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Abstract. We show that the asymptotic dimension of a hyperbolic relatively

hyperbolic graph is finite provided that this holds true uniformly for the pe-

ripheral subgraphs and for the electrification. We use this to show that the
asymptotic dimension of the disk graph of a handlebody of genus g ≥ 2 is at

most quadratic in the genus.

1. Introduction

A metric space (X, d) has asymptotic dimension asdim(X) at most n if for every
number R > 0, there exists a covering of X by uniformly bounded sets such that
every metric R-ball intersects at most n+1 of the sets in the cover. More generally,
a collection of metric spaces has asdim at most n uniformly if for every R there
are covers of each space whose elements are uniformly bounded over the whole
collection.

The main goal of this article is to investigate the asymptotic dimension of a
(not necessarily locally finite) hyperbolic graph G which is hyperbolic relative to a
collection {Hc | c ∈ C} of peripheral subgraphs. This means the following. Define
the H-electrification EG of G to be the graph which is obtained from G by adding
for every c ∈ C a new vertex vc which is connected to each vertex x ∈ Hc by an
edge and which is not connected to any other vertex. We require that the graph
EG is hyperbolic and that a property called bounded penetration holds true. We
shall define this property in Section 2 and refer to [H16] for a detailed discussion.
We show

Theorem 1. Let G be a hyperbolic graph which is hyperbolic relative to a family
H = {Hc | c ∈ C} of peripheral subgraphs, with electrification EG. If the collection
Hc (c ∈ C) has asdim(Hc) ≤ n uniformly then asdim(G) ≤ asdim(EG) + n+ 1.

Our second goal is to apply Theorem 1 to the disk graph of a handlebody of genus
g ≥ 2. Such a handlebody is a compact three-dimensional manifold H which can
be realized as a closed regular neighborhood in R3 of an embedded bouquet of g
circles. Its boundary ∂H is an oriented surface of genus g.

The disk graph DG of H is the metric graph whose vertices are isotopy classes of
properly embedded disks in H and where two such disks are connected by an edge
of length one if they can be realized disjointly. Assigning to a disk its boundary
then defines an embedding of the disk graph into the curve graph of ∂H. However,
this inclusion is not a quasi-isometric embedding [MS13, H16, H11].

To describe the geometric structure of DG we use the next definition.
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Definition 1. A hierarchy of a hyperbolic metric graph G consists of a finite chain
G1, . . . ,Gk of hyperbolic graphs with the following properties.

(1) Gk = G.
(2) For all i, the graph Gi+1 is hyperbolic relative to a family Hi of subgraphs,

with electrification Gi.
The graph G1 is called the base of the hierarchy, and the number k its depth.

Call the hierarchy tame if its base has finite asymptotic dimension and if more-
over for each i there exists some ni such that the family Hi of subgraphs of Gi+1

has asdim ≤ ni uniformly.
An inductive application of Theorem 1 leads to

Corollary 1. The asymptotic dimension of a hyperbolic metric graph G which
admits a tame hierarchy is finite.

From [H16, H11] we deduce the following more precise version of the main result
of [MS13].

Theorem 2. The disk graph DG of H is hyperbolic and admits a tame hierarchy
whose base is a quasi-isometrically embedded subgraph of the curve graph of ∂H.
Furthermore,

asdim(DG) ≤ (3g − 3)(6g − 2).

Another geometrically defined graph which admits a tame hierarchy with base a
curve graph is the graph of non-separating multicurves introduced in [H14]. Corol-
lary 1 then yields that the asymptotic dimension of the graph of non-separating
multicurves is finite as well.

Acknowledgement: This work is based upon work supported by the National
Science Foundation under Grant No DMS-1440140 while the author was in residence
at the Mathematical Science Research Institute in Berkeley, California, during the
Fall 2016 semester.

2. Asymptotic dimension of hyperbolic relatively hyperbolic graphs

We begin with a general statement about hyperbolic relatively hyperbolic geo-
desic metric graphs. We mostly use the notations from [H16].

Consider a connected metric graph G in which a family H = {Hc | c ∈ C} of
complete connected subgraphs has been specified. Here C is a countable, finite or
empty index set. The graph G is hyperbolic relative to the family H if the following
properties are satisfied.

Define the H-electrification EG of G to be the graph which is obtained from G by
adding for every c ∈ C a new vertex vc which is connected to each vertex in Hc by
an edge and which is not connected to any other vertex. We require that the graph
EG is hyperbolic in the sense of Gromov and that moreover the following bounded
penetration property holds true.

Call a simplicial path γ in EG efficient if for every c ∈ C we have γ(k) = vc for
at most one k. Note that if γ is an efficient simplicial path in EG which passes
through γ(k) = vc for some c ∈ C then γ(k − 1), γ(k + 1) ∈ Hc.

We require that for every L > 1 there is a number p(L) > 0 with the following
property. Let γ be an efficient L-quasi-geodesic in EG, let c ∈ C and let k ∈ Z be
such that γ(k) = vc. If the distance in Hc between γ(k− 1) and γ(k+ 1) is at least
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p(L) then every efficient L-quasi-geodesic γ′ in EG with the same endpoints as γ
passes through vc. Moreover, if k′ ∈ Z is such that γ′(k′) = vc then the distance in
Hc between γ(k − 1), γ′(k − 1) and between γ(k + 1), γ′(k + 1) is at most p(L).

A family H = {Hc | c ∈ C} of complete connected subgraphs Hc of G is called
uniformly quasi-convex if the inclusion Hc → G is a quasi-isometric embedding with
constant not depending on c. The following is Theorem 1 of [H16].

Theorem 2.1. Let G be a metric graph which is hyperbolic relative to a family
H = {Hc | c ∈ C} of complete connected subgraphs. If there is a number δ > 0
such that each of the graphs Hc is δ-hyperbolic then G is hyperbolic. Moreover, the
subgraphs Hc (c ∈ C) are uniformly quasi-convex.

We call a graph G with the properties stated in Theorem 2.1 a hyperbolic relatively
hyperbolic graph. In the sequel we always assume that all assumptions in Theorem
2.1 are fulfilled.

We begin with collecting some easy geometric properties of a hyperbolic relatively
hyperbolic graph as defined above. To this end recall that for every quasi-convex
subgraph H of a hyperbolic graph G there is a coarsely well defined shortest distance
projection ΠH : G → H, i.e. a projection which associates to a point in G a choice
of a point in H of approximate shortest distance. Any other choice of such a point
is of bounded distance, and this bound only depends on the hyperbolicity constant
of G and the constant defining the quality of the quasi-isometric embedding H → G.
The map ΠH is coarsely distance non-increasing, i.e. it increases distances at most
by a fixed additive constant.

The following lemma shows that the subgraphs Hc of G fulfill the three axioms
in Theorem B of [BBF15].

Lemma 2.2. Let G be a hyperbolic graph which is hyperbolic relative to a family
H = {Hc | c ∈ C} of complete connected subgraphs. We require that these subgraphs
are δ-hyperbolic for some fixed number δ > 0.

(1) There is a number R > 0 such that for c 6= d ∈ C, diam(ΠHc(Hd)) ≤ R.
(2) For a, b, c ∈ C define

da(b, c) = diam(ΠHa
(Hb) ∪ΠHa

(Hc)).

There exists a constant θ > 0 such that for any triple of distinct elements
a, b, c ∈ C, at most one of the numbers

da(b, c), db(a, c), dc(a, b)

is greater than θ.
(3) For any a, b ∈ C, the set

{c ∈ C | dc(a, b) > θ}

is finite.

Proof. To show the first property, recall from Theorem 2.1 that the subgraphs Hc of
G are uniformly quasiconvex. By hyperbolicity of G, this implies that there exists
a number D > 0 such that for c ∈ C, any geodesic in G connecting two points
x, y ∈ Hc is contained in the D-neighborhood ND(Hc) of Hc.

For c ∈ C write

Πc = ΠHc
: G → Hc.
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Using again hyperbolicity, we deduce the following. Let us assume that the diameter
of the projection Πc(Hd) is large. Then there exist points x, y ∈ Hd and a geodesic
ζ : [a, b]→ G connecting ζ(a) = x to ζ(b) = y which is contained both in a uniformly
bounded neighborhood of Hc as well as in a uniformly bounded neighborhood of
Hd. However, this violates the bounded penetration property. Namely, we can
find an efficient quasi-geodesic γ in EG connecting x to y which does not pass
through vd (but instead passes through vc). We refer to the work [Si12] for a more
detailed discussion of the various equivalent formulations of relative hyperbolicity, in
particular in connection to the condition (α1) formulated in [Si12] for the collection
H = {Hc | c ∈ C}.

To show the second property, let R > 0 be such that the first property is valid
for this R. By hyperbolicity of G and uniform quasi-convexity of the subspaces
Hc ⊂ G (c ∈ C), there exists a number R′ > R such that for all x, y ∈ G with
d(Πc(x),Πc(y)) ≥ R′ the following two properties are satisfied.

(a) Any geodesic in G connecting x to y passes through a uniformly bounded
neighborhood of both Πc(x) and Πc(y), say through the R′′-neighborhood.

(b) Any geodesic in EG connecting x to y passes through the special vertex vc.

Now assume that da(b, c) ≥ 3R′. Choose a point x ∈ Hb and let y = Πc(Πa(x)) ∈
Πc(Ha); then d(Πa(x),Πa(y)) > R′. By the choice of R′ > R and by property (1)
in the lemma, any geodesic connecting x to y passes through the R′′-neighborhood
of Πa(x). By hyperbolicity and uniform quasi-convexity of the subgraphs Hc, the
projection Πc(x) is uniformly near the projection Πc(z) of any point z on a geodesic
connecting x to a point on Hc provided that the distance between z and Hc is
sufficiently large. Since furthermore the projection Πc is coarsely distance non-
increasing, the distance between Πc(x) and Πc(Πa(x)) is uniformly bounded. By the
first part of the lemma, the same then holds true for dc(a, b). The same reasoning
also shows that db(a, c) is uniformly bounded. To summarize, the second statement
in the lemma holds true for some number θ ≥ 3R′.

We are left with showing the third property. To this end let x ∈ Πa(Hb), y ∈
Πb(Ha) and let γ be a geodesic connecting x to y in EG. Then γ passes through
only finitely many of the special vertices vc, say through the vertices vc1 , . . . , vcu .
However, by the above choice of the number R′ > 0, if c ∈ C is such that dc(a, b) >
θ ≥ 3R′ then by property (b) above, any geodesic in EG with endpoints x, y passes
through the special vertex vc. This shows that if dc(a, b) ≥ θ then c ∈ {c1, . . . , cu}.
This completes the proof of the lemma. �

We use Lemma 2.2 to show Theorem 1 from the introduction.

Theorem 2.3. Let G be a hyperbolic metric graph which is hyperbolic relative to a
family H = {Hc | c ∈ C} of complete connected uniformly hyperbolic subgraphs, with
H-electrification EG. If asdim(Hc) ≤ n uniformly then asdim(G) ≤ asdim(EG) +
n+ 1.

Proof. By Theorem B of [BBF15] and Lemma 2.2, there exists a quasi-tree of metric
spaces Y which is built from the subgraphs Hc (c ∈ C). The space Y is a connected
geodesic metric graph, and it contains each of the graphs Hc as a subgraph. The
vertices of Y are the vertices of the graphs Hc (c ∈ C). Our goal is to construct a
quasi-isometric embedding of G into the product of EG with Y.

This is sufficient for the purpose of the theorem. Namely, using the assumption
on the asymptotic dimensions of the graphs Hc, Theorem B iv) of [BBF15] states



ASYMPTOTIC DIMENSION AND DISK GRAPHS 5

that asdim(Y) ≤ n + 1. Now the asymptotic dimension of the product X × Y
of two metric spaces satisfies asdim(X × Y ) ≤ asdim(X) + asdim(Y ), further-
more asdim(X) ≤ asdim(Y ) if X admits a quasi-isometric embedding into Y (see
[BD06]). Thus if G admits a quasi-isometric embedding into EG ×Y equipped with
the product d of the metric dEG on EG and the metric dY of Y then

asdim(G) ≤ asdim(EG × Y) ≤ asdim(EG) + n+ 1.

The graph [BBF15] Y is the union of the graphs Hc (c ∈ C) and a collection of
additional edges of length one connecting these graphs. These edges are chosen as
follows.

For all c, e ∈ C, let xc,e ∈ Πc(He) ⊂ Hc be a point of shortest distance in Hc to
the graph He. Connect the point xc,e to the point xe,c by an edge if there does not
exist an a ∈ C so that da(c, e) ≥ 2θ for the threshold θ > 0 from part (2) of Lemma
2.2.

Let γ be a geodesic in EG and let vc1 , . . . , vcs (ci ∈ C) be the special points on
γ. For a number R > 0 define vci to be R-wide for γ if the following holds true.
Let ki > 0 be such that γ(ki) = vci ; then the distance in Hci between γ(ki − 1)
and γ(ki + 1) is at least R. With this terminology, the points xc,e and xe,c are
connected by an edge of length one if there exists a geodesic γ in EG connecting
xc,e to xe,c which does not contain any θ-wide points (this is only a sufficient
condition). Moreover, there exists a number Θ > θ such that the points xc,e and
xe,c are not connected by an edge if there exists a geodesic γ in EG connecting xc,e
and xe,c which contains a Θ-wide point.

We now define a map G → EG×Y as follows. Fix a basepoint x ∈ G contained in
one of the quasi-convex subspaces Hc. Associate to x the product (x, x) ∈ EG ×Y.
For every vertex y ∈ G choose once and for all a geodesic γy in EG connecting x to
y. Note that such a geodesic is efficient.

Let vc1 , . . . , vcs ∈ EG be the special points traveled through by γy in this order
(ci ∈ C). Let ks > 0 be such that vcs = γy(ks) and define

Ψ(y) = γ(ks + 1) ∈ Hcs ⊂ Y.

If γy does not travel through any special point then define Ψ(y) = x ∈ Hc ⊂ Y.
We claim that the map

Λ : y → Λ(y) = (y,Ψ(y)) ∈ EG × Y

is a quasi-isometric embedding. To this end we show first that for any two vertices
y, z ∈ G of distance one, the distance between Λ(y) and Λ(z) is uniformly bounded.
Since G is a geodesic metric space, this then implies that the map Λ is coarsely
Lipschitz.

Consider the geodesics γy, γz in EG. Let vc1 , . . . , vcs be the special points on γy
and let wd1 , . . . , wdu be those on γz (ci, dj ∈ C). Let i ≤ s be the largest number
so that vci ∈ γz. Assume that vci = γy(ki). By the bounded penetration property
and the choice of θ, for no j > i the vertex vcj is θ-wide for γy. If `j is such that
γz(`j) = wdj = vci (in fact, as γy, γz are both geodesics with the same initial point,
we must have `j = ki, however this fact is not important for us), then using once
more the bounded penetration property, the distance in Hci = Hdj between the
exit points q = γy(ki + 1) of γy and γz(`j + 1) of γz is uniformly bounded.

It now suffices to show that the distance in Y between Ψ(y) and the exit point
q of γy in Hci is uniformly bounded. However, by definition, Ψ(y) is the exit point
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of the intersection of γy with Hcs . Thus if i = s then q = Ψ(y) and we are done.
Otherwise note that by uniform quasi-convexity, the exit point q of γy from Hci is
contained in a uniformly bounded neighborhood of Πci(Hcs). Thus by the first part
of Lemma 2.2 and up to adjusting constants, the shortest distance projection of Hcs

into Hci is contained in the 3R′ < θ-neighborhood of q (compare also [BBF15]).
Furthermore, as none of the vertices vci+1

, . . . , vcs along the segment of γy con-
necting q to Ψ(y) ∈ Hcs is θ-wide, there is a segment in Y of length one connecting
a point in Hci uniformly near q to a point in Hcs uniformly near the entry point
of γy in Hcs ⊂ Y. As vcs is not θ-wide along γy, this entry point is contained
in a uniformly bounded neighborhood of Ψ(y). Together this shows that indeed,
dY(q,Ψ(y)) is uniformly bounded.

The same reasoning applies to γz and shows that dY(Ψ(z), γz(`j+1)) is uniformly
bounded. Since the distance in Hci between γy(ki + 1) and γz(`j + 1) is uniformly
bounded, dY(Ψ(y),Ψ(z)) is uniformly bounded. Note that this argument also shows
that the map Ψ is coarsely independent on the choices of the geodesics γy. Replacing
the geodesic γy in EG by another one with the same endpoints results in replacing
Ψ(y) by a point of uniformly bounded distance.

We showed so far that the map Λ is coarsely Lipschitz, and we are left with
showing that there exists a constant L > 1 such that for all y, z ∈ G, we have

d(Λ(y),Λ(z)) ≥ dG(y, z)/L− L

where dG is the distance in G.
Following [H16], define the enlargement γ̂ of a geodesic γ : [0, n] → EG with

endpoints γ(0), γ(n) ∈ G as follows. Let 0 < k1 < · · · < ks < n be those points
such that γ(ki) = vci for some ci ∈ C. Then γ(ki − 1), γ(ki + 1) ∈ Hci . For each
i ≤ s replace γ[ki−1, ki+1] by a simplicial geodesic in Hci with the same endpoints.

Theorem 2.4 of [H16] shows that enlargements of geodesics in EG are uniform
quasi-geodesics in G. Thus it suffices to show the existence of a number L′ > 1 with
the following property. If γ̂ is the enlargement of any geodesic in EG, parametrized
as a simplical edge path in G, then

d(Λ(γ̂(m)),Λ(γ̂(n))) ≥ |n−m|/L′ − L′

for all m,n.
To this end we first show the following. Let y ∈ G ⊂ EG and let γ̂ : [0, R]→ G be

an enlargement of the geodesic γ connecting the basepoint x = γ̂(0) to y = γ̂(R).
Then for 0 ≤ u < R we have d(Λ(γ̂(u)),Λ(γ̂(R))) ≥ C0|R − u|/ − 1/C0 where
C0 < 1/Θ is a universal constant.

Let s ≥ u be the maximum of all numbers so that γ̂[u, s] ∈ He for some e ∈ C.
If γ̂(u) is not contained in any of the special subspaces then put s = u. By con-
struction of an enlargement, we have γ̂(s) = γy(t0 + 1) for some t0. Let vc1 , . . . , vcj
(ci ∈ C) be the special points passed through by the geodesic γy[s,R]. Let us sup-
pose that vci = γy(ti) for some ti; then γy(ti − 1), γy(ti + 1) ∈ Hci ⊂ Y. With a
small abuse of notation, write also γy(t0 − 1) = γ̂(u).

Denote by dHci
the intrinsic path metric in Hci . By construction, the length

R− u of γ̂[u,R] is not larger than

dEG(γ̂(u), γ̂(R)) +
∑
i≥0

dHci
(γy(ti − 1), γy(ti + 1)).
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On the other hand, by the definition of the map Ψ, by Theorem 4.13 of [BBF15]
and the fact that the map Λ coarsely does not depend on the choice of the geodesics
γy (which means that we may replace in its construction the geodesic γγ̂(u) by the
restriction of γy), the distance in EG × Y between Λ(γ̂(u)) and Λ(γ̂(R)) is not
smaller than

C0

(
dEG(γ̂(u), γ̂(R)) +

∑
i≥0

dHci
(γy(ti − 1), γy(ti + 1))

)
− 1/C0.

The factor C0 arises from replacing some segments of length smaller than Θ (here
Θ is as in the beginning of this proof) in the special subspaces He by the geodesics
in EG with the same endpoints whose length equals two together with an applica-
tion of Theorem 4.13 of [BBF15] which computes distances in Y up to a uniform
multiplicative and additive error. Together this yields

d(Λ(γ̂(u)),Λ(γ̂(R)) ≥ C0dG(γ̂(u), γ̂(R))− 1/C0

which is what we wanted to show.
Now let y, z ∈ G be arbitrary vertices and let γ̂ be an enlargement of a geodesic

γ in EG connecting y to z. Let γ̂y, γ̂z be enlargements of the geodesics γy, γz in EG
connecting the fixed basepoint x to y, z. Assume that γ̂y is parametrized on [0, T1]
and γ̂z is parametrized on [0, T2]. By hyperbolicity of G, there exists a point on γ̂,
say the point γ̂(u), which is uniformly near a point γ̂y(s) on γ̂y and a point γ̂z(t)
on γ̂z. As Λ is coarsely Lipschitz, the images of these three points under the map Λ
are uniformly close. Furthermore, up to a uniform additive constant, the distance
in G between y, z equals the sum of the distances between y and γ̂y(s) and between
z and γ̂z(t). The same estimate also holds true for distances in EG.

Using again Theorem 4.13 of [BBF15], dY(Ψ(y),Ψ(z)) is proportional to the
sum of the distances in the subgraphs Hci between entry and exit point of γ where
the ci ∈ C are those points for which vci is wide along γ. But this implies that
dY(Ψ(y),Ψ(z)) is uniformly proportional to dY(Ψ(y),Ψ(γ̂y(s)))+dY(Ψ(z),Ψ(γ̂z(t))).
Together with the estimates from the beginning of this proof, this completes the
proof of the theorem. �

Remark 2.4. It is immediate from the proof of Theorem 2.3 that upper bounds for
the diameters in the sets of coverings which can be used to determine the asymptotic
dimension for a hyperbolic relatively hyperbolic graph G are uniformly controlled
by the data of the peripheral subgraphs and the bounds for the electrification EG
of G.

Remark 2.5. The proof of Theorem 2.3 together with Theorem B of [BBF15]
also shows the following. If G is a hyperbolic graph as in the theorem, if EG is a
quasi-tree and if each of the peripheral subgraphs are quasi-trees, then G admits
an quasi-isometric embedding into the product of two quasi-trees.

3. A tame hierarchy for the disk graph

The goal of this section is to apply Theorem 1 to two geometric graphs which
are related to surfaces.

Let us consider a handlebody H of genus g ≥ 2. This is a compact 3-manifold
with boundary ∂H which is a regular neighborhood of a bouquet of g circles in
R3. A disk in H is a properly embedded disk D ⊂ H whose boundary is a non-
contractible curve in ∂H.
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A connected essential subsurface X of ∂H is called thick if the following holds
true.

(1) Every disk in H intersects X.
(2) If c ⊂ X is a simple closed curve which is disjoint from all boundaries of

disks which are completely contained in X then c is either contractible or
homotopic into the boundary of X.

An example of a thick subsurface is the entire boundary ∂H.
The disk graph DG(X) of X is the graph whose vertices are isotopy classes of

disks with boundary in X and where two such disks are connected by an edge of
length one if they can be realized disjointly.

In [H16, H11], we defined two more graphs whose vertices are isotopy classes
of disks with boundary in X. The electrified disk graph EDG(X) is obtained from
DG(X) by adding an edge between any two disks with boundary in X which are
disjoint from a common essential simple closed curve in X.

An I-bundle generator in a thick subsurface X is an essential simple closed curve
γ ⊂ X with the following property. There exists a compact surface F with non-
empty boundary ∂F , and there is an orientation preserving embedding Ψ of the
oriented I-bundle J (F ) over F into H which maps a boundary component α of ∂F
to γ and which maps the union of the I-bundle over α with the horizontal boundary
of J (F ) (i.e. the subset of the boundary which is disjoint from the interiors of the
intervals of the I-bundle) to the complement in X of a tubular neighborhood of the
boundary ∂X of X.

The superconducting disk graph SDG(X) is obtained from the electrified disk
graph EDG(X) by adding an edge of length one between any two disks whose
boundaries intersect an I-bundle generator γ in X in precisely two points.

Denote by CG(X) the curve graph of X. This is the hyperbolic geodesic metric
graph whose vertices are essential simple closed curves in X and where two such
vertices are connected by an edge of length one if and only if they can be realized
disjointly. The following is Theorem 5.2 of [H11].

Theorem 3.1. There is an effectively computable number L > 1 only depending on
the genus of H such that for every thick subsurface X of ∂H, the vertex inclusion
which maps a disk with boundary in X to its boundary defines an L- quasi-isometric
embedding SDG(X)→ CG(X).

Denoting by χ(X) the Euler characteristic of X, we obtain as an immediate
consequence of Theorem 3.1 the following

Corollary 3.2. The graphs SDG(X) are hyperbolic, and of asymptotic dimension
at most 2|χ(X)|, uniformly.

Proof. A quasi-isometrically embedded geodesic metric subgraph of a hyperbolic
geodesic metric graph satisfies the thin triangle condition and hence it is hyperbolic.

It is immediate from the definition that the existence of a quasi-isometric embed-
ding f : Y → Z implies that asdim(Y ) ≤ asdim(Z). Now the asymptotic dimension
of the curve graph of an oriented surface X of finite type is at most 2|χ(X)| [BB15]
uniformly (see also the earlier work [BF08] for finiteness) and therefore by The-
orem 3.1, the asymptotic dimension of SDG(X) is at most 2|χ(X)| uniformly as
claimed. �



ASYMPTOTIC DIMENSION AND DISK GRAPHS 9

Let again X be a thick subsurface of ∂H and let γ be an I-bundle generator
in X. Denote by E(γ) the subgraph of DG(X) of all disks which intersect γ in
precisely two points. We have

Lemma 3.3. The graphs E(γ) satisfy asdim ≤ |χ(X)|+ 2 uniformly.

Proof. By Lemma 4.2 of [H16], the map which associates to a disk D ∈ E(γ) the
projection of ∂D to the base surface F of the I-bundle corresponding to γ extends
to a 2-quasi-isometry of E(γ) onto the electrified arc graph of F . This electrified
arc graph is 4-quasi-isometric to the curve graph of F (see Lemma 4.1 of [H16] for
a proof of this folklore result). Thus by the main result in [BB15], the asymptotic
dimension of the graph E(γ) is bounded from above by 4g(F )−3+p = −2χ(F )+1−p
uniformly, where g(F ) is the genus of F and where p ≥ 1 is the number of boundary
components. The Lemma now follows from the fact that X is obtained from a two-
sheeted cover of F by attaching an annulus to two boundary components and that
furthermore the Euler characteristic of X is negative (see [H16]). �

The following summarizes Lemma 4.2, Corollary 4.3, Lemma 4.5 and Corollary
4.6 of [H16].

Theorem 3.4. The electrified disk graph EDG(X) of a thick subsurface X of ∂H
is hyperbolic relative to the collection of subgraphs E(γ) where γ runs through all
I-bundle generators of X, with electrification SDG(X).

Using Theorem 3.4, Lemma 3.3 and Corollary 3.2 we obtain

Corollary 3.5. Let X ⊂ ∂H be a thick subsurface of genus g(X) ≥ 0 with p
boundary components; then asdim(EG(X)) ≤ 3|χ(X)|+ 3.

Proof. By Theorem 3.4, the graph EG(X) is hyperbolic and hyperbolic relative
to the subgraphs E(γ), with electrification the graph SDG(X). By Lemma 3.3,
the asymptotic dimension of each of the graphs E(γ) does not exceed |χ(X)| + 2,
and Corollary 3.2 shows that the asymptotic dimension of SDG(X) is not bigger
than 2|χ(X)|. Thus Theorem 2.3 implies that asdim(EG(X)) ≤ |3χ(X)| + 3 as
claimed. �

As a consequence of Corollary 3.5 and the results in [H16] we are now ready to
show

Theorem 3.6. The asymptotic dimension of the disk graph of a handlebody of
genus g is bounded from above by (3g − 3)(6g − 2).

Proof. By the main result of [H16] and the above estimates of asymptotic dimen-
sion, there is a sequence G1, . . . ,G3g−3 of hyperbolic graphs with the following prop-
erties.

(1) G1 = EG(∂H).
(2) For each i ≥ 2, Gi is a hyperbolic graph which is hyperbolic relative to a

family H of hyperbolic subgraphs. The H-electrification of Gi equals the
graph Gi−1. The asymptotic dimension of each graph H in the family is at
most 6g − 3.

The graph Gi is defined as follows. Its vertices are disks, and two vertices are
connected by an edge of length one if either they are disjoint or if they are disjoint
from an essential multicurve in ∂H with at least i components. It is shown in [H16]
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that for i ≥ 2, the graph Gi is hyperbolic relative to a family of complete connected
subgraphs EDG(i−1) where such a subgraph is the electrified disk graph of a thick
subsurface X which is the complement in ∂H of a multicurve with i−1 components.

Applying Proposition 2.3 inductively 3g−3 times (which is the maximal number
of pairwise disjoint curves in ∂H) and using Corollary 3.5, we conclude that the
asymptotic dimension of the disk graph is at most (3g − 3)(6g − 2). �

For a surface S of finite type of genus g ≥ 2 with m ≥ 0 punctures define the
graph of non-separating curves NC to be the complete subgraph of the curve graph
of S consisting of non-separating curves.

For m ≤ 1 this graph is quasi-isometric to the curve graph of S, but this is not
true whenever m ≥ 2. However, we showed in [H14] that this graph is hyperbolic.
Furthermore, it admits a tame hierarchy with base a uniformly quasi-isometrically
embedded subgraph of a curve graph and where each peripheral graph also is a
uniformly quasi-isometrically embedded subgraph of some curve graph. Thus we
obtain

Proposition 3.7. For any surface S of finite type, the graph of non-separating
curves on S has finite asymptotic dimension.

In [H14] we also defined a graph of non-separating multicurves on the surface S
whose vertices are k-tuples of simple closed curves on S whose complement in S is
connected. We showed that for k < g/2 + 1 this graph is hyperbolic and admits a
tame hierarchy. As a consequence, the asymptotic dimension of this graph is finite
as well.
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[H14] U. Hamenstädt, Hyperbolicity of the graph of non-separating multicurves, Alg. & Geom.

Topol. 14 (2014), 1759–1778.
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