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Abstract. Let X be a proper CAT(0)-space and let G be a closed subgroup
of the isometry group Iso(X) of X. We show that if G is non-elementary
and contains a rank-one element then its second continuous bounded coho-
mology group with coefficients in the regular representation is non-trivial. As

a consequence, up to passing to an open subgroup of finite index, either G is a
compact extension of a totally disconnected group or G is a compact extension
of a simple Lie group of rank one.

1. Introduction

A geodesic metric space (X, d) is called proper if closed balls in X of finite radius
are compact. A proper CAT(0)-metric space X can be compactified by adding the
visual boundary ∂X. The isometry group Iso(X) of X, equipped with the compact
open topology, is a locally compact σ-compact topological group which acts as a
group of homeomorphisms on the compact space X = X ∪ ∂X. The limit set Λ of
a subgroup G of Iso(X) is the set of accumulation points in ∂X of an orbit of the
action of G on X. The group G is called elementary if either its limit set consists
of at most two points or if G fixes a point in ∂X.

The displacement function of an isometry g ∈ Iso(X) is the function x→ d(x, gx)
on X. The isometry g is called semisimple if its displacement function assumes a
minimum on X. If this minimum is zero then g has a fixed point in X and is called
elliptic, and otherwise g is called axial. If g is axial then the closed convex subset
of X of all minima of the displacement function of g is isometric to a product space
C × R where g acts on each of the geodesics {x} × R as a translation. Such a
geodesic is called an axis for g. We refer to the books [3, 4, 7] for basic properties
of CAT(0)-spaces and for references.

Call an axial isometry g of X rank-one if there is an axis γ for g which does
not bound a flat half-plane. Here by a flat half-plane we mean a totally geodesic
embedded isometric copy of an euclidean half-plane in X.

A compact extension of a topological group H is a topological group G which
contains a compact normal subgroup K such that H = G/K as topological groups.
Extending earlier results for isometry groups of proper hyperbolic geodesic metric
spaces [15, 18, 20] we show
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Theorem 1. Let X be a proper CAT(0)-space and let G < Iso(X) be a closed

subgroup. Assume that G is non-elementary and contains a rank-one element.

Then one of the following two possibilities holds.

(1) Up to passing to an open subgroup of finite index, G is a compact extension

of a simple Lie group of rank one.

(2) G is a compact extension of a totally disconnected group.

Caprace and Monod showed the following version of Theorem 1 (Corollary 1.7
of [12]): A CAT(0)-space X is called irreducible if it is not a non-trivial metric
product. Let X 6= R be an irreducible proper CAT(0)-space with finite dimensional
Tits boundary. Assume that the isometry group Iso(X) of X does not have a
global fixed point in ∂X and that its action on X does not preserve a non-trivial
closed convex subset of X. Then Iso(X) is either totally disconnected or an almost
connected simple Lie group with trivial center.

We also note the following consequence (see Corollary 1.24 of [12]). For its
formulation, an isometry of a CAT(0)-space is called parabolic if it is not semisimple.

Corollary 1. Let M be a closed Riemannian manifold of non-positive sectional

curvature. If the universal covering M̃ of M is irreducible and if the isometry

group of M̃ contains a parabolic element then M is locally symmetric.

Our proof of Theorem 1 is different from the approach of Caprace and Monod
and uses second bounded cohomology for locally compact topological groups G with
coefficients in a separable Banach module for G. Such a separable Banach module
is a separable Banach space E together with a continuous homomorphism of G into
the group of linear isometries of E. For every separable Banach module E for G and
every i ≥ 1, the group G naturally acts on the vector space Cb(G

i, E) of continuous
bounded maps Gi → E. If we denote by Cb(G

i, E)G ⊂ Cb(G
i, E) the linear sub-

space of all G-invariant such maps, then the second continuous bounded cohomology

group H2
cb(G,E) of G with coefficients E is defined as the second cohomology group

of the complex

0 → Cb(G,E)G
d−→ Cb(G

2, E)G
d−→ . . .

with the usual homogeneous coboundary operator d (see [19]).

A closed subgroup G of Iso(X) is a locally compact and σ-compact topological
group and hence it admits a left invariant locally finite Haar measure µ. In par-
ticular, for every p ∈ (1,∞) the separable Banach space Lp(G,µ) of functions on
G which are p-integrable with respect to µ is a separable Banach module for G
with respect to the isometric action of G by left translation. Extending an ear-
lier result for isometry groups of proper hyperbolic spaces [15] (see also the work
of Monod-Shalom [20], of Mineyev-Monod-Shalom [18], of Bestvina-Fujiwara [6]
and of Caprace-Fujiwara [11] for closely related results) we obtain the following
non-vanishing result for second bounded cohomology.

Theorem 2. Let G be a closed non-elementary subgroup of the isometry group of a

proper CAT(0)-space X. If G contains a rank-one element then H2
cb(G,L

p(G,µ)) 6=
{0} for every p ∈ (1,∞).
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It follows from the work of Burger and Monod [8] and Monod and Shalom [21]
that the conclusion in Theorem 2 does not hold for simple Lie groups of non-compact
type and higher rank. Such a group is the isometry group of a symmetric space
of non-compact type which is a finite dimensional complete Riemannian manifold
of non-positive curvature. Thus the assumption on the existence of a rank-one
element in Iso(X) in Theorem 2 can not be removed. More precisely, we obtain the
following super-rigidity theorem as an application of Theorem 2.

Corollary 2. Let G be a connected semi-simple Lie group with finite center, no

compact factors and of rank at least 2. Let Γ be an irreducible lattice in G, let

X be a proper CAT(0)-space and let ρ : Γ → Iso(X) be a homomorphism. Let

H < Iso(X) be the closure of ρ(Γ). If H is non-elementary and contains a rank-

one element, then H is compact extension of a simple Lie group L of rank one,

and up to passing to an open subgroup of finite index, ρ extends to a continuous

homomorphism G→ L.

Remark: As in [15], our proof of Theorem 2 also shows the following result of
Bestvina and Fujiwara [6]: Let G < Iso(X) be a closed non-elementary subgroup
with limit set Λ which contains a rank-one element. If G does not act transitively
on the complement of the diagonal in Λ × Λ then the second continuous bounded
cohomology group H2

cb(G,R) is infinite dimensional. Moreover, the arguments in
[15] together with the geometric discussion in Sections 2-5 of this paper show that if
G acts transitively on the complement of the diagonal in Λ×Λ then H2

cb(G,R) = 0.
Under the additional assumption that G acts on X cocompactly, this is due to
Caprace and Fujiwara [11].

The organization of this note is as follows. In Section 2 we collect some geometric
properties of a proper CAT(0)-space X needed in the sequel. In particular, we
discuss contracting geodesics as introduced by Bestvina and Fujiwara [6].

In Section 3 we investigate for a fixed number B > 0 the space of all B-
contracting geodesics in X. We construct a family of finite distance functions
on the space of pairs of endpoints of such geodesics which are parametrized by the
points in X. These distance functions are equivariant under the natural action of
the isometry group of X. This construction is the main novelty of this work.

Let G < Iso(X) be a closed non-elementary subgroup with limit set Λ ⊂ ∂X
which contains a rank-one element. In Section 4 we use the distance functions on
the space of endpoints of B-contracting geodesics to construct continuous bounded
cocycles for G with values in Lp(G×G,µ× µ) on a G-invariant closed subspace of
the space of triples of pairwise distinct points in Λ

If the action of the group G on the complement of the diagonal in Λ × Λ is
transitive, then this space of triples equals the entire space of triples of pairwise
distinct points in Λ. In this case standard arguments are used in Section 5 to show
Theorem 2. The case that G does not act transitively on the complement of the
diagonal in Λ× Λ is technically more difficult and is established in Section 6. The
proof of Theorem 1 and of the corollaries is contained in Section 7.
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2. Metric contraction in CAT(0)-spaces

In this section we collect some geometric properties of CAT(0)-spaces needed in
the later sections. We use the books [3, 4, 7] as the main references.

2.1. Shortest distance projections. A proper CAT(0)-space has strong convex-
ity properties which we summarize in this subsection.

In a complete CAT(0)-space X, any two points can be connected by a unique
geodesic which varies continuously with the endpoints. The distance function is
convex: If γ, ζ : J → X are two geodesics in X parametrized on the same interval
J ⊂ R then the function t → d(γ(t), ζ(t)) is convex. More generally, we call a
function f : X → R convex if for every geodesic γ : J → R the function t→ f(γ(t))
is convex [3].

For a fixed point x ∈ X, let ∂X be the space of all geodesic rays issuing from a
fixed point x ∈ X equipped with the topology of uniform convergence on compact
sets. The topological space ∂X does not depend on the choice of x and is called
the visual boundary of X We denote the point in ∂X defined by a geodesic ray
γ : [0,∞) → X by γ(∞). We also say that γ connects x to γ(∞).

There is another description of the visual boundary of X as follows. For points
x, y, z ∈ X define

bx(y, z) = d(x, z)− d(x, y).

Then we have

(1) bx(y, z) = −bx(z, y) for all y, z ∈ X

and

(2) |bx(y, z)− bx(y, z
′)| ≤ d(z, z′) for all z, z′ ∈ X

and hence the function bx(y, ·) : z → bx(y, z) is one-Lipschitz and vanishes at y.
Moreover, the function bx(y, ·) is convex, and for ỹ ∈ X we have

(3) bx(ỹ, ·) = bx(y, ·) + bx(ỹ, y).

Let C(X) be the space of all continuous functions on X endowed with the topol-
ogy of uniform convergence on bounded sets. For fixed y ∈ X, the assignment
x → bx(y, ·) is an embedding of X into C(X). A sequence {xn} ⊂ X converges

at infinity if d(xn, y) → ∞ and if the functions bxn
(y, ·) converge in C(X). The

visual boundary ∂X of X can also be defined as the subset of C(X) of all functions
which are obtained as limits of functions bxn

(y, ·) for sequences {xn} ⊂ X which
converge at infinity. In particular, the union X ∪ ∂X is naturally homeomorphic
to a closed subset of C(X) (Chapter II.1 and II.2 of [3]). In this identification,
each ξ ∈ ∂X corresponds to a Busemann function bξ(y, ·) at ξ normalized at y.
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If γ : [0,∞) → X is the geodesic ray which connects y to ξ then the Busemann
function bξ(y, ·) satisfies bξ(y, γ(t)) = −t for all t ≥ 0.

From now on let X be a proper (i.e. complete and locally compact) CAT(0)-
space. Then X ∪ ∂X is compact. A subset C ⊂ X is convex if for all x, y ∈ C the
geodesic connecting x to y is contained in C. For every closed convex set C ⊂ X
and every x ∈ X there is a unique point πC(x) ∈ C of smallest distance to x
(Proposition II.2.4 of [7]).

Let J ⊂ R be a closed connected set and let γ : J → X be a geodesic arc. Then
γ(J) ⊂ X is closed and convex and hence there is a shortest distance projection

πγ(J) : X → γ(J).

The projection point πγ(J)(x) of x ∈ X is the unique minimum for the restriction of
the function bx(y, ·) to γ(J). By equality (3), this does not depend on the choice of
the basepoint y ∈ X. The projection πγ(J) : X → γ(J) is distance non-increasing.

For ξ ∈ ∂X the function t→ bξ(y, γ(t)) is convex. Let γ(J) be the closure of γ(J)

in X ∪ ∂X. If bξ(y, ·)|γ(J) assumes a minimum then we can define πγ(J)(ξ) ⊂ γ(J)

to be the closure in γ(J) of the connected subset of γ(J) of all such minima.
If bξ(y, ·)|γ(J) does not assume a minimum then by continuity the set J is un-
bounded, and by convexity either limt→∞ bξ(y, γ(t)) = inf{bξ(y, γ(s)) | s ∈ J}
or limt→−∞ bξ(y, γ(t)) = inf{bξ(y, γ(s)) | s ∈ J}. In the first case we define
πγ(J)(ξ) = γ(∞) ∈ ∂X, and in the second case we define πγ(J)(ξ) = γ(−∞).

Then for every ξ ∈ ∂X the set πγ(J)(ξ) is a closed connected subset of γ(J) (which
may contain points in both X and ∂X).

2.2. Contracting geodesics. A proper CAT(0)-spaceX can contain many totally
geodesic embedded flat subspaces, and it can also contain subsets with hyperbolic
behavior. To give a precise description of such hyperbolic behavior, Bestvina and
Fujiwara introduced a geometric property for geodesics in a CAT(0)-space (Defini-
tion 3.1 of [6]) which we repeat in the following definition. For the remainder of
this note, geodesics are always defined on closed connected subsets of R.

Definition 2.1. A geodesic arc γ : J → X is B-contracting for some B > 0 if for
every closed metric ball K ⊂ X which is disjoint from γ(J) the diameter of the
projection πγ(J)(K) does not exceed B.

We call a geodesic contracting if it is B-contracting for some B > 0. Lemma 3.3
of [16] relates B-contraction for a geodesic line γ to the diameter of the projections
πγ(R)(ξ) where ξ ∈ ∂X.

Lemma 2.2. Let γ : R → X be a B-contracting geodesic. Then for every ξ ∈
∂X−{γ(−∞), γ(∞)} the projection πγ(R)(ξ) is a compact subset of γ(R) of diameter

at most 6B + 4.

Lemma 3.2 and 3.5 of [6] show that a connected subarc of a contracting geodesic
is contracting and that a triangle containing a B-contracting geodesic as one of its
sides is uniformly thin.
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Lemma 2.3. Let γ : J → X be a B-contracting geodesic.

(1) For every closed connected subset I ⊂ J , the subarc γ(I) of γ is B + 3-
contracting.

(2) For x ∈ X and for every t ∈ J the geodesic connecting x to γ(t) passes

through the 3B + 1-neighborhood of πγ(J)(x).

Note that by convexity of the distance function, if ζi : [ai, bi] → X (i = 1, 2)
are two geodesic segments such that d(ζ1(a1), ζ2(a2)) ≤ R, d(ζ1(b1), ζ2(b2)) ≤ R
then the Hausdorff distance between the subsets ζ1[a1, b1], ζ2[a2, b2] of X is at most
R. Here the Hausdorff distance between closed (not necessarily compact) subsets
A,B of X is the infimum of all numbers R > 0 such that A is contained in the R-
neighborhood of B and B is contained in the R-neighborhood of A. (This number
can be infinite).

A visibility point is a point ξ ∈ ∂X with the property that any η ∈ ∂X − {ξ}
can be connected to ξ by a geodesic line. By Lemma 3.5 of [16], the endpoint of
a contracting geodesic ray is a visibility point. Geodesic rays which abut at an
endpoint of a contracting geodesic ray are themselves contracting.

Lemma 2.4. For every B > 0 there is a number C = C(B) > B with the following

property. Let γ : [0,∞) → X be a B-contracting ray and let ξ ∈ ∂X − γ(∞). Then

every geodesic ζ connecting ξ = ζ(−∞) to γ(∞) = ζ(∞) passes through the 9B+6-
neighborhood of every point x ∈ πγ[0,∞)(ξ). If t ∈ R is such that d(ζ(t), x) ≤ 9B+6
then the geodesic ray ζ[t,∞) is C-contracting.

Proof. Let γ : [0,∞) → X be a B-contracting geodesic ray and let ξ ∈ ∂X − γ(∞).
Let s ≥ 0 be such that γ(s) ∈ πγ[0,∞)(ξ). By Lemma 2.2, the projection πγ[0,∞)(ξ)
is contained in γ[s− 6B − 4, s+ 6B + 4]. Let ζ : R → X be a geodesic connecting
ξ to γ(∞). Lemma 2.2 of [16] shows that for sufficiently large t we have

πγ[0,∞)(ζ(−t)) ∈ γ[s− 6B − 5, s+ 6B + 5].

Thus by Lemma 2.3, the geodesic ray ζ[−t,∞) connecting ζ(−t) to γ(∞) passes
through the 9B + 6-neighborhood of γ(s). Since ζ was an arbitrary geodesic con-
necting ξ to γ(∞), this shows the first part of the lemma.

From this and Lemma 3.8 of [6], the second part of the lemma is immediate
as well. Namely, let again ζ be a geodesic connecting ξ to γ(∞) and let γ(s) ∈
πγ[0,∞)(ξ). Assume that ζ is parametrized in such a way that d(ζ(0), γ(s)) ≤ 9B+6.
The geodesic ray ζ[0,∞) is a locally uniform limit as t → ∞ of the geodesics ζt
connecting ζ(0) to γ(t). By Lemma 3.8 of [6], there is a number C > 0 only
depending on B such that each of the geodesics ζt is C-contracting. Now Lemma 3.3
of [16] shows that a limit of a sequence of C-contracting geodesics is C-contracting.
This completes the proof of the lemma. �

The next observation is an extension of Lemma 2.3. For its formulation, define an
ideal geodesic triangle to consist of three biinfinite geodesics γ1, γ2, γ3 with γi(∞) =
γi+1(−∞) (where indices are taken modulo three). The points γi(∞) (i = 1, 2, 3)
are called the vertices of the ideal geodesic triangle. If a, b ∈ ∂X are visibility points
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then for every ξ ∈ ∂X−{a, b} there is an ideal geodesic triangle with vertices a, b, ξ.
Note that such a triangle need not be unique.

Lemma 2.5. Let B > 0 and let γ : R → X be a B-contracting geodesic. Then for

every ideal geodesic triangle T with side γ there is a point x ∈ X whose distance to

each of the sides of T does not exceed 9B + 6. The diameter of the set of all such

points does not exceed 54B + 36.

Proof. Let γ : R → X be a B-contracting geodesic and let T be an ideal geodesic
triangle with side γ and vertex ξ ∈ ∂X − {γ(∞), γ(−∞)} opposite to γ. Assume
that γ is parametrized in such a way that γ(0) ∈ πγ(R)(ξ). Let c : [0,∞) → X
be the geodesic ray connecting c(0) = γ(0) to ξ. By Lemma 2.4 and by CAT(0)-
comparison, the side α of T connecting ξ to γ(∞) is contained in the 9B+6-tubular
neighborhood of c[0,∞) ∪ γ[0,∞), and the side β of T connecting ξ to γ(−∞) is
contained in the 9B + 6-tubular neighborhood of c[0,∞)∪ γ(−∞, 0]. The distance
between γ(0) = c(0) and every side of T does not exceed 9B + 6.

Since the projection πγ(R) is distance non-increasing and since πγ(R)(c[0,∞)) =
γ(0) (see [7] and the proof of Lemma 3.5 in [16]), if as before α, β are the sides of
T connecting ξ to γ(∞), γ(−∞), respectively, then

πγ(R)(α) ⊂ γ[−9B − 6,∞) and πγ(R)(β) ⊂ γ(−∞, 9B + 6].

Now if x ∈ X is such that the distance between x and each side of T is at most 9B+6
then using again that πγ(R) is distance non-increasing we conclude that πγ(R)(x) ∈
γ[−18B− 12, 18B+12]. But d(x, γ(R)) ≤ 9B+6 and hence d(x, γ(0)) ≤ 27B+18.
This completes the proof of the lemma. �

2.3. Isometries. For an isometry g of a proper CAT(0)-space X define the dis-
placement function dg of g to be the function x → dg(x) = d(x, gx). An isometry
g of X is called semisimple if dg assumes a minimum in X. If g is semisimple and
min dg = 0 then g is called elliptic. Thus an isometry is elliptic if and only if it fixes
at least one point in X. A semisimple isometry g with min dg > 0 is called axial. By
Proposition 3.3 of [3], an isometry g of X is axial if and only if there is a geodesic
γ : R → X such that gγ(t) = γ(t + τ) for every t ∈ R where τ = min dg > 0 is
the translation length of g. Such a geodesic is called an oriented axis for g. Note
that the geodesic t → γ(−t) is an oriented axis for g−1. The endpoint γ(∞) of γ
is a fixed point for the action of g on ∂X which is called the attracting fixed point.
The closed convex set A ⊂ X of all points for which the displacement function dg
of g is minimal is isometric to a metric product A0 × R. For each x ∈ A0 the set
{x} × R is an axis of g. The endpoints of this axis do not depend on x.

Bestvina and Fujiwara introduced the following notion to identify isometries of
a CAT(0)-space with geometric properties similar to the properties of isometries in
a hyperbolic geodesic metric space (Definition 5.1 of [6]).

Definition 2.6. For a number B > 0, an isometry g ∈ Iso(X) is called B-rank-one

if g is axial and admits a B-contracting axis.
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We call an isometry g ∈ Iso(X) rank-one if g is B-rank-one for some B > 0. By
Lemma 2.4, if g is a rank-one isometry then there is a number C > 0 such that
every axis of g is C-contracting.

The following statement is Theorem 5.4 of [6].

Proposition 2.7. An axial isometry of X with axis γ is rank-one if and only if γ
does not bound a flat half-plane.

Let G < Iso(X) be a subgroup of the isometry group of X. The limit set Λ of G
is the set of accumulation points in ∂X of one (and hence every) orbit of the action
of G on X. The limit set is a compact G-invariant subset of ∂X (which may be
empty). Call G non-elementary if its limit set contains at least three points and if
moreover G does not fix a point in ∂X.

A compact space is perfect if it does not have isolated points. The action of
a group G on a topological space Λ is called minimal if every orbit is dense. A
homeomorphism g of a space Λ is said to act with north-south dynamics if it admits
two fixed points a 6= b ∈ Λ with the following property. For every neighborhood U
of a, V of b there is some k > 0 such that gk(Λ−V ) ⊂ U and g−k(Λ−U) ⊂ V . The
point a is called the attracting fixed point of g, and b is the repelling fixed point.
The following is shown in [16] (see also [3] for a similar discussion).

Lemma 2.8. Let G < Iso(X) be a non-elementary group which contains a rank-

one element. Then the limit set Λ of G is perfect, and it is the smallest closed

G-invariant subset of ∂X. The action of G on Λ is minimal. An element g ∈ G is

rank-one if and only if g acts on ∂X with north-south dynamics.

Since X is proper by assumption, the isometry group Iso(X) of X can be
equipped with a natural locally compact σ-compact metrizable topology, the so-
called compact open topology. With respect to this topology, a sequence (gi) ⊂
Iso(X) converges to some isometry g if and only if gi → g uniformly on compact
subsets of X. In this topology, a closed subset A ⊂ Iso(X) is compact if and only if
there is a compact set K ⊂ X such that gK ∩K 6= ∅ for every g ∈ A. In particular,
the action of Iso(X) on X is proper. In the sequel we always equip subgroups of
Iso(X) with the compact open topology.

Denote by ∆ the diagonal in ∂X × ∂X. Lemma 6.1 of [15] shows

Lemma 2.9. Let G < Iso(X) be a closed subgroup with limit set Λ. Let (a, b) ∈
Λ×Λ−∆ be the pair of fixed points of a rank-one element of G. Then the G-orbit
of (a, b) is a closed subset of Λ× Λ−∆.

The following technical observation is useful in Section 6.

Lemma 2.10. Let G < Iso(X) be a closed non-elementary group with limit set

Λ. If G contains a rank-one element g ∈ G with fixed points a 6= b ∈ Λ and if

G does not act transitively on the complement of the diagonal in Λ× Λ then there

is some h ∈ G such that hb 6= b and that the stabilizer in G of the pair of points

(b, hb) ∈ Λ× Λ is compact.
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Proof. Let g ∈ G be a rank-one element with attracting fixed point a ∈ Λ, repelling
fixed point b ∈ Λ. Let γ : R → X be an axis for g connecting b to a. Then γ is
B − 3-contracting for some B > 3.

Let h ∈ G be such that hb 6= b. By Lemma 2.3, the rays γ(−∞, 0] and
h(γ(−∞, 0]) are B-contracting, with endpoints b, hb ∈ Λ. Now a biinfinite geodesic
ξ : R → X with the property that there are numbers −∞ < s < t <∞, C > 0 such
that the rays ξ(−∞, s], ξ[t,∞) are C-contracting is C ′-contracting for a number
C ′ > C only depending on C and on [s, t]. Therefore Lemma 2.4 implies that there
is a number B0 > B such that each geodesic connecting b to hb is B0-contracting.
As a consequence, the set A ⊂ X of all points which are contained in a geodesic
connecting b to hb is closed and convex and isometric to K0 × R for a compact
convex subset K0 of X.

An isometry u of X which fixes the pair of points (b, hb) preserves the closed
convex set K0 × R. The restriction of u to K0 × R can be represented in the form
(u1, u2) where u1 is an isometry of K0 and u2 is an isometry of R. Since K0 is
a compact convex subset of a Cat(0)-space, the map u1 has a fixed point. As a
consequence, u is semi-simple. Moreover, if u is not elliptic then u is rank-one.
Since G is a closed subgroup of Iso(X), this implies that either the stabilizer of
(b, hb) in G is compact or it contains a rank-one element.

Now assume that there is no h ∈ G with hb 6= b such that the stabilizer of (b, hb)
in G is compact. Then each such stabilizer contains a rank-one element. Our goal
is to show that G acts transitively on the complement of the diagonal in Λ× Λ.

Let h ∈ G with hb 6∈ {a, b} and let again γ be an oriented axis for g connecting
b to a. By Lemma 2.2, we can assume that γ(0) ∈ πγ(R)(hb). Since γ is B-
contracting, by Lemma 2.4 and convexity the ray γ(−∞, 0] is contained in the
9B+6-neighborhood of every geodesic connecting b to hb. Let Gb be the stabilizer
of b in G. By assumption and the above discussion, there is a rank-one element
u ∈ Gb with attracting fixed point hb and repelling fixed point b. By Lemma 2.8, u
acts with north-south dynamics on Λ and hence we have uia→ hb (i→ ∞). Since
ga = a, for every sequence (k(i)) ⊂ Z we also have

uig−k(i)a→ hb (i→ ∞).

Let τ > 0 be the translation length of g and let K be the closed 18B + 12 + 2τ -
neighborhood of γ(0). By the choice of the setK and the fact that u preserves a geo-
desic connecting b to hb which contains the ray γ(−∞, 0] in its 9B+6-neighborhood,
for every i > 0 there is some k(i) > 0 such that uig−k(i)γ(0) ∈ K. Since G is a
closed subgroup of Iso(X) and Gb < G is closed, up to passing to a subsequence
the sequence {uig−k(i)} ⊂ Gb converges to an element v ∈ Gb with va = hb.

As a consequence, for every ξ ∈ Gb − {b} there is some v ∈ Gb with va = ξ.
This implies that the image of (a, b) under the action of the group G is dense in
Λ×Λ−∆. Namely, by Lemma 2.8, the G-orbit of b is dense in Λ. Thus it suffices
to show that for every u ∈ G and every ξ ∈ Gb− {b, ub} there is some v ∈ G with
v(a, b) = (ξ, ub). For this let y = u−1ξ ∈ Gb. Then y 6= b and hence there is some
w ∈ Gb with w(a) = y. Then the isometry v = uw satisfies v(b) = u(b), v(a) = ξ.
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By Lemma 2.9, the G-orbit of (a, b) is closed in Λ × Λ −∆. We showed in the
previous paragraph that it is also dense and therefore G acts transitively on the
complement of the diagonal in Λ× Λ. The lemma follows. �

A free group with two generators is hyperbolic in the sense of Gromov [13]. In
particular, it admits a Gromov boundary which can be viewed as a compactification
of the group. The following result is contained in [6] (see also Proposition 5.8 of
[16] and [11, 5]).

Lemma 2.11. Let G < Iso(X) be a closed non-elementary group which contains a

rank-one element. Let Λ ⊂ ∂X be the limit set of G. If G does not act transitively

on Λ×Λ−∆ then G contains a free subgroup Γ with two generators and the following

properties.

(1) Every element e 6= g ∈ Γ is rank-one.

(2) There is a Γ-equivariant embedding of the Gromov boundary of Γ into Λ.
(3) There are infinitely many elements ui ∈ Γ (i > 0) with fixed points ai, bi

such that for all i the G-orbit of (ai, bi) ∈ Λ × Λ − ∆ is distinct from the

orbit of (bj , aj)(j > 0) or (aj , bj)(j 6= i).

3. The space of B-contracting geodesics

In the previous section we introduced for a number B > 0 a B-contracting
geodesic in a proper CAT(0)-space X. In this section we investigate in more detail
the space of all such geodesics in X.

The main idea is as follows: Even though the geometry of a CAT(0)-space X
may be very different from the geometry of a hyperbolic geodesic metric space, if X
admits B-contracting geodesics then by Lemma 2.5, these geodesics have the same
global geometric properties as geodesics in a δ-hyperbolic geodesic metric space
where δ > 0 only depends on B. As a consequence, given a fixed point x ∈ X, we
can describe the position of two such geodesics γ, ζ relative to each other as seen
from x by introducing a metric quantity which can be thought of being equivalent
to the (oriented) sum of the Gromov distances at x of their endpoints in the case
that the space X is hyperbolic.

We continue to use the assumptions and notations from Section 2. In the re-
mainder of this section, a geodesic in X is always defined on a closed connected
subset J of R. For some B > 0 denote by

A(B) ⊂ ∂X × ∂X −∆

the set of all ordered pairs of points in ∂X which are connected by a B-contracting
geodesic. We have

Lemma 3.1. A(B) is a closed subset of ∂X × ∂X −∆.
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Proof. Let {(ξi, ηi)} ⊂ A(B) be a sequence which converges in ∂X × ∂X −∆ to a
point (ξ, η). For each i let γi be a B-contracting geodesic connecting ξi to ηi. We
first claim that the geodesics γi pass through a fixed compact subset of X.

Namely, choose a point x ∈ X and let xi = πγi(R)(x). If the geodesics γi do not
pass through a fixed compact subset of X then we have d(xi, x) → ∞. Since X∪∂X
is compact, after passing to a subsequence we may assume that xi → α ∈ ∂X as
i → ∞. On the other hand, the geodesic γi is B-contracting and therefore by
Lemma 2.3 the geodesics connecting x to ξi = γi(−∞), ηi = γi(∞) both pass
through the 3B + 1-neighborhood of xi. By CAT(0)-comparison, this implies that
ξi → α, ηi → α which contradicts the assumption that ξi → ξ, ηi → η 6= ξ.

Thus the geodesics γi pass through a fixed compact subset of X and therefore
after passing to a subsequence we may assume that γi → γ locally uniformly where
γ is a geodesic connecting ξ to η. The limit geodesic is B-contracting by Lemma
3.6 of [16]. �

For a number B > 0, a point x ∈ X and an ordered pair (ζ1 : J1 → X, ζ2 : J2 →
X) of oriented geodesics in X which share at most one endpoint in ∂X define a
number τB(x, ζ1, ζ2) ≥ 0 as follows.

By convexity of the distance function, there are (perhaps empty) closed con-
nected subsets [a1, b1] ⊂ J1, [a2, b2] ⊂ J2 such that

[ai, bi] = {t | d(ζi(t), ζi+1(Ji+1)) ≤ 6B + 2}.
(Here i = 1, 2 and indices are taken modulo two. If ζ1, ζ2 have a common endpoint
in ∂X then one of the numbers a1, b1 may be infinite, and this is the case if and
only if [ai, bi] 6= ∅ and if one of the numbers a2, b2 is infinite.)

If [ai, bi] 6= ∅ then let si, ti ∈ Ji ∪ {±∞} be such that

πζi(Ji)(ζi+1(ai+1)) = ζi(si) and πζi(Ji)(ζi+1(bi+1)) = ζi(ti)

(i = 1, 2 and indices are taken modulo two).

Let xi = πζi(Ji)(x) (i = 1, 2). If si < ti and if xi ∈ ζi[ai, bi] for i = 1, 2 then
define

τB(x, ζ1, ζ2) = min{d(xi, ζi(ai)), d(xi, ζi(bi)) | i = 1, 2}.
In all other cases define τB(x, ζ1, ζ2) = 0. Note that τB(x, ζ1, ζ2) depends on the
orientation of ζ1, ζ2 but not on the parametrization of ζ1, ζ2 defining a fixed orien-
tation.

We collect some first easy properties of the function τB .

Lemma 3.2. For any two geodesics ζ1, ζ2 in X and any x ∈ X the following holds

true.

(1) τB(x, ζ1, ζ2) = τB(x, ζ2, ζ1).

(2) If ζ̂i equals the geodesic obtained from ζi by reversing the orientation then

τB(x, ζ̂1, ζ̂2) = τB(x, ζ1, ζ2).
(3) τB(x, ζ1, ζ2) ≤ τB(y, ζ1, ζ2) + d(x, y) for all x, y ∈ X.
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Proof. The first and the second property in the lemma is obvious from the defini-
tion. To show the third property simply note that for a geodesic ζ : J → X the
projection πζ(J) is distance non-increasing. �

Moreover we observe

Lemma 3.3. Let ζi : Ji → X be B-contracting geodesics (i = 1, 2) such that

τB(x, ζ1, ζ2) > 0. Then we have

d(πζ1(J1)(x), πζ2(J2)(x)) ≤ 24B + 8.

Proof. If τB(x, ζ1, ζ2) > 0 and if (after reparametrization) we have πζi(Ji)(x) = ζi(0)
(i = 1, 2) then by definition of the function τB there is some t ∈ J2 such that
d(ζ1(0), ζ2(t)) ≤ 6B + 2. This shows that

d(x, ζ2(J2)) ≤ d(x, ζ1(J1)) + 6B + 2.

By symmetry we conclude that

(4) |d(x, ζ1(J1))− d(x, ζ2(J2))| ≤ 6B + 2.

Since d(ζ1(0), ζ2(t)) ≤ 6B + 2 we have

(5) d(x, ζ2(t)) ≤ d(x, ζ1(J1)) + 6B + 2 ≤ d(x, ζ2(J2)) + 12B + 4.

On the other hand, by Lemma 2.3, the geodesic connecting x to ζ2(t) passes
through the 3B + 1-neighborhood of ζ2(0) and hence

(6) d(x, ζ2(t)) ≥ d(x, ζ2(J2)) + |t| − 6B − 2.

The two inequalities (5) and (6) together show that |t| ≤ 18B + 6 and therefore
d(πζ1(J1)(x), πζ2(J2)(x)) ≤ 24B + 8 as claimed. �

We also have

Lemma 3.4. Let ζi : [0,∞) → X (i = 1, 2) be two geodesic rays with the same

endpoint ζ1(∞) = ζ2(∞). Let s ∈ [1,∞) be such that

p = τB(ζ1(s), ζ1, ζ2) ≥ 1.

Then τB(ζ1(s+ t), ζ1, ζ2) ≥ p+ t− 12B − 4 for all t ≥ 0.

Proof. Let ζi : [0,∞) → X be geodesic rays in X (i = 1, 2) with ζ1(∞) = ζ2(∞).
Let s ∈ [0,∞) be such that τB(ζ1(s), ζ1, ζ2) ≥ 1. Then the geodesic ray ζ2[0,∞)
passes through the 6B + 2-neighborhood of ζ1(s). If s′ ∈ [0,∞) is such that
d(ζ1(s), ζ2(s

′)) ≤ 6B + 2 then by convexity of the distance function we have

d(ζ1(s+ t), ζ2(s
′ + t)) ≤ 6B + 2 for all t ≥ 0.

Now let t ≥ 0 and let σ ∈ R be such that πζ2[0,∞)(ζ1(s + t)) = ζ2(σ). Then
d(ζ1(s + t), ζ2(σ)) ≤ 6B + 2 and hence the triangle inequality shows that σ ∈
[s′ + t− 12B − 4, s′ + t+ 12B + 4]. From this and the definition of the function τB
the lemma follows. �

The next observation is the analog of the familiar ultrametric inequality for
Gromov products in hyperbolic spaces.
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Lemma 3.5. There is a number L > 0 such that for every B > 0 and for all

B-contracting geodesics ζi : Ji → X (i = 1, 2, 3) we have

τB(x, ζ1, ζ3) ≥ min{τB(x, ζ1, ζ2), τB(x, ζ2, ζ3)} − LB.

Proof. Let ζi : Ji → X be B-contracting geodesics (i = 1, 2, 3) and let x ∈ X.
Taking indices modulo 3, assume without loss of generality that

τB(x, ζ1, ζ3) = min{τB(x, ζi, ζi+1) | i = 1, 2, 3}
and that r1 = τB(x, ζ1, ζ2) ≤ r2 = τB(x, ζ2, ζ3). If r1 = 0 then there is nothing to
show. So assume that r1 > 0. By Lemma 3.3 we then have

(7) d(πζ2(J2)(x), πζj(Jj)(x)) ≤ 24B + 8 (j = 1, 3)

and hence d(πζ1(J1)(x), πζ3(J3)(x)) ≤ 48B + 16. Since the lemma is only significant
if r1 is large, without explicit mentioning we successively increase a lower bound
for r1 by a controlled amount in the course of the proof so that all the geometric
estimates are meaningful.

For simplicity parametrize the geodesics ζi in such a way that πζi(Ji)(x) = ζi(0)
(i = 1, 2, 3). By definition of the function τB there is a number t2 ≥ 0 such that
d(ζ1(r1), ζ2(t2)) ≤ 6B + 2. By the distance estimate (7), we have

t2 = d(ζ2(t2), πζ2(J2)(x)) ∈ [r1 − 30B − 10, r1 + 30B + 10]

and hence d(ζ1(r1), ζ2(r1)) ≤ 36B + 12.

Now r2 ≥ r1 by assumption and therefore using once more the definition of the
function τB we have d(ζ2(r1), ζ3(J3)) ≤ 6B + 2. Thus if we write R0 = 42B + 18
then we have d(ζ1(r1), ζ3(J3)) ≤ R0 and similarly d(ζ1(−r1), ζ3(J3)) ≤ R0. Since
d(ζ1(0), ζ3(0)) ≤ 48B + 16 by the estimate (7) above, we conclude that for R1 =
48B+16+R0 there are numbers s3, t3 ≥ r1 −R1 such that [−s3, t3] ⊂ J3 and that

(8) d(ζ1(−r1), ζ3(−s3)) ≤ R0 and d(ζ1(r1), ζ3(t3)) ≤ R0.

By assumption, ζ1 and ζ3 are B-contracting. Let ρ : [0, b] → X be the geodesic
connecting ζ1(−r1) = ρ(0) to ζ3(t3) = ρ(b). Let

z = πζ1(J1)(ζ3(t3)).

Then d(z, ζ3(t3)) ≤ d(ζ1(r1), ζ3(t3)) and hence by the estimate (8), the distance
between z and ζ3(t3) is at most R0. It follows from (8) and the triangle inequality
that the distance between z and ζ1(r1) is bounded from above by 2R0.

Since ζ1 is B-contracting, by Lemma 2.3 and the remark thereafter, there is a
number T ≤ b such that the Hausdorff distance between the subarc of ζ1 connecting
ζ1(−r1) to z and the arc ρ[0, T ] is at most 3B + 1. Moreover, by (8) above we can
choose T in such a way that T ≥ b−R0.

Similarly, if
w = πζ3(J3)(ζ1(−r1))

then the distance between w and ζ1(−r1) is at most R0. By (8) above, there is a
number S ≤ R0 such that the Hausdorff distance between ρ[S, b] and the subarc of
ζ3 connecting w to ζ3(t3) is at most 3B + 1.
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As a consequence, there are two subarcs ζ ′1 of ζ1(J1), ζ
′
3 of ζ3(J3) whose Hausdorff

distance to the geodesic arc ρ[S, T ] is at most 3B+1. Hence the Hausdorff distance
between ζ ′1 and ζ ′3 is at most 6B + 2.

To summarize the above discussion, if r1 is sufficiently large depending on B
then there is a number L > 0 and there is a subarc ζ ′1, ζ

′
3 of ζ1(J1), ζ3(J3) with

the following property. The arc ζ ′1, ζ
′
3 contains x1, x3 as an interior point, and the

distance of x1, x3 to the endpoints of ζ ′1, ζ
′
2 is at least r1 − LB. Moreover, the

Hausdorff distance in X between ζ ′1, ζ
′
3 is smaller than 6B + 2. This shows that

τB(x, ζ1, ζ3) ≥ r1 − LB ≥ τB(x, ζ1, ζ2)− LB

which completes the proof of the lemma. �

For distinct pairs of points (ξ1, η1), (ξ2, η2) ∈ A(B) define

τB(x, (ξ1, η1), (ξ2, η2)) ≥ 0

to be the infimum of the numbers τB(x, ζ1, ζ2) over all B-contracting geodesics ζi
connecting ξi to ηi (i = 1, 2). Clearly we have

τB(x, α1, α2) = τB(x, α2, α1) for all x ∈ X,α1, α2 ∈ A(B).

Moreover, by Lemma 3.5, there is a number L > 0 such that for all α1, α2, α3 ∈
A(B) we have

τB(x, α1, α3) ≥ min{τB(x, α1, α2), τB(x, α2, α3)} − LB.

Now we follow Section 7.3 of [13]. Namely, let χ > 0 be sufficiently small that

χ′ = eχLB − 1 <
√
2− 1. Note that χ only depends on B. For this number χ and

for x ∈ X, α1, α2 ∈ A(B)×A(B) define

(9) δ̃x(α1, α2) = e−χτB(x,α1,α2).

From Lemma 3.5 and Proposition 7.3.10 of [13] we obtain.

Corollary 3.6. There is a family {δx} (x ∈ X) of distances on A(B) with the

following properties.

(1) The topology on A(B) defined by the distances δx is the restriction of the

product topology on ∂X × ∂X − ∆. In particular, (A(B), δx) is locally

compact.

(2) The distances δx are invariant under the involution ι of A(B) which ex-

changes the two points ξ 6= η ∈ ∂X in a pair (ξ, η) ∈ A(B).

(3) (1− 2χ′)δ̃x ≤ δx ≤ δ̃x for all x ∈ X.

(4) e−χd(x,y)δx ≤ δy ≤ eχd(x,y)δx for all x, y ∈ X.

(5) The family {δx} is invariant under the action of Iso(X) on A(B)×X.

Proof. The existence of a family {δx} (x ∈ X) of distance functions on A(B) with
the property stated in the third part of the corollary is immediate from Lemma 3.5
and Proposition 3.7.10 of [13]. The fourth part follows from the construction of the

distance δx from the functions δ̃x and from the third part of Lemma 3.2. Invariance
under the action of the isometry group and under the involution ι is an immediate
consequence of invariance of the function τB .
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We are left with showing that for a given x ∈ X the distance δx induces the
restriction of the product topology on ∂X × ∂X − ∆. By the definition of the
distances δx, if (ξi, ηi) → (ξ, η) in (A(B), δx) then there are B-contracting geodesics
γi connecting ξi to ηi which have longer and longer subsegments contained in a
tubular neighborhood of radius 6B + 2 about some geodesic γ connecting ξ to η.
Moreover, these segments all pass through a fixed compact subset of X. By the
definition of the topology on ∂X, this implies that (ξi, ηi) → (ξ, η) in ∂X×∂X−∆.
As a consequence, the inclusion (A(B), δx) → ∂X × ∂X −∆

Continuity of the identity A(B) ⊂ ∂X × ∂X − ∆ → (A(B), δx) follows in the
same way. Namely, by Lemma 3.1 and its proof, if (ξi, ηi) ⊂ A(B), if (ξi, ηi) →
(ξ, η) ∈ ∂X × ∂X − ∆ with respect to the product topology and if γi is a B-
contracting geodesic connecting ξi to ηi then up to passing to a subsequence, we
may assume that the geodesics γi converge uniformly on compact sets to a B-
contracting geodesic γ connecting ξ to η. By convexity, by Lemma 2.3 and by the
definition of the function τB , this implies that (ξi, ηi) → (ξ, η) in (A(B), δx) for
every x ∈ X. �

Using Corollary 3.6, we obtain the following analog of Lemma 2.1 of [15] (with
identical proof).

Lemma 3.7. A(B) × X admits a natural Iso(X)-invariant ι-invariant distance

function d̃ inducing the product topology. There is a number c > 0 such that for

every x ∈ X, the restriction of d̃ to A(B)× {x} satisfies

cδx(α, β) ≤ d̃((α, x), (β, x)) ≤ δx(α, β)∀α, β ∈ A(B).

Remark: The results of this section are valid for general proper geodesic metric
spaces which admit a family A(B) of B-contracting geodesics. However, due to
the lack of convexity of geodesics in this more general setting, the bounds in the
estimates can change. This is in the spirit of [6].

Even more generally, for a number C > 0 define a coarse geodesic γ in a metric
space (X, d) to be a map γ : J → X such that |d(γ(s), γ(t)) − |s − t| | ≤ C for all
s, t ∈ J . The construction above also applies to a family of B-contracting C-coarse
geodesics in X.

4. Continuous bounded cocycles

In this section we consider again a proper CAT(0)-space X. Let G be a closed

non-elementary subgroup of the isometry group of X with limit set Λ. Then G is a
locally compact σ-compact topological group. Assume that G contains a rank-one
element.

As in Section 3, for a number B > 0 denote by A(B) ⊂ ∂X × ∂X − ∆ the
set of pairs of distinct points in ∂X which can be connected by a B-contracting
geodesic. Define T ⊂ Λ3 to be the space of triples of pairwise distinct points in
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Λ. By Lemma 2.8, T is a locally compact uncountable topological G-space without
isolated points. Let moreover

T (B) ⊂ T

be the set of triples (a1, a2, a3) ∈ T with the additional property that (ai, ai+1) ∈
A(B) (1 ≤ i ≤ 3 and where indices are taken modulo three). By Lemma 3.1, T (B)
is closed subset of T which is invariant under the diagonal action of G.

The goal of this section is to construct continuous bounded cocycles for the
action of G on T (B) (see Definition 4.2 below). We begin with constructing G-
equivariant continuous bounded functions on A(B) with values in the topological
vector space Cb(G×G) of continuous bounded functions onG×G, equipped with the
compact open topology (which is strictly weaker than the Banach space topology).
The group G acts continuously on Cb(G × G) by left translation via (gf)(h, u) =
f(g−1h, g−1u).

Proposition 4.1. Let X be a proper CAT(0)-space and let G < Iso(X) be a closed

non-elementary subgroup which contains a B-rank-one element for some B > 0.
Then for every triple (a, b, ν) ∈ T (B) such that (a, b) ∈ A(B) ∩ Λ × Λ is the pair

of fixed points of a rank-one element of G there is a continuous map α : A(B) →
Cb(G×G) with the following properties.

(1) g−1 ◦ α(gξ, gη) = α(ξ, η) = −α(η, ξ) for all (ξ, η) ∈ A(B) and all g ∈ G.
(2) For every point x0 ∈ X, all (ξ, η) ∈ A(B) and all neighborhoods A1 of ξ,

A2 of η in X ∪ ∂X the intersection of the support of α(ξ, η) with the set

{(g, h) ∈ G×G | gx0 ∈ X − (A1 ∪A2)} is compact.

(3) There are g, h ∈ G with α(a, b)(g, h) 6= 0 and α(a, ν)(g, h) = α(b, ν)(g, h) =
0.

Proof. Let G < Iso(X) be a closed non-elementary subgroup which contains a B-
rank-one element for some B > 0. We divide the proof of the proposition into three
steps.

Step 1:

Let x0 ∈ X be an arbitrary point and denote by Gx0
the stabilizer of x0 in

G. Then Gx0
is a compact subgroup of G, and the quotient space G/Gx0

is G-
equivariantly homeomorphic to the orbit Gx0 ⊂ X of x0. Note that Gx0 is a closed
subset of X and hence it is locally compact. The group G acts on the locally
compact space A(B)×Gx0 as a group of homeomorphisms.

The Iso(X)-invariant metric d̃ on A(B)×X constructed in Lemma 3.7 induces
a G-invariant metric on A(B)×G/Gx0

which defines the product topology. Hence

we obtain a G-invariant symmetrized product metric d̂ on

V = A(B)×G/Gx0
×G/Gx0

by defining

(10) d̂((ξ, x, y), (ξ′, x′, y′)) =
1

2

(

d̃((ξ, x), (ξ′, x′)) + d̃((ξ, y), (ξ′, y′))
)

.

The topology defined on V by this metric is the product topology, in particular it
is locally compact.
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Since V is a locally compact G-space, the quotient space W = G\V admits a
natural metric d0 as follows. Let

P : V →W

be the canonical projection and define

(11) d0(x, y) = inf{d̂(x̃, ỹ) | P x̃ = x, P ỹ = y}.
The topology induced by this metric is the quotient topology for the projection
P . In particular, W is a locally compact metric space. A set U ⊂ W is open if
and only if P−1(U) ⊂ V is open. In other words, open subsets of W correspond
precisely to G-invariant open subsets of V . The projection P is open and distance
non-increasing.

The distance d̃ on A(B) × X is invariant under the involution ι : (ξ, η, x) →
(η, ξ, x) exchanging the two components of a point in A(B) and hence the distance

d̂ on V is invariant under the natural extension of ι (again denoted by ι). Since
the action of G commutes with the isometric involution ι, the map ι descends to
an isometric involution of the metric space (W,d0) which we denote again by ι.

For some R1, R2 > 0, an open subset U of W is said to have property (R1, R2) if
for every ((ξ, η), gx0, hx0) ∈ P−1(U) ⊂ V the distance in X between gx0, hx0 and
any geodesic in X connecting ξ to η is at most R1 and if moreover d(gx0, hx0) ≤ R2.

We claim that for every w ∈ W there are numbers R1, R2 > 0 and there
is a neighborhood of w in W which has property (R1, R2). Namely, let v =
((ξ, η), gx0, hx0) ∈ P−1(w). Then ξ can be connected to η by a B-contracting
geodesic γ and therefore by Lemma 2.3, any geodesic connecting ξ to η is contained
in the 3B + 1-tubular neighborhood of γ. By the discussion in Section 3 (see the
proof of Lemma 3.1), there is a neighborhood A of (ξ, η) in A(B) such that for all
(ξ′, η′) ∈ A, any geodesic connecting ξ′ to η′ passes through a fixed compact neigh-
borhood of gx0. Thus by continuity, there are numbers R1 > 0, R2 > 0 and there is
an open neighborhood U ′ of v in V such that for every ((ξ′, η′), g′x0, h

′x0) ∈ U ′ the
distance between g′x0, h

′x0 and any geodesic connecting ξ′ to η′ is at most R1 and
that moreover d(g′x0, h

′x0) ≤ R2. However, distances and geodesics are preserved

under isometries and hence every point in Ũ = ∪g∈GgU
′ has this property. Since

Ũ is open, G-invariant and contains v, the set Ũ projects to an open neighborhood
of w in W . This neighborhood has property (R1, R2).

Step 2:

In equation (11) in Step 1 above, we defined a distance d0 on the spaceW = G\V .
With respect to this distance, the involution ι acts non-trivially and isometrically.
Choose a small closed metric ball D in W which is disjoint from its image under ι.
In Step 3 below we will construct explicitly such balls D, however for the moment,
we simply assume that such a ball exists. By Step 1 above, we may assume that D
has property (R1, R2) for some R1, R2 > 0.

Let H be the vector space of all Hölder continuous functions f : W → R sup-
ported in D. An example of such a function can be obtained as follows.
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Let z be an interior point of D and let r > 0 be sufficiently small that the closed
metric ball B(z, r) of radius r about z is contained in D. Choose a smooth function
χ : R → [0, 1] such that χ(t) = 1 for t ∈ (−∞, r/2] and χ(t) = 0 for t ∈ [r,−∞) and
define f(y) = χ(d0(z, y)). Since the function y → d0(z, y) on W is one-Lipschitz
and χ is smooth, the function f on W is Lipschitz, does not vanish at z and is
supported in D.

Since D is disjoint from ι(D) by assumption and since ι is an isometry, every
function f ∈ H admits a natural extension to a Hölder continuous function f0 on
W supported in D∪ ι(D) whose restriction to D coincides with the restriction of f

and which satisfies f0(ιz) = −f0(z) for all z ∈W . The function f̂ = f0 ◦P : V → R

is invariant under the action of G, and it is anti-invariant under the involution ι

of V , i.e. it satisfies f̂(ι(v)) = −f̂(v) for all v ∈ V (here as before, P : V → W
denotes the canonical projection).

Equip Ṽ = A(B) × G × G with the product topology. The group G acts on

G×G by left translation, and it acts diagonally on Ṽ . There is a natural continuous
projection Π : Ṽ → V which is equivariant with respect to the action of G and with

respect to the action of the involution ι on Ṽ and V . The function f̂ on V lifts to

a G-invariant ι-anti-invariant continuous function f̃ = f̂ ◦Π on Ṽ .

For (ξ, η) ∈ A(B) write

F (ξ, η) = {(ξ, η, z) | z ∈ G×G}.
The sets F (ξ, η) define a G-invariant foliation F of Ṽ . The leaf F (ξ, η) of F can
naturally be identified with G×G. For all (ξ, η) ∈ A(B) and every function f ∈ H
we denote by fξ,η the restriction of the function f̃ to F (ξ, η), viewed as a continuous
bounded function on G × G. For every f ∈ H, all (ξ, η) ∈ A(B) and all g ∈ G
we then have fgξ,gη ◦ g = fξ,η = −fη,ξ. Since the functions fξ,η are restrictions to

the leaves of the foliation F of a globally continuous bounded function on Ṽ , the
assignment

(ξ, η) ∈ A(B) → α(ξ, η) = fξ,η ∈ Cb(G×G)

is a continuous map of A(B) into Cb(G×G). By construction, it satisfies

g−1 ◦ α(gξ, gη) = α(ξ, η) = −α(η, ξ) ∀(ξ, η) ∈ A(B), ∀g ∈ G.

Thus the map α fulfills the first requirement in the statement of the proposition.
The second requirement is also satisfied since the set D is assumed to have prop-
erty (R1, R2) and since moreover for every geodesic ζ : R → X, for every open
neighborhood A of ζ(∞) ∪ ζ(−∞) in X ∪ ∂X and for every R > 0 the intersection
of the closed R-neighborhood of ζ with X −A is compact.

Step 3:

To show that we can construct the function α in such a way that is satisfies
the third property in the proposition, let g ∈ G be a B-rank-one isometry, let
a 6= b ∈ ∂X be the attracting and repelling fixed point for the action of g on ∂X,
respectively, and let ν ∈ Λ − {a, b} be such that (a, b, ν) ∈ T (B). We have to
show that we can choose α in such a way that α(a, b)(g, h) 6= 0 and α(a, ν)(g, h) =
α(b, ν)(g, h) = 0 for some g, h ∈ G.
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For this let γ be a B-contracting oriented axis for g and let x0 ∈ πγ(R)(ν)
be the basepoint for the above construction. The orbit of x0 under the infinite
cyclic subgroup of G generated by g is contained in the geodesic γ. Write κ0 =
9B + 6. Since gjx0 → a, g−jx0 → b (j → ∞), there are numbers k < ℓ, R1 >
2κ0 such that the R1 + κ0-neighborhood of a geodesic connecting a to ν and the
R1 + κ0-neighborhood of a geodesic connecting b to ν contains at most one of the
points gkx0, g

ℓx0 and that moreover the distance between gkx0, g
ℓx0 is at least 4κ0

(compare Lemma 2.5 and its proof). Choose R2 > 2d(gkx0, g
ℓx0).

We claim that there is no h ∈ G with hgkx0 = gkx0, hg
ℓx0 = gℓx0 and h(a) =

b, h(b) = a. Namely, any isometry h which exchanges a and b and fixes a point on
the axis γ of g, say the point γ(t), maps the geodesic ray γ[t,∞) to the geodesic
ray γ(−∞, t]. Thus a fixed point of h on γ is unique which shows the claim. As a
consequence, the projection of (a, b, gkx0, g

ℓx0) ∈ V into the space W is not fixed
by the involution ι.

Let D̃ ⊂ V be a neighborhood of (a, b, gkx0, g
ℓx0) in V which is small enough

that for all (a′, b′, x, y) ∈ D̃ a geodesic connecting a′ to b′ passes through the 2κ0-
neighborhood of gkx0, g

ℓx0, and d(x, gkx0) ≤ κ0, d(y, g
ℓx0) ≤ κ0. The projection

of D̃ into W contains a ball D ⊂ W about the projection of (a, b, gkx0, g
ℓx0) with

property (R1, R2) which is disjoint from its image under ι. Let f ∈ H be a Hölder
continuous function supported in D which does not vanish at the projection of
(a, b, gkx0, g

ℓx0). Then the lift f̃ of f to Ṽ does not vanish at (a, b, gk, gℓ). By the
choice of D, we have fa,b(g

k, gℓ) 6= 0 and fb,ν(g
k, gℓ) = fν,a(g

k, gℓ) = 0. In other
words, the function α constructed as above from f has property 3) stated in the
proposition. �

Proposition 4.1 is used for the construction of continuous bounded cocycles for
the action of G on T (B).

Definition 4.2. Let E be a separable Banach-module for G. An E-valued con-

tinuous bounded two-cocycle for the action of G on T (B) is a continuous bounded

G-equivariant map ω : T (B) → E which satisfies the following two properties.

(1) For every permutation σ of the three variables, the anti-symmetry condition

ω ◦ σ = sgn(σ)ω holds.
(2) For every quadruple (a1, a2, a3, a4) of distinct points in Λ such that (ai, aj) ∈

A(B) for i 6= j the cocycle equality

ω(a2, a3, a4)− ω(a1, a3, a4) + ω(a1, a2, a4)− ω(a1, a2, a3) = 0

is satisfied.

The separable Banach modules for G we are interested in are as follows. Every
locally compact σ-compact topological group G admits a left invariant locally finite
Haar measure µ. For p ∈ (1,∞) denote by Lp(G × G,µ × µ) the Banach space of
all functions on G×G which are p-integrable with respect to the product measure
µ × µ. The group G acts continuously and isometrically on Lp(G × G,µ × µ) by
left translation via (gf)(h, u) = f(g−1h, g−1u).

The following theorem is the main result in this section.
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Theorem 4.3. Let α : A(B) → Cb(G×G) be a continuous map as in Proposition

4.1. Then for every p ∈ (1,∞) the assignment

ω : (σ, η, β) ∈ T (B) → ω(σ, η, β) = α(σ, η) + α(η, β) + α(β, σ)

is an Lp(G ×G,µ × µ)-valued continuous bounded two-cocycle for the action of G
on T (B).

Proof. As in Step 1 of the proof of Proposition 4.1, let x0 ∈ X be a fixed point and
let V = A(B) × G/Gx0

× G/Gx0
. Choose a compact ball D ⊂ W = G\V which

is disjoint from its image under the involution ι and which has property (R1, R2)
for some R1, R2 > 0. Let H be the vector space of all Hölder continuous functions
f : W → R supported in D. Every f ∈ H lifts to a Hölder continuous G-invariant
ι-anti-invariant function

f̂ : V → R

and to a continuous function f̃ on A(B) × G × G. As in the proof of Proposition

4.1 we denote by fξ,η the restriction of f̃ to (ξ, η)×G×G, viewed as a function on
G×G.

For f ∈ H and for an ordered triple (ξ, η, β) ∈ T (B) define

(12) ω(ξ, η, β) = fξ,η + fη,β + fβ,ξ ∈ Cb(G×G).

Since fξ,η = −fη,ξ for all (ξ, η) ∈ A(B), we have

ω ◦ σ = (sgn(σ))ω

for every permutation σ of the three variables. As a consequence, the cocycle
condition for ω is also satisfied. The assignment (ξ, η, β) ∈ T (B) → ω(ξ, η, β) ∈
Cb(G×G) is continuous with respect to the compact open topology on Cb(G×G).
Moreover, it is equivariant with respect to the natural action of G on the space
T (B) and on Cb(G × G). This means that ω is a continuous bounded cocycle for
the action of G on T (B) with values in the topological vector space Cb(G×G).

For the proof of the theorem, we have to show the following.

(1) ω(ξ, η, β) ∈ Lp(G×G,µ× µ) for every p ∈ (1,∞), with Lp-norm bounded
from above by a constant which does not depend on (ξ, η, β) ∈ T (B).

(2) The assignment (ξ, η, β) → ω(ξ, η, β) ∈ Lp(G×G,µ× µ) is continuous.

For this let (ξ, η, β) ∈ T (B) and let γ be a B-contracting geodesic connecting ξ
to η. By Lemma 2.3 and Lemma 2.5 there is a point y0 ∈ X which is contained
in the κ0 = κ0(B) = 9B + 6-neighborhood of every side of any geodesic triangle Q
with vertices ξ, η, β and side γ.

Assume that γ is parametrized in such a way that d(γ(0), y0) ≤ κ0. Also, let ρ :
R → X be the side of Q connecting β to η which is parametrized in such a way that
d(y0, ρ(0)) ≤ κ0. We may assume that ρ is B-contracting. Then γ[0,∞), ρ[0,∞) are
two sides of a geodesic triangle inX with vertices γ(0), ρ(0), η. Since d(γ(0), ρ(0)) ≤
2κ0, by convexity of the distance function we have d(γ(t), ρ(t)) ≤ 2κ0 for all t ≥
0. In particular, the R1-neighborhood of ρ[0,∞) is contained in the R1 + 2κ0-
neighborhood of γ[0,∞).
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Let R1 > 0, R2 > 0 be as in the beginning of this proof. For a subset C of X
write

CG,R2
= {(u, h) ∈ G×G | ux0 ∈ C, d(ux0, hx0) ≤ R2}.

Let ν = µ × µ be the left invariant product measure on G × G. We claim that
there is a number m > 0 such that for every subset C of X of diameter at most
2R1 + 4κ0 + 1 the ν-mass of the set CG,R2

is at most m. Namely, the set

K = {(u, h) ∈ G×G | d(ux0, x0) ≤ 2R1 + 4κ0 + 1, d(ux0, hx0) ≤ R2}
of G×G is compact and hence its ν-mass is finite, say this mass equals m > 0. On
the other hand, if C ⊂ X is a set of diameter at most 2R1 + 4κ0 + 1 and if there
is some g ∈ G such that gx0 ∈ C then any pair (u, h) ∈ CG,R2

is contained in gK.
Our claim now follows from the fact that ν is invariant under left translation.

By construction, if N(C, r) denotes the r-neighborhood of a set C ⊂ X then the
support of the function fξ,η is contained in N(γ(R), R1)G,R2

and similarly for the
functions fη,β , fβ,ξ. As a consequence, the support of the function ω defined in (12)
above is the union of the three sets

N(γ[0,∞), R1 + 2κ0)G,R2
,N(γ(−∞,−0], R1 + 2κ0)G,R2

,(13)

N(ρ(−∞,−0], R1 + 2κ0)G,R2
.

Moreover, there is a number τ > 0 only depending on R1, R2 and κ0 such that the
restriction of ω to N(γ[τ,∞), R1 + 2κ0)G,R2

coincides with the restriction of the
function fξ,η + fη,β and similarly for the other two sets in the above decomposition
of the support of ω.

Since ω is uniformly bounded, to show that ω is contained in Lp(G × G, ν) it
is now enough to show that there is constant cp > 0 only depending on p and the
Hölder norm of f such that

∫

N(γ[τ,∞),R1+2κ0)G,R2

|fξ,η + fη,β |pdν < cp.

However, we observed above that for every integer k ≥ 0 the ν-mass of the set
N(γ[τ + k, τ + k+1], R1 +2κ0)G,R2

is bounded from above by a universal constant
m > 0. Thus it suffices to show that there are numbers r > 0, σ > 0 such that the
value of the function |fξ,η + fβ,η| on this set does not exceed re−σ(τ+k). Then the

inequality holds true with cp = mrp
∑∞

k=0 e
−pσ(σ+k).

For an estimate of |fξ,η + fη,β |, apply Lemma 2.3 to the geodesic ray γ[0,∞)
and a geodesic ζ connecting β to η. We conclude that there is a subray of ζ whose
Hausdorff distance to γ[2κ0,∞) is bounded from above by 3B + 1. Then by the
definition of the distances δx on A(B) and by Lemma 3.4 and Corollary 3.6, there
is a number r0 > 0 depending on κ0, R1, R2 such that if t ≥ 0 and if y ∈ X satisfies
d(γ(t), y) < κ0 +R1 +R2 then

(14) δy((ξ, η), (β, η)) ≤ r0e
−χt

where χ > 0 is as in Corollary 3.6. Moreover, by the definition (10) of the distance

function d̂ on V and by the estimate in Lemma 3.7 for the distance function d̃ on



22 URSULA HAMENSTÄDT

A(B)×X, we have

d̂
(

(ξ, η, ux0, hx0),(β, η, ux0, hx0)
)

(15)

≤ 1

2

(

δux0
((ξ, η), (β, η))+δhx0

((ξ, η), (β, η))
)

≤ r0e
−χt

whenever d(ux0, γ(t)) ≤ κ0 + R1 and ((ξ, η), ux0, hx0) is contained in the support
of fξ,η or of fη,β .

The function f̂ : V → R is Hölder continuous and ι-anti-invariant. Therefore by
the estimate (15) there are numbers θ > 0, r1 > r0 only depending on the Hölder
norm for f with the following property. Let 0 ≤ t and let u, h ∈ G be such that
d(ux0, γ(t)) < κ0 +R1, d(hx0, γ(t)) < κ0 +R1 +R2; then

(16) |f̂(ξ, η, ux0, hx0) + f̂(η, β, ux0, hx0)| ≤ r1e
−θχt.

The function f is bounded in absolute value by a universal constant. Hence from
the definition of the functions fξ,η and fη,β and from the estimate (16) we obtain
the existence of a constant r > r1 (depending on the Hölder norm of f) such that

(17) |(fξ,η + fη,β)(u, h)| ≤ re−θχt

whenever d(ux0, γ(t)) ≤ κ0 +R1. This is the estimate we were looking for.

To show continuity of the assignment (ξ, η, β) ∈ T (B) → ω(ξ, η, β) ∈ Lp(G ×
G, ν), we use again the above estimate. Namely, let (ξi, ζi, ηi) ⊂ T (B) be a sequence
of triples of pairwise distinct points converging to a triple (ξ, η, β) ∈ T (B). By the
above consideration, for every ǫ > 0 there is a compact subset A of G×G such that
∫

G×G−A
|ω(ξi, ηi, βi)|pdν ≤ ǫ for all sufficiently large i > 0 and that the same holds

true for ω(ξ, η, ζ). Let χA be the characteristic function of A. By continuity of the

function f̃ on Ṽ and compactness, the functions χAω(ξi, ηi, βi) converge as i→ ∞
in Lp(G×G, ν) to χAω(ξ, η, ζ). Since ǫ > 0 was arbitrary, the required continuity
follows.

By construction, the assignment (ξ, η, β) → ω(ξ, η, β) is equivariant under the
action of G on the space T (B) and on Lp(G×G, ν) and satisfies the cocycle equality
(12). In other words, ω defines a continuous Lp(G×G, ν)-valued bounded cocycle for
the action of G on T (B) as required. This completes the proof of the theorem. �

5. Second continuous bounded cohomology I

Let X be a proper CAT(0)-space with isometry group Iso(X). Let G < Iso(X)
be a closed non-elementary subgroup with limit set Λ which contains a rank-one
element. Under the additional assumption that G acts transitively on the com-
plement of the diagonal in Λ × Λ we use In this section Theorem 4.3 to construct
nontrivial second bounded cohomology classes for G.

We use the arguments from Section 3 of [15] (see also [18, 20] for earlier results
along the same line). Namely, let P(Λ) be the space of all probability measures on
Λ, equipped with the weak∗-topology. Denote moreover by P≥3(Λ) ⊂ P(Λ) the set
of all probability measures which are not concentrated on at most two points. We
first show
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Lemma 5.1. Let G < Iso(X) be a non-elementary closed subgroup with limit set

Λ. If G contains a rank-one element and acts transitively on the complement of

the diagonal in Λ× Λ then the action of G on P≥3(Λ) is tame with compact point

stabilizers.

Proof. LetG < Iso(X) be a closed non-elementary group with limit set Λ which acts
transitively on the complement of the diagonal ∆ in Λ×Λ and contains a rank-one
element g ∈ G. Then there is a number B > 0 and for every pair (ξ, η) ∈ Λ×Λ−∆
there is a B-contracting geodesic γ : R → X. This geodesic is the image of an axis
of g under an element of G.

Let T ⊂ Λ3 be the space of triples of pairwise distinct points in Λ. By Lemma
2.3, if γ : R → X is a B-contracting geodesic then every other geodesic connecting
γ(−∞) to γ(∞) is contained in the 3B + 1-tubular neighborhood of γ. Thus by
Lemma 2.5, for every triple (a, b, c) ∈ T there is a point x0 ∈ X whose distance
to any of the sides of any geodesic triangle in X with vertices a, b, c is at most
12B+7. The set K(a, b, c) of all points with this property is clearly closed. Lemma
2.5 shows that its diameter is bounded from above by a constant not depending on
(a, b, c) ∈ T (B). In other words, K(a, b, c) is compact and hence it has a unique
center Φ(a, b, c) ∈ X where a center of a compact set K ⊂ X is a point x ∈ X such
that the radius of the smallest closed ball about x containing K is minimal (see
p.10 in [4]).

This construction defines a map Φ : T → X which is equivariant with respect to
the action of G. Moreover, it is continuous. Namely, if (a1i , a

2
i , a

3
i ) → (a1, a2, a3) in

T then by the discussion in the proof of Lemma 3.1 there is a compact neighborhood
A of K(a1, a2, a3) such that for all sufficiently large i, every geodesic connecting a

pair of points (aji , a
j+1
i ) ∈ Λ×Λ−∆ passes through A. Since the diameters of the

sets K(a1i , a
2
i , a

3
i ) are uniformly bounded, there is a compact subset Q of X which

contains the sets K(a1i , a
2
i , a

3
i ) for all sufficiently large i. Therefore up to passing

to a subsequence, we may assume that the compact sets K(a1i , a
2
i , a

3
i ) converge in

the Hausdorff topology for compact subsets of X to a compact set K. The set K
is contained in the set of all limits of sequences (biℓ) where iℓ is a subsequence of
the set of natural numbers and where biℓ ∈ K(a1iℓ , a

2
iℓ
, a3iℓ).

On the other hand, up to passing to a subsequence and reparametrization, a
sequence of geodesics γji connecting aji to a

j+1
i converges as i→ ∞ locally uniformly

to a geodesic γj connecting aj to aj+1. By continuity of the distance function and
the definitions, this implies that K ⊂ K(a1, a2, a3).

Let G(aj ,aj+1) < G be the stabilizer of (aj , aj+1) in G. Since G acts transitively
on Λ × Λ −∆, the topological space Λ × Λ −∆ is G-equivariantly homeomorphic
to G/G(aj ,aj+1). In particular, there is a sequence gi ⊂ G converging to the iden-

tity such that (aji , a
j+1
i ) = gi(a

j , aj+1). However, this implies that every geodesic

connecting aj to aj+1 is a limit as i→ ∞ of a sequence of geodesics connecting aji
to aj+1

i and therefore K = K(a, b, c). Since the map which associates to a com-
pact subset of X its center is continuous with respect to the Hausdorff topology on
compact subsets of X, we conclude that the map Φ is in fact continuous. Since the
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action of G on X is proper, Lemma 3.4 of [1] then shows that the action of G on T
is proper as well.

Let P(T ) be the space of probability measures on the locally compact space
T . Since the action of G on T is proper, the action of G on P(T ) is tame, with
compact point stabilizers. For µ ∈ P≥3(Λ) let aµ > 0 be the total mass of the open
set T ⊂ Λ3 with respect to the measure µ × µ × µ. The map P≥3(Λ) → P(T )
which associates to a measure µ ∈ P≥3(Λ) the normalized product µ× µ× µ/aµ is
Borel and G-equivariant (see Theorem 5.2 of [1]). Since the action of G on P(T ) is
tame, with compact point stabilizers, Lemma 3.4 of [1] shows that the action of G
on P≥3(Λ) is tame with compact point stabilizers. This completes the proof of the
lemma. �

The next easy consequence of a result of Adams and Ballmann [2] will be im-
portant for the proof of Theorem 1. For later reference, recall that the closure of a
normal subgroup of a topological group G is normal, and the closure of an amenable
subgroup of G is amenable (Lemma 4.1.13 of [22]).

Lemma 5.2. Let G < Iso(X) be a closed non-elementary subgroup which contains

a rank-one element. Then a closed normal amenable subgroup N of G is compact,

and N fixes the limit set of G pointwise.

Proof. Let G < Iso(X) be a closed non-elementary group which contains a rank-
one element and let N � G be a closed normal amenable subgroup. Since N is
amenable, either N fixes a point ξ ∈ ∂X or N fixes a flat F ⊂ X, i.e. a closed
convex subspace of X which is isometric to a finite dimensional euclidean space [2].

Assume first that N fixes a point ξ ∈ ∂X. Since N is normal in G, for every
g ∈ G the point gξ is a fixed point for gNg−1 = N . On the other hand, by Lemma
2.8, the closure in ∂X of every orbit for the action of G contains the limit set Λ
of G, and the action of G on Λ is minimal. Therefore by continuity, N fixes Λ
pointwise. Then Lemma 5.1 shows that N is compact.

If N fixes a flat F ⊂ X of dimension at least two then we argue in the same
way. Namely, the image of F under an isometry of X is a flat. Let a 6= b ∈ Λ be
the attracting and repelling fixed points, respectively, of a rank-one element g of G.
Then a, b are visibility points in ∂X and hence there is no flat in X of dimension
at least two whose boundary in ∂X contains one of the points a, b. Thus the
boundary ∂F ⊂ ∂X of F is contained in ∂X − {b} and consequently gk∂F → {a}
(k → ∞). But by the argument in the previous paragraph, N fixes gk∂F = ∂(gkF )
and therefore N fixes a by continuity. In other words, N fixes a point in ∂X. The
first part of this proof then shows that indeed N is compact.

The same reasoning is also valid if N fixes a flat F of dimension one, i.e. a
geodesic. Namely, in this case Lemma 2.8 shows that there is a rank-one element
g ∈ G such that the repelling fixed point of g is not an endpoint of F . Then the
above argument applies and shows that N is indeed compact. This completes the
proof of the lemma. �
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Remark: Caprace and Monod (Theorem 1.6 of [12], see also [11]) found geo-
metric conditions which guarantee that an amenable normal subgroup of a non-
elementary group G of isometries of X is trivial. This however need not be true
under the above more general assumptions. A simple example is a space of the
form X = H2 ×X2 where H2 is the hyperbolic plane and where X2 is a compact
CAT(0)-space whose isometry group H is non-trivial. Then the compact group H
is a normal subgroup of the isometry group of X. On the other hand, any axial
isometry of H2 acts as a rank-one isometry on X.

As in [15] we use Lemma 5.1 and Lemma 5.2 to show

Proposition 5.3. Let G < Iso(X) be a non-elementary closed subgroup with limit

set Λ. If G contains a rank-one element and acts transitively on the complement

of the diagonal in Λ× Λ then H2
cb(G,L

p(G,µ)) 6= 0 for every p ∈ (1,∞).

Proof. A strong boundary for a locally compact topological group G is a standard
Borel space (B, ν) with a probability measure ν and a measure class preserving
amenable action of G which is doubly ergodic (we refer to [19] for a detailed ex-
planation of the significance of a strong boundary). A strong boundary exists for
every locally compact topological group G [17].

Let G < Iso(X) be a non-elementary closed subgroup with limit set Λ. Assume
that G acts transitively on the complement of the diagonal in Λ × Λ. Since the
action of G on its strong boundary (B, ν) is amenable, there is a G-equivariant
measurable Furstenberg map ϕ : (B, ν) → P(Λ) [22]. By ergodicity of the action
of G on (B, ν), either the set of all x ∈ B with ϕ(x) ∈ P≥3(Λ) has full mass or
vanishing mass.

Assume that this set has full mass. By Lemma 5.1, the action of G on P≥3(Λ) is
tame, with compact point stabilizers. Thus ϕ induces aG-invariant measurable map
(B, ν) → P≥3(Λ)/G which is almost everywhere constant by ergodicity. Therefore
by changing the map ϕ on a set of measure zero, we can assume that ϕ is a G-
equivariant map (B, ν) → G/Gµ where Gµ is the stabilizer of a point in P≥3(Λ)
and hence it is compact.

Following the reasoning in Section 3 of [20], since the action ofG on (B, ν)×(B, ν)
is ergodic as well, the cocycle defined by the identity homomorphism G → G
is equivalent to a cocycle ranging in a compact subgroup of G (see the proof of
Lemma 3.4 of [20]). By Lemma 3.2 and Lemma 3.1 of [20], this implies that G is
elementary which is a contradiction (the proofs of these lemmas are valid in the
situation at hand without any change).

As a consequence, the image under ϕ of ν-almost every x ∈ B is a measure
supported on at most two points. By Lemma 5.1, the action of G on the space of
triples of pairwise distinct points is proper and hence the assumptions in Lemma
23 of [18] are satisfied. We can then use Lemma 23 of [18] as in the proof of Lemma
3.5 of [20] to conclude that the image under ϕ of almost every x ∈ B is supported
in a single point. In other words, ϕ is a G-equivariant Borel map of (B, ν) into Λ.
Note that since the action of G on Λ is minimal, by equivariance the support of the
measure class ϕ∗(ν) is all of Λ.
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Let µ be a Haar measure of G. By invariance under the action of G, there is
some B > 0 such that (a, b) ∈ A(B) for all (a, b) ∈ Λ × Λ −∆. Thus by Theorem
4.3, for every p ∈ (1,∞) there is a nontrivial bounded continuous Lp(G×G,µ×µ)-
valued cocycle ω on the space of triples of pairwise distinct points in Λ. Then the
Lp(G×G,µ×µ)-valued ν×ν×ν-measurable bounded cocycle ω ◦ϕ3 on B×B×B
is non-trivial on a set of positive measure. Since B is a strong boundary for G, this
cocycle then defines a non-trivial class in H2

cb(G,L
p(G×G,µ× µ)) (see [19]). On

the other hand, the isometric G-representation space Lp(G × G,µ × µ) is a direct
integral of copies of the isometric G-representation space Lp(G,µ) and therefore by
Corollary 2.7 of [20] and Corollary 3.4 of [21], if H2

cb(G,L
p(G,µ)) = {0} then also

H2
cb(G,L

p(G×G,µ× µ)) = {0}. This shows the proposition. �

6. Second continuous bounded cohomology II

In this section we investigate non-elementary closed subgroups of Iso(X) with
limit set Λ which contain a rank-one element and which do not act transitively on
the complement of the diagonal in Λ× Λ. Such a group G is a locally compact σ-
compact group which admits a Haar measure µ. Our goal is to show that for every
p ∈ (1,∞) the second continuous bounded cohomology group H2

cb(G,L
p(G,µ)) is

infinite dimensional.

Unlike in Section 5, for this we can not use Theorem 4.3 directly since the cocycle
constructed in this theorem may not be defined on the entire space of triples of
pairwise distinct points in Λ. Instead we use the strategy from the proof of Theorem
4.3 to construct explicitly for every p ∈ (1,∞) bounded cocycles for G with values
in Lp(G,µ) which define an infinite dimensional subspace of H2

cb(G,L
p(G,µ)).

For the construction of these classes we use a relative version of the construction
in Section 3. The following lemma is analogous to Corollary 3.6.

Lemma 6.1. Let G < Iso(X) be a closed non-elementary group with limit set Λ.
Assume that G does not act transitively on the complement of the diagonal in Λ×Λ
and that it contains a rank-one element with pair of fixed points (a, b) ∈ Λ×Λ−∆.

Let A(b) be the union of the set of ordered pairs of distinct points in Gb with the

G-translates of (a, b), (b, a). Then for some χ > 0 there is a family of distance

functions δrelx (x ∈ X) on A(b) with the following properties.

(1) The distances δrelx are invariant under the involution ι of A(b) which ex-

changes the two points ξ 6= η ∈ ∂X in a pair (ξ, η) ∈ A(b).
(2) e−χd(x,y)δrelx ≤ δrely ≤ eχd(x,y)δrelx for all x, y ∈ X.

(3) The family {δrelx } is invariant under the action of G on A(b)×X.

(4) The function A(b) × A(b) ×X → [0,∞) defined by (ζ, η, x) → δrelx (ζ, η) is

Borel for the restriction of the product topology on (∂X)4 ×X.

(5) The point (b, a) ∈ A(b) is not isolated for the distances δrelx .

Proof. Let G < Iso(X) be a closed non-elementary group with limit set Λ ⊂ ∂X.
Assume that G does not act transitively on the complement of the diagonal in
Λ × Λ and that it contains a rank-one element g with fixed points a 6= b ∈ Λ. Let
B0 > 0 be such that every geodesic in X connecting b to a is B0-contracting. Such
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a number exists by Lemma 2.4. By Lemma 2.10, we can find some h ∈ G such
that hb 6= b and that the stabilizer Stab(b, hb) in G of the pair of points (b, hb) is
compact.

By the consideration in the proof of Lemma 2.10, there is a number B > B0

depending on B0 and h such that every geodesic connecting b to hb is B-contracting.
Thus by invariance under isometries, for every k ∈ Z, every geodesic connecting b to
gkh−1b is B-contracting. Moreover, the set of all points in X which are contained in
a geodesic connecting b to hb is isometric to K ×R where K is a compact CAT(0)-
space. The group Stab(b, hb) acts on K×R as a group of isometries preserving the
orientation of the lines {x} × R.

Every isometry ϕ of K ×R can be represented as a product ϕ = (ϕ1, ϕ2) where
ϕ1 is an isometry of K and ϕ2 is an isometry of R. A group of isometries acting
on a compact CAT(0)-space has a fixed point. Since Stab(b, hb) is compact, this
implies that there is a geodesic γ connecting b to hb which is fixed pointwise by
Stab(b, hb). Let γ−1 be the geodesic obtained by reversing the orientation of γ
(note that for all of our constructions, only the orientation of a geodesic but not
an explicit parametrization plays any role). For v ∈ G, the geodesic vγ−1 connects
vhb to vb, and it is B-contracting. Moreover, it depends continuously on v with
respect to the topology of uniform convergence on compact sets.

We use the translates of γ under G (which are all B-contracting) to construct
uniformly contracting rays with endpoints in Gb. Similar to the approach in Section
3, these geodesics are used to define the distance functions δrelx on A(b). There are
additional technical difficulties we have to overcome, and the remainder of this
proof is devoted to address these technical points.

For this let x0 ∈ γ be a fixed point and let G0 be the space of all geodesic lines
ξ : R → X which are parametrized in such a way that ξ(0) = πξ(x0). The space G0

is equipped with the topology of uniform convergence on compact sets. The group
G acts on G0 as a group of transformations. For the number B > 0 as above let
C = C(B) > 0 be as in Lemma 2.4. The G-orbit of b consists of visibility points.
Thus for v ∈ G and z ∈ ∂X − vb there is an oriented geodesic ξ ∈ G0 connecting z
to vb. By Lemma 2.4, the geodesic ξ passes through the 9B + 6-neighborhood of
every point in πvγ−1(R)(z).

Let β(v, ξ) ∈ R ∪ {−∞} be the infimum of all numbers t ∈ R such that ξ(t) is
contained in the closed 9B + 6-neighborhood of a point in vγ−1(R). Note that we
retain the information on v ∈ G since the stabilizer of b in G is unbounded and the
geodesic vγ−1 is not determined by vb. By convexity, the geodesic ray ξ(β(v, ξ),∞)
is contained in the closed 9B+6-neighborhood of vγ−1(R), and it is C-contracting.
Since γ is fixed pointwise by Stab(b, hb), the ray ξ(β(v, ξ),∞) only depends on the
geodesic line ξ and on the coset [v] of v in G/Stab(b, hb). If v = gkh−1 and if ξ is
a geodesic connecting b to vb then we have b(v, ξ) = −∞.

Let B be the space of all pairs (v, ξ) where v ∈ G and where ξ ∈ G0 satisfies
ξ(∞) = vb. Equip B with the topology induced from the product topology of G×G0

(where G carries the compact open topology). The function

β : B → R ∪ {−∞}, (v, ξ) → β(v, ξ)
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is lower semi-continuous and hence Borel. Namely, if vi → v in G then the geodesics
viγ

−1 converge to vγ−1 pointwise. Now if for each i there is a geodesic ξi ∈ G0

with ξi(∞) = vib and if ξi → ξ in G0 (i.e. locally uniformly as parametrized
geodesics) then ξ(0) = πξ(x0). Moreover, up to passing to a subsequence, the
points ξi(β(v, ξ)) converge as i→ ∞ to a point y ∈ ξ whose distance to vγ−1 does
not exceed 9B+6. But this just means that this limit is contained in ξ[β(v, ξ),∞)
and hence β(v, ξ) ≤ lim infi→∞ β(vi, ξi). This shows lower semi-continuity of the
function β as claimed.

If both endpoints of ξ ∈ G0 are contained in Gb, i.e. if the endpoints of ξ are
ub, vb for some u, v ∈ G, then we can define similarly a number α(u, ξ) ∈ R ∪ {∞}
using the above procedure for the inverse of the geodesic ξ and the geodesic uγ−1.
The resulting geodesic ray ξ(−∞, a(u, ξ)) only depends on the geodesic ξ and on
[u] ∈ G/Stab(b, hb). The function α is upper semi-continuous.

Let A(b) be the union of the ordered pairs of distinct points in Gb with the
G-translates of (a, b), (b, a). Denote by G0(b) the subspace of G0 of all oriented
geodesics whose ordered pair of endpoints is contained in A(b). The group G acts
on G0 as a group of transformations.

For a geodesic line ξ ∈ G0 with endpoints vb, ub (u, v ∈ G) define

β(ξ) = inf{β(ṽ, ξ) | ṽ ∈ G, ṽ(b) = v(b)} and

α(ξ) = sup{α(ũ, ξ) | ũ ∈ G, ũ(b) = u(b)}.
If the endpoints of ξ are contained in a G-translate of (a, b) then define a(ξ) =
∞, b(ξ) = −∞. The rays ξ(−∞, a(ξ)), ξ(b(ξ),∞) are C-contracting. Moreover,
since for every v ∈ G the set {ṽ ∈ G | ṽ(b) = v(b)} ⊂ G is closed, the above
discussion shows that their dependence on ξ is Borel. Note that we may have
α(ξ) = ∞ or β(ξ) = −∞.

Let G(C) be the set of all triples consisting of an (oriented) geodesic η : R →
X and two closed C-contracting subrays η(−∞, α(η)], η[β(η),∞) (which are not
necessarily proper). For η ∈ G(C), the subrays η(−∞, α(η)], η[β(η),∞) are part
of the structure of η. Thus the same geodesic with distinct distinguished subrays
defines two distinct points in G(C). The group G naturally acts on G(C) from the
left.

The above construction associates to any ordered pair of points (σ, η) ∈ A(b)
and every geodesic ξ connecting σ to η two subrays ξ(−∞, α(ξ)], ξ[β(ξ),∞) of ξ in
such a way that (ξ, ξ(−∞, α(ξ)], ξ[β(ξ),∞)) ∈ G(C). The assignment

Π : G0(b) → G(C), ξ → Π(ξ) = (ξ, ξ(−∞, α(ξ)], ξ[β(ξ),∞))

satisfies the following properties.

(1) Invariance under change of orientation: If ξ̂ is the geodesic obtained from ξ

by reversal of orientation then ξ̂[β(ξ̂),∞) = ξ(−∞, α(ξ)] and ξ̂(−∞, α(ξ̂)] =
ξ[β(ξ),∞) (as subsets of X).

(2) Invariance under the action of G: For u ∈ G we have Π(uξ) = uΠ(ξ).
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(3) Borel dependence on ξ: The assignments ξ(R) → ξ(−∞, α(ξ)] and ξ(R) →
ξ[β(ξ),∞) are Borel for the topology on G0 and the Hausdorff topology for
compact subsets of X ∪ ∂X.

Recall from Section 3 the definition of the function τC which associates to a point
x ∈ X and two (finite or infinite) geodesic arcs ζ1, ζ2 with at most one common
endpoint in ∂X a number τC(x, ζ1, ζ2) ≥ 0. For x ∈ X and for two geodesics
ξ1, ξ2 ∈ G(C) with at most one common endpoint define

τCrel(x, ξ1,ξ2) =

max{τC(x, ξ1[β(ξ1),∞), ξ2[β(ξ2),∞)),τC(x, ξ1(−∞, α(ξ1)], ξ2(−∞, α(ξ2)]).

Note that if α(ξi) = ∞ or β(ξi) = −∞ (i = 1, 2) then τCrel(x, ξ1, ξ2) = τC(x, ξ1, ξ2).
Note also that τCrel(x, ξ1, ξ2) depends on an orientation of ξ1, ξ2 but not on a specific
parametrization.

For (σ1, η1), (σ2, η2) ∈ A(b) and x ∈ X define

τCrel(x, (σ1, η1), (σ2, η2)) = inf τCrel(x, γ1, γ2)

where the infimum is taken over all elements Π(γ1),Π(γ2) ∈ G(C) defined by all
geodesics γ1, γ2 connecting σ1 to η1 and σ2 to η2. By construction, we have

τCrel(x, (σ1, η1), (σ2, η2)) = τCrel(x, (σ2, η2), (σ1, η1))

for all (σ1, η1), (σ2, η2) ∈ A(b).

Lemma 3.5 shows that the function τCrel on A(b) satisfies the ultrametric in-
equality. Thus as in Section 3, for each x ∈ X we can use the function τCrel(x, ·, ·)
to define a distance δrelx on A(b). The family {δrelx } is invariant under the natural
action of G on A(b)×X, and it is invariant under the natural involution ι defined
by ι(σ, η) = (η, σ). Thus these distances have properties 1)-4) stated in the lemma.

Since for each geodesic ξ in X connecting a to b or connecting b to gkh−1b we
have a(ξ) = ∞ and b(ξ) = −∞, for each x ∈ X the points (b, gkh−1b) ∈ A(b)
converge as k → ∞ in (A(b), δCrel

x ) to (b, a). In particular, the point (b, a) ∈ A(b)
is not isolated for δrelx and hence property 5) holds as well. �

A twisted Lp(G,µ)-valued quasi-morphism for a closed subgroup G of Iso(X) is
a map ψ : G→ Lp(G,µ) such that

sup
g,h

‖ψ(g) + gψ(h)− ψ(gh)‖p <∞

where ‖ ‖p is the Lp-norm for functions on G.

Every unbounded twisted Lp(G,µ)-valued quasi-morphism for G defines a second
bounded cohomology class inH2

b (G,L
p(G,µ)) which vanishes if and only if there is a

cocycle ρ : G→ Lp(G,µ) (i.e. ρ satisfies the cocycle equation ρ(g)+gρ(h)−ρ(gh) =
0) such that ψ − ρ is bounded (compare the discussion in [14]). We use twisted
quasimorphisms to complete the proof of Theorem 2 from the introduction.
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Proposition 6.2. Let G < Iso(X) be a closed non-elementary subgroup with limit

set Λ which contains a rank-one element. If G does not act transitively on the

complement of the diagonal in Λ×Λ then for every p ∈ (1,∞) the second continuous

bounded cohomology group H2
cb(G,L

p(G,µ)) is infinite dimensional.

Proof. Let G < Iso(X) be a closed subgroup with limit set Λ ⊂ ∂X which contains
a rank-one element and which does not act transitively on the complement of the
diagonal ∆ in Λ× Λ.

By Lemma 2.11 there are infinitely many rank-one elements g ∈ G with attract-
ing and repelling fixed points a, b ∈ Λ and the additional property that there is
no u ∈ G with u(a, b) = (b, a). Thus let g ∈ G be such a rank-one element with
fixed points a 6= b ∈ Λ. Let A(b) be the union of the set of all ordered pairs of
distinct points in Gb with the G-translates of (a, b), (b, a). For x ∈ X denote by δrelx

the distance function on A(b) constructed in Lemma 6.1. In the sequel we always
equip A(b) with the topology induced by one (and hence each) of these distance
functions. As in Lemma 3.7, we use the distances δrelx to construct a G-invariant
distance ρ on A(b) ×X with the properties stated in Lemma 3.7. Then ρ induces
the product topology on A(b)×X.

We now use the strategy from the proof of Theorem 4.3. Namely, let x0 ∈ X be
a point on an axis for the rank-one element g ∈ G. Let Gx0

be the stabilizer of x0
in G and let

V (b) = A(b)×G/Gx0
= A(b)×Gx0.

The group G acts on V (b) as a group of isometries with respect to the restriction
of the distance ρ. Define W = G\V (b) and let

P : V (b) →W

be the canonical projection. The distance ρ on V (b) induces a distance ρ̂ on W by
defining ρ̂(x, y) = inf{ρ(x̃, ỹ) | P x̃ = x, P ỹ = y}. Note that we have ρ̂(x, y) > 0
for x 6= y by the definition of the distance ρ and the fact that the distances {δrelx }
depend uniformly Lipschitz continuously on x ∈ X.

The isometric involution ι of (A(b)×X, ρ) which exchanges the two components
of the point in A(b) decends to an isometric involution on W again denoted by ι.
Since there is no u ∈ G with u(a, b) = (b, a), we can find an open neighborhood D
of

w = P ((b, a), x0) ∈W

which is disjoint from its image under ι. We choose D to be contained in the image
under the projection P of the set A(b)×K where K is the closed ball of radius 1
about x0 in Gx0 ⊂ X.

Let Cb(Gx0) be the vector space of continuous bounded functions on Gx0 ⊂ X,
equipped with the topology of uniform convergence on compact sets. Call a set
A ⊂ Cb(Gx0) bounded if the norm of every element in A is bounded from above by
a fixed constant. As in the proof of Theorem 4.3, we use the induced distance onW
to construct from a Hölder continuous function f supported inD with f(w) > 0 aG-
invariant ι-anti-invariant bounded continuous map σ̃ : A(b) → Cb(Gx0) (i.e. a map
with bounded range) which lifts to a bounded continuous map σ : A(b) → Cb(G)
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with the equivariance properties as stated in this theorem. Since the function
(ξ, η, x) ∈ A(b) × A(b) ×X → δrelx (ξ, η) is Borel for the restriction of the product
topology on Λ4 ×X, the map {(u, v) ∈ G × G | ub 6= vb} → σ(ub, vb) ∈ Cb(G) is
Borel.

Now we use the constructions and notations in the proof of Lemma 6.1. Namely,
by invariance and the definition of the distances δrelx , if (ζ, η) ∈ A(b) and if z ∈ G
is such that zx0 is contained in the support of the function σ̃(ζ, η) then there
is a geodesic ξ ∈ G(C) connecting ζ to η so that zx0 is contained in a tubular
neighborhood of ξ(−∞, a(ξ)) ∪ ξ(b(ξ),∞) of uniformly bounded radius.

Let h ∈ G be as in the construction of the distances δrelx , i.e. such that hb 6= b
and that the stabilizer of (b, hb) in G is compact. Let A be a small compact
neighborhood of b in X ∪ ∂X which does not contain the attracting fixed point a
of g and is disjoint from h−1A. In particular, we have b 6∈ h−1A. For u ∈ G with
ub 6= b define a function Ψσ(u) : G→ R by

Ψσ(u)(w) = σ(b, ub)(w)

if wx0 ∈ X − (A ∪ uA) and let Ψσ(u)(w) = 0 otherwise. If ub = b then define
Ψσ(u) ≡ 0. By the construction of the function σ, the function (u,w) ∈ G×G →
Ψσ(u)(w) is Borel and pointwise uniformly bounded.

For fixed u ∈ G, the support of Ψσ(u) is compact. More precisely, for every
compact subset K0 of G there is a compact subset C of G containing the support
of each of the functions Ψσ(u) (u ∈ K0). In particular, we have Ψσ(u) ∈ Lp(G,µ)
for every p > 1, and for every compact subset K0 of G the set {Ψσ(u) | u ∈ K0} ⊂
Lp(G,µ) is bounded.

We claim that Ψσ is unbounded. For this recall from Lemma 6.1 and its proof
that as k → ∞ we have (b, gkh−1b) → (b, a) in A(b). Since h−1A is compact and
does not contain b, Lemma 2.8 shows that gkh−1A → {a} in ∂X. In particular,
if ξ is the axis of hte rank-one element g containing the point x0 then X − A −
gkh−1A contains longer and longer subsegments of ξ which uniformly fellow-travel
the geodesic gkγ connecting b to gkh−1b. Now the function σ(b, a) is invariant
under the action of the rank-one element g and its support contains the point x0.
This implies that σ(b, a) is not integrable. But then for p > 1 the Lp-norm of the
functions Ψσ(g

kh−1) tends to infinity as k → ∞.

Define a Borel function ω : G3 → Lp(G,µ) by

ω(u, uw, uv) = ω(e, w, v) = Ψσ(w) + wΨσ(v)−Ψσ(wv)

if ub, uwb, uvb are pairwise distinct, and let ω(u, uw, uv) = 0 otherwise. Then ω is
invariant under the diagonal action of G, and we have ω ◦ σ = sgn(σ)ω for every
permutation of the three variables. Moreover, ω satisfies the cocycle identity

ω(v, w, z)− ω(u,w, z) + ω(u, v, z)− ω(u, v, w) = 0.

This is immediate if the points ub, vb, wb, zb are pairwise distinct. If two of these
points coincide, say if ub = vb, then ω(v, w, z) = ω(u,w, z) and ω(u, v, z) = 0 =
ω(u, v, w) and hence in this case the cocycle equality holds as well. In other words,
for every p ∈ (1,∞), ω is a Borel two-cocycle for G with values in Lp(G,µ).
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We claim that the image of ω is uniformly bounded. For this we argue as in
the proof of Theorem 4.3. Namely, by assumption, if Ψσ(v)(w) 6= 0 then the
point wx0 is contained in a uniformly bounded neighborhood of a geodesic ṽh−1γ
for some ṽ ∈ G with ṽb = vb. Let ξ be a geodesic connecting b to vb. Let N
be a bounded neighborhood of the ray ξ(b(ξ),∞). By the choice of of the rays
ξ(−∞, a(ξ)), ξ(b(ξ),∞) and by the estimate in Lemma 3.4, for every z ∈ G with
zb 6= vb the Lp-norm of the restriction of α(b, vb) + α(vb, zb) to the set {z ∈ G |
zx0 ∈ N} is uniformly bounded. By symmetry and the properties of the support
of the functions α(b, vb), this implies as in the proof of Theorem 4.3 that ω is a
bounded cocycle.

As a consequence, ω is a bounded Lp(G,µ)-valued Borel two-cocycle for G. By
construction, this cocycle is moreover nontrivial on a set of positive Haar measure
on G×G×G. Since Lp(G,µ) is a coefficient G-module in the sense of [19] (recall
that p ∈ (1,∞) by assumption), Proposition 7.5.1 of [19] shows that ω defines an
element in H2

cb(G,L
p(G,µ)).

We are now left with showing that the cocycles constructed in this way define
an infinite dimensional subspace of H2

cb(G,L
p(G,µ)).

Since G does not act transitively on its limit set, Lemma 2.11 shows that G
contains a free subgroup Γ with two generators consisting of rank-one elements
which contains elements from infinitely many conjugacy classes of G. Using the
above notations, we may assume that Γ is generated by g, h. If ω is any Lp(G,µ)-
valued bounded cocycle which defines a trivial cohomology class for Γ then there
is a bounded function ρ : Γ → Lp(G,µ) such that

ω(e, v, w) = ρ(v) + vρ(w)− ρ(vw).

By construction of the cocycle ω, in this case there is an unbounded function
Ψσ : Γ → Lp(G,µ) such that

ρ(v) + vρ(w)− ρ(vw) = Ψσ(v) + vΨσ(w)−Ψσ(vw)

whenever b, vb, wb are pairwise distinct. In other words, ρ − Ψσ is the restriction
to the set of all v ∈ Γ with vb 6= b of a Lp(G,µ)-valued one-cocycle, i.e. a function
β : Γ → Lp(G,µ) which satisfies

β(v) + vβ(w)− β(vw) ≡ 0.

Since Ψσ is unbounded and ρ is bounded, the map Ψσ − ρ is unbounded and
therefore the one-cocycle determined in this way is non-trivial.

Now a one-cocycle is determined by its values on a generating set. On the other
hand, since the G-orbit of any pair of fixed points of rank-one elements in G is a
closed subset of Λ × Λ −∆, if (ai, bi) ∈ Λ × Λ are fixed points of elements gi ∈ Γ
(i = 1, . . . , k) in distinct conjugacy classes in G then for each i we can choose the
function f in the above construction in such a way that Ψσ(g

k
j ) = 0 for j 6= i and

all k ∈ Z and such that Ψσ(g
k
i ) is unbounded as k → ±∞. This implies that there

are indeed infinitely many linearly independent distinct such classes which pairwise
can not be obtained from each other by adding a bounded function. This shows
the proposition. �
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7. Structure of the isometry group

In this section we use the results from Section 5 and Section 6 to complete the
proof of Theorem 1 from the introduction.

Proposition 7.1. Let X be a proper CAT(0)-space and let G < Iso(X) be a closed

subgroup which contains a rank-one element. Then one of the following three pos-

sibilities holds.

(1) G is elementary.

(2) G contains an open subgroup G′ of finite index which is a compact extension

of a simple Lie group of rank 1.

(3) G is a compact extension of a totally disconnected group.

Proof. LetG be a closed subgroup of the isometry group Iso(X) of a proper CAT(0)-
spaceX. ThenG is locally compact. Assume thatG is non-elementary and contains
a rank-one element. Then by Lemma 5.2, the maximal normal amenable subgroup
N of G is compact, and the quotient L = G/N is a locally compact σ-compact
group. Moreover, N acts trivially on the limit set Λ of G.

By the solution to Hilbert’s fifth problem (see Theorem 11.3.4 in [19]), after
possibly replacing L by an open subgroup of finite index (which we denote again
by L for simplicity), the group L splits as a direct product L = H ×Q where H is
a connected semisimple Lie group with finite center and without compact factors
and Q is totally disconnected.

We show next that one of the groups H,Q is trivial. For this assume that H is
nontrivial. Let H0 < G and Q0 < G be the preimage of H,Q under the projection
G→ L. Then H0 is not compact and the limit set Λ0 ⊂ Λ of H0 < G is nontrivial.
Since Q commutes with H and the group N acts trivially on Λ, the group Q0 acts
trivially on Λ0 (this is discussed in the proof of Proposition 4.3 of [15], and the
proof given there is valid in our situation as well). In particular, if Λ0 consists of
a single point then G is elementary. Since G is non-elementary by assumption, Λ0

contains at least two points.

We claim that Λ0 = Λ. Since Λ0 ⊂ Λ is closed, by Lemma 2.8 it suffices to show
that the fixed points of every rank-one element of G are contained in Λ0. Thus
let g ∈ G be a rank-one element. By Lemma 2.8, g acts on ∂X with north-south
dynamics, with attracting fixed point a ∈ Λ and repelling fixed point b ∈ Λ. Since
Λ0 contains at least two points, if a 6∈ Λ0 then there is a point ξ ∈ Λ0 − {a, b}.
Write g = g0q with g0 ∈ H0, q ∈ Q0. Since g0 and q commute up to a compact
normal subgroup which fixes Λ ⊃ Λ0 pointwise, we have gk0ξ = gk0q

kξ = gkξ → a
(k → ∞). But gk0ξ ∈ Λ0 for all k > 0 and therefore by compactness we have a ∈ Λ0

(which contradicts the assumption that a 6∈ Λ0). Now a was an arbitrary fixed
point of a rank-one element in G and therefore Λ0 = Λ and Q0 fixes the limit set
of G pointwise. However, since G is non-elementary by assumption, in this case
the argument in the proof of Lemma 5.2 shows that Q0 is compact and hence Q is
trivial.
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To summarize, if G is non-elementary then up to passing to an open subgroup
of finite index, either G is a compact extension of a totally disconnected group or
G is a compact extension of a connected semisimple Lie group H with finite center
and without compact factors.

We are left with showing that if the group G is a compact extension of a
connected semisimple Lie group H with finite center and without compact fac-
tors then H is simple and of rank 1. Now Proposition 5.3 and Proposition 6.2
show that H2

cb(G,L
2(G,µ)) 6= {0}. By Corollary 8.5.2 of [19], this implies that

H2
cb(H,L

2(H,µ)) 6= {0} as well. By the super-rigidity result for bounded cohomol-
ogy of Burger and Monod [8], we conclude that H is simple of rank-one (see [20, 15]
for details of this argument). The proposition is proven. �

Now we are ready for the proof of the corollary from the introduction (which also
follows from Corollary 1.24 of [12]). For this recall that a simply connected complete

Riemannian manifold M̃ of non-positive sectional curvature is called irreducible if
M̃ does not split as a non-trivial product. A parabolic isometry of M̃ is an isometry
which is not semisimple. We have

Corollary 7.2. Let M be a closed Riemannian manifold of non-positive sectional

curvature. If the universal covering M̃ of M is irreducible and if Iso(M̃) contains

a parabolic element then M is locally symmetric.

Proof. Let M be a closed Riemannian manifold of non-positive sectional curvature
with irreducible universal covering M̃ . The fundamental group π1(M) of M acts

cocompactly on the Hadamard space M̃ as a group of isometries. By the celebrated
rank-rigidity theorem (we refer to [3] for a discussion and for references), either
π1(M) contains a rank-one element orM is locally symmetric of higher rank. These
two possibilities are exclusive.

Assume that π1(M) contains a rank-one element. By Lemma 5.2, the amenable

radical N of Iso(M̃) is compact and hence it fixes a point x ∈ M̃ by convexity.
Moreover, it fixes the limit set of π1(M) pointwise. Since the action of π1(M) <

Iso(M̃) on M̃ is cocompact, the limit set Λ of π1(M) is the entire ideal boundary

∂M̃ of M̃ . Then N fixes every geodesic ray issuing from x. This implies that N is
trivial.

By Theorem 1, either the isometry group of M̃ is an almost connected simple
Lie group G of rank-one or Iso(M̃) is totally disconnected. In the first case, π1(M)

is necessarily a cocompact lattice in G = Iso(M̃) since the action of Iso(M̃) on M̃
is proper and cocompact. The dimension of the symmetric space G/K associated
to G coincides with the cohomological dimension of any of its uniform lattices and
hence it coincides with the dimension ofM . But then the action of G on M̃ is open.
Since this action is also closed, the action is transitive and hence M̃ is a symmetric
space of rank-one.

We are left with showing that if Iso(M̃) contains a parabolic element then the

isometry group of M̃ is not totally disconnected. Assume to the contrary that
Iso(M̃) is totally disconnected. Since the action of Iso(M̃) on M̃ is cocompact,
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there is no non-trivial closed convex Iso(M̃)-invariant subset of M̃ . Since Iso(M̃) is

totally disconnected, by Theorem 5.1 of [12], point stabilizers of Iso(M̃) are open.

Then Corollary 3.3 of [10] implies that every element of Iso(M̃) with vanishing

translation length is elliptic. This is a contradiction to the assumption that Iso(M̃)
contains a parabolic element. �

Finally we show Corollary 2 from the introduction.

Corollary 7.3. Let G be a semi-simple Lie group with finite center, no compact

factors and rank at least 2. Let Γ < G be an irreducible lattice, let X be a proper

Cat(0)-space and let ρ : Γ → Iso(X) be a homomorphism. If ρ(Γ) is non-elementary

and contains a rank-one element then there is closed subgroup H of Iso(X) which

is a compact extension of a simple Lie group L of rank-one and there is a surjective

homomorphism ρ : G→ L.

Proof. Let Γ < G be an irreducible lattice and let ρ : Γ → Iso(X) be a homomor-
phism. Let H < Iso(X) be the closure of ρ(Γ). Then H is a closed subgroup of
Iso(X) which admits a Haar measure µ.

If ρ(Γ) is non-elementary and contains a rank-one element then the same is true
for H. By Proposition 5.3 and Proposition 6.2, in this case the second bounded
cohomology group H2

cb(H,L
2(H,µ)) is non-trivial. Via pullback by ρ, the second

bounded cohomology group H2
b (Γ, L

2(H,µ)) is non-trivial as well.

By Proposition 4.2 of [8], via inducing we deduce that the second continuous
bounded cohomology group H2

cb(G,L
[2](G/Γ, L2(H,µ))) does not vanish. Here

L[2](G/Γ, L2(H,µ)) denotes the Hilbert G-module of all measurable maps G/Γ →
L2(H,µ) with the additional property that for each such map ϕ the function
x→ ‖ϕ(x)‖ is square integrable on G/Γ with respect to the projection of the Haar
measure. The G-action is the twisted action determined by the homomorphism ρ.

We can now conclude as in the proof of Proposition 5.2 of [15]. Namely, let Ω ⊂ G
be a Borel fundamental domain for the action of Γ on G. We obtain a measurable
cocycle β : G × G/Γ → H as follows. For z ∈ Ω and g ∈ G, let η(g, z) ∈ Γ be the
unique element such that gz ∈ η(g, z)Ω and define β(g, z) = ρ(η(g, z)). Since the
rank of G is at least two by assumption, the results of Monod and Shalom [20] show
that if G is simple then there is a β-equivariant map G/Γ → L2(H,µ). However,
this implies that H is compact (see Section 3 of [20]) which is impossible since H
contains a rank-one element.

If G = G1 × G2 for semi-simple Lie groups G1, G2 with finite center and no
compact factor then the results of Burger and Monod [8, 9] show that via possibly
exchanging G1 and G2 we may assume that there is a map G/Γ → L2(H,µ) which
is equivariant with respect to the restriction of β to G1. Since Γ is irreducible by
assumption, the action of G1 on G/Γ is ergodic [22]. By Lemma 5.2, the amenable
radical N of H is compact and we deduce as in [20] that there is a continuous
homomorphism ψ : G → H/N . Since G is connected, the image ψ(G) = H/N is
connected and hence by Proposition 7.1, H/L is a simple Lie group of rank-one. �
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