
for each i the function ϕ ◦ fi only has finitely many critical points, and that each
of these critical points either is a non-degenerate local maximum or minimum on
the boundary of D or a 2p-pronged singularity in the interior of D for some p ≥ 2.
We claim that there is a Seifert surface S for the link γ of Euler characteristic

χ(S) = ℓ− 2k.

The case ℓ = 1 is exactly the statement of the proposition.

Let m ≥ 2ℓ be the total number of critical points of ϕ ◦ f counted with multi-
plicities. We proceed by induction on k + 2m− ℓ ≥ 3. In the case k + 2m− ℓ = 3
we necessarily have ℓ = 1 and m = 2, k = 0 and the claim follows from Lemma
basic
6.2. Thus assume that the claim holds true whenever k+ 2m− ℓ ≤ s0 − 1 for some
s0 ≥ 4.

Let γ = ∪ℓ
i=1γi be a link with the above properties for k+2m− ℓ = s0. Proposi-

tion
nolink
6.3 and Lemma

linkingnb
5.1 imply that if the map f does not have double points then

γ is a trivial link with ℓ components and hence γ bounds a Seifert surface of Euler
characteristic ℓ. Thus we may assume without loss of generality that f has double
points.

We proceed as in the proof of Proposition
nolink
6.3. Note first that with a small

deformation of the maps fi we may assume that each interior critical point of ϕ ◦ f
is a 4-pronged singularity and that for each critical value of ϕ ◦ f there is a unique
critical point for this value. We also assume that for any double point f(x) = f(y)
(x 6= y ∈

∐

iDi) for f the value ϕ(f(x)) is not critical.

Assume that ϕ ◦ f(
∐

iDi) = [a, b]. Using the notations from the proof of Propo-
sition

nolink
6.3, let c0 < b be the largest critical value for ϕ ◦ f which is not a local

maximum of type I. Let moreover c1 < b be the maximum of the values of ϕ on the
double points of f and let c = max{c0, c1}. For s ∈ (a, b) write

C+
s = C ∩ ϕ−1[s,∞), C−

s = C ∩ ϕ−1(−∞, s].

If s is a regular value for ϕ ◦ f which is not the value of a double point then the
immersed the immersed surface f(

∐

iDi) intersects the boundary ∂C+
s of C+

s in a
link ζs, and it intersects the boundary ∂C−

s of C−
s in a link ηs.
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There are two cases.

Case 1: c is a critical value for ϕ ◦ f .

Then there is a unique point x ∈
∐

iDi so that ϕ◦f(x) = c and that x is critical
for ϕ ◦ f . Assume for simplicity of notation that x is a critical point for ϕ ◦ f1.
By Proposition

nolink
6.3 and Lemma

linkingnb
5.1, if δ > 0 is sufficiently small that ϕ−1[c− δ,∞)

does not contain a double point for f then the link ζc−δ on ∂C+
c−δ is trivial.

Using the notations from the proof of Proposition
nolink
6.3, we distinguish four sub-

cases.

Subcase 1a: ϕ ◦ f has a local maximum at z.

Then c is a local maximum of type II and the link ηc−δ has ℓ+1 components. Two
of these components, say the components α1, α2, bound subdiscs of f1(D). Up to a
small deformation, the link ηc−δ satisfies the hypotheses listed above with the same
number of double points and the same number of critical points for the restriction
of ϕ to the subdiscs of f(

∐

iDi) which are bounded by the components of ηc−δ. In
other words, ηc−δ satisfies the assumptions in the proposition for s0 − 1 (compare
the discussion in the proof of Proposition

nolink
6.3). Now ηc−δ has ℓ + 1 components

and hence by the induction hypothesis, there is a Seifert surface for ηc−δ of Euler
characteristic ℓ+ 1 − 2k.

By the discussion in the proof of Proposition
nolink
6.3, up to isotopy the link γ is an

oriented sum of ηc−δ with a single unlinked unknot ζ. The glueing graph has two
edges which connect the unknot ζ with two distinct components α1, α2 of ηc−δ.
Thus there is a Seifert surface V for γ which can be obtained from a Seifert surface
Vc−δ for ηc−δ by attaching two opposite sides of a rectangle (i.e. a topological discs
with four distinguished points on the boundary) to two subarcs of α1, α2 in such a
way that the interior of the rectangle is disjoint from Vc−δ. Adding the rectangle
to Vc−δ decreases the Euler characteristic by one. This then shows that there is a
Seifert surface for γ of Euler characteristic ℓ− 2k as claimed.

Subcase 1b: ϕ ◦ f has a local minimum at z of type II.

In this case it follows from the discussion in the proof of Proposition
nolink
6.3 that for

small enough δ the link ηc−δ is isotopic to γ. Moreover, ηc−δ bounds a union of ℓ
subdiscs of f(

∐

iDi) so that the restriction of ϕ to these subdiscs has only m − 2
critical points counted with multiplicities. Thus the induction hypothesis can be
applied to ηc−δ and yields that there is a Seifert surface for γ of Euler characteristic
ℓ− 2k.

Subcase 1c: ϕ ◦ f has a local minimum at z of type I.

In this case the proof of Proposition
nolink
6.3 shows that the component γ1 of γ is an

unknot which is unlinked with ∪i≥2γi. By induction hypothesis, applied to the link
∪i≥2γi, there is a Seifert surface V for ∪i≥2γi of Euler characteristic ℓ − 1 − 2k.
Since γ1 is an unknot which is unlinked with ∪i≥2γi, there is a Seifert surface W
for γ which is the disjoint union of V with a disc. The Euler characteristic of W
then equals ℓ− 2k.
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Subcase 1d: z is an interior critical point of ϕ ◦ f .

If z is an interior critical point of ϕ ◦ f then the reasoning in the discussion of
the first subcase together with the proof of Proposition

nolink
6.3 shows the claim as in

Subcase 1a) above.

Case 2: ϕ−1(c) contains a double point of f .

Let δ > 0 be sufficiently small that there are no double points for f and no
critical points for ϕ ◦ f in ϕ−1[c − δ, c). Consider the link ζc−δ on ∂C+

c−δ with

components ζ1
c−δ, . . . , ζ

p
c−δ (p ≥ 1). It follows from the discussion in the proof of

Proposition
nolink
6.3 that for each component ζj

c−δ of ζc−δ there is an embedded disc

Ej
c−δ ⊂

∐

iDi such that f(∂Ej
c−δ) = ζj

c−δ. Moreover, the restriction of ϕ◦f to each

of the subdiscs Ej
c−δ has a single maximum and no interior critical point. There are

two of these discs (not nexcessarily distinct) which contains distinct interior points
x 6= y with f(x) = f(y).

We distinguish again two subcases.

Subcase 2a: x ∈ Ei
c−δ, y ∈ Ej

c−δ for i 6= j.

Assume without loss of generality that i = 1, j = 2. Then each of the disc
f(Ej

c−δ) ⊂ C+
c−δ (j = 1, . . . , ℓ) is embedded. The components ζ1

c−δ, . . . , ζ
p
c−δ are all

unknots. The link ∪p
j=3ζ

j
c−δ is trivial, and it is unlinked with both ζ1

c−δ, ζ
2
c−δ. The

link γ is a ζc−δ-injective oriented sum of the links ηc−δ and ζc−δ.

We claim that up to orientation, ζ1
c−δ ∪ ζ

2
c−δ is the Hopf link on ∂C+

c−δ. Namely,

the discs f(E1
c−δ), f(E2

c−δ) intersect transversely in the single point z and hence

the linking number between ζ1
c−δ, ζ

2
c−δ equals 1 up to a change of orientation. Since

π1(∂C
+
c−δ − ζ1

c−δ) is infinite cyclic, this means that ζ2
c−δ is freely homotopic in

∂C+
c−δ − ζ1

c−δ to a meridian of a solid torus neighborhood of ζ1
c−δ. Since ζ2

c−δ is an

unknot, it is indeed isotopic to such a meridian. This shows that ζ1
c−δ ∪ ζ

2
c−δ is the

Hopf link in ∂C+
c−δ as claimed.

By Lemma
Hcut
6.1, the link γ is an oriented sum of the unlinked oriented links

ηc−δ, ζc−δ. The discussion in the previous paragraph shows that ζc−δ is a union of

a trivial link ∪p
j=3ζ

j
c−δ with p− 2 components and an unlinked Hopf link ζ ′′c−δ.

Now up to a small deformation, the link ηc−δ has ℓ components (i.e. as many
components as γ). It bounds a union of ℓ subdiscs of f(

∐

iDi). The number of
double points of these subdiscs equals k−1. The restriction of ϕ to the union of these
subdiscs has as many critical points as there are for ϕ ◦ f . In other words, the link
ηc−δ satisfies the assumption in the proposition for s0 − 1. Thus by the induction
hypothesis, there is a Seifert surface for ηc−δ of Euler characteristic ℓ − 2k + 2.
Lemma

hopflinkadd
5.3 and Lemma

trivialadd
5.2 then immediately imply that there is a Seifert surface

for γ of Euler characteristic ℓ− 2k as claimed.

Subcase 2b: x and y are contained in the same disc.
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Assume that x, y ∈ E1
c−δ. The components ζj

c−δ of ζc−δ are mutually unlinked.

Moreover, for j ≥ 2 the component ζj
c−δ is an unknot. The above discussion applied

to ζ1
c−δ shows that ζ1

c−δ is an oriented sum of a Hopf link with an unknot. By Lemma
hopflinkadd
5.3, there is a Seifert surface for ζ1

c−δ of Euler characteristic −1.

As in Subcase 2a, the induction hypothesis can be applied to the link ηc−δ and
shows that there is a Seifert surface for ηc−δ of Euler characteristic ℓ−2k+2. Since
γ is up to isotopy an oriented sum of the unlinked links ηc−δ and ζ1

c−δ (compare
the discussion in the proof of Proposition

nolink
6.3), this implies that there is a Seifert

surface for γ of Euler characteristic ℓ− 2k as claimed. This completes the proof of
the proposition. �

Now we are ready to show

unknot Corollary 6.5. The Seifert genus of a periodic Reeb orbit on the boundary Σ of a
compact strictly convex body C ⊂ C

2 equals 1
2 (lk(γ)+1). In particular, if lk(γ) = −1

then γ is unknotted.

Proof. Let γ be a periodic Reeb orbit on the boundary Σ of a compact strictly
convex body C. By Corollary

linkone
4.10, there is a minimal immersed disc f : (D, ∂D) →

(C, γ) with boundary γ and 1
2 (lk(γ) + 1) transverse positive self-intersection points

counted with multiplicity.

Choose a linear functional ϕ : C
2 → R such that the restriction of ϕ to γ only

has non-degenerate critical points. This means in particular that each such critical
point either is a local minimum or a local maximum for ϕ|γ. Since f is the real part
of a holomorphic map D → C

2 ⊗ C and since ϕ is linear, the pull-back ϕS = ϕ ◦ f
is the real part of a holomorphic function on D. In particular, ϕS is harmonic and
hence it neither has local minima nor local maxima in the interior of D. Moreover,
the number of its singular points is finite, and each interior singular point is a
standard 2p-pronged singularity for some p ≥ 1.

An application of Proposition
knotdiagram
6.4 now shows that the Seifert genus of γ does not

exceed 1
2 (lk(γ) + 1). On the other hand, Eliashberg

eliash
[Eli92] showed that the Seifert

genus of γ is at least 1
2 (lk(γ) + 1). �

For a periodic Reeb orbit γ on Σ the Maslov index µ(γ) of γ is defined. Since Σ is
strictly convex by assumption, this Maslov index is not smaller than 3

HWZ98
[HWZ98]. As

an immediate consequence of Proposition
unknot
6.5 and Theorem 2 of

HH09
[HH09] we obtain.

maslov Corollary 6.6. Let Σ ⊂ C
2 be the boundary of a compact convex body. Assume

that the principal curvatures a ≥ b ≥ c of Σ satisfy the inequality a ≤ b+c pointwise.
Then a periodic Reeb orbit γ on Σ of Maslov index 3 is unknotted.

Proof. By Theorem 2 of
HH09
[HH09], the self-linking number of a periodic Reeb orbit γ

on Σ of Maslov-index 3 equals −1. �



REEB ORBITS, CONVEXITY AND MINIMAL DISCS 43

We complete this section with a conjecture.

Conjecture: Let γ be a periodic Reeb orbit on the boundary Σ ⊂ C
2 a compact

strictly convex body. Then the Maslov index of γ is not smaller than lk(γ) + 4.

It makes also sense to extend the above conjecture to dynamically convex energy
surfaces in the sense of

HWZ98
[HWZ98].

Acknowledgement: The author is grateful to Hans Boden, David Gabai, Ste-
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