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Abstract. For g ≥ 3, we study the cohomology classes in the closure of a

stratum of abelian differentials defined by the boundary strata of codimension
one. As an application, we find an explicit stratification of the spin moduli
space for an odd spin structure consisting of g − 1 strata Dj of codimension

j−1 such that Dj does not contain a complete variety for all j. We also recover
some results of Korotkin and Zograf and of Chen using a unified topological
argument.

1. Introduction

For g ≥ 3 the moduli space Mg of complex curves of genus g is a complex
orbifold. More precisely, it is the quotient of a bounded domain in C3g−3, the
so-called Teichmüller space Tg of genus g, under the action of a discrete group of
biholomorphic automorphisms, the mapping class group Mod(Sg). The following
question can be found in [FL08], see also [HL98] for a motivation.

Question. Does Mg admit a stratification with all strata affine subvarieties of
codimension ≤ g − 1?

The moduli space admits a compactification Mg, the so-called Deligne Mumford
compactification, which equips Mg with the structure of a quasi-projective variety.

The complement of an irreducible effective ample divisor in Mg is affine. This was
used by Fontanari and Looijenga to show that the complement of the Thetanull
divisor in Mg parameterizing curves with an effective even theta characteristic is
affine for every g ≥ 4 (Proposition 2.1 of [FL08]). They also show that the answer
to the question is yes for all g ≤ 5. Another approach towards an answer to this
question which is closer to our viewpoint is due to Chen [Ch19].

The main goal of this article is to give some additional evidence that the answer
to the above question is affirmative. To this end consider the Hodge bundle over
Mg whose fiber over a complex curve X is just the g-dimensional vector space of
holomorphic one-forms on X. The projectivization P : P → Mg of the Hodge
bundle if a holomorphic fiber bundle over Mg in the orbifold sense. It admits a
natural stratification whose strata consist of projective differentials with the same
number and multiplicities of zeros. These strata need not be connected, but the
number of connected components is at most 3 [KtZ03].

The tautological ring of Mg is the subring of the rational cohomology ring of
Mg generated by the Mumford Morita Miller classes κk ∈ H2k(Mg,Q) (see [M87]
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and [Lo95] for a comprehensive discussion of these classes). Denote by η the Chern
class of the tautological line bundle over the fibers of P. We use the zeros of the
differentials in a component Q of a stratum to analyze the cohomology classes on
the closure Q of Q defined by the boundary components of Q of codimension one.
We find that these classes are all contained in the subspace of H∗(Q,Q) spanned
by the restrictions to Q of the pull-back P ∗κ1 and the class η.

Denote by PH(k1, . . . , km) the stratum of projective abelian differentials with m
zeros of order kj (here kj ≥ 1 and

∑

j kj = 2g − 2). As an application, we obtain

a topological proof of the following result of Chen [Ch17].

Theorem 1. Let Q ⊂ PH(k1, . . . , km) be a component of a stratum of projective
abelian differentials with m ≥ 1 zeros of order ki (i ≤ m); then for all ℓ ≥ 1 we
have

P ∗κℓ|Q = (−1)ℓ+1
∑

i

(

ℓ
∑

j=0

ki
(ki + 1)ℓ−j

)

ηℓ.

In the case ℓ = 1 this reads

P ∗κ1|Q =
∑

i

(ki + 1−
1

ki + 1
)η|Q.

In particular, the restriction to Q of the pull-back of the tautological ring of Mg

coincides with the subring of H∗(Q,Q) generated by the restriction of η.

Since all but the first Mumford Morita Miller classes vanish on M3 [Lo95],
Theorem 1 for two strata in g = 3 is also due to Looijenga and Mondello [LM14].

The moduli space of curves with odd theta characteristic Mg,odd is the moduli
space of pairs (X,L) where X is a complex curve of genus g and where L is a square
root of the canonical bundle so that h0(X,L) is odd. This is a finite orbifold cover
of Mg. We use our cohomological computation to give some evidence towards the
question in [FL08]. We show

Theorem 2. The spin moduli space Mg,odd admits an explicit stratification into
complex strata Dj of codimension j − 1 (1 ≤ j ≤ g − 1) such that for all j ≤ g − 1,
the restriction of the class κ1 to the stratum Dj vanishes. In particular, Dj does
not contain a complete subvariety.

The stratum Dj is defined as follows. Let Q = PH(2, . . . , 2)odd be the component
of the stratum of abelian differentials with all zeros of order 2 and odd parity
[KtZ03]. The closure Q of Q in P projects onto Mg,odd. For j ≤ g − 1 let Qj ⊂ Q
be the closure of the union of all boundary components of Q of codimension j − 1
and define Dj = PQj − PQj+1. Note that Dg−1 is the projection of the union of
those components of PH(2g − 2) which have an odd spin structure. The number
of such components is one for g ≡ 0, 3 mod 4, and it equals two otherwise. We
conjecture that the strata Dj are in fact affine for all j.

That components of strata do not contain complete subvarieties is due to Gen-
dron [G20].

The organization of this article is as follows. In Section 2 we study the pull-back
P ∗C of the universal curve C → Mg to the moduli space of projective abelian dif-
ferentials. We obtain some information on the cohomology class P ∗κ1 by analyzing
the subvariety of P ∗C which intersects the fiber over q in the zeros of q. This lo-
cus can be used to gain some information on P ∗κ1 via Poincare duality in surface
bundles as in [H20].
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In Section 3 we begin the study of the second cohomology group of closures of
components of strata, and we establish Theorem 1. This is used in Section 4 to
give a purely topological proof of the following result of Korotkin and Zograf. For
its formulation, recall that the rational cohomology ring of the projectivized Hodge
bundle P : P → Mg is the ring

H∗P,Q) = P ∗H∗(Mg,Q)[η]/
(

ηg + c1(H)ηg−1 + · · ·+ cg(H)
)

where η is the tautological class of the fiber and ci(H) is the i-th Chern class of
H. These Chern classes are polynomials in the odd Mumford Morita Miller classes
(see Section 2 of [M87]). Let ξ ∈ H2(P,Q) be the class dual to the stratum P(1)
of codimension one.

Theorem 3 (Korotkin and Zograf [KZ11]).

ξ = 2P ∗κ1 − (6g − 6)η.

The computation in [KZ11] extends to the boundary of the Deligne Mumford
compactification, however we do not pursue such a computation in this work. An
algebraic geometric proof is due to Chen [Ch13].

In Section 5 we obtain some information on the second cohomology classes of
the closure of a stratum defined by its codimension one boundary strata. This is
then used in Section 6 to show Theorem 2.

Acknowledgement: I am indebted to Dawei Chen for pointing out an error in
a computation in an earlier version of this paper which made some part of the
results invalid. I am also indebted to him for showing me the reference [Ch17]
which contains an earlier elegant proof of Theorem 1. I am moreover grateful to
Dawei Chen and Samuel Grushevsky for useful discussions.

2. The zero sets of strata of abelian differentials

The goal of this section is to establish some geometric properties of strata of
abelian differentials and use this to obtain some first information on the first Mum-
ford Morita Miller class. Throughout we assume that g ≥ 3.

Let Υ : C → Mg be the universal curve, that is, the fiber bundle (in the orbifold
sense) whose fiber over a point X ∈ Mg is just the Riemann surface X. Consider
the pull-back

Π : P ∗C → P

of the universal curve to the projectivized Hodge bundle. For each q ∈ P, the zeros
of q define a subset of the fiber of P ∗C of cardinality at most 2g − 2. Denote by
∆ ⊂ P ∗C the locus of all these zeros.

The following is Proposition 2.2 of [H20]. For its formulation, a closed subvariety
Y of codimension one of a smooth variety X is a local complete intersection if the
ideal sheaf FY of Y in X can be locally generated by a single element at every
point.

Proposition 2.1. The subset ∆ ⊂ P ∗C is a subvariety of P ∗C of codimension one,
and it is a local complete intersection.

Write P = ∪kP(k) where for 0 ≤ k ≤ 2g−3 the set P(k) is the locus of projective
differentials with precisely 2g − 2 − k zeros. Then P(k) is a smooth suborbifold
of P of codimenision k, and it is a disjoint union of strata. Furthermore, we have
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P(k) = ∪j≥kP(j) and hence this decomposition gives P the structure of a complex
stratified space. The set P(1) consists of the single stratum PH(1, . . . , 1, 2).

Now let us consider a component D ⊂ P of a stratum of projective abelian
differentials. By Proposition 2.1, if q ∈ D and if z ∈ P ∗C is a point in the fiber
of P ∗C over q which is a zero of q of order k ≥ 1, then there is a neighborhood U
of q in D and a holomorphic section ζ : U → P ∗C with image in ∆ and such that
ζ(q) = z. If z is the only zero of q of order k, then the map which associates to a
differential in D its unique zero of order k is a global holomorphic section of P ∗C
over D.

The following proposition gives some further information on the variety ∆. It is
a more explicit version of a result in Section 8 of [EMZ03].

Proposition 2.2. Let Q ⊂ P be a component of a stratum of projective abelian
differentials and let D be an irreducible component of codimension one of the bound-
ary of Q, obtained by colliding two zeros of differentials in Q of order m1,m2 ≥ 1
to a single zero of order m = m1 +m2 ≥ 2.

(1) Assume that the differentials in D have a single zero of order m. Then Q∪
D ⊂ P is a smooth complex orbifold. Let ζ : D → P ∗C be the holomorphic
section defined by the zero of order m.

• If m1 = m2 then the normal bundle of D ⊂ Q ∪ D is isomorphic to
the square ζ∗(ν)2 of the pull-back ζ∗(ν) of the vertical tangent bundle
of P ∗C along ζ.

• If m1 6= m2 then the normal bundle of D ⊂ Q ∪ D is isomorphic to
ζ∗(ν).

(2) If D consists of differentials with k ≥ 2 zeros of order m, then Q∪D has a
normal crossing singularity along D consisting of k smooth local branches
which intersect transversely along D.

Proof. Consider first the case that differentials in D have a unique zero of order m.
Equivalently, a zero of a differential q ∈ D arising from a collision of two zeros of a
differential in Q is distinguished by its multiplicity.

Consider the preimages D0 and Q0 of D and Q, respectively, in the moduli space
of abelian differentials, that is, in the complement H∗ of the zero section of the
Hodge bundle H. Then D0,Q0 admit a natural holomorphic action of the group
C∗ by complex multiplication, with quotients D and Q.

A neighborhood of q ∈ D0 in Q0∪D0 is obtained from a neighborhood of q in D0

by opening the distinguished zero of order m ≥ 2 to two zeros of prescribed order
m1 ≤ m2 with m1+m2 = m as explained in Section 8 of [EMZ03]. We have to show
that this operation is equivariant with respect to the C∗-action and compatible with
the complex structure on the quotients D,Q, and we have to compute the normal
bundle.

We proceed as on p.86 of [EMZ03]. An abelian differential q on a Riemann
surface X of genus g determines a flat metric on X in the conformal class of X, with
singularities at the zeros of q. Assume that q ∈ D0, let x ∈ X be the distinguished
zero of q and let ǫ > 0 be sufficiently small that the closed disk D(ǫ) of radius ǫ
about x for the flat metric defined by q is a topological disk embedded in X. Let
δ < ǫ/2 and let γ be a straight line segment of length δ with one endpoint at x,
parameterized proportional to arc length on the interval [0, 1]. We claim that γ
determines uniquely a point in Q0 with a saddle connection of length 2δ connecting
a zero of order m1 to a zero of order m2.
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Namely, the closed disk D(ǫ) can be represented as a union of 2m+ 2 flat half-
disks of radius ǫ. Their oriented straight line boundary segments are segments
whose direction for the flat metric is up to sign the direction of γ. These half-
disks are glued in circular order along the half-segments of length ǫ. Let γ̂ be the
straight line segment of the same length δ as γ, with one endpoint at x, which makes
an angle of (2m1 + 1)π with γ, measured for the flat metric in counter clockwise
direction. The direction of γ̂ for the flat metric is opposite to the direction of γ.
Both oriented segments γ, γ̂ are contained in the oriented boundary of one of the
embedded flat half-disk of radius ǫ determined by the direction of γ, with center at
x.

Cut D(ǫ) open along the line segments in the boundary of these two half-disks
containing γ, γ̂ and glue these two half-disks along the segment of length 2δ centered
at x, leaving a pair of free line segments of length ǫ − δ on the boundary of each
of the half-disks. The remaining half-disks determined by the direction of γ can be
glued to these two half-disks isometrically along the boundary in a circular fashion
as illustrated on p.87 of [EMZ03]. The result of this construction is a new flat
metric on the surface Sg, of the same area. This flat metric is defined by an abelian
differential q(γ) ∈ Q0 which is uniquely determined by q, the choice of γ and the
decomposition m = m1 + m2. It has a distinguished saddle connection of length
2δ connecting the two newborn zeros of order m1,m2. If we denote by x(γ) the
midpoint of this saddle connection, then the complements of the disks of radius ǫ
about x and x(γ) for the flat metrics defined by q, q(γ) are isometric.

For fixed q ∈ D0 and as the endpoint of the geodesic segment γ different from x
varies in the punctured disk of radius ǫ/2 about x, the above construction defines
a family of abelian differentials in Q0 depending on a complex parameter varying
in a punctured disk in C, that is, in a punctured coordinate disk about x in X. As
explained on p.87 of [EMZ03], for a suitable choice of a basis of relative homology
of the closed surface Sg of genus g, marked at the zeros of q, all but perhaps one
coefficient of the corresponding period coordinates are constant, and the remaining
period coordinate is changed by −γ (the missing factor 1/2 in our description stems
from a slight variation in the setup).

As a consequence, this construction gives rise to a holomorphic map from of a
disk in C into H∗ which intersects D0 in the single point q. As it commutes with
multiplication of a differential with a nonzero complex number, it descends to a
holomorphic map from of a disk in C into P which intersects D in a single point,
and this point is the projection of q. Furthermore, by naturality with respect to
suitable period coordinates, chosen as in the previous paragraph, it depends in a
holomorphic fashion on q ∈ D0.

If m1 = m2 = m/2, then the two flat surfaces obtained from this construction
from segments γ1, γ2 of the same length δ which make an angle of (m+1)π at x for
the flat cone metric, are isometric. As a consequence, the holomorphic involution
z → −z in the tangent space of X at the distinguished zero of order m extends to
an involution of the local parameter space for opening a zero of order m, and the
map which associates to a point in this local parameter space the resulting area
one abelian differential factors through the quotient of this involution.

Lemma 8.1 of [EMZ03] shows that in the open and dense subset of D0 consisting
of flat metrics which do not admit any isometry, this is the only identification. More
precisely, the lemma states that each direction for the flat metric of q gives rise to
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precisely m+ 1 distinct flat surfaces with labeled zeros. The isometry between two
of these flat metrics arising from the involution z → −z as discussed in the previous
paragraph exchanges the two newborn zeros of order m1 = m2 of the differentials
in Q0 and hence changes the labels. As we do not fix labels here, by Lemma
8.1 of [EMZ03] the above construction defines a holomorphic parameterization of
a neighborhood of D0 in Q0 ∪ D0. By equivariance under the action of C∗, this
parameterization descends to a parameterization of a neighborhood of D in Q.
Moreover, the normal bundle of D in Q is the square of the pull-back of the vertical
tangent bundle of P ∗C at the distinguished zero as described in the proposition as
its fiber over a fixed zero x is doubly covered by the fiber of the vertical tangent
bundle at x.

Ifm1 6= m2, then locally nearD0 the two newborn zeros of the differentials arising
from the above construction can not be exchanged. Thus in this case Lemma 8.1 of
[EMZ03] shows that the above construction defines a holomorphic parameterization
of a neighborhood of D0 in Q0 and hence it parameterizes a neighborhood of D in Q.
Furthermore, the normal bundle of D equals the pull-back of the vertical tangent
bundle of P ∗C at the distinguished zero of order m. This shows the first part of
the proposition.

Now let us assume that differentials in D have k ≥ 2 zeros of order m. Let q ∈ D
and let q0 ∈ D0 be a preimage of q. If x1 6= x2 are two zeros of the same order m for
q0, then for differentials in a neighborhood V0 of q0 in D0 we can open up the zero
x1 locally in a neighborhood of x1, preserving the flat metric on the complement
of a small disk about x1, in particular near x2, and we obtain a differential in Q0.
This construction determines the structure of a smooth complex orbifold on the
union of the projection V of V0 to D with some open subset U(x1, V ) of Q which is
compatible with the complex structure and the topology of P. Similarly, preserving
x1 and opening x2 gives rise to the structure of a smooth complex orbifold on the
union of V with an open subset U(x2, V ) of Q.

If the flat metric defined by q ∈ D0 does not admit an isometry which exchanges
x1 and x2, that is, if q belongs to the open and dense set of smooth points of
the orbifold P, then for a suitable choice of the neighborhood V0 of q, the sets
U(x1, V ) and U(x2, V ) are disjoint from each other, and the unions U(x1, V ) ∪ V
and U(x2, V ) ∪ V intersect transversely along V . As this construction is local, it
can be extended to more than two zeros of the same order m and yields the second
part of the proposition. �

By Proposition 2.1, the zeros of a projective abelian differential q on a Riemann
surface X define a codimension one complex subvariety ∆ in the holomorphic fiber
bundle P ∗C → P. Over a fixed stratum Q, this subvariety is just a holomorphic
multisection, that is, it can locally be described as consisting of ℓ holomorphic
sections of P ∗C → P where ℓ ≥ 1 is the number of zeros of differentials in Q. Note
that this a purely local statement.

Our next goal is to describe the behavior of these multisections as the differentials
approach a boundary component of Q of codimension one, given by a collision of
two of these zeros.

For the formulation of this description, recall that a two-sheeted holomorphic
branched covering ζ : S → B of two complex curves S,B, branched at a point
x ∈ S, is given in suitable holomorphic coordinates z, w on S,B near x and ζ(x),
respectively, with x = {z = 0}, ζ(x) = {w = 0}, as w = z2. The following definition
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is a special case of well known constructions and is included here for clarity of the
exposition.

Definition 2.3. For a number m ≥ 2, an m-sheeted holomorphic branched covering
of two complex manifolds M,N of the same complex dimension, doubly branched
along a complex hypersurface H ⊂ M , is a surjective holomorphic map ζ : M → N
with the following properties.

(1) The restriction of ζ to H is a biholomorphism onto its image.
(2) The restriction of ζ to M − ζ−1(ζ(H)) is an m-sheeted unbranched holo-

morphic covering.
(3) There exists a neighborhood V of ζ−1(ζ(H))−H such that the restriction

of ζ to V is an (m− 2)-sheeted unbranched holomorphic covering.
(4) For every x ∈ H there are holomorphic coordinates (z1, . . . , zn) on an open

neighborhood U of x in M and holomorphic coordinates (w1, . . . , wn) on a
neighborhood of ζ(x) in N , with H∩U = {z1 = 0} and the property that in
these coordinates, the map ζ is defined by (z1, z2, . . . , zn) → (z21 , z2, . . . , zn).

We also have to look at a two-sheeted holomorphic branched covering from a
singular variety M onto a smooth complex manifold N which is branched along a
normal crossing divisor of M in the following sense.

Definition 2.4. Let Z be a codimension one complex subvariety of a smooth
complex variety M , smooth away from a codimension one subvariety H ⊂ Z, and
assume that Z has a normal crossing singularity along H. A holomorphic branched
covering of Z onto a smooth complex variety N , doubly branched along the singular
hypersurface H, is a surjective holomorphic map ζ : Z → N with the following
properties.

(1) The restriction of ζ to H is a biholomorphic map onto its image.
(2) The restriction of ζ to Z − ζ−1(ζ(H)) is an m-sheeted unbranched holo-

morphic covering.
(3) There exists a neighborhood V of ζ−1(ζ(H))−H such that the restriction

of ζ to V is an (m− 2)-sheeted unbranched holomorphic covering.
(4) For every x ∈ H there are holomorphic coordinates (z0, z1, . . . , zn) on a

neighborhood U of x in M , and holomorphic coordinates (w1, . . . , wn) on
N near ζ(x), with Z ∩ U = {z20 − z21 = 0} and H ∩ U = {z0 = z1 = 0}
and the property that in these coordinates, the map ζ is the restriction to
Z ∩ U of the map defined by (z0, z1, . . . , zn) → (z1, z2, . . . , zn).

The following statement uses Definition 2.3 and Definition 2.4 in the orbifold
sense. That is, the definitions (which are mainly local) apply after perhaps passing
to a finite manifold cover.

Proposition 2.5. Let D be a codimension one irreducible boundary component
of a stratum Q ⊂ P, obtained by colliding two zeros of differentials in Q of order
m1,m2 ≥ 1 to a single zero of order m = m1+m2 ≥ 2, and let Z = ∆∩Π−1(Q∪D).

(1) Assume that D consists of differentials with a single zero of order m.
• If m1 = m2 then Z is a smooth complex suborbifold of Π−1(Q∪D) of

codimension one. The projection Π|Z : Z → Q ∪ D is a holomorphic
branched covering, doubly branched along the zeros of order m of the
differentials in D.
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• If m1 6= m2 then Z has a normal crossing singularity at the zeros of
order m of the differentials in D. The projection Π|Z : Z → Q∩D is
a holomorphic branched covering, doubly branched along the zeros of
order m of the differentials in D.

(2) If D consists of differentials with k ≥ 2 zeros of order m, then property (1)
holds true for each of the k local branches of Q which intersect transversely
along D.

Proof. As in the proof of Proposition 2.2, denote by D0,Q0 the preimage of D,Q in
the moduli space of abelian differentials. Let x be a zero of order m for an abelian
differential q ∈ D0 and let ǫ > 0 be such that the closed disk of radius ǫ about x
for the flat metric defined by q is isometrically embedded in the Riemann surface
X underlying q. Then there is a canonical complex coordinate z for X near x, so
that in this coordinate, the differential q equals the differential zmdz.

Let γ be a straight line segment of length δ < ǫ/2 for the flat metric defined by
q issuing from x. Opening up the zero of q into two zeros of order m1,m2 along
γ as described in Section 8 of [EMZ03] and recorded in the proof of Proposition
2.2 defines a differential q(γ) with a saddle connection of length 2δ. The direction
of the saddle connection equals the direction of γ, and the midpoint of the saddle
connection is the natural image of the zero x of q.

Let us consider a model for this situation. It is given by a complex coordinate z
on the Riemann surface underlying q(γ), containing 0 in its range, a straight line
segment through 0 for the flat metric defined by q(γ) of length 2δ, and a zero of
order m1,m2 at the endpoints. For a suitable choice of such a complex coordinate
z, the differential can be represented as

(z − a)m1(z + a)m2dz

where a = a(γ) ∈ C∗ can be computed from the length and direction of the saddle
connection. Solving (z − a)m1(z + a)m2dz = dw near z = 0 expresses the local
coordinate w describing the flat metric of the differential q(γ), normalized to vanish
at the point z = 0, as a polynomial of degree m + 1 in the coordinate z, with
coefficients depending holomorphically on the complex variable a ∈ C∗.

As in the proof of Proposition 2.2, for a fixed basis of relative homology of the
surface X marked at the zeros of q, period coordinates for the differentials in a
neighborhood of q in D0 extend to period coordinates on a neighborhood of q in
Q0 ∪ D0 using as an extra parameter the distinguished saddle connection between
the newborn zeros of length less than ǫ (here ǫ > 0 is a constant which depends
on the flat metric defined by q), and these coordinates also define holomorphic
coordinates on a neighborhood V of q in Q ∪ D by equivariance under the action
of C∗. In other words, the differentials resulting from this construction depend in
a holomorphic fashion on period coordinates for q and the endpoint of the straight
line segment γ.

Let us assume that the differentials in D have a single zero of order m. By
Proposition 2.2, in this case D0 is a smooth suborbifold of Q0 ∪ D0. Let Π0 :
P ∗
0 C → H∗ be the pull-back of the universal curve to the complement H∗ of the

zero section in the Hodge bundle. Considering again a differential q ∈ D0 with a zero
x of order m, the above discussion shows that there are holomorphic local functions
(z, v1, . . . , vk) on a neighborhood U of x in Π−1

0 (Q0∪D0), with {vi = const} defining
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the foliation into the fibers of the bundle P ∗
0 C → H∗, and the following additional

properties.

(1) The functions vi are pull-backs by Π0 of holomorphic local functions v̂i on
Q0 ∪ D0.

(2) {v̂1 = 0} = Π0(U) ∩ D0 ⊂ D0 ∪ Q0, and (v̂2, . . . , v̂k) are holomorphic
coordinates for D0 (in the orbifold sense).

(3) The restriction of the function z to a fiber of Π0 over Π0(U) is a holomorphic
coordinate on the fiber.

(4) The zeros of order m for the projective differentials in Π0(U) ∩D0, viewed
as points in the fiber of P ∗

0 C over the points in D0, are contained in the
domain of the fiber coordinate z. The abelian differentials u ∈ Π0(U) are
given in the fiber coordinate z by u = (z − v̂1(u))

m1(z + v̂1(u))
m2dz.

By Proposition 2.2 and its proof, in the case m1 = m2, the differentials parame-
terized by (v̂1, v̂2, . . . , v̂m) and (−v̂1, v̂2, . . . , v̂m) coincide and hence (v̂21 , v̂2, . . . , v̂m)
are complex coordinates for Q0 ∪D0 (in the usual sense which equips the quotient
of the unit disk {|z| < 1} by the involution z → −z with the structure of a Riemann
surface, biholomorphic to the disk). Putting w = v21 , the equation for the subvari-
ety Z = ∆ ∩ Π−1

0 (D0 ∪ Q0) of P
∗
0 C near the zero x of order m equals z2 − w = 0.

For fixed v̂2, . . . , v̂k this locus is parameterized by z → (z, z2) in the coordinate
functions (z, w). Thus Z is a smooth suborbifold of Π−1

0 (Q0 ∪ D0) whose tangent
space at the zero x of order m of a differential in D0 contains the tangent space
of the fiber of Π0 at x. Furthermore, in these coordinates, near the zero of order
m the projection map Π0|Z : Z → Q0 ∪ D0 is of the form required in Definition
2.3. The first item in part (1) of the proposition follows from invariance under the
action of C∗.

In the case m1 6= m2 the tuple of functions (v̂1, v̂2, . . . , v̂k) defines coordinates
on Q0 ∪ D0. The equation (z − v1)

m1(z + v1)
m2 = 0 is the equation of a union of

two complex lines in C2 which intersect transversely in a single point 0. Thus the
union of these two planes has a normal crossing singularity at 0. As this applies to
a neighborhood of the zero of order m in the fiber over any point in D0, it follows
that Z is a complex variety with a normal crossing singularity at the zero of order
m. Furthermore, in these coordinates, near the zero of order m the projection
Π0|Z : Z → Q0 ∪ D0 is of the form required in Definition 2.4. The second item in
part (1) of the proposition follows again from invariance under the action of C∗.

If the differentials in D have k ≥ 2 zeros of order m, then there are k sheets
for the intersection of Q ∪ D with D, with a normal crossing intersection, and the
above discussion applies separately to each of these sheets. This shows part (2) of
the proposition. �

3. On the cohomology of the closure of a stratum

In this section we begin the investigation of the second cohomology of the closure
Q of a projective stratum Q of abelian differentials, and we establish Theorem 1
(see [Ch17]).

As in Section 2, let P ∗C be the pull-back of the universal curve C → Mg to P
and let ∆ be the codimension one subvariety defined by the zeros of the projective
differentials in P. Let ν be the vertical tangent bundle of P ∗C and let τ → P ∗C be
the pull-back of the tautological line bundle on P.
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In the sequel we always denote by ζ∗ the dual of a complex line bundle ζ, or,
equivalently, the inverse of ζ in the group of all complex line bundles on P ∗C. We
are interested in topological properties of holomorphic line bundles, that is, in their
Chern class. Some of the statements below also hold in the holomorphic setting.
An example is the following

Lemma 3.1. The line bundle ν ⊗ τ is trivial on P ∗C −∆.

Proof. Let α ∈ ν∗ be any vector in the vertical cotangent bundle of P ∗C at a point
y ∈ P ∗C −∆. We may view α as a C-linear functional on the holomorphic tangent
space νy of the fiber of P ∗C through y.

The fiber τΠ(y) of τ at the point Π(y) ∈ P consists of the line of holomorphic
one-forms on the Riemann surface PΠ(y) in the projective class defined by Π(y).
As y is not a zero of a differential in this projective class and as the dimension of the
complex vector space of C-linear functionals νy → C equals one, there is precisely
one holomorphic one-form Λ(α) ∈ τΠ(y) whose restriction to νy coincides with α.
Then α → Λ(α) defines an isomorphism between ν∗ and τ on P ∗C −∆, and hence
it defines a nowhere vanishing section of the bundle (ν∗)∗ ⊗ τ = ν ⊗ τ on P ∗C −∆
which is what we wanted to show. �

The codimension one complex subvariety ∆ ⊂ P ∗C is a Weil divisor and hence a
Cartier divisor in the smooth complex orbifold P ∗C. Thus it defines a holomorphic
line bundle L → P ∗C whose first Chern class c1(L) is dual to ∆ in the sense of
intersection (see [Fu84] for more and for references). This line bundle is trivial on
the complement of ∆ and restricts to the normal bundle on the regular part of ∆.
Lemma 3.1 indicates that this line bundle may be a power of the bundle ν ⊗ τ in
the Picard group of P ∗C.

Instead of pursuing this line of idea, we identify the cohomology class defined
by the bundle L which is a weaker statement, but sufficient for our purpose. Thus
the following statement is meant in the topological sense, and it can be viewed as a
version of Theorem 3.13 of [H20]. By the usual exact sequence in sheaf cohomology
defined by the exponential function, it is equivalent to stating that the Chern classes
of these line bundles coincide.

Proposition 3.2. ν∗ ⊗ τ∗ = L on P ∗C.

Proof. Let Σ be a closed oriented surface and let ϕ : Σ → P ∗C be a smooth map.
By transversality, after changing ϕ with a homotopy we may assume that Π ◦ ϕ
intersects P(1) in only isolated points and that furthermore, if x ∈ Σ is such that
Π ◦ ϕ(x) ∈ P(1) then ϕ(x) 6∈ ∆ (see [H20] for a detailed discussion). Moreover,
as ∆ ∩ Π−1(P(0)) is the image of a holomorphic multisection of the restriction
of Π−1(P(0)) to P(0), we may assume that ϕ(Σ) ∩ ∆ consists of finitely many
transverse intersection points, say the points x1, . . . , xs. Each of these points xi is
a simple zero of the differential Π(xi). It now suffices to show that ϕ∗(c1(ν

∗⊗τ∗))[Σ]
equals the number of intersection points of ϕ(Σ) with ∆, counted with sign and
multiplicity. Here [Σ] denotes the fundamental cycle of Σ.

Let us without loss of generality assume in addition that Σ is equipped with a
complex structure and that the restriction of ϕ to a disk neighborhood Di of xi

in Σ is a holomorphic or antiholomorphic embedding of Di into a fiber of Π. The
latter can be achived by modifying ϕ with a small homotopy.
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By Lemma 3.1, the restriction of the line bundle ν∗ ⊗ τ∗ to the complement of
∆ admits a natural trivialization whose restriction to the boundary ϕ(∂Di) of the
disk ϕ(Di) can be described as follows.

Choose a trivialization Y of the tangent bundle of Di ∼ ϕ(Di). Choose further-
more a trivialization ξ of ν∗ ⊗ τ∗ over ϕ(Di). We may assume that the contraction
of ξ with Y is constant, that is, it is the pull-back of a fixed nontrivial vector q in
the fiber of τ∗ over Πϕ(Di).

By Lemma 3.1 and its proof, the contraction of the vector field Y with the
restriction of the trivialization of ν∗ ⊗ τ∗ on P ∗C −∆ to ϕ(∂Di) equals the section
of τ∗ which associates to a point p ∈ ϕ(∂Di) the element of τ∗p which is defined by
the following linear functional ζp. Recall that the fixed vector q is a holomorphic
differential on the fiber of P ∗C containing ϕ(Di) which does not vanish at p; we
then have ζp(aq) = aq(Yp).

Since xi is a zero of the differential q and the only zero of q in Di, if we equip
ϕ(∂Di) with the orientation defined by the Riemann surface structure of the fiber
of P ∗C containing ϕ(Di), then for this orientation, the map S1 = ϕ(∂Di) → C∗

defined by ζp(q) = q(Yp) has rotation number one. This shows that if the restriction
of ϕ to Di is holomorphic, then the rotation number of the restriction to ∂Di of
the trivialization of the bundle ϕ∗(ν∗ ⊗ τ∗) on P ∗C −∆ to ∂Di with respect to a
trivialization of ϕ∗(ν∗ ⊗ τ∗) on the disk Di equals one, and it equals −1 otherwise.

As a consequence, the value c1(ν
∗ ⊗ τ∗)[Σ] indeed equals the number of inter-

sections of ϕ(Σ) with ∆, counted with sign and multiplicities. �

Let now Q ⊂ P be a component of a stratum of projective abelian differentials,
with m zeros of order ki (i = 1, . . . , s). The closure in P ∗C of the locus of the zeros
of order ki in Π−1Q is a complex subvariety ∆ki

of ∆ ∩ Π−1Q. Its intersection
with Π−1Q is a holomorphic multisection of Π−1Q and hence a smooth complex
orbifold. We have

Lemma 3.3. (ν∗)⊗(kj+1)|∆kj
∩Π−1Q = τ |∆kj

∩Π−1Q.

Proof. The lemma is well known, and a proof is contained in [Ch17], see also
[EKZ14]. We give a topological proof.

A point y ∈ ∆kj
is a zero of order kj of a projective holomorphic one-form on

the fiber of P ∗C containing y. The fiber τy of τ at y can be identified with the
complex line of holomorphic one-forms in this projective class.

As y is a zero of this holomorphic one-form of order kj , there is a holomorphic
local coordinate z on Π−1(Π(y)) near y, with y corresponding to z = 0, such that a
nonzero differential in the line τy can locally near y be written in the form azkjdz
for some a ∈ C∗. This differential then defines a singular euclidean metric near y,
which has a cone point of cone angle 2π(kj + 1) at y.

A geodesic arc γ in the fiber Π−1(Π(y)) with one endpoint at y and no singular
point in its interior defines a C-valued functional βγ on τy by associating to a
differential ω ∈ τy the complex length of γ with respect to the singular euclidean
metric defined by ω, that is, we distinguish real and imaginary part of this length,
and we distinguish the orientation.

If γ is not trivial then we have βγ′ = βγ if and only if γ′ is obtained from γ by

a rotation at y by the angle e2πiℓ/(kj+1) for some ℓ ∈ Z in the complex coordinate
z. As a consequence, for a nontrivial arc γ the map which associates to θ ∈ S1 the
functional defined by the image of γ by rotation with angle θ defines a kj+1-sheeted
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covering of the fiber of τ∗ at y. As y ∈ ∆kj
was arbitrary, this shows that ν|∆kj

is

a kj +1-th root of τ∗|∆kj
. Equivalently, we have τ |∆kj

= (ν∗)⊗(kj+1)|∆kj
. As this

identification is natural and hence depends in a holomorphic fashion on y ∈ ∆kj

this shows the lemma. �

Remark 3.4. Let us consider the restriction of the bundle ν∗⊗ τ∗ to the preimage
Π−1(Q) of a stratum Q with m zeros of order ki. Proposition 3.2 shows that the
restriction of ν∗ ⊗ τ∗ to Π−1Q − ∆ is trivial, and taking the tensor product of
the equation in Lemma 3.3 with ν and dualizing yields that its restriction to ∆kj

equals the restriction of νkj . This is consistent as the restriction of a holomorphic
line bundle to a defining divisor equals the normal bundle of the divisor, and since
∆∩Π−1Q is a multisection of Π−1Q over Q, this normal bundle equals the vertical
tangent bundle ν. Furthermore, the multiplicity of ∆kj

in ∆ ∩Π−1Q equals kj .

We use the results obtained so far to show Theorem 1 from the introduction (see
[Ch17] and also [EKZ14]). To this end recall that the ℓ-th Mumford Morita Miller
class κℓ ∈ H2ℓ(Mg,Q) is defined as follows [M87]. Let as before Υ : C → Mg be
the universal curve, let B be closed oriented manifold and let ϕ : B → Mg be a
smooth map; then E = ϕ∗C is a surface bundle over B with vertical tangent bundle
ν. We have

κℓ(ϕ(B)) = Υ∗(c1(ν)
ℓ)(ϕ(B))

where Υ∗ is the Gysin push-forward map obtained by integration over the fiber.
The following proposition treats the case ℓ = 1 and is included here to make the

argument more transparent.

Proposition 3.5. Let Q be a component of a stratum PH(ℓ1, . . . , ℓm) of projective
abelian differentials (here the ℓj are counted with multiplicity); then P ∗κ1|Q =
∑

j(ℓj + 1− 1
ℓj+1 )η|Q.

Proof. It suffices to evaluate P ∗κ1 on the image of a smooth map ϕ : B → Q where
B is a closed oriented surface.

To this end let 1 ≤ k1 < · · · < km be the distinct orders of the zeros of the
differentials in Q, and let di ≥ 1 be the multiplicity of the zero of order ki. Let
ΠE : E → B be the surface bundle (P ◦ ϕ)∗C. The hypersurface ∆kj

in P ∗C
pulls back to a smooth multisection of E → B which defines a homology class
δkj

∈ H2(E,Q). Write δ =
∑

j kjδkj
∈ H2(E,Q).

By Proposition 3.2 and naturality of Chern classes under pull-back by inclusions,
the first Chern class ϕ∗(c1(ν

∗) − c1(τ)) of the pull-back bundle ϕ∗(ν∗ ⊗ τ∗) is
Poincaré dual to the homology class δ. Denoting again by ν∗ the vertical cotangent
bundle of E → B and omitting the pull-back by ϕ in our notation, we have

(c1(ν
∗)− c1(τ)) ∪ ξ[E] = ξ(δ)

for every ξ ∈ H2(E,Q), where [E], [B] is the fundamental cycle of E,B.
As a consequence, we compute (see [H20] for details)

ϕ∗P ∗κ1[B] = c1(ν
∗) ∪ c1(ν

∗)[E](1)

= (c1(ν
∗)− c1(τ)) ∪ c1(ν

∗)[E] + c1(τ) ∪ c1(ν
∗)[E]

= c1(ν
∗)(δ) + c1(τ) ∪ c1(ν

∗)[E].
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By Lemma 3.3, the restriction of (ν∗)⊗(kj+1) to ∆kj
is equivalent to the restric-

tion of τ and therefore

c1(ν
∗)(δkj

) =
1

kj + 1
c1(τ)(δkj

).

The restriction Π|∆kj
∩ Π−1Q : ∆kj

∩ Π−1Q → Q is an (unbranched) covering

of degree dj . Since c1(τ) is the pull-back to E of the class ϕ∗(η) ∈ H2(Q,Q), we
have

c1(τ)(δkj
) = djη(ϕ∗[B]).

Thus by the definition of δ, we have

(2) c1(ν
∗)(δ) =

∑

j

kjdj
kj + 1

η(ϕ∗[B]).

Using once more that c1(τ) is the pull-back of the class ϕ∗(η) on B and that the
evaluation of c1(ν

∗) on a fiber of P ∗C equals 2g − 2, we also have

(3) c1(ν
∗) ∪ c1(τ)[E] = (2g − 2)η(ϕ∗[B]).

Now
∑

j kjdj = 2g− 2 and hence we conclude from equations (1), (2) and (3) that

κ1(ϕ∗[B]) =
∑

j

(1−
1

kj + 1
)djη(ϕ∗[B]) +

∑

j

kjdjη(ϕ∗[B])

=
∑

j

(kj + 1−
1

kj + 1
)djη(ϕ∗[B]).

Since the degree dj equals the number of zeros of order kj which are contained in
∆kj

∩Π−1(y) for any y ∈ B, this concludes the proof of the proposition. �

Example 3.6. Let us consider the principal stratum Q = P − P1. Then kj = 1
for all j and hence Proposition 3.5 shows that

P ∗κ1|Q =
∑

j

(2−
1

2
)η|Q = (3g − 3)η|Q,

which is consistent with Theorem 3.

Proof of Theorem 1. Let Q ⊂ P be a component of a stratum of projective abelian
differentials with m zeros of order ki. It suffices to evaluate P ∗κℓ for ℓ ≥ 1 on the
image of a finite 2ℓ-dimensional simplicial Poincaré duality complex B of homoge-
neous dimension 2ℓ under a continuous map ϕ : B → Q.

To this end consider the surface bundle Π : E → B defined by P ◦ϕ. Let [E] be
the fundamental class of E. The zeros of the differentials in ϕ(B) of order ki define
define a multisection ∆E

ki
of E, and each of these multisections defines a homology

class δki
∈ H2ℓ(E,Q). By Lemma 5.2, the homology class δ =

∑

j kjδkj
is Poincare

dual to c1(ν
∗)−c1(τ) (compare the discussion in the proof of Proposition 3.5 which

carries over without change; here we omit in our notation that all classes on E are
pull-backs of classes on P ∗C). In particular, by the definition of the ℓ-th Mumford
Morita Miller class κℓ [M87] and the fact that c1(τ)

ℓ+1[E] = 0 since c1(τ) is the
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pull-back of a cohomology class on Q, using the Ansatz in the proof of Proposition
3.5 we have

(−1)ℓ+1κℓ(Pϕ∗[B]) = c1(ν
∗)ℓ+1[E](4)

= (c1(ν
∗)− c1(τ)) ∪ c1(ν

∗)ℓ[E] + c1(τ) ∪ c1(ν
∗)ℓ[E].

Taking into account the fact that all contributions are of degree two and hence
their cup products commute, we can expand the second summand in this equation
as

c1(τ)∪c1(ν
∗)ℓ[E](5)

= (c1(τ) ∪ (c1(ν
∗)− c1(τ)) ∪ c1(ν

∗)ℓ−1[E] + c1(τ)
2 ∪ c1(ν

∗)ℓ−1[E]

= (c1(ν
∗)− c1(τ)) ∪ c1(τ) ∪ c1(ν

∗)ℓ−1[E] + c1(τ)
2 ∪ c1(ν

∗)ℓ−1[E].

Proceeding inductively, we obtain the equation

(−1)ℓ+1κℓ(Pϕ∗[B])(6)

=

ℓ
∑

j=0

(c1(ν
∗)− c1(τ)) ∪

(

c1(τ)
j ∪ c1(ν

∗)ℓ−j
)

[E] + c1(τ)
ℓ+1[E]

=
ℓ

∑

j=0

c1(τ)
j ∪ c1(ν

∗)ℓ−j(δ).

The restriction of Π to each of the sets ∆E
ki

⊂ ∆E is a covering. Moreover, by

Lemma 3.3, we have (ν∗)⊗(ki+1)|∆E
ki

= τ |∆E
ki
. This yields

c1(τ)
j ∪ c1(ν

∗)ℓ−j(δki
) =

1

(ki + 1)ℓ−j
c1(τ)

ℓ(δki
)

and therefore

ℓ
∑

j=0

c1(τ)
j ∪ c1(ν

∗)ℓ−j(δ) =
∑

i

(

ℓ
∑

j=0

ki
(ki + 1)ℓ−j

)

c1(τ)
ℓ(δki

)

and hence the theorem follows from the fact that c1(τ) is the pull-back of the class
ϕ∗(η) ∈ H2(Q,Q) and that furthermore the restriction of the projection Π to ∆E

ki

is an unbranched covering of degree di. �

4. The Poincaré dual of P1

In this section we apply the results of Section 2 to represent the signature of a
surface bundle as an intersection number. This yields a purely topological proof of
Theorem 3 [KZ11].

The projectivized Hodge bundle P : P → Mg extends to a bundle over the

Deligne Mumford compactification Mg of Mg which we denote by P : P → Mg.
A standard spectral sequence argument shows that the second rational cohomology
group of P is generated by the pull-back of the second rational cohomology group
of Mg together with the cohomology class η of the tautological line bundle of the

fibre (see Lemma 1 of [KZ11] for details). Since P is a Poincaré duality space, there

is a cohomology class ξ ∈ H2(P,Q) which is Poincaré dual to the closure P(1) of

P(1). The set P(1) is in fact a (singular) complex hypersurface in P.
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The class ξ can be expressed as a rational linear combination of the class η and
the pull-back of a set of generators of H2(Mg,Q). Such a set of generators consists
of the first Chern class λ of the Hodge bundle as well as the Poincaré duals δj
(0 ≤ j ≤ ⌊g/2⌋) of the irreducible components of the boundary divisor Mg −Mg.
We refer to [HM98] for more information.

The first Chern class λ of the Hodge bundle is non-zero precisely when g ≥ 3
[H83, HM98]. The class δ0 is dual to the divisor of stable curves with a single
non-separating node, and for 1 ≤ j ≤ g/2, the class δj is dual to the divisor of
stable curves with a node separating the stable curve into a curve of genus j and a
curve of genus g − j.

Korotkin and Zograf calculated this linear combination (the formula before Re-
mark 2 on p.456 of [KZ11]) using ideas from mathematical physics. An algebraic
geometric proof of Theorem 4.1 is due to Chen [Ch13].

Theorem 4.1 (Korotkin and Zograf [KZ11]).

ξ = 24P ∗λ− (6g − 6)η − P ∗(2δ0 − 3

⌊g/2⌋
∑

j=1

δj).

Let ΠE : E → B be a surface bundle over a surface, defined by a smooth map
f : B → Mg. Let S → Mg be the sphere subbundle of the Hodge bundle over
Mg; it admits a fibration Ξ : S → P with fiber a circle. Let F : B → S be a lift
of f to S. Such a lift exists since the dimension of the fiber of S equals 2g − 1 > 2
(see for example Lemma 3.5 of [H20]). Denote by ∆E ⊂ F ∗Ξ∗P ∗C the pull-back
of the variety ∆ in the pull-back of the universal curve to B. Then ∆E defines a
homology class [∆E ] ∈ H2(E,Q) which is Poincaré dual to the Chern class c1(ν

∗)
of the vertical cotangent of E by Proposition 3.2 and the fact that the pull-back
to S of the tautological bundle on P is trivial. We refer to Section 3 for a more
detailed discussion. Denoting as before by [E] the fundamental class of E we have

Corollary 4.2. c1(ν
∗) ∪ c1(ν

∗)[E] = [∆E ] · [∆E ] = c1(ν
∗)[∆E ].

Proof. Both equations follows from Poincaré duality for the surface bundle E. �

By the definition of the first Mumford Morita Miller class κ1 as explained before
Proposition 3.5, we obtain

Corollary 4.3. f∗κ1[B] = c1(ν
∗)[∆E ].

In view of the identity κ1 = 12λ on Mg [HM98], the formula in Theorem 3 is a
special case of Theorem 4.1. The following lemma is the first step towards a purely
topological proof. For its formulation, recall that we can look at the intersection
number between ϕ(B) and the hypersurface P(1) ⊂ P.

Lemma 4.4. ΞF (B) · P(1) = 2[∆E ] · [∆E ] = 2c1(ν
∗)[∆E ]; in particular, the re-

striction of the class ξ to P|Mg satisfies

ξ = 2P ∗κ1 + aη = 24P ∗λ+ aη

for some a ∈ Q.

Proof. Since the complex codimension of P(2) ⊂ P equals two and since by Propo-
sition 2.2 the union P(0)∪P(1) is a smooth orbifold (recall to this end that P(1) is
just the stratum of abelian differentials with a single zero of order two and all other
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zeros of order one), by transversality we may assume that ΞF (B) ⊂ P(0) ∪ P(1)
and that furthermore ΞF (B) intersects P(1) transversely in finitely many points.

Let as before ∆E ⊂ E = F ∗Ξ∗P ∗C be the pull-back of ∆ in the surface bundle
E → B. By the first part of Proposition 2.5, ∆E is a smoothly embedded surface in
E. Furthermore, the restriction of the projection ΠE : E → B to ∆E is a branched
covering, doubly branched at each double zero of a differential in the finitely many
intersection points of ΞF (B) with P(1).

At each branch point x ∈ ∆E , the surface ∆E is tangent to the fiber of E at x,
and the orientation of ∆E coincides with the orientation of the fiber if and only if
the intersection point ΞF (x) of ΞF (B) with P(1) is positive.

Assigning to each branch point in ∆E this sign defines a divisor A on the surface
∆E . The tangent bundle of ∆E can be represented in the form (ΠE |∆E)

∗(TB) ⊗
(−H) where H is the line bundle on ∆E with divisor A. Thus the normal bundle
N of ∆E can be written as N = ν ⊗ H+(⊗H−)−1 where H+ is the line bundle
defined by the divisor on ∆E which corresponds to the positive intersection points
of ΞF (B) with P(1), and H− is the line bundle defined by the divisor on ∆E which
corresponds to the negative intersection points.

This implies that the self-intersection number in E of the surface ∆E ⊂ E equals

[∆E ] · [∆E ] = c1(ν)[∆E ] + b

where b = ΞF (B) · P(1) is the number of branch points of ΠE |∆E , counted with
sign.

By Poincaré duality (see Corollary 4.2), we have

c1(ν
∗)[∆E ] = [∆E ] · [∆E ] = c1(ν)[∆E ] + b = −c1(ν

∗)[∆E ] + b

and hence b = 2c1(ν
∗)[∆E ]. Together with Corollary 4.3 and the fact that κ1 = 12λ

as classes in H2(Mg,Q) [HM98], this completes the proof of the lemma. �

For the proof of Theorem 3 we are left with computing the constant a ∈ Q.

Proof of Theorem 3. To calculate the coefficient a ∈ Q in the expression in Lemma
4.4 note first that in the case g = 2, we have λ = 0 [HM98] and

ξ = 2P ∗κ1 − 6η = −6η.

Namely, for g = 2 the complex rank of the Hodge bundle equals 2 and hence
the fibre of the bundle P → M2 over the moduli space of genus 2 complex curves
is just CP 1. A Weierstrass point on a genus 2 complex curve X is a double zero
of a holomorphic one-form on X. Now X has precisely 6 = −3χ(S2) Weierstrass
points and hence the intersection number of the fibre of the bundle P → M2 with
the divisor P(1) equals 6. As the evaluation on CP 1 of the Chern class of the
tautological line bundle on CP 1 equals −1, the formula in the theorem follows from
Poincaré duality.

For arbitrary g ≥ 3 choose a complex curve X ∈ Mg which admits an un-
branched cover of degree g − 1 onto a curve Y ∈ M2. The projective line of
projective holomorphic one-forms on Y pulls back to a projective line of projective
holomorphic one-forms on X. The pull-back of a projective differential with two
simple zeros is a differential with only simple zeros, but the pull-back q of a differ-
ential with a double zero is a differential with g − 1 double zeros. By Proposition
2.5, such a differential is contained in a component D of a stratum of differentials
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with g − 1 double zeros, and it is the locus of a g − 1-fold normal crossing of its
union with the (connecting) stratum Q = PH(1, 1, 2, . . . , 2).

The projective line CP 1 of holomorphic one-forms pulled back from Y is trans-
verse at q to each of the d local branches through q of the closure of Q. As a
consequence, if we fix a small disk D about q in the fiber CP 1 of the bundle P, then
the homological intersection number of (D, ∂D) with each of these d local branches,
that is, the intersection number of a deformation of D with fixed boundary, counted
with sign and multiplicities, equals one. As a consequence, the intersection number
with P(1) of this pulled-back CP 1 equals 6d = 6g− 6. This completes the proof of
Theorem 3. �

Remark 4.5. Theorem 3 also shows the following. Let X be a Riemann surface of
genus g. Then the intersection of P(1) with the complex projective space CP g−1

defined as the projectivization of the vector space of holomorphic one-forms on X
is a complex hypersurface in CP g−1. The degree of this hypersurface equals 6g−6.

5. Boundary divisor computation

Let Q be a component of a stratum of projective abelian differentials with at
least two zeros, with closure Q. Assume that the differential in Q have di zeros
of order ki. These zeros define a multisection of the restriction of P ∗C|Q = Π−1Q
to Q whose closure in P ∗C will be denoted by ∆ki

. The goal of this section is
to use the hypersurfaces ∆ki

⊂ Π−1Q to obtain some information on the second
cohomology group of Q.

The following is immediate from Proposition 2.1 and Proposition 2.5.

Lemma 5.1. ∆ki
is a codimension one subvariety of P ∗C|Q which is a local com-

plete intersection. Thus ∆ki
defines a class in H2(P ∗C|Q,Q).

Proof. By Proposition 2.1 and Proposition 2.5, ∆ki
is a codimension one subvariety

of the variety P ∗C|Q which is a local complete intersection. Thus ∆ki
is a Weil

divisor in P ∗C|Q and hence a Cartier divisor since P ∗C|Q is a complex variety. Via
intersection, such a divisor defines a class in H2(P ∗C|Q,Q) [Fu84]. �

Denote by Lki
the holomorphic line bundle which defines ∆ki

, that is, so that
∆ki

is the zero set of a rational section of Lki
. On the regular subset of ∆ki

, the
restriction of Lki

coincides with the normal bundle of ∆ki
. Since ∆ki

∩ Π−1(Q) is
a holomorphic multi-section of Π−1Q → Q, the line bundle Lki

has the following
properties.

(1) Lki
|Π−1Q−∆ki

is trivial.
(2) The restriction of Lki

to ∆ki
∩ Π−1(Q) coincides with the restriction of

vertical tangent bundle ν.
(3) The degree of the restriction of Lki

to a fiber of the bundle Π−1Q equals
the multiplicity di of the zero ki.

The last property follows from the fact that the restriction of the bundle Lki
to

a fiber X of Π−1Q is the line bundle on X defined by the effective divisor ∆ki
∩X,

and the degree of this divisor equals di.
The tautological line bundle over the fibers of P pulls back via the projection P

to a line bundle τ on P ∗C. The following is an easy consequence of Proposition 3.2.

Lemma 5.2. c1(ν
∗ ⊗ τ∗)|Π−1Q =

∑

i kic1(Lki
).
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Proof. The Weil divisor
∑

i ki∆ki
is the intersection of the hypersurface ∆ ⊂ P ∗C

with Π−1(Q). As the cohomology class dual to a divisor is defined by intersection
[Fu84], the intersection ∆∩Π−1Q, counted with multiplicites, defines the restriction
to Π−1Q of the cohomology class dual to ∆. By Proposition 3.2, this cohomology
class is the class c1(ν

∗ ⊗ τ∗).
On the other hand, since all constructions are natural,

∑

i ki∆ki
also defines the

comology class
∑

i kic1(Lki
). This is what we wanted to show. �

Let for the momentX,Y be arbitrary connected locally path connected Hausdorff
spaces and let ϕ : X → Y be an open and closed continuous map. The degree of ϕ
is defined as

deg(ϕ) = sup{♯ϕ−1(y) | y ∈ Y },

and the local degree of ϕ at x ∈ X is defined as

deg(ϕ, x) = inf
U

sup{♯ϕ−1ϕ(z) ∩ U | z ∈ U},

where U ranges over the neighborhoods of x. The following is taken from [Ed76].

Definition 5.3. An open and closed continuous map ϕ : X → Y is a finite branched
covering if deg(ϕ) < ∞ and for each y ∈ Y ,

deg(ϕ) =
∑

x∈ϕ−1(y)

deg(ϕ, x).

The relevance for our purpose is Theorem 2.1 of [Ed76].

Theorem 5.4 (Edmonds [Ed76]). Let f : X → Y be a finite branched covering.
Then there is a transfer homomorphism

τ : H∗(X,Q) → H∗(Y,Q)

such that τ ◦ f∗ = deg(f) · 1.

As in [H20], we have

Lemma 5.5. For each i the restriction of the projection Π to ∆ki
is a finite

branched covering.

Proof. The restriction of the projection Π to ∆ki
⊂ Π−1Q is clearly open and closed,

and its restriction to ∆ki
∩ Π−1Q is an unbranched covering of degree di. Thus it

suffices to observe the following. Let z ∈ ∆ki
; then the local degree of ϕ = Π|∆ki

at z equals the multiplicity of z in the divisor supported in Π−1(Π(z))∩∆ki
which

defines the restriction of the line bundle Lki
to Π−1(Π(z)).

To this end choose a sequence of points zj ∈ ∆ki
∩Π−1Q such that zj → z and

hence qj = Π(zj) → q = Π(z).
For each j the intersection ∆ki

∩ Π−1(qj) is an effective divisor Dj of degree di
where di is the multiplicity of the zero of order ki for qj . By the definition of the
topology on P, as i → ∞ these divisors converge to an effective divisor D of degree
di containing z. If the multiplicity of z in D equals m ≥ 1 then it follows as in
Lemma 3.2 of [H20] that the local degree of Π|∆ki

at z equals m. This implies the
lemma. �

By Lemma 5.5 and Theorem 5.4, there is a transfer map

H∗(∆ki
,Q) → H∗(P,Q).
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Thus we can define a cohomology class

κki ∈ H2(Q,Q)

as the image of c1(Lki
)|∆ki

under the transfer map H∗(∆ki
,Q) → H∗(Q,Q). In

other words, if A is cycle in Q which defines a homology class [A] ∈ H2(Q,Q), then
κki [A] is the evaluation of c1(Lki

) on Π−1(A) ∩∆ki
as specified in Theorem 5.4.

Denote by Dc
i,j the closure of a connected component of the boundary divisor

Di,j of Q which is obtained by colliding two zeros of not necessarily distinct order
ki, kj . Recall to this end from [KtZ03] that a stratum may have several connected
components, and the boundary of a component of a stratum may contain more than
one of these components of codimension one. By Proposition 2.2, if differentials in
Q do not have a zero of order ki + kj , then differential in Dc

i,j contain a single zero
of order ki + kj , and the boundary component Dc

i,j of Q is a smooth suborbifold of
Q∪D. Otherwise it is the locus of a normal crossing singularity. Thus the closure
of such a boundary component is a divisor in Q which defines a dual line bundle
on Q. Our goal is to compute the Chern class of this line bundle using the classes
κkℓ .

We begin with computing the normal bundle of ∆kℓ
in Q ∪ Dc

i,j . The following
is similar to Lemma 4.4.

Lemma 5.6. Assume that the multiplicity of the zero of order ki+kj in Dc
i,j equals

one. Then ∆kℓ
is a smooth suborbifold of Π−1(Q ∪Dc

i,j).

(1) If i = j and ℓ = i then the normal bundle of ∆ki
equals (ν|∆ki

)⊗N where
N is the line bundle on ∆ki

defined by the divisor which equals the locus of
the zeros of order 2ki of the points in Dc

i,i.
(2) If i = j and ℓ 6= i or if i 6= j then the normal bundle of ∆kℓ

equals the
restriction of ν.

Proof. Recall that for all ℓ, the normal bundle of the intersection ∆kℓ
∩ Π−1(Q)

equals the bundle ν.
Now if i = j then by Proposition 2.5, the intersection ∆ki

∩ Π−1(Q ∪ Dc
i,j) is

tangent to the fibers of the bundle P ∗C at the zeros of order 2ki in ∆ki
. The locus

of these zeros equals the branch locus of the projection ∆ki
→ Q ∪ Dc

i,j , and it
is a subvariety of ∆ki

of codimension one. Furthermore, the projection Π|∆ki
is

doubly branched along its branch locus. Therefore the normal bundle of ∆ki
equals

the tensor product of the restriction of the vertical tangent bundle ν with the line
bundle which is dual to this locus of tangency. We refer to the proof of Lemma
4.4 for more details on this well known fact, with a slightly different but equivalent
viewpoint.

If i = j and ℓ 6= i then the restriction of Π to ∆ℓ∩Π
−1(Q∪Dc

i,j) is an unbranched

covering and hence the normal bundle of ∆ℓ ∩ Π−1(Q ∪ Dc
i,j) coincides with the

vertical tangent bundle ν.
If i 6= j then for each ℓ the intersection ∆kℓ

∩ Π−1(Q ∪ Dc
i,j) is smooth, with

normal bundle ν. Note however that the hypersurfaces ∆ki
and ∆kj

intersect along
the zeros of order ki + kj . �

To keep notations transparent, from now on we denote by [A] the second co-
homology class defined by a Cartier divisor A. In particular, for a component Q
of a stratum, with zeros of order ki, kj , we obtain a class [Dc

i,j ] ∈ H2(Q ∪ Dc
i,i,Q)

defined by a boundary component Dc
i,j of Q which is obtained by merging a zero of
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order ki with a zero of order kj . Let as before τ be the pull-back of the tautological
bundle on P to P ∗C. The following statement is the main technical result required
for the proof of Theorem 2, and it is of independent interest.

Proposition 5.7. For all i, j the cohomology class [Dc
i,j ] is contained in the sub-

group of H2(Q ∪Dc
i,j ,Q) spanned by the restrictions of P ∗κ1 and η.

Proof. By Proposition 2.2, if differentials in Dc
i,j have a single zero of order ki+kj ,

then Q ∪ Dc
i,j is a smooth complex orbifold, and otherwise Q ∪ Dc

i,j has a normal
crossing singularity along Dc

i,j . As a consequence, there is a well defined desingu-
larization of Q ∪ Dc

i,j which is a smooth complex orbifold. This desingularization
contains d ≥ 1 copies of Dc

i,j where d is the multiplicity of the zero of order ki + kj
in Dc

i,j , and Q∪Dc
i,j is obtained from this desingularization by identifying these d

copies of Dc
i,j .

As a consequence, for a smooth closed surface B we can talk about a smooth
map ϕ : B → Q ∪ Dc

i,j which intersects Dc
i,j transversely. Such a smooth map is

the projection of a smooth map of B into the desingularization of Q ∪ Dc
i,j which

intersects the preimage of the hypersurface Dc
i,j transversely in finitely many points.

Each of these intersection points then descends to an intersection point of ϕ(B) with
Dc

i,j .

Consider the pull-back ΠE : E = ϕ∗P ∗C → B of the universal curve to B.
This is a smooth fiber bundle over B. Denote by ∆E

kℓ
the pull-back of ∆kℓ

to E.
Since ϕ(B) intersects Dc

i,j transversely in finitely many points, the restriction of

the projection ΠE : E → B to ∆E
kℓ

is a branched multi-section, and ∆E
kℓ

⊂ E is a
cycle which defines a homology class δℓ = δkℓ

∈ H2(E,Q).
Write δ =

∑

i kiδki
. In view of the fact that c1(ν

∗) ∪ c1(ν
∗)[E] = P ∗κ1(ϕ∗[B]),

Proposition 3.2 and naturality with respect to pull-back implies that

δ · δ = c1(ν
∗ ⊗ τ∗)(δ) = (c1(ν

∗)− c1(τ)) ∪ (c1(ν
∗)− c1(τ))[E](7)

= P ∗κ1(ϕ∗[B])− 2(2g − 2)η(ϕ∗[B]).

Recall that c1(ν
∗) ∪ c1(τ)[E] = (2g − 2)η(ϕ∗[B]).

For the proof of the proposition, we analyze the evaluation of the the cohomology
classes in H2(E,Q) which are Poincare dual to the classes δℓ. To this end we
distinguish three cases.

Case 1: ℓ 6= i, j.
By Lemma 3.3, the restriction of the bundle ν⊗(kℓ+1) to ∆kℓ

∩ Π−1Q coincides
with the restriction of the bundle τ∗. We claim that this holds true on ∆kℓ

∩Π−1(Q∪
Dc

i,j). To this end note that since ℓ 6= i, j by assumption, the local computation
carried out in Lemma 3.3 is valid as well for preimages of points in Dc

i,j .

By statement (2) of Lemma 5.6, in this case ∆E
kℓ

is a smooth multisection of E,
and its normal bundle can be identified with the restriction of the vertical tangent
bundle ν of E. Since the line bundle Lkℓ

on P ∗Q is dual to ∆kℓ
in the sense of

intersections, by naturality of Chern classes under pull-back we conclude that the
class δℓ is Poincaré dual to the Chern class ϕ∗c1(Lkℓ

) of ϕ∗(Lkℓ
).

As the restriction of the projection ΠE to ∆E
kℓ

is an unbranched covering of
degree dℓ where dℓ is the multiplicity of the zero of order kℓ in Q, using the transfer
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map in cohomology for this covering map ∆E
kℓ

→ B we obtain

κkℓ(ϕ∗[B]) = ϕ∗c1(Lkℓ
)(δℓ) = δℓ · δℓ

= c1(ν)(δℓ) =
−1

kℓ + 1
ϕ∗c1(τ)(δℓ) =

−dℓ
kℓ + 1

η(ϕ∗[B]).(8)

Case 2: i = j = ℓ.
By construction, in this case we have ∆E

kq
∩∆E

ku
= ∅ for q 6= u. Thus we obtain

from equation (7), from Lemma 5.2 and from equation (8) the equation

(9) (P ∗κ1 − 2(2g − 2)η)(ϕ∗[B]) =
∑

ℓ 6=i

−kℓdℓ
kℓ + 1

η(ϕ∗[B]) + kiκ
ki(ϕ∗[B]).

Solving for κki(ϕ∗[B]) shows that

(10) κki(ϕ∗[B]) =
1

ki

(

P ∗κ1(ϕ∗[B]) + (
∑

ℓ 6=i

kℓdℓ
kℓ + 1

− 2(2g − 2))η(ϕ∗[B])
)

and hence the restriction of the class κki to Q ∪ Dc
i,j is contained in the subgroup

generated by P ∗κ1 and η.
To show that [Dc

i,i] also is contained in the subgroup generated by P ∗κ1 and η,
recall from Proposition 2.5 that the pull-back of ∆ki

to E is a branched multisection
of E, with a single branch point in each fiber of E over the points xu ∈ B with
ϕ(xu) ∈ Dc

i,i, and each of these branch points is a zero of order 2ki of the differential
ϕ(xu). Thus by Lemma 5.6 and Lemma 3.3, we deduce as in the proof of Lemma
4.4 that

(11) κki(ϕ[B]) = c1(Lki
)(δi) = δi · δi = c1(ν)(δi) + b

where b is the number of intersection points between ϕ(B) and Dc
i,i, counted with

sign and multiplicities.
On the other hand, we have

(12) P ∗κ1(ϕ∗[B]) =
∑

j

kjc1(ν
∗)(δj) + 2(2g − 2)η(ϕ∗[B])

and therefore as in Section 4, we conclude that
(13)

−c1(ν)(δi) = c1(ν
∗)(δi) =

1

ki

(

P ∗κ1ϕ∗[B]−
∑

u6=i

c1(ν
∗)(δu)− 2(2g − 2)η(ϕ∗[B])

)

.

Since by equation (8) in Case 1 above, for all u 6= i the value c1(ν)(δu) is a
multiple of η(ϕ∗[B]), we conclude from equations (11,13) and the fact that the
class κki is a linear combination of the restriction to Q of the classes P ∗κ1 and
η that the same holds true for the class [Dc

i,i]. This completes the proof of the
proposition in the case ki = kj .

Case 3: ℓ = i 6= j.
Let x ∈ B be such that ϕ(x) ∈ Dc

i,j . By modifying ϕ with an isotopy, we may
assume that for some complex structure on B (whose orientation may be opposite
to the orientation of B in the case that the intersection index of ϕ is negative), the
map ϕ is a holomorphic embedding near x, and that the intersection of ϕ(B) with
Dc

i,j is transverse at ϕ(x). The pull-back ∆E
ki

of ∆ki
to E contains a point p0 in

the fiber of E over x which is a zero of the differential ϕ(x) ∈ Dc
i,j of degree ki+kj .

Furthermore, it follows from the discussion in the proof of Proposition 2.5 that
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there are holomorphic local coordinates (z, y) for E near p0 = (0, 0) whose range is
a polydisk {(z, y) ∈ C2 | |z| < ǫ, |y| < ǫ}, and with the following properties.

(1) In these coordinates, the projection ΠE : E → B is the second factor
projection (z, y) → y.

(2) On the disk {(z, y) | |z| < ǫ}, the differential ϕ(y) = ϕ(ΠE(z, y)) is the
projectivization of the differential Φ(y) = (z − y)ki(z + y)kjdz.

Note that (z, y) → Φ(y)(z) defines a section of the pull-back of the tautological
bundle τ on P over the domain of the coordinates (z, y). Moreover, in these coor-
dinates, the locus ∆E

ki
is the diagonal D = {(y, y) | |y| < ǫ}. The normal bundle

of this diagonal is spanned by the restriction to D of the holomorphic vector field
∂
∂z − ∂

∂y , and the section Ψ(z, y) = 1
(z−y)ki

( ∂
∂z − ∂

∂y ) of the holomorphic tangent

bundle of the polydisk is meromorphic, with a pole of order ki along D.
Now (z, y) → Φ(y)(z) also can be viewed as a local holomorphic section of the

vertical cotangent bundle. Pairing this section Φ with the meromorphic vector
field Ψ defines an isomorphism between the restriction of the line bundle τ to the
punctured disk D − p0 ⊂ ∆ki

and the ki + 1-th power of the conormal bundle of
D − p0. This isomorphism is the restriction of the isomorphism constructed in the
proof of Lemma 3.3. Since for (y, y) ∈ D we have Φ(Ψ(y, y)) = (2y)kj , the rotation
number of the image of this isomorphism with respect to a section of the vertical
cotangent bundle which extends across p0 equals kj .

Using this analysis for all intersection points of ϕ(B) with Dc
i,j , we conclude that

the restriction of the bundle τ to ∆E
ki

can be identified with the bundle (ν∗)⊗(ki+1)⊗

ξkj where ξ is the bundle with divisor the zeros of order ki+ kj for the differentials
in ϕ(B).

As a consequence, we have

(14) κki(ϕ∗[B]) = δki
· δki

= c1(ν)(δki
) =

1

ki + 1
(−diη(ϕ∗[B]) + kjb)

where b is the number of intersections of ϕ∗(B) and Dc
i,j , counted with sign and

multiplicity, and where di is the multiplicity of the zero of order ki. Similarly, the
same equation also holds true if we replace ki by kj .

As
∑

ℓ kℓκ
kℓ(ϕ∗[B]) = (P ∗κ1 − (2g − 2)η)(ϕ∗[B]), from Case 1 above we infer

that

(15) (kiκ
ki + kjκ

kj )(ϕ∗[B]) = (P ∗κ1 + (
∑

ℓ 6=i,j

kℓdℓ
kℓ + 1

− (2g − 2))η)(ϕ∗[B])

and hence kiκ
ki + kjκ

kj is contained in the subgroup of H2(Q,Q) generated by
P ∗κ1 and η.

On the other hand, by equation (14) we know that

kikj(
1

ki + 1
+

1

kj + 1
)b

= (kiκ
kj + kjκ

kj )(ϕ∗[B]) + (
kidi
ki + 1

+
kjdj
kj + 1

)η(ϕ∗[B]).

This yields that indeed, the intersection number b with Dc
i,j is a rational linear

combination of P ∗κ1 and η. This completes the proof of the proposition. �

Remark 5.8. The proof of Proposition 5.7 also shows the following. Let D1,D2

be two boundary components of codimension one of a stratum Q. Let us assume
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that D1,D2 are distinct components of the same stratum of projective abelian
differentials. The cohomology class defined by Di can be represented in the form
aP ∗κ1+ bη for both i = 1, 2, that is, it is the same linear combination of the classes
P ∗κ1 and η.

Remark 5.9. The computations in the proof of Proposition 5.7 can be used to
establish an explicit formula for the classes of the boundary divisors Dc

i,j in H2(Q∪
Dc

i,j ,Q). As these formulas are rather involved and we do not know any interesting
application, we omit this discussion.

6. A stratification of the spin moduli space

The goal of this section is to prove Theorem 2. We begin with the following well
known

Lemma 6.1. Let V ⊂ Mg be any subvariety. If κ1 = 0 on V then V does not
contain any complete complex subvariety.

Proof. We evoke the following result of Wolpert [W86]: There exists a holomorphic
line bundle L on Mg with Chern class κ1, and there is a Hermitian metric on L
with curvature form ω = 1

2π2ωWP where ωWP is the Weil Petersson Kähler form
on Mg. In particular, ω is positive. As a consequence, if V is a compact complex
variety of dimension k ≥ 1 and if ζ : V → Mg is a holomorphic map which does
not factor through a map from a variety of smaller dimension, then

(16) κk
1(ζ(V )) =

∫

V

(ζ∗ω)k > 0.

This shows that if V ⊂ Mg is a complex subvariety which contains a complete
complex subvariety, then κ1 6= 0 on V. �

The following is the main result of [G20]. Its proof is completely elementary.

Theorem 6.2 (Gendron [G20]). A stratum of abelian differentials does not contains
a nontrivial complete complex subvariety.

Let Mg,odd be the finite orbifold cover of Mg which is the moduli space of curves
with odd theta characteristic. By definition, this is the quotient of Teichmüller
space by the finite index subgroup of the mapping class group Mod(Sg) which
preserves an odd spin structure on the surface Sg of genus g. Such an odd spin
structure is defined as a quadratic form on H2(Sg,Z/2Z) with odd Arf invariant
(see [KtZ03] for more information). Each of the curves X ∈ Mg,odd admits an
odd theta characteristic, which by definition is a holomorphic line bundle L whose
square equals the canonical bundle of X and such that h0(X,L) is odd. The square
of a holomorphic section of L is a holomorphic one-form on X with all zeros of even
multiplicity.

All bundles over Mg will be pulled back to Mg,odd and will be denoted by the

same symbols. Let Q be the closure in P of the stratum Q = PH(2, . . . , 2)odd of
projective abelian differentials with all zeros of order two and odd spin structure.
Then the restriction of the projection P : P → Mg,odd to Q is surjective.

Recall that Q admits a stratification of depth g − 1 into subspaces Qj of codi-

mension j−1. Here Qj is the union of all components of strata in Q of codimension
j − 1. In particular, we have Q1 = Q and Qg−1 is the union of those components
of PH(2g − 2) with an odd spin structure [KtZ03].
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For r ≥ 2 let

Mr
g,odd = {(X,L) ∈ Mg,odd | h0(X,L) ≥ r + 1}.

The first part of the following statement is Clifford’s theorem (for g ≤ 4), the
second and third parts are due to Teixidor i Bigas [TiB87], in particular Theorem
2.13 in that article.

Theorem 6.3 (Clifford, Teixidor i Bigas [TiB87]). (1) For g ≤ 4, the locus
Mr

g,odd is empty for all r ≥ 2.

(2) For g ≥ 5 the locus M2
g,odd has pure codimension 3 in Mg,odd.

(3) Any component of Mr
g,odd has dimension at most 3g − 2r − 2.

To avoid technical difficulties we occasionally pass to a finite orbifold cover M̂
of Mg,odd which is a complex manifold. Then strata of abelian differentials over M̂
are complex manifolds as well. The properties we are interested in do not change
by this modification. By abuse of notion, we still work with Mg,odd, adopting the
convention that whenever we talk about smooth complex orbifolds, by which we
mean the quotient of a smooth complex manifold by a finite group of biholomorphic
automorphisms.

Recall from [KtZ03] that a hyperelliptic component of (projective) abelian dif-
ferentials consists of differentials on hyperelliptic curves which are invariant under
the hyperelliptic involution. There are two such components in each genus g ≥ 3,
the components PH(g − 1, g − 1)hyp and PH(2g − 2)hyp. The projection P maps
each of these components onto the locus Hyp of hyperelliptic curves in Mg.

By [KtZ03], for g ≥ 4 the stratum PH(2g− 2) has three connected components.
There is an odd non-hyperelliptic component PH(2g−2)odd, the hyperelliptic com-
ponent PH(2g − 2)hyp and an even component PH(2g − 2)even. The parity of the
hyperelliptic component PH(2g − 2)hyp is odd if and only if g ≡ 1, 2 mod 4. In the
case g = 3, the even component coincides with the hyperellipitic component. To
keep notations uniform, we put PH(4)even = ∅. We have

Lemma 6.4. The image of the projection P : PH(2g−2)odd∪PH(2g−2)even → Mg

is disjoint from the hyperelliptic locus.

Proof. Let q ∈ PH(2g−2)−PH(2g−2)hyp be a projective abelian differential with
a single zero on a Riemann surface X which is not contained in the hyperelliptic
component of PH(2g− 2). The zero of the projective differential q is a Weierstrass
point on X, and q is uniquely determined by this Weierstrass point.

If X is a hyperelliptic surface, then as Weierstrass points are fixed by the hyper-
elliptic involution, the projective differential q is invariant under the hyperelliptic
involution. But this implies that q is contained in the hyperelliptic component of
PH(2g − 2), a contradiction. �

Example 6.5. If g = 3 then the closure Q of Q = PH(2, 2)odd in P consists
precisely of squares of projective sections of an odd theta characteristic. By the
first part of Theorem 6.3, this implies that the restriction of the projection P : P →
Mg,odd to Q is a biholomorphism. Since the spin structure of the hyperelliptic

component of H(4) is even [KtZ03], we have Q = PH(2, 2)odd ∪ PH(4)odd.
As the restriction of the projection P to Q is a biholomorphism, it induces

an isomorphism in cohomology. Now H2(M3,odd,Q) = Q is generated by κ1
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[H83, RW14]. Since PPH(4)odd is a divisor in M3,odd and hence defines a sec-
ond cohomology class ξ ∈ H2(M3,odd,Q), this class then is a multiple of κ1. Now
a line bundle defined by a divisor is trivial on the complement of the divisor, the
restriction of κ1 to PH(2, 2)odd vanishes.

On the other hand, by Lemma 6.4, the divisor PPH(4)odd is disjoint from the
hyperelliptic locus Hyp = PPH(4)hyp which is a divisor in M3,odd. This divisor
also defines a multiple of κ1. In other words, the Chern class of the line bundle
defined by the divisor Hyp is a multiple of κ1. As the line bundle dual to a divisor
is trivial on the complement of the divisor, we conclude that the restriction of κ1

to PPH(4)odd vanishes.
As a consequence, M3,odd is stratified into two strata, namely the stratum

M3,odd − PPH(4)odd and the stratum PPH(4)odd, and the restriction of κ1 to
each of these strata vanishes. In particular, these strata do not contain a complete
subvariety. Together we obtain Theorem 2 in the case g = 3. The article [FL08]
contains a stronger result.

Example 6.6. For g = 4, Clifford’s theorem shows that the restriction of the
projection P : P → M4,odd to the closure Q of Q = PH(2, 2, 2)odd is a biholomor-
phism. Since the spin structure of the hyperelliptic component of PH(6)hyp is even,
we have Q = PH(2, 2, 2)odd ∪ PH(2, 4)odd ∪ PH(6)odd.

SinceH2(M4,odd,Q) = Q, we know that PPH(2, 4)odd is dual to a multiple of κ1.

This also follows from Proposition 5.7. Namely, as P |Q is a biholomorphism and

the class of the boundary divisor PH(2, 4)odd in Q is a rational linear combination
of the class η and P ∗κ1, the class of the divisor PPH(2, 4)odd is a multiple of κ1.
In particular, the class κ1 vanishes on Mg,odd − PPH(2, 4)odd.

Similarly, by Proposition 5.7, the class of the boundary divisor PH(6)odd in

PH(2, 4)odd is a rational linear combination of the class P ∗κ1 and η. Thus as

before, the class of the divisor PPH(6)odd ⊂ PPH(2, 4)odd is a rational multiple of
κ1, and the restriction of κ1 to PPH(2, 4)odd vanishes.

This discussion can not be used to show that the restriction of κ1 to PPH(6)odd

vanishes as well. To this end we need a different argument as explained below.
Assuming this result, we obtain a stratification of M4,odd into 3 strata such that
the restriction of κ1 to each of these strata vanishes. A stronger result is contained
in [FL08].

Our next goal is to show that the restriction of κ1 to PPH(2g−2) ⊂ Mg vanishes.
This then implies that the restriction of κ1 to PPH(2g− 2)odd ⊂ Mg,odd vanishes.

This vanishing statement is certainly well known. As we were not able to locate
a precise statement in the literature, we provide a proof which also illustrates the
use of the results in Section 5 for applications beyond the strict context of that
section.

A zero of order 2g−2 for an abelian differential on a Riemann surface of genus g
is a Weierstrass point. As a complex curve of genus g has (g−1)g(g+1) Weierstrass
points counted with multiplicity, this implies that the restriction of the projection
P to PH(2g − 2) is a finite morphism onto its image. Although by Theorem 1 the
restrictions of P ∗κ1 and η to PH(2g − 2) are positive multiples of each other, this
does not immediately imply that κ1 = 0 on PPH(2g − 2) as PH(2g − 2) may be
a twisted multisection over its projection, similar to a section of a trivial surface
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bundle over a surface obtained from a map of non-zero degree from the base onto
the fiber (see [H12]).

Instead we directly apply the results of Section 5 towards our goal. Namely,
define O = PH(1, 2g − 3). By [KtZ03], the stratum is connected. Furthermore, it
contains the entire stratum PH(2g−2) in its boundary. The dimension of O equals
2g.

The following is due to Gendron [G18].

Lemma 6.7. PO ⊂ Mg is a complex variety of dimension 2g.

Corollary 6.8. The restriction of κ1 to PPH(2g − 2) vanishes.

Proof. By Lemma 6.7, PO is a complex variety of dimension 2g. By Lemma 6.4,
it contains two disjoint subvarieties V1,V2 of codimension one. Here V1 is the
projection of the boundary components PH(2g − 2)odd, and V2 is the projection
of PH(2g − 2)hyp. Each of these varieties defines a dual cohomology class. By
Proposition 5.7 and Remark 5.8, each of the distinct boundary components of O
defines the same linear combination of the class κ1 and η. As a consequence, each
of the two components V1,V2 define the same multiple of κ1 in PO. Since V1 and
V2 are disjoint and being divisors, they define a nontrivial cohomology class on
PQ, and this class is a multiple of the restriction of κ1. As V1 and V2 are disjoint,
this implies as in the proof of Corollary 6.8 that the restriction of κ1 to V1 and V2

vanishes.
Since in this argument, we may replace PH(2g − 2)odd by PH(2g − 2)even, this

implies the corollary. �

Example 6.6 and Corollary 6.8 prove Theorem 2 for g = 4. Thus for the remain-
der of this article, we restrict to the case g ≥ 5.

For the formulation of the following lemma, note that as strata are smooth
complex suborbifolds of P, the intersection of the closure in P of a stratum with a
fiber of P : P → Mg,odd is a compact complex variety. We use Theorem 1 to show
the following well known fact.

Lemma 6.9. Let X ∈ M2
g,odd and j ≥ 0 be such that dim(Qj ∩ P−1(X)) > 0.

Then X ∈ P (∪ℓ≥j+1Qℓ).

Proof. As both the fiber of P → Mg,odd and the union of strata Qj are smooth
complex suborbifolds of P, for each X ∈ Mg,odd the intersection Qj ∩P−1(X) is a
complex (possibly singular) variety.

Let us assume that this variety has a component Y of positive dimension k ≥ 1.
As P−1(X) is compact and ∪ℓ≥jQℓ ⊂ P is closed, either X ∈ P (∪ℓ≥j+1Qℓ) or
Y ⊂ Qj is compact.

In the second case, Y is a complex subvariety of P−1(X)∩Qj , and as P−1(X) is a
complex projective space, we conclude as in the proof of Lemma 6.1 that ηk(Y ) > 0.
Namely, η is the Chern class of the tautological bundle over P whose restriction
to a fiber is positive. On the other hand, Y ⊂ P−1(X) implies that P ∗κk

1(Y ) = 0.
But this contradicts the fact that by Proposition 3.5, the restriction of the class
P ∗κ1 to Qj is a positive multiple of η. The lemma is proven. �

The following statement illustrates the main remaining step towards the proof
of Theorem 2. Recall from Theorem 6.3 the definition of the locus M2

g,odd. Define

Z = M2
g,odd −M4

g,odd
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to be the locus of pairs (X,L) with h0(X,L) = 3.

Proposition 6.10. For g ≥ 5 the preimage P−1(M2
g,odd) ∩ Q = E is a divisor in

Q which is dual to the restriction of the class η to H2(Q,Q).

Proof. By Theorem 6.3, for g ≥ 5 the locus M2
g,odd is of pure codimension 3, and

for r ≥ 4 the dimension of the locus Mr
g,odd ⊂ Mg,odd is at most 3g− 2r− 2. Thus

M2
g,odd is the closure of Z = M2

g,odd −M4
g,odd.

The dimension of the preimage of M2
g,odd in Q equals 3g − 4 and hence this

preimage is a divisor E in the closure Q of Q = PH(2, . . . , 2)odd. We have to show
that E is dual to η.

By counting dimensions, the codimension of the locus P−1M4
g,odd∩Q is at least

three. As a consequence, it suffices to show that E − P−1(M4
g,odd) is dual to η in

the sense of intersections in the complex orbifold Q− P−1(M4
g,odd).

If (X,L) ∈ Z = M2
g,odd − M4

g,odd then h0(X,L) = 3. Thus as Z is a (non-

closed) complex subvariety of Mg,odd of complex codimension 3, the restriction of

the projection P to P−1(Z)∩Q defines on P−1(Z)∩Q the structure of a CP 2-bundle
over Z. For each point x ∈ Z, the fiber of this bundle is a projective subplane of
the fiber of P. In particular, the restriction of the fiberwise tautological line bundle
for P to this projective plane coincides with the tautological line bundle of this
plane.

Since the restriction of P to Q−P−1M2
g,odd is a biholomorphism, P−1(Mg,odd−

M4
g,odd) ∩ Q is biholomorphic to the blow-up of the codimension three subvariety

Z in Mg,odd −M4
g,odd by uniqueness of blow-ups as explained on p.604 of [GH78].

The normal bundle of the blow-up of Z is equivalent to the fiberwise tautological
bundle over the blow-up fibers. By the discussion in the previous paragraph, this
bundle is just the restriction of the line bundle τ over P. By naturality of Chern
classes under pull-back by inclusions, the restriction to P−1(Z) of the Chern class
of this normal bundle equals the restriction of η.

Let π be the restriction of the projection P to Q. The rational cohomology of
the blow-up of Mg,odd −M4

g,odd along Z equals

π∗H∗(Mg,odd −M4
g,odd,Q)⊕H∗(π−1(Z),Q)/π∗H∗(Z,Q)

(see p.605 of [GH78]), and the cohomology H∗(π−1(Z),Q) is the cohomology of a
CP 2-bundle over Z whose cohomology ring is a quotient of H∗(Z,Q)[η̂] where η̂ is
the restriction of η (p.406 of [GH78]). Since H2(Mg,odd,Q) is spanned by κ1, this

yields that the class defined by the divisor π−1(Z) is of the form η|Q. �

Define

Y = P (Q−Q) ⊂ Mg,odd.

For reasons of dimension, Y is a divisor in Mg,odd which contains Z as a subvariety

of codimension two by Lemma 6.9. Thus by Proposition 6.10, W = P−1(Y) ∩ Q
is a divisor in Q containing the closure E of P−1(M2

g,odd) ∩ Q as an irreducible
component.

As H2(Mg,odd,Q) is generated by the class κ1, the divisor Y is dual to a line
bundle ξ whose Chern class c1(ξ) is a multiple of κ1. The line bundle ξ is trivial on
Mg,odd − Y, and its pull-back to Q is trivial on Q− P−1Y ⊂ Q. By naturality of
the duality between divisors and line bundles under birational maps, we conclude
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that P−1Y is the defining divisor for the pull-back of ξ to Q. In other words, P ∗κ1

vanishes on Q− P−1Y.
Recall that P−1Y = E ∪ (Q−Q) is reducible, and the irreducible component E

dual to η may intersect Q non-trivially. As a consequence, the cohomology class
in H2(Q,Q) defined by the irreducible component Q − Q (which is the closure of
the connected stratum PH(2, . . . , 2, 4)odd) is a rational linear combination of the
classes η and P ∗κ1 as was shown in Proposition 5.7.

Recall that we denoted by Qj the union of the components of strata in Q of
codimension j − 1. We are now ready to complete the main step in the proof of
Theorem 2 from the introduction. Note that by a result of Diaz [D84], the maximal
dimension of a complete subvariety of Mg and hence of Mg,odd is not bigger than
g − 2. We do not have information on a sharp bound.

Proposition 6.11. For k ≤ g − 1 define Dk = P (Qk) − P (Qk+1); then for all
k, the restriction of κ1 to the locus Dk vanishes. As a consequence, Dk does not
contain a complete variety of positive dimension, and Mg,odd−∪j≥k+1Dj does not
contain a complete variety of dimension at least k.

Proof. By Corollary 6.8, it suffices to show the proposition in the case k ≤ g − 2.
Thus let k ≤ g − 2 and let A be a component of Qk. This is a component of a
stratum of abelian differentials with all zeros a multiple of 2 and odd spin structure.
We have to show that the restriction of κ1 to PA − PQk+1 is trivial. By Lemma
6.1, this then implies that PQk − PQk+1 does not contain a complete variety of
positive dimension.

As the projection P is closed, PA is a closed subvariety of Mg,odd. Define R
to be the closure of the set {z ∈ PA | dim(P−1(z) ∩ A) > 0}. Then R is a closed
subvariety of PA which is contained in PQk+1 by Lemma 6.9. Since the restriction
of P to each component of a stratum in Q is generically finite-to-one [G18], its
codimension in PA is at least one (in fact, R may be empty). Furthermore, the

preimage R̂ of R in A is of codimension at least one as well.
By naturality of pull-backs under birational maps, the pull-back by P |A of the

cohomology class dual to the divisor P (A ∩Qk+1) is the cohomology class dual to

R̂ ∪ (A ∩Qk+1).

Consider first the case that the codimension of R̂ is at least two. Then this class
coincides with the class defined by the divisor A∩Qk+1 in A. By Proposition 5.7,
this class is a linear combination of P ∗κ1 and η. By naturality under pull-back,
we conclude that P (A ∩ Qk+1) defines a multiple of the restriction of κ1. As a
consequence, the restriction of κ1 to PA − PA ∩ Qk+1 vanishes as claimed in the
proposition.

If the codimension of R̂ equals one, then P−1(P (A∩Qk+1)) = R̂ ∪ (A∩Qk+1)
is reducible, and it defines the pull-back of the class of P (A ∩ Qk+1) ⊂ PA. By
Proposition 5.7, the class of A∩Qk+1 is a rational linear combination of P ∗κ1 and

η. On the other hand, we know that the class of the divisor R̂ is not the pull-back of
a second cohomology class on PA. As in the proof of Proposition 6.10, in this case
we deduce that it defines a multiple of the fiber class η, and the divisor P (A∩Qk+1)
in PA defines a multiple of κ1. Together with Corollary 6.8, this completes the
first part of the proposition.

To show the second part of the proposition, let V ⊂ Mg,odd be a complete
variety of dimension k ≥ 1 and assume that V ⊂ Mg,odd − Dk. As Mg,odd − D2
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does not contain a complete variety, the variety V has to intersect D2 nontrivially.
Since D2 ⊂ Mg,odd is a closed subvariety of codimension one, this intersection is a
complete variety V2 whose dimension is at least k − 1.

Repeat this reasoning with V2 ⊂ D2 and the subvariety D3. In finitely many
such steps we conclude that if V ⊂ Mg,odd − Dk+1 has dimension k, then V ∩ Dk

is a complete variety of dimension at least one which is disjoint from Dk+1. By the
above, this is impossible. This completes the proof of the proposition. �
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[G20] Q. Gendron, Les strates ne possédes pas de variétés completes, C.R. Math. Acad.

Sci. Paris 358 (2020), 197–200.

[GH78] P. Griffith, J. Harris, Principles of algebraic geometry, Wiley-Interscience 1978.
[HL98] R. Hain, E. Looijenga, Mapping class groups and moduli spaces of curves, Proc.

Symp. Pure Math., AMS 62, 97–142 (1998).
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