
Chapter 4

The ending lamination

conjecture

4.1 Convex cocompact manifolds

4.1.1 Limit sets

In this section we begin the investigation of complete hyperbolic 3-manifolds
which are diffeomorphic to S × R where as before, S is a closed surface of
genus g ≥ 2. Such a manifold M can be represented as a quotient M = H3/Γ
where Γ is a discrete subgroup of the group PSL(2,C) of orientation preserving
isometries of hyperbolic 3-space H3. We begin with collecting some general
properties of discrete subgroups of PSL(2,C).

Hyperbolic 3-space H3, viewed as a geodesic metric space, is hyperbolic in
the sense of Gromov. Its Gromov boundary ∂H3 can naturally be identified
with the space T 1

XH
3 of all initial velocities of geodesic rays in H

3 issuing from
a fixed point x, which is just the standard sphere ∂H3 = S2. The union H3∪S2

is homeomorphic to a compact ball. The action of PSL(2,C) extends to the
standard action of PSL(2,C) on S2 = C ∪ {∞} by linear fractional transfor-

mations

z →
az + b

cz + d
where

(

a b
c d

)

∈ PSL(2,C).

With this identification, the group multiplication in PSL(2,C) transforms into
concatenation of group elements.
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Any element in PSL(2,C) can be conjugated in PSL(2,C) to an element
in Jordan normal form. This means that every A ∈ PSL(2,C) is conjugate to
either z → z + a for some a ∈ C− {0} or to z → λz for some λ ∈ C− {0}.

An element g of PSL(2,C) which is conjugate to z → z+a for some a 6= 0 is
called parabolic. Its action on S2 has precisely one fixed point x ∈ S2. If y ∈ S2

is arbitrary, then the sequence giy converges as i → ±∞ to x. The subgroup
< g > of PSL(2,C) generated by a parabolic element g is infinite cyclic and
acts freely on H

3. Any closed curve in H
3/〈g〉 can be freely homotoped to a

curve whose length is arbitrarily small.

An element g conjugate to z → λz for some λ ∈ C − {0} with |λ| 6= 1 is
called loxodromic. It acts on S2 with north-south dynamics with respect to fixed
points x 6= y: for every neighborhood U of x and V of y there is some k > 0
such that gk(S2 − V ) ⊂ U and g−k(S2 − U) ⊂ V . Moreover, the geodesic γ in
H3 connecting x to y is an axis for g. This means that γ is invariant under g
and that g acts on γ as a translation. The translation length of g is the distance
between a point z ∈ γ and its image under g. This translation length equals
2| log(|λ|)|.

An element conjugate to z → λz with |λ| = 1 is called elliptic. An element
g ∈ PSL(2,C) is elliptic if and only if its action on H3 has a fixed point (see
Proposition 1.16 of [?]) if and only if the closure in PSL(2,C) of the group
〈g〉 generated by g is compact. In particular, an element of PSL(2,C) of finite
order is elliptic.

Definition 4.1.1. A Kleinian group is a discrete subgroup of PSL(2,C).

Let Γ < PSL(2,C) be any Kleinian group. Since the stabilizer in PSL(2,C)
of a point in H3 is compact, the intersection of Γ with the stabilizer of a point in
H3 is finite. On the other hand, every finite subgroup of PSL(2,C) consists of
elliptic elements. This implies that the discrete group Γ < PSL(2,C) is torsion
free if and only if it does not contain elliptic elements. Under this assumption,
the quotient space H3/Γ is a smooth hyperbolic manifold whose fundamental
group is isomorphic to Γ.

The group Γ is purely loxodromic if and only if it is torsion free and every
conjugacy class in Γ can be represented by a (unique) closed geodesic in the
manifold M = H3/Γ. This closed geodesic is the projection of a geodesic line
in H3 which is invariant under some element e 6= g ∈ Γ. On the other hand, if
Γ contains a parabolic element then the function which associates to x ∈ H3/Γ
the injectivity radius inj(x) at x, i.e. the supremum of all numbers r > 0 such
that the metric ball of radius r about x is contractible, is not bounded from
below by a positive constant. In other words, a torsion free group Γ such that
the injectivity radius of H3/Γ is bounded from below by a positive constant
is purely loxodromic. Note that a lower bound for the injectivity radius is
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equivalent to a lower bound for the length of any non-contractible closed curve
in M .

Our goal is to find a geometric invariant for hyperbolic 3-manifolds M =
H3/Γ of positive injectivity radius which are diffeomorphic to S × R. Further-
more, we aim at a complete classification up to isometry, ie at an invariant
which distinguishes non-isometric such manifolds. For this we remark first

Lemma 4.1.2. Two complete hyperbolic 3-manifolds M = H3/Γ1, N = H3/Γ2

are isometric if and only if the groups Γ1,Γ2 are conjugate in PSL(2,C).

Proof. An isometry M → N lifts to an isometry of H3 which conjugates the
action of the groups Γ1,Γ2 on H3. Vice versa, any element of PSL(2,C) which
conjugates the action of Γ1 to the action of Γ2 descends to an isometry of H2/Γ1

onto H3/Γ2.

Thus for a classification of complete hyperbolic 3-manifolds of positive in-
jectivity radius diffeomorphic to S × R it suffices to classify conjugacy classes
of purely loxodromic subgroups of PSL(2,C) which are isomorphic to the fun-
damental group of S and with the additional property that the absolute value
of the trace of each nontrivial element is uniformly bounded away from 2.

A particularly simple class of examples arises as follows. Choose any co-
compact torsion free lattice Γ < PSL(2,R) and view Γ as a subgroup of
PSL(2,C) via the embedding PSL(2,R) → PSL(2,C). The resulting hyper-
bolic 3-manifoldM = H3/Γ contains a totally geodesic embedded surfaceH2/Γ.
Any non-contractible closed curve inM is freely homotopic to a closed geodesic.
This closed geodesic is the curve of minimal length in its free homotopy class,
and it is contained in the surface H2/Γ ⊂M .

A discrete subgroup of PSL(2,C) which is conjugate to a subgroup of
PSL(2,R) is called Fuchsian. Thus a subgroup Γ of PSL(2,C) isomorphic to
the fundamental group of a closed surface is Fuchsian if and only if it stabilizes
a totally geodesic hyperbolic plane H2 ⊂ H3, and this in turn is the case if
and only if it stabilizes a round circle in S2 (which is just the boundary of the
invariant totally geodesic subspace H2 ⊂ H3). The plane H2 is the convex hull
of this round circle in H3.

For discrete groups Γ < PSL(2,C) which are not Fuchsian, no round cir-
cle in S2 is invariant, but we can look for closed invariant subsets of S2 of a
more general form and try to relate the shape of such a set to the geometry
of the quotient manifold. A particularly useful invariant closed subset of S2 is
described in the next definition.
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Definition 4.1.3. The limit set Λ of a subgroup Γ < PSL(2,C) is the set
of accumulation points in the boundary ∂H3 = S2 of a Γ-orbit in H3. The
complement Ω = S2 − Λ is called the domain of discontinuity for the action of
Γ on S2.

Lemma 4.1.4. The limit set Λ of a Kleinian Γ is a closed Γ-invariant subset
of S2 which contains the fixed points of all loxodromic elements of Γ.

Proof. If x ∈ H3, ξ ∈ Λ and if {gi} ⊂ Γ are such that gix → ξ then for every
h ∈ Γ the sequence {hgix} converges to hξ. Thus the limit set Λ of Γ is a
Γ-invariant subset of S2 which moreover is closed by construction. The domain
of discontinuity of Γ is open and Γ-invariant.

Since a loxodromic element of PSL(2,C) preserves a geodesic γ in H3 and
acts on γ as a group of translations, the endpoints of γ are contained in the
limit set of any subgroup of PSL(2,C) containing g. Moreover, these endpoints
are just the fixed points for the action of g on S2. This shows the lemma.

The following easy observation explains the significance of the limit set. For
its formulation, we define

Definition 4.1.5. A Kleinian group Γ < PSL(2,C) is called elementary if its
limit set consists of at most two points.

Elementary Kleinian groups can easily be classified (see [?]. We do not use
this classification in the sequel, so we omit to discuss it here. All we need is the
following remark.

Lemma 4.1.6. A a torsion free purely loxodromic elementary Kleinian group

is infinite cyclic.

Proof. Let Γ be a torsion free purely loxodromic Kleinain group, and let e 6=
g ∈ Γ be a loxodromic element with fixed points ξ, η. Then ξ, η are contained
in the limit set of Γ. Since Γ is elementary by assumption, the limit set of Γ is
the set {ξ, η}, and this set is Γ-invariant.

Thus each u ∈ Γ preserves the geodesic γ in H3 connecting ξ and η and acts
on γ as an isometry. This shows that there is a homomorphism ρ of Γ into the
isometry group of the geodesic line γ. Since Γ is torsion free and hence does
not contain elliptic elements, the homomorphism ρ is injective and its image
consists of translations. Since Γ < PSL(2,C) is discrete, the group ρ(Γ) is
discrete. Therefore Γ is isomorphic to a discrete group of translations of the
real line, i.e. Γ is infinite cyclic.
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The next easy observation explains the significance of the limit set.

Lemma 4.1.7. Let Γ < PSL(2,C) be any Kleinian group and let Λ be the limit

set of Γ.

1. Γ acts properly discontinuously on the domain of discontinuity.

2. If Γ contains at least one loxodromic element then the limit set Λ of Γ is

the closure of the fixed points of all loxodromic elements.

3. If Γ is non-elementary and contains at least one loxodromic element then

Λ is the smallest non-empty closed Γ-invariant subset of S2.

Proof. Let Γ be in the lemma. We show first that Γ acts properly discontinu-
ously on its domain of discontinuity.

Let Ω be the domain of discontinuity of Γ. Then Ω is an open Γ-invariant
subset of the compact sphere ∂H3 = S2. Since Γ acts as a group of homeomor-
phisms on S2, it suffices to show that no point ξ ∈ Ω is an accumulation point
of a Γ-orbit in Ω.

Let Λ be the limit set of Γ. Assume to the contrary that there are points
ν, ξ ∈ Ω and there is a sequence {gi} ⊂ Γ of pairwise distinct elements such that
giν → ξ. Let γ be the hyperbolic geodesic joining ν to some point ζ ∈ Λ. Then
for each i, the geodesic giγ connects giν to giζ ∈ Λ. Since Λ is closed, up to
passing to a subsequence we may assume that the points giζ ∈ Λ converge to a
point η ∈ Λ. Now ξ 6∈ Λ and therefore the geodesics giγ converge to the geodesic
ρ connecting ξ to η. This means the following. For each fixed x ∈ H3, a shortest
geodesic connecting x to giγ converges to a shortest geodesic connecting x to
ρ, and the directions of giγ at the endpoints of these geodesic arcs converge to
the direction of ρ. In particular, the geodesics giγ pass through a fixed compact
subset B of H3.

Let y ∈ B∩γ. Then giy is a point on the geodesic giγ. Since Γ acts properly
on H3 and the elements gi ∈ Γ are pairwise distinct, the distance between giy
and B tends to infinity as i → ∞. Thus up to passing to a subsequence, we
may assume that giy converges as i → ∞ in the compact space H3 ∪ S2 to an
endpoint of the geodesic ρ connecting ξ to η. Since ξ 6∈ Λ we have giy → η.

On the other hand, if yi ∈ giγ ∩ B then the distance between giyi and
giy ∈ γi is bounded from above by the diameter of B. In particular, we have
giyi → η in H3 ∪S2. Then for sufficiently large i, the oriented geodesic segment
connecting yi ∈ giγ to giy ∈ giγ is contained in the subray of γi connecting yi
to giζ. By invariance, the oriented geodesic segment connecting y to g−1

i yi ∈ γ
is contained in the subray of γ connecting y to ν. Since d(g−1

i yi, y) → ∞, this
just means that g−1

i yi → ν (i→ ∞). Now the diameter of B is finite and hence
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for every z ∈ B we have g−1
i z → ν. Then ν ∈ Λ which is a contradicts to the

assumption that ν 6∈ Λ. The first part of the lemma is proven.

By Lemma 4.1.6, for the proof of the second and the third part of the lemma,
we may assume that Γ is non-elementary and contains a loxodromic element g.
Then g acts on S2 with north-south-dynamics and hence the fixed points ξ, ζ for
the action of g on S2 are contained in any non-trivial closed g-invariant subset
of S2 which contains at least three points. For every h ∈ Γ the points hξ, hζ are
fixed points for the loxodromic element hgh−1. Since the set of fixed points of
loxodromic elements of Γ is invariant under Γ, its closure is a closed Γ-invariant
subset A of the limit set Λ of Γ. Moreover, it is the smallest non-empty closed
Γ-invariant subset of S2.

We have to show that every point ξ ∈ Λ is contained in A. For this assume
without loss of generality that ξ is not fixed by any loxodromic element of Γ. Let
x ∈ H3 and let {gi} ⊂ Γ be a sequence with gix→ ξ. Let h ∈ Γ be a loxodromic
element. Then the axis γ of h passes through a compact neighborhood B of x.
For each i, the axis giγ of the loxodromic element gihg

−1
i ∈ Γ passes through

the set giB. But giB → ξ (i → ∞) and hence there are two cases possible. In
the first case, up to passing to a subsequence, there is a compact subset K of H3

which meets each of the geodesics giγ. But then after possibly passing to another
subsequence, the geodesics giγ converge to a geodesic with one endpoint ξ and
hence one of the fixed points of gihg

−1
i converges to ξ. If giγ eventually leaves

every compact set of H3 then giγ → ξ in the Hausdorff topology of compact
subsets of H3 ∪ ∂H3 and once again, we conclude that ξ ∈ A. This shows that
Λ is contained in the closure of the fixed points of loxodromic elements and
completes the proof of the lemma.

The domain of discontinuity Ω of Γ is a Γ-invariant open subset of S2, and
by Lemma 4.1.7, the group Γ acts on Ω properly discontinuously as a group
of biholomorphic automorphisms. If Γ is torsion free, then Ω/Γ is a Riemann
surface. By the celebrated Ahlfors finiteness theorem, if Γ is finitely generated
then this surface is of finite type. However, we will not need this beautiful and
deep fact in the sequel, and we refer to Chapter 4 of [?] for a discussion and for
references.

4.1.2 Quasifuchsian groups

In this subsection we relate the limit set of a torsion free Kleinian group Γ to the
geometry of the quotient manifold H

3/Γ in a particularly simple special case.

If A ⊂ S2 is any closed set, then the convex hull Hull(A) of A is defined
to be the intersection of all closed half-spaces in H3 whose closures in H3 ∪ S2
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contain A. Clearly Hull(A) is closed and convex, furthermore the limit set of
Hull(A), i.e the set of all accumulation points of sequences (xi) ⊂ Hull(A) which
leave every compact set contains A.

Lemma 4.1.8. The limit set of Hull(A) equals A.

Proof. If x ∈ S2 − A the since A is closed by assumption, there exists a round
disk about x whose closure is entirely contained in S2 − A. The boundary of
this disk is the boundary of a totally geodesic hyperbolic plane H2 ⊂ H3 which
bounds a halfspace containingA in its closure but not x. Then x is not contained
in the limit set of Hull(A).

Note that if Λ is the limit set of a Kleinian group Λ then Hull(Λ) is invariant
under Γ. We next give some geometric information on Hull(Λ) in this case. To
this end define a supporting hyperplane H for Hull(Λ) at a point x ∈ ∂Hull(Λ)
to be a totally geodesic embedded hyperbolic plane H

2 ⊂ H
3 which contains x

and bounds a half-space containing Λ in its closure.

The boundary ∂Hull(Λ) of Hull(Λ) is the set of all points x ∈ Hull(Λ) such
that every neighborhood of x contains a point in H3 −Hull(Λ).

The next proposition implies among others that through every point x ∈
∂Hull(Λ) passes a supporting hyperplane for Hull(Λ).

Proposition 4.1.9. Let Γ < PSL(2,C) be an arbitrary Kleinian group, with

limit set Λ(Γ), and let x ∈ ∂Hull(Λ(Γ)). Then either

1. there is a supporting hyperplane H for Hull(Λ(Γ)) at x, and there is a

geodesic line γ through x such that γ = H ∩ ∂Hull(Λ(Γ)), or

2. there is a unique supporting hyperplane H for Hull(Λ(Γ)) through x, and
there is an ideal triangle ∆ ⊂ H∩∂Hull(Λ(Γ)) containing x in its interior.

Proof. Let x ∈ ∂Hull(Λ(Γ)) and define

D1 = {w ∈ T 1
xH

3 | γw(∞) ∈ Λ(Γ)}

where γw is the geodesic with initial velocity w. We claim that the closure A of
the convex hull of D1 in TxH

3 contains 0.

Note first that this closure is contained in a halfspace of TxH
3 which is

equivalent to stating that 0 is not contained in the interior of the convex hull
of D1. Namely, otherwise there are four points in D1 which span a simplex
containing 0 in its interior, and the convex hull of the geodesic rays with these
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vectors as initial velocities contains x in its interior contradicting the assumption
that x ∈ ∂Hull(Λ).

To show the claim assume otherwise. Then there exists a unit vector w ∈
T 1
xH

3 with 〈w, v〉 ≥ δ > 0 for all v ∈ A. By continuity, for small ǫ > 0 we have

〈γ′w(ǫ), u〉 ≥ δ/2

for all u ∈ D2 = {z ∈ T 1
γw(ǫ)H

3 | γz(∞) ∈ Λ(Γ)}. Then if H ⊂ H3 is a

closed half-space whose boundary contains γw(ǫ) and whose tangent space at
that point equals (γ′w(ǫ))

⊥, then H ⊂ Λ(Γ) and hence Hull(Λ(Γ)) ⊂ H . But
x ∈ Hull(Λ(Γ)) and x 6∈ H which is a contradiction. This shows the claim.

There are now two cases. In the first case, there exists v ∈ D1 such that
−v ∈ D1. Then the geodesic γ with initial velocity γ′(0) = v is contained in
∂Hull(Λ(Γ)). This case corresponds to the first case stated in the proposition.

Since D1 is contained in a closed half-space of TxH
3, in the second case 0

is contained in the closure of the convex hull of the boundary of such a half
space. Then there are vectors v1, v2, v3 ∈ D1 contained in a two-dimensional
subspace of T 1

xH
3 which span a triangle in this plane containing 0 in its interior.

The convex hull of the geodesic rays with these velocities is a totally geodesic
triangle in H3 which is contained in H ∩ ∂Hull(Λ). Thus the properties stated
in the second case of the proposition are fullfilled.

Lemma 4.1.9 shows that under the assumption that Hull(Λ) ⊂ H
3 has non-

empty interior, the boundary of Hull(Λ) is a union of flat pieces, ie open sub-
sets of totally geodesic embedded hyperbolic planes, and geodesic lines. Fur-
thermore, if γ is such a geodesic line, then γ is contained in any supporting
hyperplane through any of its points.

If x ∈ H3 is any point, then the function y → d(x, y) is strictly convex and
hence by convexity, it assumes a unique minimum on Hull(Λ). Assigning to x
this minimum defines the shortest distance projection Π : H3 → Hull(Λ) which
is equivariant with respect to the action of Γ. We note

Corollary 4.1.10. If x 6∈ Hull(Λ) then the geodesic arc connecting x to Π(x)
is orthogonal to some supporting hyperplane at Π(x).

Proof. Let D ⊂ TΠ(x)H
3 be the tangent plane of the distance sphere of radius

d(x,Hull(Λ)) about x. The discussion in the proof of Proposition 4.1.9 shows
that D is tangent to a supporting hyperplane if there does not exist a vector v
so that the geodesic γv converges to a point in ∂Hull(Λ) and such that the angle
between v and the tangent of the geodesic arc connecting Π(x) to x is smaller
than π/2. However, this characterises a shortest distance projection.
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Definition 4.1.11. The convex core Core(M) of a hyperbolic 3-manifold M =
H3/Γ is the quotient under Γ of the convex hull Hull(Λ) of the limit set Λ of Γ.

Note that by the discussion in the previous section, Core(M) contains every
closed geodesic in M . The convex core ofM is a strictly convex closed subset of
M . If the interior of this set is not empty then it is a (topological) submanifold
of M with boundary.

Assume as before that Γ < PSL(2,C) is a discrete subgroup which is iso-
morphic to the fundamental group π1(S) of the closed surface S. The next
proposition gives a geometric description of a particular case of this situation
(compare with Section 4.4 of [?]).

Proposition 4.1.12. Let M = H3/Γ be a hyperbolic 3-manifold whose funda-

mental group Γ is isomorphic to the surface group π1(S). Then the following

are equivalent.

1. Core(M) is compact.

2. The limit set Λ of Γ is an embedded circle in S2, and Γ preserves each of

the components of its complement.

Proof. We begin with showing that the second statement in the proposition is
a consequence of the first.

Let Γ < PSL(2,C) be a discrete subgroup isomorphic to π1(S), let M =
H3/Γ and assume that Core(M) is compact. Since Γ is torsion free, it does not
contain elliptic elements. Thus M is a smooth manifold.

Let Hull(Λ) be the convex hull of the limit set Λ of Γ. Then Hull(Λ) is
a closed convex subset of H3. In particular, the restriction of the hyperbolic
metric on H3 to Hull(Λ) is a complete geodesic metric. A geodesic in Hull(Λ)
is a geodesic in H3 and hence Hull(Λ) is hyperbolic in the sense of Gromov.

If Core(M) is compact then the group Γ acts isometrically, properly and
cocompactly on Hull(Λ). By Proposition 3.1.4, for a given group isomorphism
ρ : π1(S) → Γ and for every x ∈ Hull(Λ) the inclusion g ∈ π1(S) → ρ(g)x ∈
Hull(Λ) is an equivariant quasi-isometry between the surface group π1(S) and
Hull(Λ). Thus Hull(Λ) is ρ-equivariantly quasi-isometric to the hyperbolic plane
H2. By Proposition 3.1.8, there is a ρ-equivariant homeomorphism f of the
Gromov boundary S1 of π1(S) onto the Gromov boundary of Hull(Λ). Since
Hull(Λ) is proper, the Gromov boundary of Hull(Λ) can abstractly be identified
with the space of equivalence classes of quasi-geodesic rays in Hull(Λ) where
two quasi-geodesic rays are equivalent if and only if the Hausdorff distance of
their images is finite.
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A uniform quasi-geodesic in Hull(Λ) is a uniform quasi-geodesic in H3.
Therefore such a quasi-geodesic converges to a point ξ in the boundary S2

of H3 which is necessarily contained in the limit set Λ of Γ. Thus the Gromov
boundary f(S1) of Hull(Λ) is naturally a closed subset of Λ. By equivariance,
f(S1) is Γ-invariant and hence by Lemma 4.1.7 we have f(S1) ⊃ Λ. This shows
that the limit set Λ of Γ is homeomorphic to a circle. More precisely, it is the
image under the map f of the boundary S1 of the hyperbolic plane.

The orientation of S1 = ∂H2 induces an orientation of Λ. Since the action
of every element of π1(S) on S1 is orientation preserving, by equivariance the
induced orientation of Λ is preserved by the action of Γ. However, Γ acts on S2

as a group of biholomorphic maps thus preserving the orientation of S2. As a
consequence, an element of Γ preserves each of the two components of S − Λ.
The implication 1) → 2) in the proposition is established.

To show that the second property implies the first, note that by the Jordan
curve theorem, an embedded topological circle in S2 divides S2 into two open
discs D1, D2. If the group Γ satisfies the hypothesis in the second statement,
then the domain of discontinuity Ω for Γ is a disjoint union of two discs D1, D2

which are invariant under Γ. The group Γ acts on them as a group of biholomor-
phic transformations. By uniformization, the discs D1, D2 are biholomorphic to
the standard unit disc in C, and this identification is unique up to an element
of PSL(2,R). Thus by restriction to Di, the group Γ defines a subgroup of
PSL(2,R), unique up to conjugation. By Lemma 4.1.4, for every g ∈ Γ, the
fixed points for the action of g on S2 are contained in the limit set of Γ and
hence the action of Γ on Ω = D1 ∪D2 is free. By Lemma 4.1.7, Γ acts properly
discontinuously on Ω and hence Di and therefore the quotient of Di under Γ is
a complete marked oriented hyperbolic surface. Since Γ is isomorphic to π1(S),
the fundamental groups of these quotient surfaces are isomorphic to π1(S). Now
an oriented complete hyperbolic surface S is non-compact if and only if its fun-
damental group is free. This implies that the quotient surfaces are compact and
diffeomorphic to S.

Let C be the closed one-neighborhood of Hull(Λ). Then C is a closed con-
vex Γ-invariant submanifold of H3 with smooth boundary ∂C (see [?]). By
convexity, there is a Γ-equivariant shortest distance projection P : Ω → C.
The image of a point x ∈ Ω is the unique point Px ∈ C with the property
that the x is the endpoint of the geodesic ray issuing from Px whose initial
velocity is the outer normal of C at Px. By equivariance, the quotient ∂C/Γ
is a compact disjoint union of two surfaces ∂C1, ∂C2 which are homeomorphic
to S. A fixed homomorphism ρ : π1(S) → Γ determines two homeomorphisms
f1, f2 : S → ∂Ci. The composition of each of these homeomorphisms fi with
the inclusion ∂Ci → M is a homotopy equivalence. In particular, the maps fi
are homotoic, which means that there is a continuous map F : S × [1, 2] → M
such that F |S × {i} = fi (i = 1, 2).
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For each x ∈ S let γx be the unique geodesic arc in M parametrized on [0, 1]
proportional to arc length which connects f1(x) to f2(X) and is homotopic to
the arc t→ F (x, t). Then γx depends continuously on x and is contained in C.
Using these arcs we obtain a new homotopy equivalence F ′ : S×[0, 1] → C which
maps the boundary of S× [0, 1| homeomorphically onto the boundary of C. The
double F ′ of this map is a homotopy equivalence of the compact manifold S×S1

onto the double of C doubled along the boundary. In particular, since S × S1

is a closed manifold, the map F ′ is of degree one and hence surjective. But this
just means that C and hence Core(M) is compact. This completes the proof of
the lemma.

Definition 4.1.13. A subgroup Γ < PSL(2,C) which is isomorphic to the
fundamental group of a closed oriented surface and such that Core(H3/Γ) is
compact is called quasi-fuchsian, and the quotient manifold H3/Γ is called con-

vex cocompact.

Remark 4.1.14. From the proof of Proposition 4.1.12 we also obtain the fol-
lowing. Let Γ < PSL(2,C) be a quasi-fuchsian group with limit set Λ. Let
D ⊂ S2 be a component of the domain of discontinuity for Γ. Then there is
a discrete cocompact subgroup Γ0 < PSL(2,R), an isomorphism ρ0 : Γ0 → Γ
and a ρ0-equivariant biholomorphic map f : H2 → D which extends to a ρ0-
equivariant homeomorphism ∂H2 → Λ.

The following deep result of Sullivan ([?], see also Section 5.2 of [?]) is one of
the main ingredients for the proof of the ending lamination conjecture. Its proof
goes beyond the score of this book and will be omitted. Sullivan’s theorem is
more general than the version stated here.

Theorem 4.1.15. Let M = H3/Γ, N = H3/Λ be two hyperbolic 3-manifolds

which are homotopy equivalent to S × R. Assume that there is a homotopy

equivalence F :M → N which is a quasi-isometry. Let F̃ be an equivariant lift

of F to a quasi-isometry of H3. If the extension of F to the boundary sphere S2

induces a conformal homeomorphism of the domain of discontinuity for Γ onto

the domain of discontinuity for Λ then M,N are isometric.

We use Theorem 4.1.15 to show.

Theorem 4.1.16. A quasi-fuchsian group Γ is determined up to conjugacy by

the Γ-quotient of its domain of discontinuity.

Proof. Let Γ < PSL(2,C) be a quasi-fuchsian group and let Γ′ < PSL(2,C)
be another discrete group isomorpic to π1(S) which defines a quotient manifold
N = H3/Γ with Core(N) compact. Assume that the quotient of the domain of
discontinuity under the action of Γ′ is biholomorphic equivalent to the quotient
of the domain of discontinuity for Γ. Then the domain of discontinuity for
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Γ′ consists of two discs D′

1, D
′

2. We choose these discs in such a way that
D′

i/Γ
′ is marked biholomorphic to Di/Γ (i = 1, 2). This means that there

is an isomorphism ρ : Γ → Γ′ and there is a ρ-equivariant biholomorphic map
Φi : Di → D′

i. We use these maps to define a quasi-isometry betweenM = H3/Γ
onto N which satisfies the assumptions in the statement of Theorem 4.1.15.

Namely, let C,C′ be the closed one-neighborhood of the convex hulls of the
limit sets of Γ,Γ′. Then C,C′ are smooth manifolds with boundary ∂C, ∂C′

which are diffeomorphic to H2 × [−1, 1]. Moreover, the subsets C,C′ of H3 are
convex. The groups Γ,Γ′ act on C,C′ cocompactly as a group of isometries.
There is a Γ,Γ′-equivariant shortest distance projection Pi : Di → C,P ′

i : D
′

i →
C′ which is defined as follows. For each x ∈ Di, the image of x is the unique
point on ∂C with the property that the geodesic ray which issues from the point
and whose unit tangent is perpendicular to ∂C at that point has its endpoint
at x. This shortest distance projection is a homeomorphism.

Define now a ρ-equivariant map F : H3 → H3 as follows. Compose the
inverse of Pi with the given ρ-equivariant conformal map Di → D′

i and the
projection P ′

i . This defines a ρ-equivariant homeomorphism F0 of the boundary
∂C of C onto the boundary ∂C′ of C′ which can be extended to H3 as follows.
A geodesic ray which issues from x ∈ ∂C and is orthogonal to ∂C is mapped
isometrically onto the ray issuing from F0(x) and which is orthogonal to ∂C′.
The resulting map can be extended to an equivariant homeomorphism M → N
which maps C onto C′. Standard hyperbolic geometry implies that F is a quasi-
isometry which extends to a homeomorphims of S2 whose restriction to S2 is
conformal. The theorem follows.

The following result is due to Bers. Together with Proposition 4.1.12 it gives
a complete classification of conjugacy classes of convex cocompact subgroups of
PSL(2,C) which are isomorphic to surface groups.

Theorem 4.1.17. For every pair (g, h) ∈ T (S)×T (S) there is a quasi-fuchsian

group Γ such that the quotient of the domain of discontinuity for the action of

Γ on S2 consists of the disjoint union of the Riemann surfaces (S, g), (S, h).

By Lemma 4.1.16, a group as in Theorem 4.1.17 is unique up to conjugation.
A proof of the theorem can be found in the book [?]. The theorem will not be
used in the sequel.

4.2 Degenerate ends

In this section we begin the investigation of manifolds which are homotopy
equivalent to S × R but which are not convex cocompact.
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We begin with the following elementary result from differential geometry.

Lemma 4.2.1. If Core(M) is non-compact then for every x ∈ Core(M) there

is a globally minimizing geodesic ray γ : [0,∞) → Core(M) whose lifts to H3

are geodesic rays in Hull(Λ) with endpoint in Λ.

Proof. Assume that Core(M) is non-compact and let x ∈ Core(M). Choose
a sequence of points yi ∈ Core(M) whose distances di to x tend to infinity
as i → ∞. For each i let γi : [0, di] → M be a minimal geodesic connecting
γi(0) = x to γi(di) = yi parametrized by arc length. Since Core(M) is convex,
these geodesics are entirely contained in Core(M). By passing to a subsequence
we may assume that the parametrized geodesic segments γi converge as i→ ∞
uniformly on compact subsets of [0,∞) to a geodesic ray γ. Since Core(M)
is closed, we have γ[0,∞) ⊂ Core(M), moreover γ is globally minimizing by
continuity of the distance function.

By convexity, a lift γ̃ of γ to H3 is contained in Hull(Λ) and hence the
endpoint of γ̃ is contained in Λ.

Our next goal is to obtain a better understanding of the geometry at infinity
of a hyperbolic 3-manifold which is not convex cocompact. To give precise
meaning of this idea we need the following

Definition 4.2.2. Lete M be a hyperbolic 3-manifold and let K1 ⊂ K2 ⊂ . . .
be an ascending sequence of compact subsets of M whose interiors cover M .
An end of M is given by a sequence U1 ⊃ U2 ⊃ . . . where Ui is a component of
M−Ki. This does not depend on the choice of the sequence Ki. A neighborhood

of an end is an open set V so that V ⊃ Un for some n,

Example 4.2.3. The real line R has two ends. A regular infinite three-valent
tree has uncoutably many ends.

Consider for the moment an arbitrary non-elementary torsion free purely
loxodromic Kleinian group Γ < PSL(2,C) with quotient manifold M = H3/Γ,
limit set Λ ⊂ S2 and convex core Core(M) ⊂M . Assume that there is at least
one end E of M such that the intersection E ∩ Core(M) is unbounded. This
means that for U ∩ Core(M) 6= ∅ for every neighborhood of E.

By Lemma 4.2.1, for every x ∈ Core(M) there is a globally minimizing
geodesic ray γ : [0,∞) → Core(M) with γ(0) = x whose lifts to Hull(Λ) are
geodesic rays which end at points in the limit set Λ of Γ. By Lemma 4.1.7, this
limit set is the closure of the fixed points of loxodromic elements in Γ. This
easily implies that every neighborhood of the end E is intersected by a closed
geodesics in M (the proof of Theorem 4.2.4 below gives a detailed argument for
this fact).
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It turns out that any such neighborhood contains a closed geodesic. Namely,
we say that a family {ci} of closed curves in M exits an end E of M if ci ⊂ E
for every i and if moreover for every compact subset K of M the intersection
ci ∩K = ∅ for all but finitely many i. The next result is due to Bonahon and is
true in much bigger generality than stated below [?].

Theorem 4.2.4. Let Γ be a torsion free purely loxodromic Kleinian group and

let M = H3/Γ. Let E be an end of M such that E ∩ Core(M) is not compact.

Then there is a sequence (ci) of closed geodesics in M which exit the end.

Proof. Let E be an end of M whose intersection with Core(M) is unbounded
and let U0 be an arbitrary neighborhood of E. Assume without loss of generality
that the boundary ∂U0 ⊂ M of U0 is compact and intersects Core(M). Our
goal is to show that there is a neighborhood N of U0 whose radius is bounded
independent of U0, and there is a closed geodesic β which is entirely contained
in N .

We observed in Lemma 4.2.1 that there is at least one distance minimizing
geodesic ray x = γ : [0,∞) → Core(M) ∩ E issuing from a point γ(0) ∈
∂U0 ∩ Core(M). A lift γ̃ of such a geodesic ray to the universal covering H3 of
M is contained in the convex hull Hull(Λ) of the limit set Λ of Γ.

By Lemma 4.1.7 fixed points of loxodromic elements of Γ are dense in Λ.
Furthermore, a geodesic ray in H3 depends continuously on its initial point and
its endpoint in S2 in the following sense. If ζi : [0,∞) → H3 is a sequence
of such geodesics with ζi(0) = y for a fixed point y whose endpoints converge
to the endpoint of a geodesic ray ζ with ζ(0) = y then the rays ζi converge
uniformly on compact sets to the ray ζ.

Now the geodesic ray γ̃ can be approximated by rays in Hull(Λ) which issue
from γ̃(0) and whose endpoints are fixed points of some loxodromic elements
of Γ. The projection η to M of such a geodesic spirals about the projection ν
of the axis of this loxodromic element which is a closed geodesic in M . Here
spiraling means that the distance between η(t) and the closed geodesic ν tends
to zero as t→ ∞.

If one of the closed geodesics αi is entirely contained in U0 then we are
done. Otherwise assume without loss of generality that each of the geodesics
αi intersects ∂U0. Since the geodesic rays γi approximate the minimizing ray
γ, their initial segments enter arbitrarily deeply into the end E as i → ∞. As
γi spirals about αi and αi is not contained in U0, initial subsegments of the
geodesics γi define an infinite family βi of geodesic arcs in U0 with endpoints
γ(0), xi on the boundary ∂U0 of U0 which meet every neighborhood of E.

Since ∂U0 is compact, we may assume that the sequence (xi) ⊂ ∂U0 con-
verges. By passing to a subsequence, we may moreover assume that for each i,
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there is a point on βi whose distance to βj for j < i is at least 100. Then the
simple closed curve γi,j which we obtain as the concatenation of βj , a minimal
geodesic connecting xj to xi and of β−1

i is not homotopic to zero. Namely,
otherwise lifts of βi, βj to the universal covering H3 with the same initial point
are geodesic arcs with endpoints of small distance whose Hausdorff distance is
at least 100. By hyperbolicity, this is impossible.

Since the fundamental group π1(M) of M does not contain any parabolic
element, there is a simple closed geodesic γ∗i,j which is freely homotopic to γi,j .
We claim that this simple closed geodesic is contained in a tubular neighborhood
of γi,j of uniformly bounded radius.

To see that this is indeed the case, let ψ : S1 × [0, 1] → M be a homotopy
connecting S1×{0} = γi,j to S

1×{1} = γ∗i,j and let a1, a2, a3 ∈ S1×{0} be the
three breakpoints of γi,j (namely, the points γ(0), xi, xj). Choose three points
b1 6= b2 6= b3 on S1×{1}. There is then a triangulation of the annulus S1× [0, 1]
into six triangles whose vertices are the points ai, bj.

The image under ψ of each side of such a triangle can be straightened in
M to a homotopic geodesic arc with the same endpoints. Note that the sides
contained in the curves γi,j , γ

∗

i,j are unchanged. Since the union of the three

sides of a triangle in S1 × [0, 1] is mapped by ψ to a contractible curve in M , a
lift of their straightenings to H3 is the boundary of a totally geodesic triangle
in H3. This triangle then projects back to a totally geodesic immersed triangle
in M . In other words, the straightenings of the three sides of each such triangle
bound a totally geodesic immersed triangle in M . We may assume that none of
these triangles is degenerate. Then the hyperbolic metric onM induces via pull-
back a metric on S1 × [0, 1] which is hyperbolic (i.e. of constant curvature −1),
with piecewise geodesic boundary. Namely, even though two totally geodesic
immersed triangles in M which share a common side may meet along this side
with a non-trivial angle, the intrinsic Riemannian metric on these triangles
extends smoothly across the side.

It is now enough to show that through every point x ∈ γ∗i,j = S1 × {1}
passes a geodesic arc which connects x to a point in γi,j and whose length is
bounded from above by a universal constant. For this note first that since γ∗i,j
is smooth, the sum of the angles at any singular point y ∈ γ∗i,j of the two totally
geodesic immersed hyperbolic triangles which come together at y is not smaller
than π. In particular, γ∗i,j is a convex subset of the piecewise hyperbolic annulus

A = S1 × [0, 1|: Every geodesic arc in A with both endpoints on γ∗i,j is entirely
contained in γ∗i,j .

For any x ∈ γ∗i,j − {b1, b2, b3} let αx be the geodesic arc in A issuing from
x which is orthogonal to γ∗i,j . If x ∈ {b1, b2, b3} then we let αx be any geodesic
segment with the property that the angle between αx and the two subarcs of
γ∗i,j issuing from x is at least π/2. Let ǫ > 0 be a lower bound for the injectivity
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radius of M and for z ∈ αx let βz be a geodesic arc in A of length ǫ/4 which is
orthogonal to αx and which points in the direction determined by the orientation
of A and the orientation of αx; we call this side positive.

By the choice of ǫ, the images in M of any such arc βz is contained in
a contractible subset of M . Thus if they may end on γi,j then the distance
between z and γi,j is at most ǫ/4. Let ℓ > 0 be the maximal length of a
connected subarc of αx beginning at x which consists of starting points z for an
embedded geodesic arc βz of length ǫ/4 as above whose interior is disjoint from
γi,j . Fermi coordinates now yield that the area of the union of these arcs is not
smaller than

ℓǫ/4.

On the other hand, the area of this union is not larger than the area of A. Since
A consists of 6 hyperbolic geodesic triangles, its area is not bigger than 6π. This
shows that ℓ ≤ 24π/ǫ = p.

Then for every z ∈ γ∗i,j , there exists a point z′ ∈ γi,j whose intrinsic distance
in A to z is at most p + ǫ/4. But this just means that the geodesic γ∗i,j is
contained in the ℓ+ ǫ/4-neighborhood of γi,j .

Embarking from Theorem 4.2.4, the main idea for an understanding of the
geometry of an end E in M which intersects Core(M) in a non-compact set is
to obtain a detailed understading of those closed geodesics which exit E and
their location in E. We begin this investigation with an estimate of intersection
numbers Bonahon [?]. For this and later use we need the following elementary
observation.

Lemma 4.2.5. Let M be any hyperbolic 3-manifold and let c be a closed curve

in M which is freely homotopic to a closed geodesic c∗. If the distance between

c∗ and c is a least D > 0, then

ℓ(c) ≥ cosh(D)ℓ(c∗).

Proof. Consider the covering M̂ of M whose fundamental group is generated
by c∗ and is isomorphic to Z. The manifold M̂ is diffeomorphic to a ball bundle
over S1. By elementary hyperbolic geometry, a closed curve onM homotopic to
c∗ which does not intersect the r-tubular neighborhood of c∗ has length at least
cosh(r)ℓ(c∗) where ℓ(c∗) is the length of c∗. Since the distance in M̂ between
c∗ and any lift of c is not smaller than the distance between c∗ and c in M , the
lemma follows.


