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Abstract. Let Q be a connected component of a stratum in the moduli space
of abelian or quadratic differentials for a non-exceptional Riemann surface S

of finite type. We show that the probability measure on Q in the Lebesgue
measure class which is invariant under the Teichmüller flow is obtained by

Bowen’s construction.

1. Introduction

Given a non-exceptional surface S of genus g ≥ 0 with m ≥ 0 punctures, the
Teichmüller flow Φt acts on a component Q of a stratum in the moduli space of area
one abelian or quadratic differentials for S. This flow on Q has many properties
which resemble the properties of an Anosov flow. For example, there is a pair of
transverse invariant foliations, and there is an invariant mixing Borel probability
measure λ in the Lebesgue measure class which is absolutely continuous with respect
to these foliations, with conditional measures which are uniformly expanded and
contracted by the flow [M82, V86]. The measure λ is even exponentially mixing,
i.e. exponential decay of correlations for Hölder observables holds true [AGY06,
AR09, AG10, H11].

The entropy h of the Lebesgue measure λ is the supremum of the topological
entropies of the restriction of Φt to compact invariant subsets of Q (see [H10b]
for a proof of this fact for the main stratum and note that the argument carries
over without changes to all strata). The entropy of λ also is the supremum of
the entropies of all Φt-invariant Borel probability measures on the component.
Moreover, λ is the unique invariant measure of maximal entropy [BG07, H11].

An Anosov flow Ψt on a compact manifold M also admits a unique Borel prob-
ability measure µ of maximal entropy. This measure can be obtained as follows
[B73, Mar04]. Every periodic orbit γ of Ψt of prime period ℓ(γ) > 0 supports a
unique Ψt-invariant Borel measure δ(γ) of total mass ℓ(γ). If h > 0 is the topolog-
ical entropy of Ψt then µ is the (unique) weak limit of the sequence of measures

e−hR
∑

ℓ(γ)≤R

δ(γ)
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as R → ∞. In particular, the number of periodic orbits of period at most R is
asymptotic to ehR/hR as R → ∞.

The goal of this paper is to show that for any connected component Q of a
stratum of abelian or quadratic differentials the Φt-invariant Lebesgue measure λ
on Q can be obtained in the same way.

For a precise formulation, we say that a family {µi} of finite Borel measures
on the moduli space H(S) of area one abelian differentials or on the moduli space
Q(S) of area one quadratic differentials converges weakly to λ if for every continuous
function f on H(S) or on Q(S) with compact support we have∫

fdµi →

∫
fdλ.

Let Γ(Q) be the set of all periodic orbits for Φt contained in Q. For γ ∈ Γ(Q)
let ℓ(γ) > 0 be the prime period of γ and denote by δ(γ) the Φt-invariant Lebesgue
measure on γ of total mass ℓ(γ).

Theorem. For every component Q of a stratum in the moduli space of abelian or

quadratic differentials, the measures

µR = e−hR
∑

γ∈Γ(Q),ℓ(γ)≤R

δ(γ)

converge as R → ∞ weakly to the Lebesgue measure on Q.

In other words, periodic orbits in components of strata are equidistributed.

The theorem implies that as R → ∞, the number of periodic orbits in Q of
period at most R is asymptotically not smaller than ehR/hR. However, since the
closure in Q(S) of a component Q of a stratum is non-compact, it does not yield
a precise asymptotic growth rate for all periodic orbits in Q. Namely, there may
be a set of periodic orbits in Q whose growth rate exceeds h and which eventually
exit every compact subset of Q(S).

However, a precise counting result is an immediate consequence of the theorem
and deep results of Eskin and Mirzakhani [EM08]. They showed that the asymptotic
growth rate of periodic orbits for the Teichmüller flow which lie deeply in the cusp of
moduli space is strictly smaller than the entropy h of the Lebesgue measure. More
recently, the corresponding result for components of strata was also established
[EMR12, H11]. Together this yields

Corollary. For any component Q of a stratum in the moduli space of area one

abelian or quadratic differentials, the number of periodic orbits for the Teichmüller

flow on Q of period at most R is asymptotic to ehR/hR as R → ∞.

The proof of the above theorem uses ideas which were developed by Margulis
for hyperbolic flows (see [Mar04] for an account with comments). This strategy
is by now standard, and the main task is to overcome the difficulty of absence of
hyperbolicity for the Teichmüller flow in the thin part of moduli space and the
absence of nice product coordinates near a boundary point of a stratum.
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Relative homology coordinates [V90] define local product structures for strata.
As the main technical tool of this paper, we construct dynamically controlled prod-
uct coordinates on neighborhoods of recurrent points in Q.

These coordinates do not extend in a straightforward way to points in the bound-
ary of the stratum. To overcome this difficulty we note that symmetric complex
functions can be used to construct coordinates on neighborhoods in Q of boundary
points of Q. This leads to a construction of parametrizations of such neighborhoods
with a finite unions of sets with local product structures intersecting only in the
boundary of Q.

Absence of hyperbolicity in the thin part of moduli space is dealt with using the
curve graph similar to the strategy developed in [H10b]. The curve graph is also
used to establish a strong version of the Anosov closing lemma. Integration of the
Hodge norm as discussed in [ABEM12] and some standard ergodic theory yield the
necessary measure estimates.

2. Laminations and the curve graph

Let S be an oriented surface of finite type, i.e. S is a closed surface of genus
g ≥ 0 from which m ≥ 0 points, so-called punctures, have been deleted. We assume
that 3g − 3 +m ≥ 2, i.e. that S is not a sphere with at most four punctures or a
torus with at most one puncture.

The Teichmüller space T (S) of S is the quotient of the space of all complete finite
volume hyperbolic metrics on S under the action of the group of diffeomorphisms
of S which are isotopic to the identity. The fibre bundle Q̃(S) over T (S) of all
marked holomorphic quadratic differentials of area one can be viewed as the unit
cotangent bundle of T (S) for the Teichmüller metric dT . Each such differential is
holomorphic on the complement of the punctures and has at most a simple pole
at each puncture. The Teichmüller flow Φt on Q̃(S) commutes with the action
of the mapping class group Mod(S) of all isotopy classes of orientation preserving
self-homeomorphisms of S. Therefore this flow descends to a flow on the quotient
orbifold Q(S) = Q̃(S)/Mod(S), again denoted by Φt.

2.1. Geodesic laminations. A geodesic lamination for a complete hyperbolic
structure on S of finite volume is a compact subset of S which is foliated into sim-
ple geodesics. A geodesic lamination ν is called minimal if each of its half-leaves
is dense in ν. Thus a simple closed geodesic is a minimal geodesic lamination. A
minimal geodesic lamination with more than one leaf has uncountably many leaves
and is called minimal arational.

Every geodesic lamination ν consists of a disjoint union of finitely many minimal
components and a finite number of isolated leaves. Each of the isolated leaves of ν
either is an isolated closed geodesic and hence a minimal component, or it spirals

about one or two minimal components. A geodesic lamination ν tightly fills up S if
its complementary components are topological discs or once punctured monogons,
i.e. once punctured discs bounded by a single leaf of ν. Note that this definition
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deviates from the standard definition of filling which only requires that a geodesic
lamination decomposes S into discs and once punctured discs.

The set L of all geodesic laminations on S can be equipped with the restriction
of the Hausdorff topology for compact subsets of S. With respect to this topology,
the space L is compact.

The projectivized tangent bundle PTν of a geodesic lamination ν is a compact
subset of the projectivized tangent bundle PTS of S. The geodesic lamination ν is
orientable if there is an continuous orientation of the tangent bundle of ν. This is
equivalent to stating that there is a continuous section PTν → T 1S|ν where T 1S
denotes the unit tangent bundle of S.

Definition 2.1. A large geodesic lamination is a geodesic lamination ν which
tightly fills up S and can be approximated in the Hausdorff topology by simple
closed geodesics.

A minimal geodesic lamination ν can be approximated in the Hausdorff topology
by simple closed geodesics (Lemma 4.2.15 of [CEG87]) and hence if ν tightly fills
up S then ν is large. Moreover, the set of all large geodesic laminations is closed
with respect to the Hausdorff topology and hence it is compact.

The topological type of a large geodesic lamination ν is a tuple

(m1, . . . ,mℓ;−m) where 1 ≤ m1 ≤ · · · ≤ mℓ,
∑
i

mi = 4g − 4 +m

such that the complementary components of ν which are topological discs aremi+2-
gons. Let

LL(m1, . . . ,mℓ;−m)

be the space of all large geodesic laminations of type (m1, . . . ,mℓ;−m) equipped
with the restriction of the Hausdorff topology for compact subsets of S. A geodesic
lamination is called complete if it is large of type (1, . . . , 1;−m). The complemen-
tary components of a complete geodesic lamination are all trigons or once punctured
monogons.

A measured geodesic lamination is a geodesic lamination ν equipped with a
translation invariant transverse measure ξ such that the ξ-weight of every compact
arc in S with endpoints in S − ν which intersects ν nontrivially and transversely is
positive. We say that ν is the support of the measured geodesic lamination. The
geodesic lamination ν is uniquely ergodic if up to scale, ξ is the only transverse
measure with support ν.

The space ML of measured geodesic laminations equipped with the weak∗-
topology admits a natural continuous action of the multiplicative group (0,∞).
The quotient under this action is the space PML of projective measured geodesic

laminations which is homeomorphic to the sphere S6g−7+2m.

Every simple closed geodesic c on S defines a measured geodesic lamination.
The geometric intersection number between simple closed curves on S extends to
a continuous function ι on ML×ML, the intersection form. We say that a pair
(ξ, µ) ∈ ML×ML of measured geodesic laminations jointly fills up S if for every
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measured geodesic lamination η ∈ ML we have ι(η, ξ) + ι(η, µ) > 0. This is
equivalent to stating that every complete simple (possibly infinite) geodesic on S
intersects either the support of ξ or the support of µ transversely.

2.2. The curve graph. The curve graph C(S) of S is the locally infinite metric
graph whose vertices are the free homotopy classes of essential simple closed curves
on S, i.e. curves which are neither contractible nor freely homotopic into a puncture.
Two such curves are connected by an edge of length one if and only if they can be
realized disjointly. The mapping class group Mod(S) of S acts on C(S) as a group
of simplicial isometries.

The curve graph C(S) is a hyperbolic geodesic metric space [MM99] and hence
it admits a Gromov boundary ∂C(S). For c ∈ C(S) there is a complete distance
function δc on ∂C(S) of uniformly bounded diameter, and there is a number ρ > 0
such that

δc ≤ eρd(c,a)δa for all c, a ∈ C(S).

The group Mod(S) acts on ∂C(S) as a group of homeomorphisms.

Let κ0 > 0 be a Bers constant for S, i.e. κ0 is such that for every complete hy-
perbolic metric on S of finite volume there is a pants decomposition of S consisting
of pants curves of length at most κ0. Define a map

(1) ΥT : T (S) → C(S)

by associating to x ∈ T (S) a simple closed curve of x-length at most κ0. Then
there is a number c > 0 such that

(2) dT (x, y) ≥ d(ΥT (x),ΥT (y))/c− c

for all x, y ∈ T (S) ([MM99] and see the discussion in [H10a]).

For a number L > 1, a map γ : [0, s) → C(S) (s ∈ (0,∞]) is an L-quasi-geodesic
if for all t1, t2 ∈ [0, s) we have

|t1 − t2|/L− L ≤ d(γ(t1), γ(t2)) ≤ L|t1 − t2|+ L.

A map γ : [0,∞) → C(S) is called an unparametrized L-quasi-geodesic if there is
an increasing homeomorphism ϕ : [0, s) → [0,∞) (s ∈ (0,∞]) such that γ ◦ ϕ is an
L-quasi-geodesic. We say that an unparametrized quasi-geodesic is infinite if its
image set has infinite diameter. The following important result was established in
[MM99].

Theorem 2.2. There is a number p > 1 such that the image under ΥT of every

Teichmüller geodesic is an unparametrized p-quasi-geodesic.

Choose a smooth function σ : [0,∞) → [0, 1] with σ[0, κ0] ≡ 1 and σ[2κ0,∞) ≡ 0.
For each x ∈ T (S), the number of essential simple closed curves c on S whose x-
length ℓx(c) (i.e. the length of a geodesic representative in its free homotopy class)
does not exceed 2κ0 is bounded from above by a constant not depending on x, and
the diameter of the subset of C(S) containing these curves is uniformly bounded
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as well. Thus we obtain for every x ∈ T (S) a finite Borel measure µx on C(S) by
defining

µx =
∑

c∈C(S)

σ(ℓx(c))∆c

where ∆c denotes the Dirac mass at c. The total mass of µx is bounded from above
and below by a universal positive constant, and the diameter of the support of µx in
C(S) is uniformly bounded as well. Moreover, the measures µx depend continuously
on x ∈ T (S) in the weak∗-topology. This means that for every bounded function
f : C(S) → R the function x →

∫
fdµx is continuous.

For x ∈ T (S) define a distance δx on ∂C(S) by

(3) δx(ξ, ζ) =

∫
δc(ξ, ζ)dµx(c)/µx(C(S)).

The distances δx are equivariant with respect to the action of Mod(S) on T (S) and
∂C(S). Moreover, there is a constant κ > 0 such that

(4) δx ≤ eκdT (x,y)δy and κ−1δy ≤ δΥT (y) ≤ κδy

for all x, y ∈ T (S) (see p.230 and p.231 of [H09b]).

An area one quadratic differential z ∈ Q̃(S) is determined by a pair (µ, ν) of
measured geodesic laminations which jointly fill up S and such that ι(µ, ν) = 1.
The laminations µ, ν are called vertical and horizontal, respectively. Namely, Levitt
[L83] constructed from a measured foliation on S a measured geodesic lamination,
and the measured geodesic lamination determines the measured foliation up to
Whitehead moves. On the other hand, a pair (µ̂, ν̂) of measured foliations is the
pair consisting of the horizontal and the vertical measured foliation for a quadratic
differential q on S if and only if the corresponding measured geodesic laminations
jointly fill up S.

For z ∈ Q̃(S) let Wu(z) ⊂ Q̃(S) be the set of all quadratic differentials whose
horizontal projective measured geodesic laminations coincide with the horizontal
projective measured geodesic lamination of z. The space Wu(z) is called the un-

stable manifold of z, and these unstable manifolds define the unstable foliation Wu

of Q̃(S). The strong unstable manifold W su(z) ⊂ Wu(z) is the set of all quadratic
differentials whose horizontal measured geodesic laminations coincide with the hor-
izontal measured geodesic lamination of z. These sets define the strong unstable

foliation W su of Q̃(S). The flip F : q → F(q) = −q exchanges the vertical and
the horizontal measured lamination of a quadratic differential q. The image of the
unstable (or the strong unstable) foliation of Q̃(S) under the flip F is the stable

foliation W s (or the strong stable foliation W ss).

By the Hubbard-Masur theorem [HM79], for each z ∈ Q̃(S) the restriction to
Wu(z) of the canonical projection

P : Q̃(S) → T (S)

is a homeomorphism. Thus the Teichmüller metric lifts to a complete path metric
du on Wu(z) (i.e. a distance function so that any two points can be connected
by a minimal geodesic). Denote by dsu the restriction of this distance function to
W su(z). Then ds = du ◦ F , dss = dsu ◦ F are distance functions on the leaves of
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the stable and strong stable foliation, respectively. For z ∈ Q̃(S) and r > 0 let
moreover Bi(z, r) ⊂ W i(z) be the closed ball of radius r about z with respect to di

(i = u, su, s, ss).

Let

(5) Ã ⊂ Q̃(S)

be the set of all marked quadratic differentials q such that the unparametrized
quasi-geodesic t → ΥT (PΦtq) (t ∈ [0,∞)) is infinite. Then Ã is the set of all
quadratic differentials whose vertical measured geodesic lamination fills up S (i.e.
its support decomposes S into ideal polygons and once punctured polygons, see
[H06] for a comprehensive discussion of this result of Klarreich [Kl99]). There is a
natural Mod(S)-equivariant surjective map

F : Ã → ∂C(S)

which associates to a point z ∈ Ã the endpoint of the infinite unparametrized
quasi-geodesic t → ΥT (PΦtq) (t ∈ [0,∞)).

Call a marked quadratic differential z ∈ Q̃(S) uniquely ergodic if the support
of its vertical measured geodesic lamination is uniquely ergodic and fills up S. A
uniquely ergodic quadratic differential is contained in the set Ã [H06, Kl99]. We
have (Section 3 of [H09b])

Lemma 2.3. (1) The map F : Ã → ∂C(S) is continuous and closed.

(2) If z ∈ Q̃(S) is uniquely ergodic then the sets F (Bsu(z, r)∩ Ã) (r > 0) form
a neighborhood basis for F (z) in ∂C(S).

For z ∈ Ã and r > 0 let
D(z, r)

be the closed ball of radius r about F (z) with respect to the distance function δPz.

As a consequence of Lemma 2.3, if z ∈ Q̃(S) is uniquely ergodic then for every
r > 0 there are numbers r0 < r and β > 0 such that

(6) F (Bsu(z, r0) ∩ Ã) ⊂ D(z, β) ⊂ F (Bsu(z, r) ∩ Ã).

3. Strata

As in Section 2, for a closed oriented surface S of genus g ≥ 0 with m ≥
0 punctures let Q̃(S) be the bundle of marked area one holomorphic quadratic
differentials with at most simple poles at the punctures over the Teichmüller space
T (S) of marked complex structures on S.

A tuple (m1, . . . ,mℓ) of positive integers 1 ≤ m1 ≤ · · · ≤ mℓ with
∑

i mi =

4g− 4+m defines a stratum Q̃(m1, . . . ,mℓ;−m) in Q̃(S). This stratum consists of
all marked area one quadratic differentials with m simple poles and ℓ zeros of order
m1, . . . ,mℓ which are not squares of holomorphic one-forms. The stratum is a real
hypersurface in a complex manifold of dimension 2g − 2 +m+ ℓ.

The closure in Q̃(S) of a stratum is a union of components of strata. Strata
are invariant under the action of the mapping class group Mod(S) of S and hence
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they project to strata in the moduli space Q(S) = Q̃(S)/Mod(S) of quadratic
differentials on S with at most simple poles at the punctures. We denote the
projection of the stratum Q̃(m1, . . . ,mℓ;−m) by Q(m1, . . . ,mℓ;−m).

The strata in moduli space need not be connected, but their connected compo-
nents have been identified by Lanneau [L08]. A stratum in Q(S) has at most three
connected components. The entropy h of the invariant Lebesgue measure on a com-
ponent Q of a stratum Q(m1, . . . ,mℓ;−m) just equals the dimension 2g−2+m+ ℓ
[M82, V86], i.e. we have

(7) h = 2g − 2 +m+ ℓ.

Similarly, if m = 0 then we let H̃(S) be the bundle of marked area one holo-
morphic one-forms over Teichmüller space T (S) of S. For a tuple k1 ≤ · · · ≤ kℓ
of positive integers with

∑
i ki = 2g − 2, the stratum H̃(k1, . . . , kℓ) of marked area

one holomorphic one-forms on S with ℓ zeros of order ki (i = 1, . . . , ℓ) is a real
hypersurface in a complex manifold of dimension 2g − 1 + ℓ. It projects to a stra-
tum H(k1, . . . , kℓ) in the moduli space H(S) of area one holomorphic one-forms on
S. Strata of holomorphic one-forms in moduli space need not be connected, but
the number of connected components of a stratum is at most three [KZ03]. More-
over, as before, the entropy of the invariant Lebesgue measure on a component of
a stratum H(k1, . . . , kℓ) coincides with the dimension 2g − 1 + ℓ, i.e. we have

(8) h = 2g − 1 + ℓ.

Recall from Section 2 the definition of the strong stable, the stable, the unstable
and the strong unstable foliation W ss,W s,Wu,W su of Q̃(S). Let Q̃ be a com-

ponent of a stratum Q̃(m1, . . . ,mℓ;−m) of marked quadratic differentials or of a

stratum H̃(m1/2, . . . ,mℓ/2) of marked abelian differentials. Using period coordi-

nates, one sees that every q ∈ Q̃ has a connected neighborhood U in Q̃ with the
following properties [V90]. For u ∈ U let [uv] (or [uh]) be the vertical (or the
horizontal) projective measured geodesic lamination of u. Then {[uv] | u ∈ U}
is homeomorphic to an open ball in R

h−1 (where h > 0 is as in equation (7,8)).
Moreover, for q ∈ U the set

{u ∈ U | [uv] = [qv]} = W s

Q̃,loc
(q) ⊂ W s(q)

is a smooth connected local submanifold of U of (real) dimension h which is called

the local stable manifold of q in Q̃ (see [V90]). Similarly we define the local unstable

manifold Wu

Q̃,loc
(q) of q in Q̃. If two such local stable (or unstable) manifolds inter-

sect then their union is again a local stable (or unstable) manifold. The maximal
connected set containing q which is a union of intersecting local stable (or unstable)

manifolds is the stable manifold W s

Q̃
(q) (or the unstable manifold Wu

Q̃
(q)) of q in Q̃.

Note that W i

Q̃
(q) ⊂ W i(q) (i = s, u). A stable (or unstable) manifold is invariant

under the action of the Teichmüller flow Φt.

Remark: There may be a component Q̃ of a stratum and some q̃ ∈ Q̃ such that
W s(q̃) ∩ Q̃ has infinitely many components.
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The stable and unstable manifolds define smooth foliations W s

Q̃
,Wu

Q̃
of Q̃ which

are called the stable and unstable foliations of Q̃, respectively. Define the strong

stable foliation W ss

Q̃
(or the strong unstable foliation W su

Q̃
) of Q̃ by requiring that

the leaf W ss

Q̃
(q) (or W su

Q̃
(q)) through q is the subset of W s

Q̃
(q) (or of Wu

Q̃
(q)) of

all marked quadratic differentials whose vertical (or horizontal) measured geodesic
lamination equals the vertical (or horizontal) measured geodesic lamination of q.

The strong stable foliation of Q̃ is transverse to the unstable foliation of Q̃.

The foliations W i

Q̃
(i = ss, s, su, u) are invariant under the action of the stabilizer

Stab(Q̃) of Q̃ in Mod(S), and they project to Φt-invariant singular foliations W i
Q

of Q = Q̃/Stab(Q̃).

3.1. Orbifold coordinates. In this technical subsection we describe for every
component Q of a stratum in the moduli space of quadratic differentials and for
every point q ∈ Q a basis of neighborhoods of q in Q with local product structures.
The material is well known to the experts but a bit difficult to find in the liter-
ature. In the course of the discussion we introduce some notations which will be
used throughout.

We begin with a discussion of the structure of Q̃(S). For q̃ ∈ Q̃(S) and z ∈ W s(q̃)
there is a neighborhood V of q̃ in W su(q̃) and there is a homeomorphism

(9) ζz : V → ζz(V ) ⊂ W su(z)

with ζz(q̃) = z which is determined by the requirement that ζz(u) ∈ W s(u). We
call ζz a holonomy map for the strong unstable foliation along the stable foliation.

To be more precise, since z ∈ W s(q̃), the vertical measured geodesic lamination
q̃v of q̃ and the horizontal measured lamination zh of z jointly fill up S. Since
jointly filling up S is an open condition for pairs of measured laminations, there is a
neighborhood Z of [q̃v] in PML such that for every [ν] ∈ Z and every representative
ν of the projective class [ν] the laminations ν and zh jointly fill up S. But this
just means that there is a point in W su(z) whose projective vertical measured
lamination equals [ν].

Similarly, for q̃ ∈ Q̃(S) and z ∈ Wu(q̃) there is a neighborhood Y of q̃ in W ss(q̃)
and there is a homeomorphism

(10) θz : Y → θz(Y ) ⊂ W ss(z)

with θz(q̃) = z which is determined by the requirement that θz(u) ∈ Wu(u). We
call θz a holonomy map for the strong stable foliation along the unstable foliation.
The holonomy maps are equivariant under the action of the mapping class group
and hence they project to locally defined holonomy maps in Q(S) which are denoted
by the same symbols.

Recall from Section 2 the definition of the intrinsic path-metrics di on the leaves
of the foliation W i (i = s, u). These path metrics are invariant under the action of
the mapping class group and hence they project to path metrics on the leaves of
W i in Q(S) which we denote by the same symbols. For q ∈ Q(S), z ∈ W i(q) and

any preimage q̃ of q in Q̃(S), the distance di(q, z) is the shortest length of a path in



10 URSULA HAMENSTÄDT

W i(q̃) connecting q̃ to a preimage of z. Let moreover dss, dsu be the restrictions of
ds, du to distances on the leaves of the strong stable and strong unstable foliation
of Q̃(S) and Q(S).

Let
Π : Q̃(S) → Q(S)

be the canonical projection. For q ∈ Q(S) and r > 0 let

Bi(q, r)

be the closed ball of radius r about q in W i(q) (i = ss, su, s, u) with respect to the
metric di. Call such a ball Bi(q, r) a metric orbifold ball centered at q if there is a

lift q̃ ∈ Q̃(S) of q with the following properties.

(1) The closed ball Bi(q̃, r) ⊂ (W i(q̃), di) about q̃ of the same radius is con-
tractible and precisely invariant under the stabilizer Stab(q̃) of q̃ in Mod(S).

(2) Bi(q, r) = Bi(q̃, r)/Stab(q̃) which means that the restriction of the map Π
to Bi(q̃, r) factors through a homeomorphism Bi(q̃, r)/Stab(q̃) → Bi(q, r).

We also say that Bi(q, r) is an orbifold quotient of Bi(q̃, r). Note that every metric
orbifold ball Bi(q, r) ⊂ W i(q) is contractible. If Bi(q, r) is a metric orbifold ball
and if s ≤ r then the same holds true for Bi(q, s). There is also an obvious notion
of an orbifold ball which is not necessarily metric. If Stab(q̃) is trivial then the
restriction of the projection Π to Bi(q̃, r) is a homeomorphism.

For every point q ∈ Q(S) there is a number

a(q) > 0

such that the balls Bi(q, a(q)) are metric orbifold balls (i = ss, su) and that for

any preimage q̃ of q in Q̃(S) and any z ∈ Bss(q̃, a(q)) (or z ∈ Bsu(q̃, a(q))) the
holonomy map ζz (or θz) is defined on Bsu(q̃, a(q)) (or on Bss(q̃, a(q))).

Now let
W1 ⊂ Bss(q, a(q)),W2 ⊂ Bsu(q, a(q))

be Borel sets and let W̃1 ⊂ Bss(q̃, a(q)), W̃2 ⊂ Bsu(q̃, a(q)) be the preimages of

W1,W2 in Bss(q̃, a(q)), Bsu(q̃, a(q)). Then W̃1, W̃2 are precisely invariant under
Stab(q̃). Define

V (W̃1, W̃2) = ∪z∈W̃1
ζzW̃2 and V (W1,W2) = ΠV (W̃1, W̃2).

Note that the map ξ : W̃1 × W̃2 → V (W̃1, W̃2) defined by ξ(z, u) = ζz(u) is a
homeomorphism. If W1,W2 are path connected and contain the point q then the
set V (W̃1, W̃2) is path connected, and V (W1,W2) is path connected as well.

Similarly, define

Y (W̃1, W̃2) = ∪u∈W̃2
θuW̃1 and Y (W1,W2) = ΠY (W̃1, W̃2).

Then there is a continuous function

(11) σ : V (Bss(q̃, a(q)), Bsu(q̃, a(q))) → R

which vanishes on Bss(q̃, a(q)) ∪Bsu(q̃, a(q)) and such that

Y (W̃1, W̃2) = {Φσ(z)z | z ∈ V (W̃1, W̃2)}.
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In particular, for every number κ > 0 there is a number r(q, κ) > 0 such that the
restriction of the function σ to V (Bss(q̃, r(q, κ)), Bsu(q̃, r(q, κ))) assumes values in
[−κ, κ].

For t0 > 0 define

V (W̃1, W̃2, t0) = ∪−t0≤s≤t0 Φ
sV (W̃1, W̃2)(12)

and V (W1,W2, t0) =ΠV (W̃1, W̃2, t0).

Then for sufficiently small t0, say for all t0 ≤ t(q), the following properties are
satisfied.

a) V (W1,W2, t0) is homeomorphic to V (W̃1, W̃2)/Stab(q̃)× [−t0, t0].
b) Every connected component of the intersection of an orbit of Φt with

V (W1,W2, t0) is an arc of length 2t0.

We call a set V (W1,W2, t0) as in (12) which satisfies the assumptions a),b) a set
with a local product structure. Note that every point q ∈ Q(S) has a neighborhood
in Q(S) with a local product structure, e.g. the set V (Bss(q, r), Bsu(q, r), t) for
r ∈ (0, a(q)) and t ∈ (0, t(q)). Moreover, the neighborhoods of q with a local
product structure form a basis of neighborhoods.

The above discussion can be applied to strata as follows.

A connected component Q of a stratum Q(m1, . . . ,mℓ;−m) or of a stratum
H(m1/2, . . . ,mℓ/2) is locally closed in Q(S) (here we identify an abelian differential
with its square). This means that for every q ∈ Q there exists an open neighborhood
V of q in Q(S) such that V ∩ Q is a closed subset of V .

Using period coordinates [V90], one obtains that for every point q ∈ Q there is a
number aQ(q) ≤ a(q) and a number tQ(q) ≤ t(q) with the following property. For
r ≤ aQ(q) let

Bss
Q (q, r), Bsu

Q (q, r)

be the component containing q of the intersection Bss(q, r) ∩ Q, Bsu(q, r) ∩ Q
(note that the intersection Bss(q, r) ∩ Q may not be closed and may have infin-
itely many components). Then V (Bss

Q (q, r), Bsu
Q (q, r), tQ(q)) is a neighborhood of

q in Q (Proposition 6.1 of [V90] which uses the definitions on p.128 of that paper,
in particular formula 5.1).

We say that a Borel set Z ⊂ Q has a local product structure if there is some
q ∈ Z and if there are Borel sets

W1 ⊂ Bss
Q (q, aQ(q)),W2 ⊂ Bsu

Q (q, aQ(q))

and a number t0 < t(q) such that Z = V (W1,W2, t0).

The Φt-invariant Borel probability measure λ on Q in the Lebesgue measure
class admits a natural family of conditional measures λss, λsu on strong stable and
strong unstable manifolds. The conditional measures λi are well defined up to a
universal constant, and they transform under the Teichmüller geodesic flow Φt via

dλss ◦ Φt = e−htdλss and dλsu ◦ Φt = ehtdλsu.
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Let F : Q(S) → Q(S) be the flip q → F(q) = −q and let dt be the Lebesgue
measure on the flow lines of the Teichmüller flow. Any given choice of conditional
measures λsu on the strong unstable manifolds determines a choice of conditional
measures λss on the strong stable manifolds by the requirement that F∗λ

su = λss.
The measure which can be written with respect to a local product structure in the
form

dλss × dλsu × dt

is invariant under the Teichmüller flow and contained in the Lebesgue measure
class. This implies that there is a unique choice of conditionals λsu such that

dλ = dλss × dλsu × dt,

i.e. that the measure on the right hand side of the equation is a probability measure.
The measures λu on unstable manifolds defined by dλu = dλsu × dt are invariant
under holonomy along strong stable manifolds.

Let Q̃ be a component of the preimage of Q and let q̃ ∈ Q̃ be a preimage of a
point q ∈ Q. Since Stab(q̃) is a finite group, there is a unique Stab(q̃)-invariant

Lebesgue measure λ̃ on

V (Bss
Q (q̃, aQ(q)), B

su
Q (q̃, aQ(q)), tQ(q)) = Ṽ

which projects to λ on V = Ṽ /Stab(q̃). Similarly, the conditional measures λi of λ

lift to Stab(q̃)-invariant conditional measures λ̃i on the leaves of the corresponding

foliations on Ṽ . The natural homeomorphism

Bss

Q̃
(q̃, aQ(q))×Bsu

Q̃
(q̃, aQ(q))× [−tQ(q), tQ(q)]

→ V (Bss

Q̃
(q̃, aQ(q)), B

su

Q̃
(q̃, aQ(q)), tQ(q)) = Ṽ

maps the measure λ0 which is defined by dλ0 = dλ̃ss × dλ̃su × dt to a measure
on Ṽ of the form eϕλ̃ where ϕ is a continuous function on Ṽ which vanishes on
∪t∈[−tQ(q),tQ(q)]Φ

tBss

Q̃
(q̃, aQ(q)) (see [V86]).

Call a point q ∈ Q a smooth point if the stabilizer of some (and hence every)

preimage q̃ ∈ Q̃ consists of mapping classes which preserve the entire component
Q̃ pointwise. If q is smooth then the restriction of the projection Π to the set
V (Bss

Q̃
(q̃, aQ(q))×Bsu

Q̃
(q̃, aQ(q))× [−tQ(q), tQ(q)]) is a homeomorphism. By conti-

nuity of the function ϕ we have the following.

Lemma 3.1. Let q ∈ Q be a smooth point. The for every ǫ > 0 there is a number

a(q, ǫ) ∈ (0, aQ(q)) with the following property. For every a ≤ a(q, ǫ) the holonomy

maps define a homeomorphism

Ψ : Bss

Q̃
(q̃, a)×Bsu

Q̃
(q̃, a)× [−tQ(q), tQ(q)] → V (Bss

Q (q, a), Bsu
Q (q, a), t0)

whose Jacobian with respect to the measure λss × λsu × dt and the measure λ is

contained in the interval [(1 + ǫ)−1, 1 + ǫ].
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3.2. Product coordinates near boundary points. Throughout this subsection
we consider a component Q of a stratum Q(m1, . . . ,mℓ;−0), i.e. a stratum of
holomorphic quadratic differentials without poles on a surface of genus g ≥ 2. The
goal is to construct coordinates for the closure Q of Q near boundary points which
have properties similar to product coordinates near interior points of Q.

As before, it will be more convenient to work in the preimage Q̃ of Q and its
closure in Q̃(S). Note that boundary points of Q̃ are contained in strata of the

form Q̃(n1, . . . , ns; 0) for some s ≤ ℓ and such that each ni (i ≤ s) can be written
in the form ni =

∑
j mij .

The next lemma is geared at understanding the structure of a stratum near a
boundary point. As an example, assume that q̃ ∈ Q̃(2,m3, . . . ,mℓ; 0) is a boundary

point of a component Q̃ of the stratum Q̃(1, 1,m3, . . . ,mℓ; 0). Let x0 be the zero
of order two for q̃ which is the collision of two simple zeros for nearby points in
Q̃. Then for any point z ∈ Q̃ close to q̃ there is a short saddle connection in z
connecting two simple zeros a1, a2 near x0. If we pick one of these zeros, say a1,
then this saddle connection defines a direction at a1 which is contained in some
closed half-plane bounded by two vertical separatrices.

The simple idea is now to associate to the direction of a short saddle connection
the vertical sector containing it and to use this information for the construction of
coordinates. In the example described in the previous paragraph, if q̃ does not have
vertical saddle connections then the double zero of q̃ which is the collision of the
two simple zeros of nearby points in Q̃ is contained in a quadrangle complementary
component of the vertical measured geodesic lamination of q̃. The direction of
the short saddle connection of a nearby point determines one of the two possible
subdivisions of this quadrangle into two triangles. That this information can be
used for the construction of coordinates will be made precise in the next lemma.

For its formulation, remember that a large geodesic lamination is a topological

object which may not be the support of a transverse measure. Namely, such a large
geodesic lamination may have isolated non-closed leaves which can not be contained
in the support of a transverse measure. For example, if q̃ ∈ Q(n1, . . . , ns; 0) is a
quadratic differential without vertical saddle connection and if we add a diagonal
leaf to the support of the vertical measured lamination of q̃ then we obtain a large
geodesic lamination with an isolated leaf.

Call a large geodesic lamination µ an extension of a geodesic lamination ν if µ
can be obtained from ν by adding finitely many isolated leaves which subdivide
some of the complementary regions of ν. Note that if ν decomposes S into discs
then the number of different extensions of ν is bounded from above by a number
only depending on the topological type of S.

Lemma 3.2. Let q̃ ∈ Q̃(S) − Q̃ be a boundary point of Q̃ without vertical saddle

connection. Let ν be the support of the vertical measured geodesic lamination of

q̃. Then there is a set L ⊂ LL(m1, . . . ,mℓ; 0) of extensions of ν with the following

property. If (q̃i) ⊂ Q̃ ⊂ Q̃(m1, . . . ,mℓ; 0) is a sequence of quadratic differentials

without vertical saddle connection which converges to q̃ then the supports of the
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vertical measured geodesic laminations of q̃i converge in the Hausdorff topology to

a point in L.

Proof. To simplify the notations, assume that there are u ≥ 2 zeros xi
1, . . . , x

i
u of

the differentials q̃i which merge to a single zero x0 for q̃, and that these are the
only zeros which collide in q̃. It will be clear that our argument is local and hence
it applies to the case that more than one zero of q̃ is obtained by merging zeros of
the differentials q̃i.

By reordering, assume that for each i the order of the zero xi
b equals mjb (1 ≤

b ≤ u). Then the order of the zero x0 of q̃ equals n =
∑

b mjb .

For each i and each b ∈ {2, . . . , u} connect the zeros xi
1 and xi

b of q̃i by a shortest
geodesic sib. Then the lengths of the geodesics sib tend to zero as i → ∞. Moreover,
for large i the geodesic sib is unique. Namely, otherwise there is a geodesic loop
on q̃i whose length tends to zero with i. However, such a loop is homotopically
nontrivial and hence this implies that the underlying Riemann surfaces degenerate
to a stable curve which was ruled out by our assumptions.

Each of the geodesics sib is a concatenation of saddle connections of q̃i. The
endpoints of each of these saddle connection are contained in the set {xi

1, . . . , x
i
u}.

In particular, if sib consists of more than one saddle connection then exactly one
of these saddle connections begins at xi

1, and this saddle connection is one of the
arcs sij . Thus the union of the geodesics sib (b = 2, . . . , u) defines a tree Ti in S

rooted in xi
1 whose vertex set is the set {xi

1, . . . , x
i
u}. As i → ∞, the rooted trees Ti

collapse to the single zero x0 of q̃. Since the number of vertices of the tree Ti does
not exceed ℓ and is independent of i, by passing to a subsequence we may assume
that for all i, j there is a homeomorphism of Ti onto Tj which maps the vertex xi

b

to the vertex xj
b. We use this homeomorphism to identify the trees Ti, Tj in the

sequel. Note that for sufficiently large i the tree Ti does not depend on the choice
of the basepoint xi

1. Namely, otherwise there are two of the vertices xi
s which can

be connected by two distinct geodesics of very short length which is impossible.

For each i let ei be an edge of the tree Ti, chosen in such a way that for j 6= i the
edges ei, ej are mapped to each other by the homeomorphism Ti → Tj . Then ei is
a saddle connection for q̃i connecting a zero in the distinguished set, say the zero
xi
a, to a zero xi

b. Since q̃i does not have vertical saddle connections, locally near xi
a

the interior of the saddle connection ei is contained in the interior of an euclidean
sector based at xi

a of angle π which is bounded by two vertical separatrices αi
1, α

i
2

of q̃i issuing from xi
a. The union αi = αi

1 ∪ αi
2 is a smooth vertical geodesic line

passing through xi
a, i.e. a geodesic which is a limit in the compact open topology

of a sequence of geodesic segments not passing through a singular point.

Similarly, there are two vertical separatrices βi
1, β

i
2 issuing from the zero xi

b so
that the sum of the angles at xi

a, x
i
b of the (local) strip bounded by αi

1, ei, β
i
1 equals

π and that the same holds true for the angle sum of the (local) strip bounded by
αi
2, ei, β

i
2. The vertical length of ei is positive. The union βi = βi

1 ∪ βi
2 is a smooth

vertical geodesic line passing through xi
b.
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Equip S with the marked hyperbolic metric defined by the conformal structure
of q̃. For each i lift the singular euclidean metric on S defined by q̃i to a π1(S)-
invariant singular euclidean metric on the universal covering H2 of S. Let ẽi be a
lift of the saddle connection ei. Since ẽi is not vertical, the leaves of the vertical
foliation of q̃i which pass through ẽi define a strip of positive transverse measure in
H2. The boundary of this strip consists of the two lifts α̃i, β̃i of the smooth vertical
geodesics αi, βi which pass through the endpoints of ẽi. Up to normalization, up
to changing the lifts ẽi of the saddle connections ei and passing to a subsequence,
as i → ∞ the vertical geodesics α̃i, β̃i converge in the compact open topology to
vertical geodesics α̃, β̃ for the singular euclidean metric defined by q̃. The geodesics
α̃, β̃ pass through a preimage x̃0 of the distinguished zero x0 of q̃. By construction,
the geodesics α̃, β̃ coincide in a neighborhood of x̃0. Since q̃ does not have vertical
saddle connections, the geodesics α̃, β̃ coincide.

An interior point of the edge ei divides the tree Ti into two connected components
T 1
i , T

2
i . Let J

v
i be the set of vertices of the tree T v

i . At x̃0, the angle enclosed at a

fixed side of α̃ = β̃ can be calculated as

π(1 +
∑
b∈Jv

i

mjb).

In particular, the geodesic α̃ encloses an angle of at least 2π at each of its sides.

Since this reasoning is valid for each of the segments ei, we conclude that locally
near x̃0 the union of the limiting geodesics constructed as above for all edges of
the tree Ti divide a neighborhood of x̃0 in H2 into sectors bounded by vertical
separatrices which are determined by the trees Ti and whose angles are prescribed
by the orders of the zeros xi

b of q̃i.

The singular euclidean metrics on H2 defined by the differentials q̃i, q̃ are uni-
formly quasi-isometric to the hyperbolic metric. Thus each biinfinite geodesic for
q̃i, q̃ is contained in a uniformly bounded neighborhood of a unique hyperbolic ge-
odesic. In particular, each biinfinite geodesic for one of these singular euclidean
metrics has two well defined endpoints in the ideal boundary ∂H2 of H2.

Now let γ̃i, γ̃ be the hyperbolic geodesic with the same endpoints in ∂H2 as
α̃i, α̃. Then γ̃i → γ̃ locally uniformly. By the explicit construction of a measured
geodesic lamination from a measured foliations in [L83], for each i the projection
γi to S of the geodesic γ̃i is contained in the support νi of the vertical measured
geodesic lamination of q̃i. As a consequence, the projection γ to S of the geodesic γ̃
is contained in a limit in the Hausdorff topology of the geodesic laminations νi. On
the other hand, since at x̃0 the vertical geodesic α̃ encloses an angle of at least 2π
at each of its sides, the geodesic γ is not contained in the support ν of the vertical
measured geodesic lamination of q̃ [L83].

The geodesic lines constructed above from the tree Ti are pairwise disjoint and
disjoint from the support ν of the vertical measured geodesic lamination of q̃. They
decompose the complementary regions of ν into polygons as prescribed by the orders
of the zeros of the differentials q̃i and by the tree Ti.
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By assumption, q̃ does not have vertical saddle connections and therefore the
closure of any geodesic line disjoint from ν contains ν. As a consequence, whenever
the trees Ti are constant along the sequence in the sense described above, then
the supports of the vertical measured geodesic laminations νi of q̃i converge in the
Hausdorff topology to a large geodesic lamination µ of the same topological type
as the laminations νi. This shows the lemma. �

We use Lemma 3.2 to analyze the structure of strong unstable manifolds in Q
near boundary points.

Proposition 3.3. There is a number k0 > 0 and for each q ∈ Q − Q there is a

compact neighborhood of q in Q ∩W su(q) of the form

(13) W su
Q,loc(q) = ∪k

i=1Ai.

for some k ≤ k0. Here for each i ≤ k, the set Ai contains q, and it is the closure of

an open connected subset Ui of Q∩W su(q) which is diffeomorphic to an open ball.

Proof. Let Q̃ be a component of the preimage of Q in Q̃(S). Let q ∈ Q − Q and

let q̃ be a lift of q to the closure of Q̃. Assume first that q̃ does not have vertical
saddle connections.

Let ν be the support of the vertical measured geodesic lamination q̃v of q̃. By
Lemma 3.2, since q̃ does not have vertical saddle connections, there is a number
k0 > 0 only depending on the genus of S, there is a number k ≤ k0 and there is a set
L = {ξ1, . . . , ξk} ⊂ LL(m1, . . . ,mℓ; 0) of extensions of ν with the following property.

If q̃i ⊂ Q̃ is a sequence of quadratic differentials without vertical saddle connection
which converges to q̃ then any accumulation point in the Hausdorff topology of
the supports of the vertical measured geodesic laminations of q̃i is contained in L.
The set L is necessarily invariant under the action of the stabilizer Stab(q̃) of q̃ in
Mod(S).

We now use a construction which is carried out in detail in [H09a]. Namely, the
topological shape of a geodesic lamination can be described by collapsing almost
parallel strands to a single arc. If done correctly, the result is a train track on S. To
formalize the idea that such a train track η ”looks like” the lamination, let g be a
complete hyperbolic metric on S of finite volume and represent the large lamination
ξj as a geodesic lamination for this metric. For a small number ǫ > 0 we say that a
train track ηj ǫ-follows ξj if the projectivized tangent bundle of the graph obtained
by replacing the branches of ηj by geodesic arcs in the same homotopy class with
fixed endpoints is ǫ-close to the projectivized tangent bundle of ξj in the Hausdorff
topology for closed subsets of the projectivized tangent bundle of S.

Now for each j the geodesic lamination ξj is obtained from ν by adding some
diagonal leaves. This makes sense for train tracks as well. Namely, for a small
number ǫ > 0, a train track ηj which carries ξj (i.e. ξj can be mapped into ηj by a
map of class C1 whose differential is nonsingular on the leaves of ξj) and ǫ-follows
ξj contains a subtrack τ which carries ν and ǫ-follows ν, and ηj is obtained from
τ by subdividing complementary components (see [H09a]). For sufficiently small ǫ,
a carrying map ξj → ηj is surjective and defines a bijection of the complementary
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components of ξj onto the complementary components of ηj . We also may assume
that the set η1, . . . , ηk is invariant under the action of Stab(q̃).

The set of all large geodesic laminations ζ ∈ LL(m1, . . . ,mℓ; 0) carried by ηj
is open and closed in the Hausdorff topology [H09a]. Thus by the choice of the
set L, the support of the vertical measured geodesic lamination of every quadratic
differential z ∈ Q̃ without vertical saddle connection which is sufficiently close to q̃
is carried by one of the train tracks ηj . Since the set of differentials without vertical

saddle connection is dense in Q̃, by continuity the train tracks η1, . . . , ηk carry the
support of the vertical measured geodesic lamination of every quadratic differential
z ∈ Q̃ which is sufficiently close to q̃. The dimension of the space of transverse
measures on ηj equals precisely the dimension of the unstable foliation of Q [H11]
(this is implicitly also contained in [PH92]).

The same argument also applies in the case that q̃ has vertical saddle connections.
Namely, in this case there is a train track τ which decomposes S into complemen-
tary regions of the type prescribed by the stratum Q̃0 of q̃ and which carries the
vertical measured geodesic lamination of each quadratic differential z ∈ Q̃0 which
is sufficiently close to q̃ [H11].

The above discussion shows that there is a uniformly bounded number of train
tracks η1, . . . , ηk obtained from τ by subdividing complementary regions and such
that the union of these train tracks carries the vertical measured geodesic lamination
of each quadratic differential z ∈ Q̃ which is sufficiently close to q̃.

For each j let Cj be an closed contractible neighborhood of q̃v in the subset of
C of all projective measured geodesic laminations which are carried by ηj . Let q̃h

be the horizontal measured geodesic lamination of q̃. Then a neighborhood of q̃ in
W su(q̃) can be identified with a neighborhood of the vertical geodesic lamination
q̃v of q̃ in the space C of all measured geodesic laminations µ with ι(µ, q̃h) = 1
(note that here we do not keep track of strata). As a consequence, for each j and
up to decreasing Cj , the set Cj can be identified with a closed subset Aj of W su(q̃)
which contains q̃. The above discussion shows that A = ∪jAj is a neighborhood

of q̃ in W su

Q̃
(q̃) ∩ Q̃. Moreover, we may assume that A is Stab(q̃)-invariant. This

completes the proof of the proposition. �

4. Absolute continuity

Let againQ be a connected component of a stratum inQ(S). ThenQ is invariant
under the Teichmüller flow Φt. For a periodic orbit γ ⊂ Q for Φt, the Lebesgue
measure supported in γ is a Φt-invariant Borel measure σ(γ) on Q whose total mass
equals the prime period ℓ(γ) of γ. If we denote for R > 0 by Γ(R) the set of all
periodic orbits for Φt of period at most R which are contained in Q then we obtain
a finite Φt-invariant Borel measure µR on Q by defining

(14) µR = e−hR
∑

γ∈Γ(R)

σ(γ).
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Let µ be any weak limit of the measures µR as R → ∞. Then µ is a Φt-invariant
Borel measure on Q(S) supported in the closure Q of Q (which may a priori be
zero or locally infinite). The purpose of this section is to show

Proposition 4.1. The measure µ on Q satisfies µ ≤ λ.

This means that µ(U) ≤ λ(U) for every open relative compact subset U of Q.
In particular, the measure µ is finite and absolutely continuous with respect to
the Lebesgue measure, and it gives full mass to Q. Note that this statement is
stronger than claiming that µ(U) ≤ λ(U) for every open relative compact subset
of Q. Namely, it also says that no mass can accumulate on Q−Q.

The strategy of proof is the strategy developed by Margulis (see [Mar04]).
Namely, to control the measure of a sufficiently small neighborhood of a point
q ∈ Q we use a neighborhood U of q with a local product structure and mixing
properties of the Teichmüller flow to establish that each periodic point in U of
sufficiently large period T > 0 defines an intersection component of U ∩ ΦTU of
controlled measure.

In the case of an Anosov flow, to obtain sufficient control of the measure of a
connected component of the intersection of a set V with a local product structure
with its image under the time-T -map of the flow, one first arranges that V is defined
by two small compact balls B1, B2 in a strong stable and strong unstable manifold,
respectively. Then one decreases slightly the balls Bi to compact balls B′

i ⊂ Bi of
almost the same volume which are contained in the interior of Bi, and one considers
the corresponding set V ′ ⊂ V with a local product structure.

By uniform hyperbolicity, for sufficiently large T > 0 only depending on the
hyperbolicity constant and the choice of V, V ′, if there is a point x ∈ V ′ which is
mapped by the time-T -map of the flow back into V ′, then the image of the ball
B′

1 under the holonomy map which moves it into the strong stable manifold of x
is entirely contained in V independent of the position of x in V ′. Reversing time
shows that there is a neighborhood of x in the strong unstable manifold of x which
is contained in V and which is mapped by the time T -map onto a ball in a strong
unstable manifold contained in V of large volume. This allows to conclude that the
volume of the intersection component containing x of V with its image under the
time-T -map equals e−T times the mass of V for the measure of maximal entropy
up to a multiplicative constant which is arbitrarily close to one depending on V
and V ′. Now each such intersection component can contain at most one periodic
orbit, and together with mixing properties of the flow this results in the requested
upper counting control.

The Teichmüller flow is not hyperbolic, and adopting this strategy requires a
significant amount of care. Our first task is to construct neighborhoods of recur-
rent points in strong unstable manifolds which have the above expansion property
provided that the return time is big enough depending on the recurrent point. This
part of the argument does not use specific properties of the Teichmüller flow (the
curve graph can be replaced by a more abstract way to measure hyperbolicity) and
may be useful in other context as well.



BOWEN’S CONSTRUCTION FOR THE TEICHMÜLLER FLOW 19

We moreover face the difficulty that due to nontrivial point stabilizers for the
mapping class group, the moduli space of quadratic differentials is simply connected,
and periodic orbits for the Teichmüller flow do not correspond to free homotopy
classes in moduli space. Therefore we have to be careful with detecting and separat-
ing periodic orbits. To this end we work most of the time in the universal covering
of the component. Finally an analysis of dynamical properties of the Teichmüller
flow near the boundary of strata is needed to show that concentration of measure
near boundary points does not occur. We carry out this program in the remainder
of this section.

A point q ∈ Q is called forward recurrent (or backward recurrent) if it is contained
in its own ω-limit set (or in its own α-limit set) under the action of Φt. A point q ∈ Q
is recurrent if it is forward and backward recurrent. The set R ⊂ Q of recurrent
points is a Φt-invariant Borel subset of Q. It follows from the work of Masur [M82]
that a recurrent point q ∈ R has uniquely ergodic vertical and horizontal measured
geodesic laminations whose supports fill up S. As a consequence, the preimage R̃
of R in Q̃(S) is contained in the set Ã defined in (5) of Section 2.

Using the notations from Section 2, there is a number p > 1 such that for every
q ∈ Q̃(S) the map t → ΥT (PΦtq) is an unparametrized p-quasi-geodesic in the
curve graph C(S). If q is a lift of a recurrent point in Q(S) then this unparametrized
quasi-geodesic is of infinite diameter (see [Kl99] for details on this).

Recall from (3) of Section 2 the definition of the distances δx (x ∈ T (S)) on

∂C(S) and of the sets D(q, r) ⊂ ∂C(S) (q ∈ Ã, r > 0). The following lemma is
a version of Lemma 2.1 of [H10b] which is going to be used as a substitute for
hyperbolicity.

Lemma 4.2. There are numbers α0 > 0, β > 0, b > 0 with the following property.

Let q ∈ R̃ and for s > 0 write σ(s) = d(ΥT (Pq),ΥT (PΦsq)); then

βe−bσ(s)δPΦsq ≤ δPq ≤ β−1e−bσ(s)δPΦsq on D(Φsq, α0).

The map F : Ã → ∂C(S) defined in Section 2 is equivariant for the action of

the mapping class group on Ã ⊂ Q̃(S) and on ∂C(S). In particular, for q ∈ Ã and
r > 0 the set D(q, r) ⊂ ∂C(S) is invariant under Stab(q), and the same holds true
for F−1D(q, r).

Let Q̃ ⊂ Q̃(S) be a component of the preimage of Q and let Stab(Q̃) < Mod(S)

be the stabilizer of Q̃ in Mod(S). The Φt-invariant Borel probability measure λ on

Q in the Lebesgue measure class lifts to a Stab(Q̃)-invariant locally finite measure

on Q̃ which we denote again by λ. The conditional measures λss, λsu of λ on the
leaves of the strong stable and strong unstable foliation of Q lift to a family of
locally finite Borel measures on the leaves of the strong stable and strong unstable
foliation W ss

Q̃
,W su

Q̃
of Q̃, respectively, which we denote again by λss, λsu (see the

discussion in Section 3.1).

The next observation is used to overcome the difficulty that the Teichmüller
flow is not hyperbolic. In its formulation, the number α0 > 0 is the constant from
Lemma 4.2.
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Lemma 4.3. For every ǫ > 0, for every q̃ ∈ Q̃ ∩ R̃ and for all compact neighbor-

hoods W1 ⊂ W2 of q̃ in W su

Q̃
(q̃) there are compact neighborhoods K ⊂ C ⊂ W1 of q̃

in W su

Q̃
(q̃) with the following properties.

(1) K,C are precisely invariant under Stab(q̃).
(2) There are numbers 0 < r1 < r2 < α0/2 such that

K = W1 ∩ F−1D(q̃, r1), C = W1 ∩ F−1D(q̃, r2).

(3) λsu(K)(1 + ǫ) ≥ λsu(C).

(4) If z ∈ K ∩ Ã then F−1D(z, (r2 − r1)/2) ∩W2 ⊂ C.

Proof. Let q ∈ Q be a recurrent point and let q̃ ∈ Q̃ be a lift of q. Let W1 ⊂ W2 ⊂
W su

Q̃
(q̃) be compact neighborhoods of q̃. Choose r > 0 such that

Bsu

Q̃
(q̃, 2r) ⊂ W1 ⊂ W su

Q̃
(q̃)

is precisely invariant under Stab(q̃) and projects to a metric orbifold ball in W su
Q (q).

By Lemma 2.3, the map F : Ã → ∂C(S) is continuous and closed, and the sets

F (Bsu(q̃, ν)∩ Ã) (ν > 0) form a neighborhood basis of F q̃ in ∂C(S). Thus there is
a number u0 > 0 such that

D(q̃, u0) ∩ F (W2 ∩ Ã) ⊂ F (Bsu

Q̃
(q̃, r) ∩ Ã).

For u ≤ u0 let Ku ⊂ W su

Q̃
(q̃) be the closure of the set

F−1(D(q̃, u)) ∩W2.

Then Ku is a closed neighborhood of q̃ in W su

Q̃
(q̃) which is contained in W1 and is

precisely invariant under Stab(q̃). Moreover, Kt ⊂ Ku for t < u, and Lemma 2.3
shows that ∩u>0Ku = {q̃}. Since the conditional measure λsu on W su

Q̃
(q̃) is Borel

regular, for every ǫ > 0 there are numbers r1 < r2 < u0 so that

λsu(Kr1) ≥ λsu(Kr2)(1 + ǫ)−1.

If we define K = Kr1 and C = Kr2 then the sets K ⊂ C have all properties required
in the lemma. This shows the lemma. �

Remark: Since Ã is dense in Q̃(S) and the map F : Ã → ∂C(S) is continuous
and closed, the sets K ⊂ C ⊂ W su

Q̃
(q̃) have dense interior. Moreover, we may

assume that their boundaries have vanishing Lebesgue measures.

Let again Q̃ ⊂ Q̃(S) be a component of the preimage ofQ. For q ∈ Q let q̃ ∈ Q̃ be
a preimage of q and let |Stab(q)| be the cardinality of the quotient of Stab(q̃) by the

normal subgroup of all elements of Stab(q̃) which fix Q̃ pointwise (for example, the
hyperelliptic involution acts trivially on the preimage of a hyperelliptic component
of a stratum, see [KZ03, L08]. This does not depend on the choice of q̃. We note

Lemma 4.4. The set S = {q ∈ Q | |Stab(q)| = 1} is an open dense Φt-invariant

submanifold of Q.
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Proof. The mapping class group preserves the Teichmüller metric on T (S) and

hence an element h ∈ Mod(S) which stabilizes a quadratic differential q̃ ∈ Q̃(S)
fixes pointwise the Teichmüller geodesic with initial cotangent q̃. Therefore the set
S is Φt-invariant, moreover it is clearly open. Since the Teichmüller flow on Q has
dense orbits, either S is empty or dense. However, Mod(S) acts properly discontin-
uously on T (S) and consequently the first possibility is ruled out by the fact that
the conjugacy class of an element of Mod(S) which fixes an entire component of
the preimage of Q does not contribute towards |Stab(q)|. �

For a control of the measure µ we use a variant of an argument of Margulis
[Mar04]. Namely, for numbers R1 < R2 let Γ(R1, R2) be the set of all periodic
orbits of Φt which are contained in Q, with prime periods in the interval (R1, R2).
For an open or closed subset V of Q and numbers R1 < R2 define

H(V,R1, R2) =
∑

γ∈Γ(R1,R2)

∫
γ

χ(V )

where χ(V ) is the characteristic function of V .

To obtain control on the quantities H(V,R1, R2) we use a tool from [ABEM12].
Namely, every leaf W ss(q) of the strong stable foliation of Q(S) can be equipped
with the Hodge distance dH (or, rather, the modified Hodge distance, [ABEM12]).
This Hodge distance is defined by a norm on the tangent space of W ss(q) (with
a suitable interpretation). In particular, closed dH -balls of sufficiently small finite
radius are compact, and balls about a given point q define a neighborhood basis of
q in W ss(q). We also obtain a Hodge distance on the leaves of the strong unstable
foliation as the image under the flip F of the Hodge distance on the leaves of the
strong stable foliation. These Hodge distances restrict to Hodge distances on the
leaves of the foliations W ss

Q ,W su
Q which we denote by the same symbol dH .

The following result is Theorem 8.12 of [ABEM12],

Theorem 4.5. There is a number cH > 0 such that

(15) dH(Φtq,Φtq′) ≤ cHdH(q, q′).

for all q ∈ Q(S), q′ ∈ W ss(q) and all t ≥ 0.

The following lemma is the main technical tool for applying the strategy of
Margulis to the non-uniformly hyperbolic setting at hand. Observe that property
(4) assures that each periodic orbit contributes with a weight estimated in (3)
to the volume of intersection, so this gives the upper bound on the number of
such orbits. The setup is more involved than in the case of Anosov flows (which is
already technically complicated, see [Mar04]) due to the difficulty of lack of uniform
hyperbolicity.

Lemma 4.6. Let q ∈ Q be a recurrent point with |Stab(q)| = 1 and let V be

a neighborhoood of q in Q. Then for every ǫ > 0 there are closed neighborhoods

Z1 ⊂ Z2 ⊂ Z3 ⊂ V0 ⊂ V of q in Q with dense interior and there is a number t0 > 0
such that for all sufficiently large R > 0 the following properties are satisfied.
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(1) V0 is connected and has a local product structure. There are compact sets

Ki ⊂ Ci ⊂ W i
Q,loc(q) with dense interior so that Ki is contained in the

interior of Ci (i = ss, su), and there is a number ω > 0 such that

Z1 = V (Kss,Ksu, t0), Z2 = V (Kss, Csu, t0),

Z3 = V (Css, Csu, t0(1 + ω)).

(2) λ(Z3) ≤ λ(Z1)(1 + ǫ).
(3) Let z ∈ Z1 and assume that Φτz = z for some τ ∈ (R − t0, R + t0). Let

Ê be the component containing z of the intersection ΦτV0 ∩ V0 and let

E = Ê ∩ ΦτZ2 ∩ Z3. Then

λ(E) ∈ [e−hRλ(Z1)/(1 + ǫ), e−hRλ(Z1)(1 + ǫ)],

and the length of the connected orbit subsegment of (∪t∈RΦ
tz)∩Z1 contain-

ing z equals 2t0.
(4) The Φt-orbit through z is the only periodic orbit for Φt of period σ ∈ (R−

t0, R+ t0) which intersects E.

Proof. Let q ∈ Q be recurrent with |Stab(q)| = 1 and let V be a neighborhood of
q in Q. For ǫ > 0 choose ω > 0 sufficiently small that (1 + ω)12 < 1 + ǫ. Using the
notations from Subsection 3.1, there are numbers

a0 < aQ(q), t0 < min{tQ(q)/4(1 + ω), log((1 + ω)/h)}

such that

V0 = V (Bss
Q (q, a0), B

su
Q (q, a0), t0(1 + ω)) ⊂ V

is a connected set with a local product structure.

Let q̃ ∈ Q̃(S) be a preimage of q. By construction (see the discussion in Section
3.1), the set

Ṽ0 = V (Bss
Q (q̃, a0), B

su
Q (q̃, a0), t0(1 + ω))

is precisely invariant under Stab(q̃). In particular, since |Stab(q)| = 1, the set Ṽ0 is

mapped homeomorphically onto V0 by the projection Q̃ → Q.

Since periodic orbits for Φt are in bijection with conjugacy classes of pseudo-
Anosov elements of Mod(S), up to making a0 smaller we may assume that the
following holds true. For every r > 8t0, every component of the intersection ΦrV0∩
V0 is intersected by at most one periodic orbit for the Teichmüller flow with prime
period contained in the interval [r − 2t0, r + 2t0], and if such an orbit exists then
its intersection with ΦrV0 ∩ V0 is connected. As a consequence, Property 4) stated
in the lemma holds true for subsets Zi of this set V0 with the properties claimed in
the lemma.

The following construction is used to estimate volumes. It is identical with the
usual construction for Anosov flows. Property c) below is obvious for Anosov flows
and has to be established in the situation at hand.

As in (10) of Section 3, for z ∈ Ṽ0 let θz : Bss

Q̃
(q̃, a0) → W ss

Q̃,loc
(z) be defined by

the requirement that θz(u) ∈ Wu

Q̃,loc
(u) for all u. Similarly, as in (9) of Section 3,
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for z ∈ Ṽ0 let ζz : Bsu

Q̃
(q̃, a0) → W su

Q̃,loc
(z) be defined by ζz(u) ∈ W s

Q̃,loc
(u). We

claim that for sufficiently small a1 < a0 and for every

z ∈ Ṽ1 = V (Bss

Q̃
(q̃, a1), B

su

Q̃
(q̃, a1), t0)

the following holds true (where V1 denotes the projection of Ṽ1 to Q).

a) The Jacobian of the embedding θz : Bss

Q̃
(q̃, a1) → W ss

Q̃,loc
(z) and of the

embedding ζz : Bsu

Q̃
(q̃, a1) → W su

Q̃,loc
(z) with respect to the measures λss

and λsu, respectively, is contained in the interval [(1 + ω)−1, 1 + ω].

b) The restriction to Ṽ1 of the function σ defined in (11) takes values in the
interval [− log((1 + ω)/h), log((1 + ω)/h)].

c) If z ∈ V (Bss
Q (q, a1), B

su
Q (q, a1)) and if t > 8t0 is such that

Φtz ∈ V (Bss
Q (q, a1), B

su
Q (q, a1))

then Φt(V1 ∩W s
Q,loc(z)) ⊂ V0 and Φ−t(V1 ∩Wu

Q,loc(z)) ⊂ V0.

Here and in the sequel, for z ∈ V1 we denote by V1 ∩ W i
Q,loc(z) the connected

component containing z of the intersection V1∩W
i
Q(z) and similarly for Ṽ1 (i = s, u).

To verify the claim, note first that property b) holds true for sufficiently small
a1 > 0 since σ is continuous and Φt-invariant and equals one at q (note that we
want to keep t0 fixed and only adjust a1).

The measures λs (or λu) are invariant under holonomy along the strong unstable
(or the strong unstable) foliation, and we have dλs = dλss×dt and dλu = dλsu×dt.
As a consequence, the Jacobians of the maps θz, ζz are controlled by the function
σ and therefore property a) is fulfilled for sufficiently small a1.

By property b) above and by Theorem 4.5, property c) is fulfilled if we choose
a1 << a0 small enough so that for some r > 0 the following is satisfied. For
every u ∈ V1 the diameter of θu(B

ss
Q (q, a1)) with respect to the Hodge distance

does not exceed r, the Hodge distance between θu(B
ss
Q (q, a1)) and the boundary of

θu(B
ss
Q (q, a0)) is not smaller than cHr, the diameter of ζu(B

su
Q (q, a1)) is not smaller

than cHr and the Hodge distance between ζu(B
su
Q (q, a1)) and the boundary of

ζu(B
su
Q (q, a0)) is not smaller than cHr.

Since h ≥ 1, Property b) implies the following. For all closed sets Ai ⊂ Bi
Q(q, a1)

(i = ss, su) and for every z ∈ V (Bss
Q (q, a1), B

su
Q (q, a1)) we have

V (Ass, Asu, t0(1 + ω)−1) ⊂ V (θz(A
ss), ζz(A

su), t0)(16)

⊂ V (Ass, Asu, t0(1 + ω)).

The estimate (16) together with property a) also implies

(17) λ(V (θz(A
ss), ζz(A

su), t0))/2t0λ
ss(Ass)λsu(Asu) ∈ [(1 + ω)−4, (1 + ω)4].

After estimating measures, we have to control components of intersections. To
this end we use the hyperbolicity of the curve graph as our main tool.
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Recall first from the estimate (4) in Section 2 that there is a number κ > 0 such
that for any two points u, x ∈ T (S) with dT (u, x) ≤ 1 the distances δu, δx on ∂C(S)
are eκ-bilipschitz equivalent.

Let again Q̃ be a component of the preimage of Q in Q̃(S) and let q̃ ∈ Q̃ be a lift
of q. Using the above numbers a1 < a0, choose closed neighborhoods Kss ⊂ Css ⊂
Bss

Q̃
(q̃, a1) ⊂ Bss

Q̃
(q̃, a0) of q̃ whose images under the flip F satisfy the properties in

Lemma 4.3 for some numbers 0 < r1 < r2 < α0/2e
κ where α0 > 0 is as in Lemma

4.2. Choose also closed neighborhoods K̃su ⊂ C̃su ⊂ Bsu

Q̃
(q̃, a1) ⊂ Bsu

Q̃
(q̃, a0) of q̃

with the properties in Lemma 4.3 for some numbers 0 < r̃1 < r̃2 < α0/2e
κ.

By the choice of the set V0, for any two points u, z ∈ V (Css, C̃su, t0(1 + ω))
the distances δPu and δPz are eκ-bilipschitz equivalent. As a consequence, for all
u ∈ V (Css, C̃su, t0(1 +ω)) the δPu-diameter of F (FCss ∩A) and F (C̃su ∩A) does
not exceed α0/2. Let

ρ0 ∈ (0,min{(r2 − r1)/2, (r̃2 − r̃1)/2}).

By assumption, q is recurrent (i.e. forward and backward recurrent) and hence by
Lemma 4.2, applied to both q̃ and −q̃ = F(q̃), there is a number R0 = R0(ρ0, q) > 0
so that for every R ≥ R0 and for every z ∈ Bsu

Q̃
(q̃, a1) with dT (PΦRz, PΦRq̃) ≤ 1

we have

δPΦRz ≤ ρ0δPz/α0 on F (FCss ∩ Ã) and(18)

δPΦRz ≥ α0δPz/ρ0 on D(ΦRq̃, α0).

Moreover, there is a mapping class h ∈ Stab(Q̃) and a number R1 > R0 such that

ΦR1 q̃ is an interior point of hV (Kss, K̃su).

By equivariance under the action of the mapping class group, for every u ∈
hV (Css, C̃su) the δPu-diameter of F (hV (Css, C̃su) ∩ Ã) is smaller than α0/2. In

particular, the δPΦR1 q̃-diameter of F (hC̃su ∩ Ã) is smaller than α0/2. The second

part of inequality (18) then implies that the δP q̃-diameter of F (hC̃su ∩Ã) does not
exceed ρ0. Thus by Property c) above, by the choice of ρ0 and by part 4) of Lemma
4.3, we have

F (hC̃su ∩ Ã) ⊂ F (C̃su ∩ Ã).

Define

Ksu = {x ∈ W su

Q̃,loc
(q̃) ∩ Ã | F (x) ∈ F (hK̃su ∩ Ã)} and

Csu = {x ∈ W su

Q̃,loc
(q̃) ∩ Ã | F (x) ∈ F (hC̃su ∩ Ã)}.

Then q̃ is an interior point of Ksu (as a subset of W su

Q̃,loc
(q̃)) because by assumption,

ΦR1 q̃ is an interior point of hV (Kss, K̃su). Moreover, since by assumption a non-

trivial element of Stab(q̃) fixes Q̃ pointwise, the setsKsu, Csu are precisely invariant
under Stab(q̃).

The conditional measures λsu are invariant under holonomy along the strong
stable foliation and transform under the Teichmüller flow by λsu ◦ Φt = ehtλsu.
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Moreover, λsu(K̃su) ≥ λsu(C̃su)(1 + ω)−1 and hence properties a) and b) above
and the definition of the function σ imply that

λsu(Ksu) ≥ λsu(Csu)(1 + ω)−3.

Define

Z̃1 = V (Kss,Ksu, t0), Z̃2 = V (Kss, Csu, t0), Z̃3 = V (Css, Csu, t0(1 + ω))

and let Zi be the projection of Z̃i to Q. Note that we have Z1 ⊂ Z2 ⊂ Z3 and

λ(Z1) ≥ λ(Z3)(1 + ω)−8

by the choice of Kss, Css, by the estimate in a) above, by invariance of λ under the

flow Φt (which implies that λ(Z̃3) ≤ λV (Css, Csu, t0)(1+ω)2) and by the fact that

Z̃i is mapped homeomorphically onto Zi for i = 1, 2, 3. Moreover, each of the sets
Zi is closed with dense interior. Since (1 + ω)8 < 1 + ǫ, this means that the sets
Z1 ⊂ Z2 ⊂ Z3 satisfy properties (1) and (2) stated in the lemma.

Let R > R1 + t0 and let z ∈ Z1 be a periodic point for Φt of period r ∈ [R −
t0, R+ t0]. Since every orbit of Φt which intersects Z1 also intersects V (Kss,Ksu)

we may assume that z ∈ V (Kss,Ksu). Let Ê be the component containing z of
the intersection ΦrV0 ∩ V0 and let

E = Ê ∩ ΦrZ2 ∩ Z3 ⊂ Z3.

We claim that

(19) λ(E) ∈ [e−hrλ(Z1)(1 + ω)−10, e−hrλ(Z1)(1 + ω)10].

To see that this is indeed the case, let z̃ ∈ Z̃1 be a lift of z. By the choice of
the set Csu and by the first part of the estimate (18), the δPΦr z̃-diameter of the

set F (FΦrCss ∩ Ã) does not exceed ρ0. In particular, since z ∈ Z1 and Property
c) above holds true, we have

(20) Φr(W s
Q,loc(z) ∩ Z2) ⊂ E

and similarly

(21) Φ−r(Wu
Q,loc(z) ∩ Z1) ⊂ E.

Let D ⊂ Css be such that

θz(D) = Φr(W s
Q,loc(z) ∩ Z2) ∩ θz(C

ss).

Then by the estimate (16) and by (21), we have

Q1 = V (θz(D), ζz(K
su), t0(1 + ω)−1) ⊂ E ⊂ V (θz(D), ζz(C

su), t0(1 + ω)) = Q2.

Now by the estimate (17) and the fact that Φr preserves the stable foliation and
contracts the measures λs by the factor e−hr, we conclude that

λ(Q1) ≥ e−hrλss(Kss)λsu(Ksu)/2t0(1 + ω)6

and similarly

λ(Q2) ≤ e−hrλss(Kss)λsu(Csu)(1 + ω)6/2t0.

Together with the estimate (17) this implies the estimate (19).
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Since r ∈ [R − t0, R + t0] and eht0 ≤ 1 + ǫ we conclude that the measure of the
set E is contained in the interval

[e−hRλ(Z1)(1 + ω)−12, e−hRλ(Z1)(1 + ω)12].

Moreover, the Lebesgue measure of the component containing z of the orbit segment
{Φtz | −t0 < t < t0} ∩ Z2 equals 2t0. Since (1 + ω)12 ≤ 1 + ǫ, this shows property
(3) stated in the lemma. �

The next corollary implies that µ ≤ λ on the open Φt-invariant subset of Q of
full Lebesgue measure of all points q with |Stab(q)| = 1.

Corollary 4.7. For every recurrent point q ∈ Q with |Stab(q)| = 1, for every

neighborhood V of q in Q and for every ǫ > 0 there is a number t0 > 0 and there

is an open neighborhood U ⊂ V of q such that

lim sup
R→∞

H(U,R− t0, R+ t0)e
−hR ≤ 2t0λ(U)(1 + ǫ).

Proof. We use the strategy of the proof of Lemma 6.1 of [Mar04]. The idea is to
estimate the number of segments of periodic orbits in a sufficiently nice neighbor-
hood of a recurrent point q ∈ Q with |Stab(q)| = 1 using control of the measure of
the intersection component for the time-T -map where T is the period of the orbit.

For this let V be any neighborhood of q in Q and let ǫ ∈ (0, 1). Let ω > 0 be
sufficiently small that (1 + ω)4 < 1 + ǫ. Let Z1 ⊂ Z2 ⊂ Z3 ⊂ V be the closed
neighborhoods of q in Q constructed in Lemma 4.6 for ω and let t0 > 0 be the
number from that lemma.

Let z 6= z′ ∈ Z1 be periodic points of prime periods r, s ∈ [R − t0, R + t0]. By
property 4) in the statement of Lemma 4.6, the components containing z, z′ of the
intersection ΦRZ2∩Z3 are disjoint. Thus by the third part of Lemma 4.6 there are
at most

λ(ΦRZ2 ∩ Z3)e
hR(1 + ω)/λ(Z1)

such intersection arcs which are subarcs of periodic orbits of prime period in [R −
t0, R + t0]. However, since the Lebesgue measure λ is mixing for the Teichmüller
flow [M82, V86], for sufficiently large R we have

λ(ΦRZ2 ∩ Z3) ≤ λ(Z2)λ(Z3)(1 + ω) ≤ λ(Z1)
2(1 + ω)3.

From this we deduce that

H(Z1, R− t0, R+ t0)e
−hR ≤ 2t0λ(Z1)(1 + ω)4

for all sufficiently large R > 0. This shows the lemma. �

Now we are ready for the proof of Proposition 4.1.

Proof of Proposition 4.1. Let µ be a weak limit of the measures µR as R → ∞.
Then µ is a (a priori locally infinite) Φt-invariant Borel measure supported in the
closure Q of Q. This measure is moreover invariant under the flip F : q → −q.
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By Corollary 4.7 it suffices to show the following. Let A ⊂ Q be a closed Φt-
invariant set of vanishing Lebesgue measure. Then every q ∈ A has a neighborhood
U in Q such that for every ǫ > 0 we have µ(A ∩ U) < ǫ.

First let q ∈ A∩Q. Let cH > 0 be as in Lemma 4.5. Choose compact balls Bi ⊂
Ci ⊂ W i

Q,loc(q) about q for the Hodge distance of radius r1 > 0, r2 > 2cHr1 > 0

(i = ss, su) and numbers t0 > 0, δ > 0 such that V3 = V (Css, Csu, t0(1+δ)) is a set
with a local product structure. This implies in particular that for every preimage
q̃ of q in Q̃(S) the component Ṽ3 of the preimage of V3 containing q̃ is precisely
invariant under Stab(q̃). Then

V0 = V (Bss, Bsu, t0(1− δ)) ⊂ V (Css, Csu, t0(1 + δ)) = V3

are closed neighborhoods of q in Q. Let moreover

V1 = V (Bss, Bsu, t0) ⊂ V2 = V (Bss, Csu, t0).

We may assume that for one (and hence every) component Ṽ3 of the preimage of

V3 in Q̃(S) the diameter of the projection PṼ3 of Ṽ3 to T (S) does not exceed one.

As in the proof of Lemma 4.6, we require that moreover the following holds true.

(∗) If z ∈ V (Bss, Bsu) and if t > 8t0 is such that Φtz ∈ V (Bss, Bsu) then
Φt(V1 ∩W s

Q,loc(z)) ⊂ V3 and moreover Φ−t(V0 ∩Wu
Q,loc(z)) ⊂ V2.

That this requirement can be met follows from Theorem 4.5 and the discussion
in the proof of Lemma 4.6.

Now let q ∈ Q−Q. If m = 0, i.e. if the differentials in the component Q do not
have poles, then we choose compact sets Bss ⊂ Css ⊂ W ss(q) and Bsu ⊂ Csu ⊂
W su(q) containing q which are the intersections of closed balls for the Hodge norm
with the set W i

Q,loc(q) as in Proposition 3.3. We require that property (∗) above

holds true (with a slight abuse of notation). We then define

V0 = V (Bss, Bsu, t0(1− δ)) ∩ Q ⊂ V3 = V (Css, Csu, t0(1 + δ)) ∩ Q

and note that V0 contains a neighborhood of q in Q. Define also

V1 = V (Bss, Bsu, t0) ∩ Q ⊂ V2 = V (Bss, Csu, t0) ∩ Q.

If m > 0 then consider the surface S0 obtained from S as double cover with a
simple branch point at each pole of the differentials in Q and with no other branch
point. The differentials in Q lift to differentials on S0 which are invariant under
the automorphism ϕ of S0 defining the cover and which are contained in a fixed
component Q0 of some stratum. The differential q̃ lifts to a differential q̂ in the
boundary of Q0 where the double cover map ϕ may be degenerate. The discussion
in the previous paragraph can now be used to construct product coordinates near q̂
whose restriction to the set of ϕ-invariant differentials has the required properties.

Let u ∈ V1 and let r > 0 be such that Φru = u. Let Y be the connected
component containing u of the intersection V3 ∩ Φr(V2). By the property (∗), we
have Y ⊃ Φr(V1 ∩W s

Q,loc(u)). Moreover, the connected component containing u of

the intersection V3∩Φr(V2∩Wu
Q,loc(u)) contains the component containing u of the

intersection Wu

Q̃,loc
(u) ∩ V0. Thus as in the proof of Lemma 4.6, we observe that
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the Lebesgue measure of the component containing u of the intersection ΦrV2 ∩ V3

is bounded from below by χe−hr where χ > 0 is a fixed constant which only
depends on V1, V2, V3. Moreover, the number of periodic points z ∈ V1 of period
s ∈ [r − t0, r + t0] such that the intersection components ΦrV2 ∩ V3,Φ

sV2 ∩ V3

containing u, z are not disjoint is bounded from above by the cardinality of Stab(q̃)

where q̃ is a preimage of q in Q̃(S).

For q, z ∈ Q and t > 0 write q ≈t z if there are lifts q̃, z̃ of q, z to Q̃(S) such that

d(PΦsq̃, PΦsz̃) < 1 for 0 ≤ s ≤ t.

Write moreover q ∼u z if there are lifts q̃, z̃ of q, z to Q̃(S) such that

d(q̃, z̃) < 1, d(PΦuq̃, PΦuz̃) < 1.

Note that if y ≈t z then also y ∼t z. For a subset D of Q define

Ut(D) = {z | z ≈t y for some y ∈ D} and

Yu(D) = {z | z ∼u y for some y ∈ D}.(22)

Then Ut(D) and Yu(D) are open neighborhoods of D.

For j > 0 define

Zj = Uj(A ∩ V1) ∩ V1 and(23)

Wj,k = Yk(Zj) ∩ V1.(24)

Then for all k > 0, j > 0, the set Zj is an open neighborhood of A ∩ V1 in V1, and
Wj,k is an open neighborhood of Zj in V1. Moreover, for all j we have Zj ⊃ Zj+1,
and ∩jZj ⊃ A ∩ V1.

If z ∈ ∩jZj −A then there is some y ∈ A and there are lifts z̃, ỹ of z, y to Q̃(S)
such that d(PΦt(z̃), PΦt(ỹ)) ≤ 1 for all t ≥ 0. However, up to removing from ∩jZj

a set of vanishing Lebesgue measure, this implies that z ∈ W ss
Q,loc(y) [M82, V86].

But λ(A) = 0 and therefore λ(∩jZj) = λ(A ∩ V1) = 0 by absolute continuity of
λ with respect to the stable foliation. Now λ is Borel regular and therefore the
Lebesgue measures of the sets Zj tend to zero as j → ∞.

Similarly, we infer that λ(Zj) = lim supk→∞ λ(Wj,k). Thus for every κ > 0 there
are numbers j0 = j0(κ) > 0 and k0 = k0(κ) > j0 such that we have λ(Wj,k) < κ
for all j ≥ j0, k ≥ k0.

Now let R > k0 + 2t0 and let w ∈ V1 ∩ Zj0 be a periodic point for Φt of prime
period r ∈ [R − t0, R + t0]. Let Z be the component of ΦrV2 ∩ V3 containing
w. Then every point in Z is contained in Wj0,R. By the above discussion, the
Lebesgue measure of this intersection component is bounded from below by χe−hR

where χ > 0 is a universal constant. Moreover, the number of periodic points u 6= z
for which these intersection components are not disjoint is uniformly bounded. In
particular, there is a number β > 0 not depending on R, j0 such that the number
of such periodic points of prime period in [R− t0, R+ t0] is bounded from above by
βehR times the Lebesgue measure of Wj0,R, i.e. by βehRκ. This implies that we
have µ(Zj0) ≤ 2t0βκ. Since κ > 0 was arbitrary, we conclude that µ(A ∩ V1) = 0.
Proposition 4.1 follows.
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5. Proof of the theorem

In this section we complete the proof of the theorem from the introduction. We
continue to use the assumptions and notations from Sections 2-5.

As before, let Q ⊂ Q(S) be a component of a stratum, equipped with the Φt-
invariant Lebesgue measure λ. Let S ⊂ Q be the open dense Φt-invariant subset
of full Lebesgue measure of all points q with |Stab(q)| = 1. Then S is a manifold.

Let q ∈ S and let U ⊂ S be an open relative compact contractible neighborhood
of q. For n > 0 define a periodic (U, n)-pseudo-orbit for the Teichmüller flow Φt on
Q to consist of a point x ∈ U and a number t ∈ [n,∞) such that Φtx ∈ U . We
denote such a periodic pseudo-orbit by (x, t). A periodic (U, n)-pseudo-orbit (x, t)
determines up to homotopy a closed curve beginning and ending at x which we call
a characteristic curve (compare Section 4 of [H10b]). This characteristic curve is
the concatenation of the orbit segment {Φsx | 0 ≤ s ≤ t} with a smooth arc in U
which is parametrized on [0, 1] and connects the endpoint Φtx of the orbit segment
with the starting point x.

Recall from Section 4 the definition of a recurrent point for the Teichmüller flow
on Q. Lemma 4.4 of [H10b] shows

Lemma 5.1. There is a number L > 0 and for every recurrent point q ∈ S there

is an open relative compact contractible neighborhood V of q in S and there is

a number n0 > 0 depending on V with the following property. Let (x, t0) be a

periodic (V, n0)-pseudo-orbit and let γ be a lift to Q̃(S) of a characteristic curve

of the pseudo-orbit. Then the curve t → ΥT (Pγ(t)) is an infinite unparametrized

L-quasi-geodesic in C(S).

Remark: Lemma 4.4 of [H10b] is formulated for Q(S) rather than for a com-
ponent of a stratum. However, the statement and its proof immediately carry over
to the result formulated in Lemma 5.1.

For a point q ∈ Q choose a preimage q̃ ∈ Q̃(S) of q and for t > 0 define

β(q, t) = d(ΥT (P q̃),ΥT (PΦtq̃)).

Note that β(q, t) depends on the choice of the map ΥT (and on the choice of the lift
q̃). Let ζ > 0 be the maximal diameter in the curve graph of the set of all simple
closed curves on S whose length with respect to a fixed hyperbolic metric does not
exceed the Bers constant. Then for all q and all s, t > 0 we have

(25) β(q, s+ t) ≤ β(q, s) + β(Φsq, t) + ζ.

By Lemma 3.3 of [H10a], there is a number a > ζ and a continuous function

β̃ : Q × [0,∞) → R such that |β̃(q, t) − β(q, t)| ≤ a for all (q, t) ∈ Q × [0,∞). In
particular, the values lim inft→∞

1
t
β(q, t) and lim supt→∞

1
t
β(q, t) are independent

of any choices made and coincide with the corresponding values for β̃. We use this
observation to show
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Lemma 5.2. There is a number c > 0 such that for λ-almost every q ∈ Q we have

lim
t→∞

1

t
β(q, t) = c.

Proof. It suffices to show the lemma for the continuous function β̃.

By the choice of a > 0 and by the triangle inequality (25), we have

β̃(q, s+ t) ≤ β̃(q, s) + β̃(Φsq, t) + 4a

for all q ∈ Q, s, t ∈ R. Therefore the subadditive ergodic theorem shows that for
λ-almost all q ∈ Q the limit limt→∞

1
t
β̃(q, t) exists and is independent of q. We are

left with showing that this limit is positive.

By Lemma 2.4 of [H10a], there is a number r > 0 such that for every z ∈ Q̃(S)
and all t ≥ s ≥ 0 we have

(26) d(ΥT (Pz),ΥT (PΦtz)) ≥ d(ΥT (Pz),ΥT (PΦsz))− r.

Let q ∈ Q be a periodic point for Φt. There is a number b > 0 such that for
every lift q̃ of q to Q̃(S) the map t → ΥT (PΦtq̃) is a parametrized biinfinite b-
quasi-geodesic in C(S) [H10a]. Thus by inequality (2) and continuity of Φt we can
find an open neighborhood U ⊂ Q of q and a number T > 0 such that

β̃(u, T ) ≥ 4r + 4a for all u ∈ U

where r > 0 is as in (26).

Let z ∈ Q, let n > k > 0 and let (ji)0≤i≤k be a sequence of positive integers
such that jk ≤ n − 1 and that ji+1 − ji ≥ 1 and ΦjiT z ∈ U for all i. Then the

estimates (25) and (26) together with the choice of U imply that β̃(z, nT ) ≥ kr.

The measure λ is ΦT -invariant and ergodic, and λ(U) > 0. Thus by the Birkhoff
ergodic theorem, the proportion of time a typical orbit for the map ΦT spends in
U is positive. This means that there is a number χ > 0 so that for a typical point
z ∈ Q and large enough n, the cardinality of the set of all numbers j < n with
ΦjT z ∈ U is not smaller than χn. Then β(n, z) ≥ χnr for all large enough n from
which the lemma follows. �

The next proposition is the main remaining step in the proof of the theorem
from the introduction.

Proposition 5.3. For every recurrent point q ∈ S, for every neighborhood V of

q in S and for every ǫ > 0 there is an open neighborhood U ⊂ V of q in S and a

number t0 > 0 such that

lim inf
R→∞

H(U,R− t0 − ǫ, R+ t0 + ǫ)e−hR ≥ 2t0λ(U)(1− ǫ).
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Proof. Let q ∈ S be recurrent and let U be an open neighborhood of q which satisfies
the conclusion of Lemma 5.1 for some n0 > 0. Let ǫ > 0. With the notations from
Subsection 3.1, let a0 < aQ(q), t0 < min{tQ(q), log(1 + ǫ)/2h, ǫ/4} be such that
U0 = V (Bss

Q (q, a0), B
su
Q (q, a0), t0) ⊂ U . By Lemma 3.1 there is a number a1 < a0

which is sufficiently small that for every z ∈ V = V (Bss
Q (q, a1), B

su
Q (q, a1), t0) the

Jacobian at z of the homeomorphism

V (Bss
Q (q, a1), B

su
Q (q, a1), t0) → Bss

Q (q, a1)×Bsu
Q (q, a1)× [−t0, t0]

with respect to the measures λ and λss × λsu × dt is contained in the interval
[(1 + ǫ)−1, (1 + ǫ)]. We may assume that any two points in a component Ṽ of the

preimage of V can be connected in Ṽ by a piecewise smooth curve whose projection
to T (S) is of length at most ǫ/2.

Let α0 > 0 be as in Lemma 4.2. Let q̃ be a lift of q to a component Q̃ of
the preimage of Q in Q̃(S). Recall from Section 2 the definition of the map F :

Ã → ∂C(S). Since q is recurrent, the horizontal and the vertical measured geodesic
laminations of q̃ are uniquely ergodic [M82]. Let

Z1 ⊂ Z2 ⊂ Z3 ⊂ V

be neighborhoods of q as in Lemma 4.6 and let Z̃1 ⊂ Z̃2 ⊂ Z̃3 ⊂ Ṽ be components
of lifts of Z1 ⊂ Z2 ⊂ Z3 ⊂ V to Q̃ which contain q̃. By decreasing V if necessary
and using Lemma 4.3 as in the proof of Lemma 4.6, we may assume that in addition
to the properties stated in Lemma 4.6, the following holds true.

i) For every u ∈ Z̃3 the δPu-diameter of F (Z̃3 ∩ Ã) and of F (FZ̃3 ∩ Ã) is not
bigger than α0.

ii) There is a number ρ > 0 with the following property. If z ∈ Z̃1 and if
C ⊂ Bsu

Q̃
(z, a1) (or C ⊂ Bss

Q̃
(z, a1)) is an open neighborhood of z such that

the δPz-diameter of F (C ∩ Ã) (or of F (F(C) ∩ Ã)) is not bigger than ρ

then C ⊂ Z̃3 and the Φt-orbit of every point of C intersects Z̃3 in an arc
of length 2t0.

Let Π : Q̃ → Q be the canonical projection. By Lemma 5.2 and Lemma 4.2,
there is a number T > 0 and there is a Borel subset Z0 ⊂ Z1 ∩Π(Ã) with

λ(Z0) > λ(Z1)/(1 + ǫ)

such that for every z ∈ Z̃0 = Z̃1 ∩Π−1(Z0) and every t ≥ T we have

δPz ≤ ρδPΦtz/e
κ on D(Φtz, α0)

where κ > 0 is as in the estimate (4) and ρ > 0 is as in ii) above.

We may assume that Z0 = V (Kss, A0, t0) for some Borel set A0 ⊂ Ksu. In
particular, we conclude as in the proof of Lemma 4.6 (see the estimate (19)) that
(with some a-priori adjustment of the constant ǫ) the following holds true. Let

z ∈ Z0 and let t ≥ T be such that Φtz ∈ Z1. Let Ê be the connected component
containing Φtz of the intersection ΦtV ∩ V . Then the Lebesgue measure of the
intersection ΦtZ2 ∩ Z3 ∩ Ê is not bigger than

e−htλ(Z1)(1 + ǫ)3 ≤ e−htλ(Z0)(1 + ǫ)4.
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On the other hand, since the Lebesgue measure is mixing, for sufficiently large
t > T we have

λ(ΦtZ0 ∩ Z0) ≥ λ(Z0)
2/(1 + ǫ).

Together this implies that the number of such intersection components is at least

ehtλ(Z0)/(1 + ǫ)5.

Next we claim that for sufficiently large n ≥ T and for a point z ∈ Z0 with
Φnz ∈ Z1 there is a periodic orbit for the flow Φt which intersects Z3 in an arc of
length at least 2t0 and whose period is contained in the interval [n − ǫ, n + ǫ]. To
this end let n1 > max{n0, T} where n0 > 0 is as in Lemma 5.1; then the conclusion
of Lemma 5.1 is satisfied for every periodic (Z1, n1)-pseudo-orbit beginning at a
point z ∈ Z0 ⊂ V .

Let u ∈ Z0 be such that Φnu ∈ Z1 for some n > n1 + ǫ. Up to replacing n
by R = n + τ for some τ ∈ [−2t0, 2t0] ⊂ [−ǫ/2, ǫ/2] we may assume that u ∈
V (Kss,Ksu),ΦRu ∈ V (Kss,Ksu). Let γ be a characteristic curve of the periodic
(Z1, n1)-pseudo-orbit (u,R) which we obtain by connecting ΦRu ∈ Z1 with u ∈ Z0

by a smooth arc contained in Z1.

Let γ̃ be a lift of γ to Q̃ with starting point γ̃(0) ∈ Z̃0. Then γ̃ is invariant under
a mapping class g ∈ Mod(S) whose conjugacy class defines the homotopy class of γ
in S (note that this makes sense since S is a manifold). A fundamental domain for
the action of g on γ̃ projects to a piecewise smooth arc in T (S) of length at most
R+ ǫ/2 < n+ ǫ.

By Lemma 5.1 and the choice of Z0, R the curve t → ΥT (P γ̃(t)) is an un-
parametrized L-quasi-geodesic in C(S) of infinite diameter. Up to perhaps a uni-
formly bounded modification (which may be necessary since the definition of the
map ΥT involved some choices), the quasi-geodesic ΥT (P γ̃) is invariant under the
mapping class g ∈ Mod(S), and g acts on ΥT (P γ̃) as a translation. As a conse-
quence, g acts on C(S) with unbounded orbits and hence it is pseudo-Anosov. By
invariance of γ̃ under g, the attracting fixed point for the action of g on ∂C(S) is
just the endpoint of ΥT (P γ̃).

Since g is pseudo-Anosov, there is a closed orbit ζ for Φt in Q(S) which is the

projection of a g-invariant flow line ζ̃ for Φt in Q̃(S). The length of the orbit is

at most R + ǫ/2 < n + ǫ. The image under the map ΥT P of the orbit ζ̃ in Q̃(S)
is an unparametrized p-quasi-geodesic in C(S) which connects the two fixed points
for the action of g on ∂C(S).

Assume that the characteristic curve γ is parametrized on [0, R+1] with γ(0) = u.
As in the proof of Theorem 4.3 of [H10b], we claim that for every i > 0 we have

δP γ̃(0)(F (γ̃(0)), F (γ̃(iR+ i))) < ρ

(note that this makes sense since the points γ̃(iR + i) are lifts of recurrent points
in Q(S) by assumption). To see this we proceed by induction on i. The case i = 1
follows from the definition and from (4) above, so assume that the claim is known
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for all j ≤ i− 1 and some i ≥ 0. By equivariance under the action of the mapping
class group we have

(27) δP γ̃(R+1)(F γ̃(R), F γ̃(R+ 1)) ≤ eκρ,

moreover the distances δP γ̃(R), δP γ̃(R+1) are eκ-bilipschitz equivalent.

Now F (γ̃(jR + j)) ∈ D(γ̃(R + 1), ρ) for all j ∈ {1, . . . , i} by the induction
hypothesis and therefore

(28) δP γ̃(R)(F (γ̃(R)), F (γ̃(jR+ j))) ≤ 2eκρ.

On the other hand, by the choice of ρ and the choice of R and the fact that γ̃(0) ∈ Z̃0

we obtain that

(29) δP γ̃(R)(F γ̃(R), F γ̃(jR+ j)) ≥ δP γ̃(0)(F γ̃(0), F γ̃(jR+ j))/2eκ.

Together this implies the above claim.

As a consequence, the attracting fixed point ξ for the action of the pseudo-Anosov
element g on ∂C(S) is contained in the ball D(γ̃(0), ρ), moreover it is contained in

the closure of the set F (W su

Q̃
(q̃) ∩ Ã) ⊂ F (Ã ∩ Q̃). The same argument also shows

that the repelling fixed point of g is contained in the intersection ofD(−γ̃(0), ρ) with

the closure of F (FW ss

Q̃
(q̃)∩Ã) ⊂ F (Ã∩Q̃). Since the map F is closed we conclude

that the axis of g is contained in the closure of Q̃. Since γ̃(0) ∈ Z1, by property ii)

above, this axis passes through the lift Z̃3 of Z3 containing q̃. In other words, the
projection of this axis to Q passes through Z3, and, in particular, it is contained in
Q. Moreover, it intersects the component of ΦRZ1 ∩ Z3 which contains ΦRu. This
implies the length of the axis is contained in [R− ǫ/2, R+ ǫ/2] ⊂ [n− ǫ, n+ ǫ].

To summarize, there is an injective assignment which associates to every n > n1

and to every connected component of the intersection ΦnZ1 ∩Z1 containing points
in ΦnZ0∩Z1 a subarc of length 2t0 of the intersection with Z3 of a periodic orbit for
Φt whose period is contained in [n− ǫ, n+ ǫ]. Together with the above discussion,
this completes the proof of the proposition. �

We use Proposition 5.3 to complete the proof of our theorem from the introduc-
tion.

Theorem 5.4. The Lebesgue measure on every stratum Q is obtained from Bowen’s

construction.

Proof. By Proposition 4.1, the measure µ is absolutely continuous with respect to
the Lebesgue measure λ, with Radon Nikodym derivative at most one, moreover µ
is Φt-invariant by construction. Thus by ergodicity, it suffices to show the following.

Let q ∈ Q be birecurrent and let ǫ > 0. For R > 0 let Γ(R) be the set of
all periodic orbits of Φt in Q of period at most R. Then there is a compact
neighborhood K of q in Q and there is a number n > 0 such that for every N > n
the measure

µN = e−hN
∑

γ∈Γ(R)

δ(γ)
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assigns the mass
µN (K) ≥ (1− ǫ)λ(K)

to K. However, this holds true by Proposition 5.3. The theorem is proven. �
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