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URSULA HAMENSTÄDT

Abstract. Let T (S) be the Teichmüller space of an oriented surface S of

finite type. We discuss the action of subgroups of the mapping class group
of S on the CAT(0)-boundary of the completion of T (S) with respect to the
Weil-Petersson metric. We show that the set of invariant Borel probability
measures for the Weil-Petersson flow on moduli space which are supported on

a closed orbit is dense in the space of all ergodic invariant probability measures.

1. Introduction

For an oriented surface S of genus g ≥ 0 with m ≥ 0 punctures and com-

plexity 3g − 3 + m ≥ 2 let T (S) be the Teichmüller space of all isotopy classes of
complete hyperbolic metrics on S of finite volume. Then T (S) is a contractible
manifold which can be equipped with the Weil-Petersson metric, an incomplete
Kähler metric of negative sectional curvature.

In spite of the lack of completeness, any two points in T (S) can be connected by
a unique Weil-Petersson geodesic which depends smoothly on its endpoints [9]. As

a consequence, T (S) can be completed to a Hadamard space T (S), i.e. a complete
simply connected CAT(0)-space which however is not locally compact.

A Hadamard space X admits a visual boundary ∂X, and the action of the
isometry group of X extends to an action on ∂X. For surfaces S of complexity at
most three, the visual boundary ∂T (S) of T (S) was identified by Brock and Masur
[7], but for higher complexity it is not known. However, it follows from the work
of Brock [6] that the boundary is not locally compact.

The mapping class group Mod(S) of all isotopy classes of orientation preserving
diffeomorphisms of S acts on T (S) as a group of isometries. Since every isometry

of T (S) extends to an isometry of the completion T (S), the mapping class group

also acts isometrically on T (S).

An isometry g of T (S) is called axial if g admits an axis, i.e. if there is a

geodesic γ : R → T (S) and a number τ > 0 such that gγ(t) = γ(t+τ) for all t. The

endpoints γ(∞), γ(−∞) of γ are then fixed points for the action of g on ∂T (S).
Every pseudo-Anosov mapping class g ∈ Mod(S) is axial [9]. The limit set Λ of a
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subgroup G of Mod(S) is the set of accumulation points in ∂T (S) of an orbit of the

action of G on T (S). The group G is called non-elementary if its limit set contains
at least three points. We show

Theorem 1.1. Let G < Mod(S) be a non-elementary subgroup with limit set

Λ which contains a pseudo-Anosov element.

(1) Λ does not have isolated points, and the G-action on Λ is minimal.

(2) Pairs of fixed points of pseudo-Anosov elements are dense in Λ × Λ.

(3) There is a dense orbit for the action of G on Λ × Λ.

There is a compactification of T (S) whose boundary consists of the sphere
PML of projective measured geodesic laminations on S. The mapping class group
acts on T (S) ∪ PML as a group of homeomorphisms. Limit sets for subgroups of
Mod(S) in PML were investigated by McCarthy and Papadopoulos [16].

We also look at properties of the Weil-Petersson geodesic flow Φt on the quo-
tient of the unit tangent bundle T1T (S) of T (S) under the action of the mapping
class group. Even though this quotient space T1M(S) is non-compact and this
flow is not everywhere defined, it admits many invariant Borel probability mea-
sures. Particular such measures are measures supported on periodic orbits. Each
of these measures is ergodic.

The space of all Φt-invariant Borel probability measures on T1M(S) can be
equipped with the weak∗-topology. Our second result is a version of Theorem 1 for
the Weil-Petersson geodesic flow.

Theorem 1.2. A Φt-invariant Borel probability measure on T1M(S) can be

approximated in the weak∗-topology by measures supported on periodic orbits.

The organization of this note is as follows. In Section 2 we review some geomet-
ric properties of Hadamard spaces. Section 3 explains some geometric properties of
pseudo-Anosov mapping classes. In Section 4 we look at groups of isometries and
establish the first and the second part of Theorem 1.1. In Section 5, we complete
the proof of Theorem 1.1 and show Theorem 1.2.

2. Basic CAT(0)-geometry

The purpose of this section is to collect some general geometric properties of
CAT(0)-spaces which are needed for the investigation of Weil-Petersson space.

A CAT(0)-space is defined as follows. A triangle ∆ in a geodesic metric space
consists of three vertices connected by three (minimal) geodesic arcs a, b, c. A
comparison triangle ∆̄ for ∆ in the euclidean plane is a triangle in R2 with the
same side-lengths as ∆. By the triangle inequality, such a comparison triangle exists
always, and it is unique up to isometry. For a point x ∈ a ⊂ ∆ the comparison
point of x in the comparison triangle ∆̄ is the point on the side ā of ∆̄ corresponding
to a whose distance to the endpoints of ā coincides with the distance of x to the
corresponding endpoints of a.

A geodesic metric space (X, d) is called a CAT(0)-space if for every geodesic
triangle ∆ in X with sides a, b, c and every comparison triangle ∆̄ in the euclidean
plane with sides ā, b̄, c̄ and for all x, y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆̄ we
have

d(x, y) ≤ d(x̄, ȳ).

A complete CAT(0)-space is called a Hadamard space.
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In a Hadamard space X, the distance function is convex: If γ, ζ are two
geodesics in X parametrized on the same interval then the function t → d(γ(t), ζ(t))
is convex. For two geodesics γ, ζ issuing from the same point γ(0) = ζ(0), the
Alexandrov angle between γ, ζ is defined. If X is a Riemannian manifold of non-
positive curvature, then this angle coincides with the angle between the tangents
of γ, ζ at γ(0) (see [5]). In the sequel, by angle we always mean the Alexandrov
angle.

For a fixed point x ∈ X, the visual boundary ∂X of X is defined to be the
space of all geodesic rays issuing from x equipped with the topology of uniform
convergence on bounded sets. This definition is independent of the choice of x. We
denote the point in ∂X defined by a geodesic ray γ : [0,∞) → X by γ(∞). We also
say that γ connects x to γ(∞). The union X ∪ ∂X has a natural topology which
restricts to the usual topology on X and such that X is dense in X ∪ ∂X. The
isometry group of X acts as a group of homeomorphisms on X ∪ ∂X.

A subset C ⊂ X is convex if for x, y ∈ C the geodesic connecting x to y is
contained in C as well. For every complete convex set C ⊂ X and every x ∈ X
there is a unique point πC(x) ∈ C of smallest distance to x (Proposition II.2.4 of
[5]). Now let J ⊂ R be a closed connected set and let γ : J → X be a geodesic
arc. Then γ(J) ⊂ X is complete and convex and hence there is a shortest distance
projection πγ(J) : X → γ(J). The projection πγ(J) : X → γ(J) is distance non-
increasing.

The following definition is due to Bestvina and Fujiwara (Definition 3.1 of [3]).

Definition 2.1. A geodesic arc γ : J → X is B-contracting for some B > 0 if
for every closed metric ball K in X which is disjoint from γ(J) the diameter of the
projection πγ(J)(K) does not exceed B.

We call a geodesic contracting if it is B-contracting for some B > 0. As an
example, every geodesic in a CAT(κ)-space for some κ < 0 is B-contracting for a
number B = B(κ) > 0 only depending on κ.

The next lemma (Lemma 3.2 and 3.5 of [3]) shows that a triangle containing a
B-contracting geodesic as one of its sides is uniformly thin.

Lemma 2.2. Let γ : [a, b] → X be a B-contracting geodesic. If x ∈ X and

if a = πγ[a,b](x) then for every t ∈ [a, b] the geodesic connecting x to γ(t) passes

through the 3B + 1-neighborhood of γ(a).

On the other hand, thinness of triangles with a fixed geodesic γ as one of the
three sides guarantees that γ is contracting. This is formulated in the following
useful criterion to detect contracting geodesics.

Lemma 2.3. Let γ : J → X be a geodesic such that there is a number B > 0
with the following property. Assume that for all [a, b] ⊂ J with |b − a| ≥ B/4 and

every geodesic quadrangle Q in X with one side γ[a, b] and an angle at least π/2
at γ(a), γ(b) the geodesic arc connecting the two vertices of Q which are distinct

from γ(a), γ(b) passes through the B/4-neighborhood of γ[a, b]. Then γ(J) is B-

contracting.

Proof. Let γ : J → X be a geodesic which satisfies the assumption in the
lemma. We have to show that d(πγ(J)(x), πγ(J)(y)) ≤ B for all x ∈ X with
d(x, γ(J)) = R > 0 and every y ∈ X with d(x, y) < R.
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Thus let x ∈ X with d(x, γ(J)) = R > 0. Assume that πγ(J)(x) = γ(a). Let
y ∈ X and write πγ(J)(y) = γ(c) where c ≥ a without loss of generality (otherwise
reverse the orientation of γ). The angle at γ(c) between the geodesic connecting
γ(c) to y and the subarc of γ (with reversed orientation) connecting γ(c) to γ(a)
is not smaller than π/2. Since the angle sum of a triangle in a CAT(0)-space does
not exceed π, this implies that if c > a + B/4 then the angle at γ(a + B/4) of the
quadrangle with vertices x, γ(a), γ(a+B/4), y is not smaller than π/2. Thus by the
assumption in the lemma, the geodesic connecting x to y passes through a point z
in the B/4-neighborhood of γ[a, a + B/4]. Then πγ(J)(z) ∈ γ[a − B/4, a + B/2],
moreover also d(x, z) ≥ R − B/4.

Now assume that c ≥ a + B. Then we have d(πγ(J)(z), πγ(J)(y)) ≥ B/2. Since
the projection πγ(J) is distance non-increasing we conclude that

d(x, y) = d(x, z) + d(z, y) ≥ R − B/4 + B/2 > R.

In other words, γ(J) is B-contracting. �

3. CAT(0)-geometry of Weil-Petersson space

Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures and 3g −
3 + m ≥ 2. The metric completion T (S) of the Teichmüller space T (S) of S with
respect to the Weil-Petersson metric dWP is a Hadamard space. The completion
locus T (S) − T (S) of T (S) can be described as follows [13].

A surface with nodes is defined by a degenerate hyperbolic metric on S where
at least one essential simple closed curve on S (i.e. a curve which is homotopically
nontrivial and not freely homotopic into a puncture) has been pinched to a pair
of punctures. For the free homotopy class of an essential simple closed curve c
on S, the degenerate surfaces with a single node at c define a stratum T (S)c in

the completion locus T (S) − T (S) of Teichmüller space. This stratum equipped
with the induced metric is isometric to the Teichmüller space equipped with the
Weil-Petersson metric of the (possibly disconnected) surface obtained from S−c by
replacing each of the two ends corresponding to c by a cusp. If Sc is disconnected
then a point in the Teichmüller space of S − c is given by a pair of points, one for
each of the two components of S − c. The stratum T (S)c is a convex subset of

T (S). The completion locus T (S) − T (S) is the union of the completions of the
strata T (S)c where c runs through all free homotopy classes of simple closed curves
and with the obvious identifications.

The extended mapping class group of all isotopy classes of diffeomorphisms of
S acts on (T (S), dWP ) properly discontinuously as a group of isometries. Every

isometry of T (S) extends to an isometry of the completion T (S). This fact was
used by Masur and Wolf [14] to show

Proposition 3.1. The isometry group of (T (S), dWP ) coincides with the ex-

tended mapping class group.

For ǫ > 0 let T (S)ǫ be the subset of T (S) of all hyperbolic metrics whose
systole, i.e. the length of a shortest closed geodesic, is at least ǫ. The mapping class
group preserves T (S)ǫ and acts on it properly discontinuously and cocompactly. In
particular, the Weil-Petersson distance between T (S)ǫ and the completion locus

T (S)−T (S) of Teichmüller space is positive. Moreover, the sectional curvature of
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the restriction of the Weil-Petersson metric to T (S)ǫ is bounded from above by a
negative constant.

This fact together with Lemma 2.3 is used to show that Weil-Petersson geodesic
segments which are entirely contained in the thick part of Teichmüller space are
contracting. An analogous result for the Teichmüller metric on Teichmüller space
(which is however much more difficult) was established by Minsky [17]. As a
convention, in the sequel a Weil-Petersson geodesic is always parametrized on a
closed connected subset of R.

Lemma 3.2. For every ǫ > 0 there is a number B = B(ǫ) > 0 such that every

geodesic γ : J → T (S)ǫ is B-contracting.

Proof. It was shown in Lemma 3.1 of [10] (see also [3, 8] for an earlier
argument along the same line) that for every ǫ > 0 there is a constant B = B(ǫ) > 0
only depending on ǫ such that every geodesic γ : J → T (S)ǫ satisfies the hypothesis
in Lemma 2.3 for B. �

For an isometry g of T (S) define the displacement function dg of g to be the
function x → dg(x) = dWP (x, gx).

Definition 3.3. An isometry g of T (S) is called semisimple if dg achieves its

minimum in T (S). If g is semisimple and min dg = 0 then g is called elliptic. A
semisimple isometry g with min dg > 0 is called axial.

By the above definition, an isometry is elliptic if and only if it fixes at least
one point in T (S). By Proposition 3.3 of [1], an isometry g of T (S) is axial if and

only if there is a geodesic γ : R → T (S) such that gγ(t) = γ(t + τ) for every t ∈ R

where τ = min dg > 0. Such a geodesic is called an oriented axis for g. Note that
the geodesic t → γ(−t) is an oriented axis for g−1. The endpoint γ(∞) of γ is a

fixed point for the action of g on ∂T (S) which is called the attracting fixed point.

The closed convex set A ⊂ T (S) of all points for which the displacement function
of g is minimal is isometric to C × R where C ⊂ A is closed and convex (Theorem
II.2.14 of [5]). For each x ∈ C the set {x} × R is an axis of g.

By the Nielsen-Thurston classification, a mapping class g ∈ Mod(S) either is
pseudo-Anosov or it is of finite order or it is reducible. An example of a reducible
mapping class is a multi-twist which can be represented in the form φk1

1 ◦ · · · ◦ φkℓ

ℓ

where each φi is a Dehn-twist about a simple closed curve ci in S and where the
curves ci are pairwise disjoint. We allow the multi-twist to be trivial. We have (see
also [4])

Lemma 3.4. Every isometry φ of T (S) is semi-simple, and φ is elliptic if and

only if there is some k ≥ 1 such that φk is a multi-twist.

Proof. In a Hadamard space X, an isometry g with a finite orbit on X has a
fixed point which is the center of the orbit. This means the following. For a fixed
orbit {x1, . . . , xk} ⊂ X for g there is a unique point y ∈ X such that the radius
of the smallest closed metric ball centered at y which contains the set {x1, . . . , xk}
is minimal (Proposition II.2.7 of [5]). Since this point is defined by purely metric
properties, it is a fixed point for g.

As a consequence, an element g ∈ Mod(S) is elliptic if and only if this holds
true for gk for every k > 0, and every element of finite order is elliptic. Similarly,
an element g ∈ Mod(S) is axial if and only this holds true for gk for every k > 0.
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Namely, if gk is axial for some k > 1 then the set of all points for which the
displacement function dgk of gk assumes a minimum is a closed convex subset of

T (S). This set is isometric to a product A × R where for each x ∈ A, {x} × R is
an axis of gk. The infinite cyclic group generated by g acts on A with a finite orbit
and hence there is a fixed point x ∈ A for this action. The set {x} × R is an axis
of g.

Now assume that g ∈ Mod(S) is a multi-twist about a multi-curve c = c1∪· · ·∪

cℓ. Let T (S)c be the completion of the stratum in T (S) of all surfaces with nodes

at the curves c1, . . . , cℓ. Then g fixes each point in T (S)c and hence g is elliptic.
If g is pseudo-Anosov then it was shown in [9] that g has an axis in T (S) and

hence it is axial. Now assume that g is reducible. Then up to replacing g by gk

for some k > 0, g preserves a non-trivial multi-curve c component-wise, and it
preserves each connected component of S − c. Moreover, the multi-curve c can be
chosen in such a way that for every component S0 of S−c, either S0 is a three-holed
sphere or the restriction of g to S0 is pseudo-Anosov. If g is not a multi-twist then
there is at least one component S0 of S − c such that the restriction of g to S0

is pseudo-Anosov. Then the restriction of g to S0, viewed as an element of the
mapping class group of S0, has an axis in T (S0). The Weil-Petersson metric on
the stratum T (S)c induced from the Weil-Petersson metric on S is the product of
the Weil-Petersson metrics on the Teichmüller spaces of the connected components
of S − c. This implies that the restriction of g to T (S)c has an axis. Now the

completion T (S)c ⊂ T (S) of T (S)c is a closed convex subset of T (S). The shortest

distance projection T (S) → T (S)c is distance non-increasing and equivariant with
respect to the action of g. Therefore the infimum of the displacement function dg

of g equals the infimum of dg on T (S)c. Thus this infimum is a minimum and once
again, g is axial. �

Remark: 1) The flat strip theorem (Theorem II.2.14 of [5]) states that two
geodesic lines in a Hadamard space X whose endpoints in the visual boundary ∂X
coincide bound a flat strip. Since the sectional curvature of the Weil-Petersson
metric is negative, the proof of Lemma 3.4 shows that an axial isometry of T (S)
which admits an axis intersecting T (S) is pseudo-Anosov.

2) The celebrated solution of the Nielsen realization problem states that each
finite subgroup of Mod(S) has a fixed point in T (S) [12]. The discussion in the

proof of Lemma 3.4 immediately implies that such a group has a fixed point in T (S).
It is not difficult to establish that there is also a fixed point in T (S), however we
omit this discussion here.

The following definition is due to Bestvina and Fujiwara (Definition 5.1 of [3]).

Definition 3.5. An isometry g of a CAT(0)-space X is called B-rank-one for
some B > 0 if g is axial and admits a B-contracting axis.

We call an isometry g rank-one if g is B-rank-one for some B > 0. Since a
pseudo-Anosov element has an axis γ in T (S), by invariance and cocompactness of
the action of g on γ, the geodesic γ entirely remains in T (S)ǫ for some ǫ > 0. Thus
the following result (Proposition 8.1 of [3]) is an immediate consequence of Lemma
3.2.

Proposition 3.6. A pseudo-Anosov element in Mod(S) is rank-one.
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Example: An axial isometry g of T (S) which admits an axis γ bounding a flat

half-plane is not rank-one. An example of such an axial isometry of T (S) can be
obtained as follows. Let c be a simple closed separating curve on S such that none
of the two components S1, S2 of S − c is a three-holed sphere. Let g ∈ Mod(S1) be
a pseudo-Anosov mapping class. Then g defines a reducible element in Mod(S). If
γ1 is the axis for the action of g on T (S1) then for each point z ∈ T (S2) the curve

(γ1, z) is an axis for the action of g on the stratum T (S)c ⊂ T (S) and hence (γ1, z)

is an axis for the action of g on T (S). In particular, for every infinite geodesic

ζ : R → T (S2) the set {(γ(t), ζ(s)) | s, t ∈ R} ⊂ T (S1) × T (S2) ⊂ T (S) is an

isometrically embedded euclidean plane in T (S) containing an axis for g. Thus g
is axial but not rank-one.

A homeomorphism g of a topological space K is said to act with north-south

dynamics if there are two fixed points a 6= b ∈ K for the action of g such that for
every neighborhood U of a, V of b there is some k > 0 such that gk(K − V ) ⊂ U
and g−k(K − U) ⊂ V . The point a is called the attracting fixed point for g, and b
is the repelling fixed point.

Teichmüller space equipped with the Teichmüller metric can be compactified by
adding the Thurston boundary PML of projective measured geodesic laminations
which is a topological sphere. This compactification however is different from the
CAT(0)-boundary ∂T (S) of T (S). The action of the extended mapping class group
on T (S) naturally extends to an action on PML. An element g ∈ Mod(S) acts
on PML with north-south-dynamics if and only if g is pseudo-Anosov. Lemma
3.3.3 of [1] shows that a rank-one isometry of a proper Hadamard space X acts on
the boundary ∂X with north-south dynamics. The proof of this fact given in [11]
(proof of Lemma 4.4) does not use the assumption of properness of X. Thus we
obtain.

Lemma 3.7. A rank-one isometry g of T (S) acts with north-south dynamics

on ∂T (S).

4. Non-elementary groups of isometries

In this section we investigate the action on ∂T (S) of non-elementary subgroups
of Mod(S) which contain a pseudo-Anosov element. We begin with recalling some
standard terminology used for groups of isometries on Hadamard spaces.

Let G < Mod(S) be any subgroup. The limit set Λ of G is the set of accumu-

lation points in ∂T (S) of one (and hence every) orbit of the action of G on T (S).
If g ∈ G is axial with axis γ, then γ(∞), γ(−∞) ∈ Λ. In other words, the two fixed

points for the action of a pseudo-Anosov element on ∂T (S) are contained in Λ.

Lemma 4.1. The limit set of Mod(S) is the entire boundary ∂T (S) of T (S).

Proof. For sufficiently small ǫ > 0, the set T (S)ǫ ⊂ T (S) of all hyperbolic
metrics whose systole is at least ǫ is connected, and the mapping class group Mod(S)
acts cocompactly on T (S)ǫ. There is a number R0 > 0 such that the Weil-Petersson

distance between any point in T (S) and T (S)ǫ is at most R0 [18]. Thus there is

a number R1 > R0 such that for all x ∈ T (S)ǫ and all y ∈ T (S) there is some

g ∈ Mod(S) with d(gx, y) ≤ R1. This just means that ∂T (S) is the limit set of
Mod(S). �
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Lemma 4.2. Let G < Mod(S) be a subgroup which contains a pseudo-Anosov

element g. Then the limit set Λ of G is the closure in ∂T (S) of the set of fixed

points of conjugates of g in G. If G is non-elementary then Λ does not have isolated

points.

Proof. Let G < Mod(S) be a subgroup which contains a pseudo-Anosov
element g ∈ G. Let Λ be the limit set of G. We claim that Λ is contained in the
closure of the G-orbit of the two fixed points of g. For this let γ : R → T (S) be an
axis of g and let x0 = γ(0). By Proposition 3.6, γ is B-contracting for some B > 0.
Let ξ ∈ Λ and let (gi) ⊂ G be a sequence such that (gix0) converges to ξ. There
are two cases possible.

In the first case, up to passing to a subsequence, the geodesics giγ eventually
leave every bounded set. For i ≥ 1 let xi = πgiγ(R)(x0). Then dWP (x0, xi) → ∞
(i → ∞). On the other hand, giγ is B-contracting and hence by Lemma 2.2,
a geodesic ζi connecting x0 to gix0 passes through the 3B + 1-neighborhood of
xi, and the same is true for a geodesic ηi connecting x0 to giγ(∞). By CAT(0)-
comparison, the angles at x0 between the geodesics ζi, ηi converge to zero as i → ∞.
Since gix0 → ξ, the sequence (giγ(∞)) converges to ξ as well. But giγ(∞) is a fixed
point of the conjugate gigg−1

i of g. Thus ξ is contained in the closure of the fixed
points of all conjugates of g.

In the second case there is a bounded neighborhood K of x0 in T (S) such that
giγ ∩ K 6= ∅ for all i. For i > 0 let ζi be the geodesic connecting x0 to gix0. Since
gix0 → ξ, the geodesics ζi converge as i → ∞ locally uniformly to the geodesic ray
connecting x0 to ξ.

After passing to a subsequence and perhaps a change of orientation of γ we
may assume that for large i the point gix0 lies between a point zi ∈ giγ ∩ K and
giγ(∞) along giγ. This means that gix0 is contained in the geodesic connecting zi

to giγ(∞). Since the distance between zi and x0 is uniformly bounded, by CAT(0)-
comparison the Alexandrov angle at gix0 between the inverse of the geodesic ζi

(which connects gix0 to x0) and the inverse of the geodesic giγ (which connects
gix0 to zi) tends to zero as i → ∞. This implies that the angle at gix0 of the ideal

triangle in T (S) with vertices x0, gix0, giγ(∞) tends to π as i → ∞.
Since in a CAT(0)-space the sum of the Alexandrov angles of a geodesic triangle

(with possibly one vertex at infinity) does not exceed π, the angle at x0 between
the geodesic ζi and the geodesic ρi connecting x0 to giγ(∞) tends to zero as i → ∞.

But gix0 → ξ and therefore the points giγ(∞) converge to ξ (i → ∞) in ∂T (S).
Thus ξ is indeed contained in the closure of the fixed points of conjugates of g.

Now assume that the limit set Λ of G contains at least 3 points. Let g be
any pseudo-Anosov element of G. Since by Lemma 3.7 g acts with north-south
dynamics on ∂T (S), the set Λ contains at least one point ξ which is not a fixed
point of g. The sequence (gkξ) consists of pairwise distinct points which converge as
k → ∞ to the attracting fixed point of g. Similarly, the sequence (g−kξ) consists of
pairwise distinct points which converge as k → ∞ to the repelling fixed point of g.
Moreover, by the above, a point ξ ∈ Λ which is not a fixed point of a pseudo-Anosov
element of G is a limit of fixed points of pseudo-Anosov elements. This shows that
Λ does not have isolated points and completes the proof of the lemma. �

We need the following simple (and well known to the experts) observation which
parallels the properties of the action of Mod(S) on the space of projective measured
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geodesic laminations. This observation follows immediately from the work of Brock,
Masur and Minsky [8].

Lemma 4.3. Let g, h ∈ Mod(S) be pseudo-Anosov elements. If there is a com-

mon fixed point for the action of g, h on ∂T (S) then the fixed point sets of g, h
coincide.

Proof. Let g, h ∈ Mod(S) be pseudo-Anosov elements and assume that there

is a common fixed point for the action of g, h on ∂T (S). Since g, h act with north-

south dynamics on ∂T (S), this implies that the axis γ for g and the axis η for h
have a common endpoint, say γ(∞) = η(∞). We may also assume that γ(∞) is
the attracting fixed point for both g, h.

By Theorem 1.5 of [8], up to a reparametrization we have dWP (γ(t), η(t)) → 0
(t → ∞). After another reparametrization, there is a number r > 0 such that the
semi-group {gk | k ≥ 0} acts cocompactly on the closed 2r-neighborhood N ⊂ T (S)
of γ[0,∞), and that the r-neighborhood of γ[0,∞) contains η[0,∞).

Let τ0 be the translation length of g on γ. If there are no integers k, ℓ > 0
such that gk = hℓ then there are infinitely many distinct elements of Mod(S) of the
form g−mhn which map η(0) into the r-neighborhood of γ[0, τ0]. Namely, let n > 0
be arbitrary. Then there is a unique number m ∈ Z such that πγ(R)h

n(η(0)) ∈
γ[mτ0, (m + 1)τ0). Since the point hn(η(0)) is contained in the r-neighborhood of
γ(R), the point g−mhn(η(0)) is contained in the r-neighborhood of γ[0, τ0]. How-
ever, this violates the fact that Mod(S) acts properly discontinuously on T (S).
Thus there are number k, ℓ > 0 with gk = hℓ and hence the fixed point sets for the
action of g, h on ∂T (S) coincide. �

The action of a group G on a topological space Y is called minimal if every
G-orbit is dense.

Lemma 4.4. Let G < Mod(S) be a non-elementary group with limit set Λ which

contains a pseudo-Anosov element g ∈ G with fixed points a 6= b ∈ Λ. Then for

every non-empty open set V ⊂ Λ there is some u ∈ G with u{a, b} ⊂ V . Moreover,

the action of G on Λ is minimal.

Proof. Let G < Mod(S) be a non-elementary subgroup with limit set Λ
which contains a pseudo-Anosov element g ∈ G. Let a, b ∈ Λ be the attracting and
repelling fixed points of g, respectively, and let V ⊂ Λ be a non-empty open set.
By Lemma 4.2, the limit set Λ does not have isolated points and up to replacing
g by g−1 (and exchanging a and b) there is an element v ∈ G which maps a to
v(a) ∈ V − {a, b}. Then h = vgv−1 is a pseudo-Anosov element with fixed points
v(a) ∈ V − {a, b}, v(b) ∈ Λ. By Lemma 4.3, we have v(b) 6∈ {a, b}. By Lemma

3.7, h acts with north-south dynamics on ∂T (S) and hence hk{a, b} ⊂ V for all
sufficiently large k.

Every closed G-invariant subset A of ∂T (S) contains every fixed point of every
pseudo-Anosov element. Namely, if a 6= b are the two fixed points of a pseudo-
Anosov element g ∈ G and if there is some ξ ∈ A−{a, b} then also {a, b} ⊂ A since

A is closed and g acts with north-south dynamics on ∂T (S). On the other hand, if
a ∈ A then there is some h ∈ G with h(a) ∈ Λ−{a, b} and once again, we conclude
by invariance that b ∈ A as well. Now the set of all fixed points of pseudo-Anosov
elements of G is G-invariant and hence the smallest non-empty closed G-invariant
subset of ∂T (S) is the closure of the set of fixed points of pseudo-Anosov elements.
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This set contains the limit set Λ of G by Lemma 4.2 and hence it coincides with Λ.
In other words, the action of G on Λ is minimal. The lemma is proven. �

Note the following immediate corollary of Lemma 4.3.

Corollary 4.5. Let G < Mod(S) be a non-elementary subgroup which con-

tains a pseudo-Anosov element. Then G does not fix a point in ∂T (S).

Example: There are non-elementary groups G < Mod(S) which fix a point in

∂T (S). Namely, let c be a simple closed separating curve on S so that S−c = S1∪S2

where neither S1 nor S2 is a three-holed sphere. Let γi ∈ Mod(Si) be a pseudo-
Anosov element (i = 1, 2). Then γ1, γ2 generate a free abelian subgroup G of
Mod(S) whose limit set is a circle which is fixed pointwise by G.

We are now ready to show.

Proposition 4.6. Let G < Mod(S) be a non-elementary subgroup with limit

set Λ which contains a pseudo-Anosov element.

(1) The pairs of fixed points of pseudo-Anosov elements of G are dense in

Λ × Λ.

(2) For any two non-empty open subsets W1,W2 of Λ×Λ there is some g ∈ G
with gW1 ∩ W2 6= ∅.

Proof. Let G < Mod(S) be a non-elementary subgroup with limit set Λ.
Assume that G contains a pseudo-Anosov element g with attracting fixed point
a ∈ Λ and repelling fixed point b ∈ Λ.

Let U ⊂ Λ × Λ be a non-empty open set. Our goal is to show that U contains
a pair of fixed points of a pseudo-Anosov element. Since Λ does not have isolated
points, for this we may assume that there are small open sets Vi ⊂ ∂T (S) − {a, b}
with disjoint closure Vi (i = 1, 2) and such that U = V1 × V2 ∩ Λ × Λ.

Choose some u ∈ G which maps {a, b} into V1. Such an element exists by
Lemma 4.4. Then v = ugu−1 is a pseudo-Anosov element with fixed points ua, ub ∈
V1. Similarly, there is a pseudo-Anosov element w ∈ G with both fixed points in V2.
Via replacing v, w by sufficiently high powers we may assume that v(∂T (S)−V1) ⊂

V1, v
−1(∂T (S) − V1) ⊂ V1 and that w(∂T (S) − V2) ⊂ V2, w

−1(∂T (S) − V2) ⊂ V2.

Then we have wv(∂T (S) − V1) ⊂ V2 and v−1w−1(∂T (S) − V2) ⊂ V1. By a result
of McCarthy [15], up to possibly replacing v and w by even higher powers we

may assume that wv is pseudo-Anosov. Then wv acts on ∂T (S) with north-south-
dynamics. Since wv(V2) ⊂ V2 and v−1w−1(V1) ⊂ V1, the pair of fixed points of wv
is necessarily contained in V1×V2 and hence in U . The first part of the proposition
is proven.

To show the second part of the proposition, let W1,W2 ⊂ Λ×Λ be non-empty
open sets. We have to show that there is some g ∈ G such that gW1 ∩W2 6= ∅. For
this we may assume without loss of generality that W1 = U1 × U2,W2 = U3 × U4

where U1, U2 and U3, U4 are non-empty open subsets of Λ with disjoint closure.
Since Λ does not have isolated points, by possibly replacing Ui by proper non-
empty open subsets we may assume that the sets Ui are pairwise disjoint.

By the first part of the proposition, there is a pseudo-Anosov element u ∈ G
with attracting fixed point in U1 and repelling fixed point in U4. Since u acts on
∂T (S) with north-south dynamics, there is some k > 0 and a small open neighbor-
hood U5 ⊂ U1 of the attracting fixed point of u such that u−k(U5 ×U2) ⊂ U1 ×U4.
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The same argument produces an element w ∈ G with attracting fixed point in U3

and repelling fixed point in u−kU2 ⊂ U4, a number ℓ > 0 and an open subset U6

of U2 such that wℓ(u−k(U5 × U6)) ⊂ U3 × U4. This completes the proof of the
proposition. �

As noted in the example after Corollary 4.5, in general the second part of
Proposition 4.6 does not hold true for non-elementary subgroups of Mod(S) which
do not contain a pseudo-Anosov element.

5. The Weil-Petersson geodesic flow

In this section we discuss some implications of the results in the previous section
to the dynamics of the Weil-Petersson geodesic flow on moduli space.

Let T 1T (S) be the unit tangent bundle of T (S) for the Weil-Petersson metric.
The Weil-Petersson geodesic flow Φt acts on T 1T (S) by associating to a direction
v and a number t > 0 the unit tangent Φtv at t of the geodesic with initial velocity
v. Note that this flow is not everywhere defined due to the existence of finite length
geodesics which end in a point in T (S)−T (S). Define G ⊂ T 1T (S) to be the space
of all directions of biinfinite geodesics, i.e. such that the flow line of Φt through
a point v ∈ G is defined for all times. Note that the set G is invariant under the
action of the extended mapping class group.

The following result is due to Wolpert [18, 19].

Lemma 5.1. G is a dense Gδ-subset of T 1T (S) of full Lebesgue measure.

Proof. A direction at a point x ∈ T (S) either defines a geodesic ray (i.e.
a geodesic defined on the half-line [0,∞)) or a geodesic which ends at a point in

T (S)−T (S). The set T (S)−T (S) is a countable union of closed convex strata, each

of real codimension two. Since by the Cat(0)-property, any two points x, y ∈ T (S)
can be connected by a unique geodesic depending continuously on x, y, the set of
directions of geodesics issuing from a point in T (S) and which terminate in the
closure of a fixed stratum is a closed subset of T 1T (S) of real codimension one.
Thus G is the complement in T 1T (S) of a countable union of closed subsets of
codimension one, i.e. it is a dense Gδ-set (we refer to [18, 19] for details).

Wolpert [18, 19] also observed that for every x ∈ T (S) the set of directions
of geodesic rays issuing from x has full Lebesgue measure in the unit sphere at x.
Then G has full Lebesgue measure. �

To each v ∈ G we can associate the ordered pair π(v) ∈ ∂T (S) × ∂T (S) of
endpoints of the biinfinite geodesic γ with initial velocity v (here ordered means
that π(v) = (γ(∞), γ(−∞))). The map

π : G → ∂T (S) × ∂T (S)

clearly is invariant under the action of the geodesic flow on T1T (S) and hence it
factors through a map of the quotient space G/Φt. Since the Weil-Petersson metric
is negatively curved, by the flat strip theorem (Theorem II.2.13 of [5]) the induced

map G/Φt → π(G) ⊂ ∂T (S) × ∂T (S) is injective. This means that the set π(G)
can be equipped with two natural topologies: the topology as a quotient of G, and
the induced topology as a subset of ∂T (S) × ∂T (S). We next observe that these
two topologies coincide.
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Lemma 5.2. The map π factors through a Mod(S)-equivariant homeomorphism

of G/Φt equipped with the quotient topology onto π(G) equipped with the topology as

a subset of ∂T (S) × ∂T (S).

Proof. By the definition of the topology of ∂T (S), the map π is continuous.
Moreover, it is clearly equivariant under the action of Mod(S).

By the definition of the quotient topology on G/Φt, it suffices to show that the
map π is open for the topology of G as a subset of T1T (S) and for the topology of

πG as a subset of ∂T (S)×∂T (S). For this let v ∈ G and let U be a neighborhood of

v in G. We have to find a neighborhood V of π(v) in ∂T (S)× ∂T (S) such that the
unit tangent line of every biinfinite geodesic whose pair of endpoints is contained
in V passes through U .

For this let x ∈ T (S) be the footpoint of v. Since a geodesic depends smoothly
on its initial velocity, if no such neighborhood V of π(v) exists then there is a

sequence of points (ai, bi) ⊂ ∂T (S) × ∂T (S) with the following properties.

(1) (ai, bi) can be connected by a geodesic line γi in T (S).
(2) (ai, bi) → π(v) (i → ∞).
(3) There is a number ǫ > 0 such that dWP (x, γi(R)) ≥ ǫ for all i.

Let ∆i be the ideal triangle in T (S) with vertices x, ai, bi. Since (ai, bi) → π(v)
(i → ∞), the angles at x of the triangles ∆i converge to π as i → ∞. Connect

each point on the geodesic ray from x to bi to the point ai ∈ ∂T (S) by a geodesic
ray. This defines a ruled surface in T (S) with smooth interior which we denote
again by ∆i. The intrinsic Gauß curvature of this surface at a point y is bounded
from above by an upper bound for the curvature of the Weil-Petersson metric at y.
Since the Weil-Petersson metric is negatively curved, there is a number r < ǫ such
that the Gauß curvature of the intersection of ∆i with the ball of radius r about
x is bounded from above by −r. (Such a argument has been used in the literature
many times. We refer to [8] for a more detailed explanation and for additional
references).

Let ζi : [0,∞) → T (S) be the side of ∆i connecting x to ai. The intrinsic
angle at x of the triangle ∆i coincides with the Weil-Petersson angle at x. By
assumption, the distance between x and the side γi of ∆i is at least ǫ > r. If i > 0
is sufficiently large that the angle of ∆i at x exceeds π/2 then by convexity of the
distance function, a geodesic in ∆i for the intrinsic metric which issues from a point
in ζi[0, r/2] and is perpendicular to ζi does not intersect the side of ∆i connecting
x to bi. Therefore the maximal length of such a geodesic is not smaller than r/2.
The union of these geodesic segments is an embedded strip in ∆i which is contained
in the ball of radius r about x in T (S). Hence the Gauß curvature of ∆i at each
point in the strip is at most −r. Moreover, comparison with the euclidean plane
shows that the area of the strip is at least r2/4. Since the Gauß curvature of ∆i

is negative, this implies that the integral of the Gauß curvature over ∆i does not
exceed −r3/4.

On the other hand, the angle of ∆i at x tends to π as i → ∞. Since the Gauß
curvature of ∆i is negative, the Gauß-Bonnet theorem shows that the integral of
the Gauß curvature of ∆i tends to zero as i → ∞. This is a contradiction to the
estimate in the previous paragraph. As a consequence, the image of the open set U
under the projection π contains indeed an open subset of π(G) equipped with the

topology as a subspace of ∂T (S) × ∂T (S) which shows the lemma. �
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Let T 1M(S) be the quotient of the unit tangent bundle T 1T (S) of T (S) under
the action of the (extended) mapping class group. By equivariance, the Weil-
Petersson geodesic flow projects to a flow on T 1M(S).

Every pseudo-Anosov element g ∈ Mod(S) defines a periodic orbit for the Weil-
Petersson flow. This periodic orbit is the projection of the unit tangent line of an
axis of g. These are the only periodic orbits. Namely, if {Φtv | t} is a periodic
orbit in T 1M(S) then there is a biinfinite Weil-Petersson geodesic γ in T (S) whose
unit tangent line projects to the orbit. This geodesic is invariant under an element
g ∈ Mod(S). Then g is axial, with axis γ ⊂ T (S), and hence g is pseudo-Anosov.

Proposition 4.6, applied to the full mapping class group, shows together with
Lemma 5.2 immediately the following result of Brock, Masur and Minsky [8].

Proposition 5.3. Periodic orbits are dense in T 1M(S).

Proof. Since the subset G of T 1T (S) is dense and Mod(S)-invariant, it suffices
to show that the unit tangents of all axes of all pseudo-Anosov elements are dense
in G. Now by Lemma 4.1 and Proposition 4.6, the set of pairs of endpoints of all
axes of pseudo-Anosov elements in Mod(S) is dense in ∂T (S) × ∂T (S) and hence
in πG and therefore the proposition follows from Lemma 5.2. �

We now use local compactness of Teichmüller space to complete the proof of
Theorem 1 from the introduction.

Proposition 5.4. Let G < Mod(S) be a non-elementary subgroup with limit

set Λ which contains a pseudo-Anosov element. Then there is a dense orbit for the

action of G on Λ × Λ.

Proof. Let G < Mod(S) be a non-elementary subgroup which contains a
pseudo-Anosov element. Let as before G ⊂ T 1T (S) be the space of all directions
of biinfinite Weil-Petersson geodesics in T (S) and let G0 ⊂ G be the space of all
directions of geodesics with both endpoints in Λ. Then G0 is a closed G-invariant
subset of the (non-locally compact) space G. By Lemma 5.2, the restriction to G0

of the map π factors through a homeomorphism G0/Φt → π(G0) ⊂ Λ × Λ. Since
a pair of fixed points of a pseudo-Anosov element g ∈ G is contained in π(G), by
Proposition 4.6 the set πG0 is dense in Λ × Λ.

Let P : T 1T (S) → T 1T (S)/G = N be the canonical projection. We claim that
for all nonempty open sets U, V ⊂ N with U ∩PG0 6= ∅ and V ∩PG0 6= ∅ and every
t > 0 there is some u ∈ U ∩ PG0 and some T > t such that ΦT u ∈ V . For this let
Ũ , Ṽ be the preimages of U, V in T 1T (S). Then Ũ , Ṽ are open G-invariant subsets

of T 1T (S). By Lemma 5.2, the projection π : G → πG ⊂ ∂T (S) × ∂T (S) is open.

Therefore there are open subsets W1,W2 of ∂T (S) × ∂T (S) with

W1 ∩ πG ⊂ π(Ũ ∩ G), W2 ∩ πG ⊂ π(Ṽ ∩ G)

and such that the intersections of W1,W2 with Λ × Λ are non-empty.
Since Wi∩Λ×Λ 6= ∅, by the second part of Proposition 4.6 there is some h ∈ G

such that W = W1 ∩ h−1W2 6= ∅ and that W ∩Λ×Λ 6= ∅. Let (a, b) ∈ W ∩ πG0 be
the pair of endpoints of an axis of a pseudo-Anosov element g ∈ G. Such an element
exists by the first part of Proposition 4.6. Then the axis of the conjugate hgh−1 of
g in G has a pair of endpoints (ha, hb) ∈ W2 ∩ πG0. Since the unit tangent lines
of axes of pseudo-Anosov elements which are conjugate in G project to the same
periodic orbit in N for the Weil-Petersson flow, this implies that the projection of
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the unit tangent line of the axis of g passes through both U and V . In particular,
for t > 0 and for a point x ∈ U ∩PG0 contained in this periodic orbit, there is some
T > t such that ΦT x ∈ V . This shows our claim.

We use this observation to complete the proof of the corollary. Namely, the
closure PG0 of PG0 in N is locally compact and separable since this is the case
for N . Moreover, PG0 is invariant under the Weil-Petersson flow Φt. Hence we
can choose a countable basis Ui of open sets for PG0 which are moreover relatively
compact. Let V1 = U1 and for each i ≥ 2 define inductively a nonempty open set
Vi in PG0 with Vi ⊂ Vi−1 ⊂ U1 and a number ti > ti−1 such that ΦtiVi ⊂ Ui.
This is possible by the above consideration and by continuity of the Weil-Petersson
flow. Then ∩iVi 6= ∅, and the forward Φt-orbit of any point in ∩iVi is infinite and
dense in PG0. With the same argument we can also guarantee that the backward
Φt-orbit of a point v ∈ ∩iVi is infinite and dense in PG0. But this just means that
for a lift ṽ of v the G-orbit of π(v) ∈ Λ × Λ is dense. This completes the proof of
the corollary. �

A flow Φt is called topologically transitive if it admits a dense orbit. As an
immediate consequence of Lemma 5.2 and Proposition 5.4 we obtain the following
result of Brock, Masur and Minsky [8].

Corollary 5.5. The Weil-Petersson geodesic flow on T 1M(S) is topologically

transitive.

Remark: For two points ξ 6= η ∈ ∂T (S) it is in general difficult to decide
whether (ξ, η) ∈ πG, i.e. whether there is a geodesic line connecting ξ to η. However,
Brock, Masur and Minsky [8] showed the following. Let γ : [0,∞) → T (S) be a
geodesic ray such that there is a number ǫ > 0 and a sequence ti → ∞ with
γ(ti) ∈ T (S)ǫ. Then γ(∞) can be connected to every ξ ∈ ∂T (S) − {γ(∞)} by a
geodesic.

Even though the space T 1M(S) is non-compact and the Weil-Petersson geo-
desic flow Φt on T 1M(S) is not everywhere defined, it admits uncountably many
invariant Borel-probability measures. Namely, the space of Φt-invariant Borel
probability measures for the Weil-Petersson flow can be equipped with the weak∗-
topology. With respect to this topology, it is a closed convex set in the topological
vector space of all finite signed Borel measures on T 1M(S). The extreme points
of this convex set are the ergodic measures. Specific such ergodic measures are
measures which are supported on a single periodic orbit. It was shown in [10] that
there is a continuous injection from the space of invariant probability measures
for the Teichmüller flow into the space of invariant probability measures for the
Weil-Petersson geodesic flow.

Theorem 2 from the introduction is an immediate consequence of the following

Proposition 5.6. Every Φt-invariant ergodic Borel probability measure on

T 1M(S) can be approximated in the weak∗-topology by measures supported on pe-

riodic orbits.

Proof. Let ν be a Borel probability measure on T 1M(S) which is invariant
and ergodic for the Weil-Petersson geodesic flow Φt. We have to find a sequence of
periodic orbits for Φt so that the normalized Lebesgue measures νi supported on
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these orbits converge weakly as i → ∞ to ν. This means that for every continuous
function f : T 1M(S) → R with compact support we have∫

fdνi →

∫
fdν.

For this let v ∈ T 1M(S) be a (typical) density point for the measure ν. By
the Birkhoff ergodic theorem, we have

lim
t→∞

1

t

∫ t

0

f(Φsv)ds =

∫
fdν

for every continuous function f on T 1M(S) with compact support. Thus it suffices
to find a sequence of numbers ti → ∞ and a sequence of periodic orbits for Φt

which are the supports of normalized Φt-invariant measures νi such that

|
1

ti

∫ ti

0

f(Φsv)ds −

∫
fdνi| → 0 (i → ∞)

for every continuous function f : T 1M(S) → R with compact support.
The Weil-Petersson metric induces a Riemannian metric and hence a distance

function dS on (the orbifold) T 1M(S) (the so-called Sasaki metric). Since a con-
tinuous function f : T 1M(S) → R with compact support is bounded and uniformly
continuous, for every ǫ > 0 there is a number δ > 0 depending on f such that

|
1

T

∫ T

0

f(Φtw)dt −
1

T

∫ T

0

f(Φtu)dt| < ǫ

whenever w, u ∈ T1M(S) are such that dS(Φtu,Φtw) < δ for all t ∈ [δT, (1− δ)T ].
Since the sectional curvature of the Weil-Petersson metric is negative, compar-

ison with the euclidean plane shows that the Sasaki distance in the covering space
T1T (S) can geometrically be estimated as follows. Let P : T 1T (S) → T (S) be the
canonical projection. Then for every δ > 0 there is a number R = R(δ) > 0
with the following property. Let w, u ∈ T 1T (S) be two unit tangent vectors
such that the flow-lines Φtw,Φtu of w, u are defined on the interval [−R,R]. If
dWP (PΦtu, PΦtw) ≤ 1/R for all t ∈ [−R,R] then dS(u,w) < δ.

Let γ : R → T (S) be a geodesic whose initial tangent γ′(0) is a preimage of the
density point v. By the above discussion and convexity of the distance function,
it suffices to find a sequence of numbers ti → ∞ and a sequence (gi) ⊂ Mod(S) of
pseudo-Anosov elements with the following properties.

(1) There is a number p > 0 such that the translation length of gi is contained
in the interval [ti − p, ti + p] for all i.

(2) For every number δ > 0 there is a number T = T (δ) > 0 not depending
on i such that the distance between the points γ(T ), γ(ti − T ) and the
axis γi of gi is at most δ for all sufficiently large i.

For the construction of such a sequence of pseudo-Anosov elements, note that
by the Poincaré recurrence theorem we may assume that there is a sequence ti → ∞
such that Φtiv → v (i → ∞). This means that there is a sequence (gi) ⊂ Mod(S)
such that

g−1
i γ′(ti) → γ′(0) (i → ∞).

In particular, dWP (γ(ti), giγ(0)) → 0 (i → ∞). We show that the sequence (gi)
has the properties 1),2) above.
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Let ζi : [0, ri] → T (S) be the geodesic connecting x0 to gi(x0). By the above
discussion, it suffices to show that for sufficiently large i the element gi ∈ Mod(S)
is pseudo-Anosov and its axis has property 2) above where the geodesic arc γ[0, ti]
in the statement is replaced by the geodesic arc ζi[0, ri].

For this recall from Lemma 3.4 that for each i, the element gi ∈ Mod(S) either

is axial or it is elliptic. If gi is axial then let γi : R → T (S) be an oriented
axis of gi. Let x0 = γ(0) and assume that γi is parametrized in such a way that
γi(0) = xi = πγi(R)(x0). By invariance under gi we have

πγi(R)(gix0) = gixi = γi(τi)

where τi > 0 is the minimum of the displacement function of gi. Note that

τi ≤ dWP (x0, gix0) ≤ ti + 1 for all large i.

If gi is not axial then let xi be a fixed point of gi.
Consider the (possibly degenerate) geodesic quadrangle Qi in T (S) with ver-

tices x0, xi, gixi, gix0. Since dWP (x0, xi) = dWP (gix0, gixi), by convexity of the
distance function the angles of Qi at x0, gix0 do not exceed π/2. On the other
hand, by equivariance under the action of gi, the sum of the angles of Qi at x0

and at gix0 is not smaller than the angle at x0 between the tangent of the geodesic
arc ζi and the negative −giζ

′

i(ri) of the tangent of the geodesic arc g−1
i ζi. Now

ζ ′i(0) → γ′(0), g−1
i ζ ′i(ri) → γ′(0) and therefore this angle converges to π as i → ∞.

Thus we may assume that the minimum of the two angles of Qi at x0, gix0 is bigger
than 3π/8 for all i.

xi gxiγi

ηi

∆i

ζi

x0 gix0

Let ∆i ⊂ T (S) be the ruled triangle with vertices x0, xi, gix0 which we obtain
by connecting the vertex gix0 to each point on the opposite side by a geodesic (see
the figure). A geodesic for the Weil-Petersson metric connecting a point in T (S)

to a point in T (S) is entirely contained in T (S) except possibly for its endpoint
[18, 19]. Thus ∆i−xi is a smooth embedded surface in T (S) whose intrinsic Gauß
curvature is defined. The Gauß curvature at a point x ∈ ∆i does not exceed the
maximum of the sectional curvatures of the Weil-Petersson metric at x (compare
the proof of Lemma 5.2 and see [8] for more and references).

Let ǫ > 0 be such that x0 ∈ T (S)2ǫ and let A ⊂ T 1M(S) be the projection to
T 1M(S) of the set of all unit tangent vectors in T 1T (S) with foot-point in T (S)ǫ.
Then A is compact. Let χ be the characteristic function of A. Since v is a density
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point for ν by assumption and since there is a neighborhood of v in T 1M(S) which
is entirely contained in A, we have

∫
χdν > 0. Let r > 0 be sufficiently small

that the sectional curvature of the restriction of the Weil-Petersson metric to the
r-neighborhood of T (S)ǫ is bounded from above by a negative constant −b < 0.
Such a number exists by invariance under the action of the mapping class group
and cocompactness.

By CAT(0)-comparison, there is a number s > 0 with the following property.

Let R,S > 0 and let ζ : [0, R] → T (S), η : [0, S] → T (S) be any two geodesics
issuing from η(0) = ζ(0) = x0 which enclose an angle at least π/4. Then η does not
pass through the r-neighborhood of ζ[s,R]. For this number s and for any number
δ < r/3 let T = T (δ) > 0 be such that χ(ΦT v) = 1 and

∫ T

s

χ(Φsv)ds ≥ π/bδ.

Such a number exists since by the Birkhoff ergodic theorem we have

lim
t→∞

1

t

∫ t

0

χ(Φsv)ds =

∫
χdν > 0.

Let i > 0 be sufficiently large that ti > T + 2r, and that dWP (ζi(ri), γ(ti)) ≤
δ/2. By convexity, we then have dWP (ζi(t), γ(t)) ≤ δ for all t ∈ [0, ri]. Let ηi be
the side of ∆i connecting xi to gix0. If c is a geodesic arc in ∆i of length at most r
issuing from a point in ζi[s, ri] then c does not intersect the side of ∆i connecting
xi to x0 and hence either it ends on a point in ηi or it can be extended. Thus if the
distance between ζi(T ) and ηi is bigger than δ then by convexity the ruled triangle
∆i contains an embedded strip of width δ < r/3 with the arc ζi[s, T ] as one of its
sides. This strip is the union of all geodesic arcs of length δ in ∆i with respect to
the intrinsic metric which issue from a point in ζi[s, T ] and which are perpendicular
to ζi. If c is such a geodesic arc issuing from a point ζi(t) where t ≥ s is such that
γ′

i(t) ∈ A, then the Gauß curvature of ∆i on each point of c does not exceed −b.
By the choice of T and by volume comparison, the Lebesgue measure of the set of
all points on such geodesic arcs is not smaller than π/b. Since the Gauss curvature
of ∆i is negative, this implies that the integral of the Gauss curvature of ∆i over
this strip is smaller than −π. However, this violates the Gauss-Bonnet theorem
(compare [10] for more details for this argument, and see also the proof of Lemma
5.2).

As a consequence, the geodesic ηi passes through the δ-neighborhood of the
point ζi(T ). This implies that for sufficiently large i the isometry gi is not elliptic.
Namely, we have dWP (xi, ζi(T )) ≥ dWP (x0, xi)−T and dWP (x0, gix0) ≥ ti−δ and
hence if ti > 2T + 2δ then

dWP (xi, gix0) ≥ dWP (xi, ζi(T )) + ti − T − 2δ(5.1)

≥ dWP (xi, x0) + ti − 2T − 2δ > dWP (xi, x0).

On the other hand, if gi is elliptic then we have dWP (xi, x0) = dWP (gixi, gix0) =
dWP (xi, gix0) which contradicts inequality (5.1). Thus gi is axial for all sufficiently
large i. Let γi be an oriented axis for gi.

We next observe that gi is pseudo-Anosov for all sufficiently large i. Namely,
using the above notation, there is a number si > 0 such that

dWP (ζi(T ), ηi(si)) < δ.
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By CAT(0)-comparison, the angle at gix0 between the geodesics ζi and ηi tends
to zero as i → ∞. Thus for large i, the angle at gixi of the triangle with vertices
xi, gixi, gix0 is not smaller than π/4.

If the distance between the axis γi of gi and ηi(si) is smaller than δ then the
axis γi of gi passes through the 3δ < r-neighborhood of a point in T (S)ǫ and hence
it passes through a point in T (S). As a consequence, gi is pseudo-Anosov (see the
remark after Lemma 3.4).

On the other hand, if the distance between γi and ηi(si) is bigger than δ then
let τ > T be such that

∫ τ

T
χ(Φsv)ds ≥ π/bδ and χ(Φτv) = 1. Apply the above

consideration to the ruled triangle ∆̂i with vertices xi, gixi, gix0 which we obtain
by connecting xi to each point on the opposite side by a geodesic segment and to
the subarc ηi[si, si + τ − T ] of ηi. We conclude that dWP (ηi(si), γi) < δ and once
again, γi passes through a point in T (S) and gi is pseudo-Anosov.

By the above consideration, for large i the axis γi of gi passes through the
δ-neighborhood of ζi(T ) where T = T (δ) only depends on δ. The same argument

shows that this axis also passes through the δ-neighborhood of ζi(ri − T̃ ) where

once more T̃ > 0 only depends on δ (assume without loss of generality that −v is a
density point for the image of ν under the flip w → −w and use the fact that two
orbit segments of the same finite length are uniformly close if their initial points
are close enough). In particular, the translation length of gi is contained in the

interval [ti − T − T̃ , ti + 1].
As a consequence, (gi) ⊂ Mod(S) is a sequence of pseudo-Anosov elements

which satisfies the conditions 1),2) above. Therefore the normalized Lebesgue mea-
sures on the projections to T 1M(S) of the unit tangent lines of the axes of the
elements gi converge weakly to ν. This completes the proof of the proposition. �
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Boston, Basel, Stuttgart 1985.

[3] M. Bestvina, K. Fujiwara, A characterization of higher rank symmetric spaces via bounded

cohomology, Geom. Funct. Anal. 19 (2009), 11–40.
[4] M. Bridson, Semisimple actions of mapping class groups on CAT(0)-spaces,

arXiv:0908.0685, to appear in “The geometry of Riemann surfaces”, London Math. Soc.

Lecture Notes 368.
[5] M. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Springer, Berlin Hei-

delberg 1999.
[6] J. Brock, The Weil-Petersson visual sphere, Geom. Dedicata 115 (2005), 1–18.

[7] J. Brock, H. Masur, Coarse and synthetic Weil-Petersson geometry: quasi-flats, geodesics

and relative hyperbolicity, Geom. Top. 12 (2008), 2453-2495.
[8] J. Brock, H. Masur, Y. Minsky, Asymptotics of Weil-Petersson geodesics I: ending lam-

inations, recurrence, and flows, arXiv:0802.1370, to appear in GAFA.
[9] G. Daskalopoulos, R. Wentworth, Classification of Weil-Petersson isometries, Amer. J.

Math. 125 (2003), 941–975.
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