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Abstract. We show that the asymptotic dimension of a hyperbolic relatively

hyperbolic graph is finite provided that this holds true uniformly for the pe-

ripheral subgraphs and for the electrification. For a handlebody H of genus
g ≥ 2 we use surgery to identify a graph whose vertices are disks and which is

quasi-isometrically embedded in the curve graph of the boundary surface. We

use this to show that the asymptotic dimension of the disk graph is at most
quadratic in the genus and to give a new proof of hyperbolicity of the disk

graph.

1. Introduction

A metric space (X, d) has asymptotic dimension asdim(X) at most n if for every
number R > 0 there exists a covering of X by uniformly bounded sets such that
every metric R-ball intersects at most n+1 of the sets in the cover. More generally,
a collection of metric spaces as asdim at most n uniformly if for every R there
are covers of each space whose elements are uniformly bounded over the whole
collection.

The first goal of this work is to investigate the asymptotic dimension of a (not
necessarily locally finite) hyperbolic graph G which is hyperbolic relative to a family
H = {Hc | c ∈ C} of complete connected subgraphs, so-called peripheral graphs.
Here C is a countable, finite or empty index set. Such a graph is required to have
the following properties.

(1) The subgraphs Hc are uniformly quasi-convex, i.e. the inclusion Hc → G is
a quasi-isometric embedding with constant not depending on c.

(2) For c 6= u, the diameter of a shortest distance projection Hu → Hc is
uniformly bounded, independent of c, u.

(3) Define the H-electrification EG of G to be the graph which is obtained from
G by adding for every c ∈ C a new vertex vc which is connected to each
vertex x ∈ Hc by an edge and which is not connected to any other vertex.
The graph EG is hyperbolic.

We refer to [H16] and Section 2 for a discussion why this definition coincides with
other notions of hyperbolic relatively hyperbolic graphs defined in the literature.
We show

Theorem 1. Let G be a hyperbolic graph which is hyperbolic relative to a family
H = {Hc | c ∈ C} of peripheral subgraphs, with electrification EG. If the collection
Hc (c ∈ C) has asdim(Hc) ≤ n uniformly then asdim(G) ≤ asdim(EG) + n+ 1.
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The second goal of this work is to apply Theorem 1 to the disk graph of a
handlebody of genus g ≥ 2, i.e. a compact three-dimensional manifold H which can
be realized as a closed regular neighborhood in R3 of an embedded bouquet of g
circles. Its boundary ∂H is an oriented surface of genus g.

The disk graph DG of H is the metric graph whose vertices are isotopy classes of
properly embedded disks in H and where two such disks are connected by an edge
of length one if they can be realized disjointly. Assigning to a disk its boundary
then defines an embedding of the disk graph into the curve graph of ∂H. However,
this inclusion is not a quasi-isometric embedding.

To describe the geometric structure of DG we use the next definition.

Definition 1. A tame hierarchy of a hyperbolic metric graph G consists of a finite
chain G1, . . . ,Gk of hyperbolic graphs with the following properties.

(1) Gk = G.
(2) For all i, the graph Gi+1 is hyperbolic relative to a family Hi of subgraphs,

with electrification Gi.
(3) For each i there exists some ni such that the family Hi of graphs has

asdim ≤ ni uniformly.
(4) G1 has finite asymptotic dimension.

The graph G1 is called the base of the hierarchy.

An inductive application of Proposition 2.3 shows the following

Corollary 1. The asymptotic dimension of a hyperbolic metric graph G which
admits a tame hierarchy is finite.

The first part of the following result was earlier established by Masur and
Schleimer [MS13].

Theorem 2. The disk graph DG of H is hyperbolic and admits a tame hierarchy
whose base is a quasi-isometrically embedded subgraph of the curve graph of ∂H.

As a consequence, we obtain

Corollary 2. asdim(DG) ≤ (3g − 3)(8g − 8).

Another geometrically defined graphs which admits a tame hierarchy with base
a curve graph is the graph of non-separating multicurves introduced in [H14].

The base of the tame hierarchy of the disk graph has an explicit description
which we discuss next. We begin with introducing the following graph.

Definition 2. The electrified disk graph is the graph EDG whose vertices are iso-
topy classes of essential disks in H and where two vertices D1, D2 are connected by
an edge of length one if and only if there is an essential simple closed curve on ∂H
which can be realized disjointly from both ∂D1, ∂D2.

Since for any two disjoint essential simple closed curves c, d on ∂H there is a
simple closed curve on ∂H which can be realized disjointly from c, d (e.g. one of
the curves c, d), the electrified disk graph is obtained from the disk graph by adding
some edges.

Call a simple closed curve c on ∂H diskbusting if c has an essential intersection
with the boundary of every disk.

Define an I-bundle generator for H to be a diskbusting simple closed curve c
on ∂H with the following property. There is a compact surface F with connected
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boundary ∂F , and there is a homeomorphism of the orientable I-bundle I(F ) over
F onto H which maps ∂F to c. The curve c is separating if and only the surface F
is orientable. The handlebody group preserves the set of I-bundle generators.

Definition 3. The super-conducting disk graph is the graph SDG whose vertices are
isotopy classes of essential disks in H and where two vertices D1, D2 are connected
by an edge of length one if and only if one of the following two possibilities holds.

(1) There is a simple closed curve on ∂H which can be realized disjointly from
both ∂D1, ∂D2.

(2) There is an I-bundle generator c for H which intersects both ∂D1, ∂D2 in
precisely two points.

In particular, the superconducting disk graph is obtained from the electrified
disk graph by adding some edges.

Since the distance in the curve graph CG of ∂H between two simple closed curves
which intersect in two points does not exceed 3 [MM99], the natural vertex inclusion
extends to a coarse 6-Lipschitz map SDG → CG. We show

Theorem 3. The natural vertex inclusion extends to a quasi-isometric embedding
SDG → CG.

The constants for the quasi-isometric embeddings are effectively computable and
bounded from above by a cubic polynomial in the genus of ∂H. The superconduct-
ing disk graph is the base of the tame hierarchy of DG. In particular, as asymptotic
dimension does not increase under quasi-isometric embedding, the base of the hi-
erarchy for DG has asymptotic dimension at most 4g − 4 [BB15].

The second graph in tame hierarchy is the electrified disk graph whose asymptotic
dimension is bounded from above by 8g − 8.

To use the program developed by Masur and Minsky [MM99, MM00] which led
to an understanding of the geometry of the mapping class group also for handlebody
groups, it is necessary to understand disk graphs of handlebodies with spots, i.e.
handlebodies with marked points on the boundary. Here as before, the disk graph
of such a spotted handlebody is the complete subgraph of the curve graph of the
marked boundary whose vertex set is the set of diskbounding curves. The electrified
disk graph is the graph whose vertices are disks which are connected by an edge of
length one if either they are disjoint or if they are disjoint from a common essential
simple closed curve.

For disk graphs of spotted handlebodies we obtain

Theorem 4. Let H be a handlebody of genus g ≥ 2 with m ≥ 1 spots on the
boundary.

(1) If m = 1 then the disk graph is not a quasi-convex subset of the curve graph.
(2) For m ≥ 2 the map which associates to a disk its boundary is a 16-quasi-

isometry EDG → CG.

In [H11] we show that the disk graph in handlebodies with two spots on the
boundary is much more complicated and can effectively be used to understand
cycles in the handlebody group which require exponential filling, thus yielding that
the Dehn function of the handlebody group is exponential.

Organization: Section 2 is devoted to the proof of Theorem 1. In Section 3 we
use surgery of disks to relate the distance in the superconducting disk graph of a
handlebody H without spots to intersection numbers of boundary curves.
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In Section 4 we give an effective estimate of the distance in the curve graph
using train tracks. This together with a construction of [MM04] is used in Section
5 to show Theorem 3 and identify the Gromov boundary of SDG. The proof of
Theorem 4 is contained in Section 6 and Section 7.

Acknowledgement: I am indebted to Saul Schleimer for making me aware of
a missing case in the surgery argument in Section 3 in a first draft of this paper and
for sharing his insight in the disk graph with me. The results in Sections 3-5 were
obtained in summer 2010 while I visited the University of California in Berkeley.

2. Asymptotic dimension of hyperbolic relatively hyperbolic graphs

We begin with a general statement about hyperbolic relatively hyperbolic geo-
desic metric graphs. We mostly use the notations from [H16].

Consider a connected metric graph G in which a family H = {Hc | c ∈ C} of
complete connected subgraphs has been specified. Here C is a countable, finite or
empty index set. The graph G is hyperbolic relative to the family H if the following
properties are satisfied.

Define the H-electrification EG of G to be the graph which is obtained from G by
adding for every c ∈ C a new vertex vc which is connected to each vertex in Hc by
an edge and which is not connected to any other vertex. We require that the graph
EG is hyperbolic in the sense of Gromov and that moreover the following bounded
penetration property holds true.

Call a simplicial path γ in EG efficient if for every c ∈ C we have γ(k) = vc for
at most one k. Note that if γ is an efficient simplicial path in EG which passes
through γ(k) = vc for some c ∈ C then γ(k− 1), γ(k+ 1) ∈ Hc. We require that for
every L > 1 there is a number p(L) > 0 with the following property. Let γ be an
efficient L-quasi-geodesic in EG, let c ∈ C and let k ∈ Z be such that γ(k) = vc. If
the distance between γ(k − 1) and γ(k + 1) is at least p(L) then every efficient L-
quasi-geodesic γ′ in EG with the same endpoints as γ passes through vc. Moreover,
if k′ ∈ Z is such that γ′(k′) = vc then the distance in Hc between γ(k−1), γ′(k−1)
and between γ(k + 1), γ′(k + 1) is at most p(L).

The following is Theorem 1 of [H16].

Theorem 2.1. Let G be a metric graph which is hyperbolic relative to a family
H = {Hc | c ∈ C} of complete connected subgraphs. If there is a number δ > 0
such that each of the graphs Hc is δ-hyperbolic then G is δ-hyperbolic. Moreover,
the subgraphs Hγ | γ ∈ C} are uniformly quasi-convex.

We call a graph G with the properties stated in Theorem 2.1 a hyperbolic relatively
hyperbolic graph. In the sequel we always assume that all assumptions in Theorem
2.1 are fulfilled.

We first observe that a hyperbolic relatively hyperbolic graph as defined above
has the properties stated in the introduction. To this end recall that for every
quasi-convex subgraph H of a hyperbolic graph G there is a coarsely well defined
shortest distance projection ΠH : G → H, i.e. a projection which associates to a
point in G a choice of a point in H of approximate shortest distance. Any other
choice of such a point is of uniformly bounded distance. The map ΠH is coarsely
distance non-increasing.
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Lemma 2.2. Let G be a hyperbolic graph which is hyperbolic relative to a family
H = {hc | c ∈ C} of complete connected subgraphs. Then there is a number R > 0
such that for c 6= d ∈ C, diam(ΠHc(Hd)) ≤ R.

Proof. Recall from Theorem 2.1 that the subgraphs Hc of G are uniformly quasi-
convex. This means that there exist numbers R > 0, L > 1 such that for c ∈ C, any
geodesic in Hc is an L-quasi-geodesic in the hyperbolic graph G. Furthermore, for
any two points x, y ∈ Hc, any L-quasi-geodesic in G connecting these two points is
contained in the R-neighborhood NR(Hc) of Hc.

For c ∈ C write Πc = ΠHc
. Using again hyperbolicity, we deduce the following.

Let us assume that the diameter of the projection Πc(Hd) is large. Then there
exists points x, y ∈ Hd and a geodesic ζ : [a, b] → Hd connecting ζ(a) = x to
ζ(b) = y which is contained in the intersection of a uniformly bounded neighborhood
of Hc ∩ Hd. However, this violates the bounded penetration property since we
can find an efficient quasi-geodesic γ in EG passing through x and y which does
not pass through vd (but instead passes through vc). This violates the bounded
penetration property. We refer to the work [Si12] for a more detailed discussion
of the various equivalent formulations of relative hyperbolicity, in particular in
connection to condition (α1) for the collection H = {Hc | c}. �

We use this observation to show Theorem 1 from the introduction.

Theorem 2.3. Let G be a hyperbolic metric graph which is hyperbolic relative to
a family H = {Hγ | γ ∈ C} of complete connected subgraphs, with H-electrification
EG. If asdim(Hc) ≤ n uniformly then asdim(G) ≤ asdim(EG) + n+ 1.

Proof. Our goal is to construct a quasi-isometric embedding of G into the product of
EG with a quasi-tree Y of metric spaces as in Theorem B of [BBF15] whose vertices
are the subgraphs Hc (c ∈ C). Using the assumption on the asymptotic dimensions
of the graphs Hc, Theorem B iv) of [BBF15] states that asdim(Y) ≤ n + 1. Now
the asymptotic dimension of the product X × Y of two metric spaces satisfies
asdim(X × Y ) ≤ asdim(X) + asdim(Y ), furthermore asdim(X) ≤ asdim(Y ) if X
admits a quasi-isometric embedding into Y . Thus we conclude that

asdim(G) ≤ asdim(EG × Y) ≤ m+ n+ 1.

For the construction of a quasi-tree of metric spaces from the quasiconvex sub-
spaces Hc ⊂ G we have to verify that the axioms (P1), (P2) in Theorem A of
[BBF15] are fulfilled. To this end denote for c ∈ C by

Πc : G → Hc

a shortest distance projection of G into Hc. By Lemma 2.2, there is a number R > 0
not depending on c such that diam(Πc(Hd)) ≤ R for all d 6= c.

For a, b, c ∈ C define now

da(b, c) = diam(Πa(Hb) ∪Πa(Hc)).

Axiom (P1) in [BBF15].requires the existence of a constant θ > 0 such that for any
triple a, b, c of distinct elements in C, at most one of the three numbers

da(b, c), db(a, c), dc(a, b)

is greater than θ.
To show that this is indeed the case, recall that the subspaces Hc ⊂ G (c ∈ C)

are uniformly quasi-convex. Together with hyperbolicity of G, this implies the
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existence of a number R′ > R with the following property. If x, y ∈ G are any two
points, and if d(Πc(x),Πc(y)) ≥ R′, then any geodesic in G connecting x to y passes
through a unifomly bounded neighborhood of both Πc(x) and Πc(y), say through
the R′′-neighborhood.

Now assume that da(b, c) ≥ 3R′. Choose points x ∈ Πb(Ha), y ∈ Πc(Ha).
By the above discussion, any geodesic connecting x to y passes through the R′′-
neighborhood of Πa(y). Since the projection Πc is coarsely distance non-increasing,
this implies that the distance between Πc(x) and Πc(Πa(x)) is uniformly bounded
and hence the same holds true for dc(a, b). The same reasoning also shows that
db(a, c) is uniformly bounded. To summarize, axiom (P1) of [BBF15] holds true.

Axiom (P2) states that for any a, b ∈ C, the set

{c ∈ C | dc(a, b) > θ}
is finite. However, this follows as before. Namely, let x ∈ Πa(Hb), y ∈ Πb(Ha) and
let γ be a geodesic connecting x to y in EG. Then γ passes through only finitely
many of the special vertices vc, say through the vertices vc1 . . . , vcu . Now the above
discussion shows that if dc(a, b) ≥ θ then c ∈ {c1, . . . , cu}. This clearly implies that
axiom (P2) is fulfilled as well.

As a consequence, Theorem A of [BBF15]yields the existence of a quasi-tree of
metric spaces Y with vertex spaces Hc. Furthermore, by assumption on the graphs
Hc and by Theorem iv) of [BBF15], its asymptotic dimension is at most n+ 1.

Our goal is to show that the graph G admits a quasi-isometric embedding into
EG × Y. To this end we recall from [BBF15] the construction of Y.

Namely, Y consists of the union of the graphs Hc (c ∈ C) and a collection of
additional edges of length one connecting these graphs. These edges are defined as
follows. For all c, d, let xc.d ∈ Hc be a point of shortest distance in Hc to the graph
Hd and choose similarly xd,c. Connect the point xc,d to the point xd,c by an edge
of length if there is no a so that da(c, d) ≥ θ. In particular, if there is a geodesic
in EG connecting xc.d to xd,c which does not pass through a special vertex vu for
u 6= c, d then the points xc,d and xd,c are connected by an edge. Let Y be the space
constructed in this way. It is connected.

We now define a map G → EG × Y as follows. Fix a basepoint x ∈ G contained
in one of the convex subspaces Hc. Associate to x the product (x, x) ∈ EG × Y.
For every vertex y ∈ G choose once and for all a geodesic γy connecting x to y
in EG. Note that these geodesics are efficient. Let v1, . . . , vs ∈ EG be the special
points traveled through by γy in this order. For each of these special points vi,
let zi, ui ∈ Hvi be the two neighbors of vi along γy, chosen in such a way that if
vi = γ(ji) then ui = γ(ji + 1). Define Ψ(y) = us.

We claim that the map Λ : y → Λ(y) = (y,Ψ(y)) ∈ EG × Y is a quasi-isometric
embedding. To this end we show first that for any two points y, z of distance one,
the distance between Λ(y) and Λ(z) is uniformly bounded.

To this end consider the geodesics γy, γz. Let vc1 , . . . , vcs (ci ∈ C) be the special
points on γy and let w1, . . . , wu be those on γz. For the above number R < θ/4
define vi to be wide for γy if the following holds true. Let ji be such that γy(ji) = vi;
then the distance in Hci between γy(ji − 1) and γy(ji + 1) is at least 2R. Assume
that i ≤ s is the largest number so that vi is 2R-wide. By the bounded penetration
property, there is some j so that wj = vi, moreover γz(ji) = wj and by the bounded
penetration property, the distances between the exit points q = γy(ji+1), γz(ji+1)
of Hci along γy, γz is uniformly bounded.
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It now suffices to show that the distance in Y between Ψ(y) and the exit point q
of γy in Hci is uniformly bounded. However by definition, Ψ(y) is the exit point of
Hvs . Thus if i = s then q = Ψ(y) are we are done. Otherwise note that the shortest
distance projection of Hvs into Hvi is contained in the 5R < θ-neighborhood of q.
Namely, by uniform quasiconvexity of Hci , the exit point q for γy is uniformly near
this projection point.

Furthermore, there is no wide point along the segment of γy connecting q to
Ψ(y) ∈ Hcs and consequently by construction of the projection complex, there is a
segment of length one connecting a point in Hci uniformly near q to a point in Hcs

uniformly near the entry point of γy in Hcs . As vs is not wide along γy, this entry
point is contained in a uniformly bounded neighborhood of Ψ(y). Together this
shows that indeed, the distance in Y between q and Ψ(y) is uniformly bounded.
The same reasoning applies to γz and shows that the distance in Y between Ψ(y)
and Ψ(z) is uniformly bounded.

As G is a geodesic metric graph, this implies that the map Λ is coarsely Lipschitz.
We are now left with showing that there exists a constant L > 1 such that for all
y, z, the distance between Λ(y) and Λ(z) is bounded from below by d(y, z)/L− L.

By hyperbolicity and construction, for this it suffices to show the following. Let
γ : [0, R] → G be any geodesic connecting the fixed point x to a point y = γ(R)
and let 0 ≤ u < R; then d(Λ(γ(u)),Λ(γ(R))) ≥ |R − u|/L − L. By hyperbolicity
and the above discussion, it suffices furthermore to assume that γγ(u) = γ[0, u].

Assume for the moment that γ(s) = z is contained in one of the subspaces Hc.
Let vc1 , . . . , vcj be the special points passed through by the geodesic η = γ[u,R].
If the distance between entry and exit point of η in Hci is uniformly bounded then
the distance in G between γ(u) and γ(R) is uniformly equivalent to the distance in
EG.

On the other hand, if vci is wide along η then the diameter of Πci(Hci−1
, Hci+1

is
large. This implies that in Y, the length of any path connecting these two subspaces
equals the distance of the exit and entry point up to a uniform additive constant.
Thus any large distance between entry and exit point gives rise to large distance in
Y, and these distances coincide up to a universal constant. This is what we wanted
to show. �

Remark 2.4. It is immediate from the proof of Theorem 2.3 that the bounds on
coverings used in the definition of asymptotic dimension for a hyperbolic relatively
hyperbolic graph G are uniformly controlled by the data of the peripheral subgraphs
and the bounds for the electrification EG of G.

Remark 2.5. The proof of Theorem 2.3 together with Theorem B of [BBF15] also
shows the following. If EG is a quasi-tree and if each of the peripheral subgraphs
are quasi-trees, then G admits an quasi-isometric embedding into the product of
two quasi-trees.

We next give an application of this result to some geometric graphs related to
surfaces.

Example 2.6. For a surface S of finite type of genus g ≥ 2 with m ≥ 0 punctures
define the graph of non-separating curves NC to be the complete subgraph of the
curve graph of S consisting of non-separating curves. We showed in [H14] that
this graph is hyperbolic. Furthermore, it admits a controlled hierarchy with base a
quasi-isometrically embedded subgraph of a curve graph and where each peripheral
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graph also is a quasi-isometrically embedded subgraph of some curve graph. By
Corollary 1, the graph of non-separating curves has finite asymptotic dimension.

The main goal of the rest of this work is to construct a tame hierarchy for
the disk graph of a handlebody H where the base of the hierarchy is a quasi-
isometrically embedded subgraph of a curve graph. This not only gives a new proof
of hyperbolicity of the disk graph but also shows that its asymptotic dimension is
finite.

3. Distance and intersection

In this section we consider a handlebody H of genus g ≥ 2 without spots on the
boundary. We use surgery of disks to establish first estimates for the distance in
the electrified disk graph EDG and in the superconducting disk graph SDG of H.
We begin with introducing the basic surgery construction needed later on.

By a disk in the handlebody H we always mean an essential disk in H. Two
disks D1, D2 are in normal position if their boundary circles intersect in the minimal
number of points and if every component of D1∩D2 is an embedded arc in D1∩D2

with endpoints in ∂D1 ∩ ∂D2. In the sequel we always assume that disks are in
normal position; this can be achieved by modifying one of the two disks with an
isotopy.

Let D be any disk and let E be a disk which is not disjoint from D. A component
α of ∂E −D is called an outer arc of ∂E relative to D if there is a component E′

of E −D whose boundary is composed of α and an arc β ⊂ D. The interior of β
is contained in the interior of D. We call such a disk E′ an outer component of
E −D. An outer component of E −D intersects ∂H in an outer arc α relative to
D, and α intersects ∂D in opposite directions at its endpoints.

For every disk E which is not disjoint from D there are at least two distinct
outer components E′, E′′ of E − D. There may also be components of ∂E − D
which leave and return to the same side of D but which are not outer arcs. An
example of such a component is a subarc of ∂E which is contained in the boundary
of a rectangle component of E − D leaving and returning to the same side of D.
The boundary of such a rectangle consists of two subarcs of ∂E with endpoints on
∂D which are homotopic relative to ∂D, and two arcs contained in D.

Let E′ ⊂ E be an outer component of E−D whose boundary is composed of an
outer arc α and a subarc β = E′ ∩D of D. The arc β decomposes the disk D into
two half-disks P1, P2. The unions Q1 = E′ ∪ P1 and Q2 = E′ ∪ P2 are embedded
disks in H which up to isotopy are disjoint and disjoint from D. For i = 1, 2 we say
that the disk Qi is obtained from D by simple surgery at the outer component E′

of E −D (see e.g. [S00] for this construction). Since D,E are in minimal position,
the disks Q1, Q2 are essential.

Each disk in H can be viewed as a vertex in the disk graph DG, the electrified
disk graph EDG and the superconducting disk graph SDG. We will work with all
three graphs simultaneously. Denote by dD (or dE or dS) the distance in DG (or in
EDG or in SDG). Note that for any two disks D,E we have

dS(D,E) ≤ dE(D,E) ≤ dD(D,E).

In the sequel we always assume that all curves and multicurves on ∂H are es-
sential. For two simple closed multicurves c, d on ∂H let ι(c, d) be the geometric
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intersection number between c, d. The following lemma [MM04] implies that the
graph DG is connected. We provide the short proof for completeness.

Lemma 3.1. Let D,E ⊂ H be any two disks. Then D can be connected to a disk
E′ which is disjoint from E by at most ι(∂D, ∂E)/2 simple surgeries. In particular,

dD(D,E) ≤ ι(∂D, ∂E)/2 + 1.

Proof. Let D,E be two disks in normal position. Assume that D,E are not disjoint.
Then there is an outer component of E−D. A disk D′ obtained by simple surgery
of D at this component is essential in ∂H. Moreover, D′ is disjoint from D, i.e. we
have dD(D′, D) = 1, and

(1) ι(∂E, ∂D′) ≤ ι(∂D, ∂E)− 2.

The lemma now follows by induction on ι(∂D, ∂E). �

Lemma 3.2. Let D,E ⊂ H be disks. If there is an essential simple closed curve
α ⊂ ∂H which intersects ∂E in at most one point and which intersects ∂D in at
most k ≥ 1 points then dE(D,E) ≤ log2 k + 3.

Proof. Let D,E ⊂ H be any two disks. If D,E are disjoint then there is nothing
to show, so assume that ∂D ∩ ∂E 6= ∅. Let α ⊂ ∂H be a simple closed curve which
intersects ∂E in at most one point and which intersects ∂D in k ≥ 0 points. If α
is disjoint from both D,E then dE(D,E) ≤ 1 by definition of the electrified disk
graph. Thus by perhaps exchanging D and E we may assume that k ≥ 1. Via a
small homotopy we may moreover assume that α is disjoint from D ∩ E.

We modify D as follows. There are at least two outer components of E−D. Since
α intersects ∂E in at most one point, one of these components, say the component
E′, is disjoint from α. The boundary of E′ decomposes D into two subdisks P1, P2.
Assume without loss of generality that P1 contains fewer intersection points with
α than P2. Then P1 intersects α in at most k/2 points. The disk D′ = P1 ∪E′ has
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at most k/2 intersection points with α, and up to isotopy, it is disjoint from D. In
particular, we have dE(D,D

′) = 1.
Repeat this construction with D′, E. After at most log2 k + 1 such steps we

obtain a disk D1 which either is disjoint from E or is disjoint from α. The distance
between D and D1 in the graph EDG is at most log2 k + 1.

If D1 and E are disjoint then dE(D1, E) ≤ 1 and dE(D,E) ≤ log2 k + 2 and we
are done. Otherwise apply the above construction to D1, E but with the roles of
D1 and E exchanged. We obtain a disk E1 which is disjoint from both E and α, in
particular it satisfies dE(E1, E) = 1. The disks D1, E1 are both disjoint from α and
therefore dE(D1, E1) ≤ 1 by the definition of the electrified disk graph. Together
this shows that

dE(D,E) ≤ log2 k + 1 + dE(D1, E) ≤ log2 k + 3.

�

A simple closed multicurve γ in ∂H is called diskbusting if γ intersects every
disk.

Definition 3.3. An I-bundle generator in ∂H is a diskbusting simple closed curve
γ ⊂ ∂H with the following property. There is an oriented I-bundle J (F ) over
a compact surface F with connected boundary ∂F , and there is an orientation
preserving homeomorphism of J (F ) onto H which maps ∂F to γ.

We call the surface F the base of the I-bundle generated by γ.
If γ is a separating I-bundle generator, with base surface F , then F is orientable

and we have g = 2n for some n ≥ 1. Moreover, the I-bundle J (F ) = F × [0, 1]
is trivial. The I-bundle over every essential arc in F with endpoints in ∂F is an
embedded disk in H. If γ is non-separating then the base F of the I-bundle is
non-orientable.

There is an orientation reversing involution Φ : H → H whose fixed point set
intersects ∂H precisely in γ. This involution acts as a reflection in the fiber. The
union of an essential embedded arc α in F with endpoints on ∂F with its image
under Φ is the boundary of a disk in H (there is a small abuse of notation here-
since the fixed point set of Φ intersects ∂H in a subset of the fibre over ∂F ). This
disk is just the I-bundle over α.

If D,E ⊂ H are disks in normal position then each component of D − E is a
disk and therefore the graph dual to the cell decomposition of D whose two-cells
are the components of D − E is a tree. If D − E only has two outer components
then this tree is just a line segment. The following lemma analyzes the case that
this holds true for both D − E and E −D.

Lemma 3.4. Let D,E ⊂ H be disks in normal position. If D−E and E−D only
have two outer components then one of the following two possibilities is satisfied.

(1) dE(D,E) ≤ 4.
(2) D,E intersect some I-bundle generator γ in ∂H in precisely two points.

Proof. Let D,E be two disks in normal position. Assume that D − E and E −D
only have two outer components. Then each component of D − E,E − D either
is an outer component or a rectangle, i.e. a disk whose boundary consists of two
components of D∩E and two arcs contained in ∂D ⊂ ∂H or ∂E ⊂ ∂H, respectively.
Since dE(D,E) = 1 if there is an essential simple closed curve in ∂H which is disjoint
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from ∂D∪∂E, we may assume without loss of generality that ∂D∪∂E fills up ∂H.
This means that ∂H − (∂D ∪ ∂E) is a union of disks and peripheral annuli.

Choose tubular neighborhoods N(D), N(E) of D,E in H which are homeomor-
phic to an interval bundle over a disk and which intersect ∂H in an embedded
annulus. We may assume that the interiors A(D), A(E) of these annuli are con-
tained in the interior of ∂H. Then ∂N(D)−A(D), ∂N(E)−A(E) is the union of
two properly embedded disjoint disks in H isotopic to D,E. We may assume that
∂N(D)−A(D) is in normal position with respect to ∂N(E)−A(E) and that

S = ∂(N(D) ∪N(E))− (A(D) ∪A(E))

is a compact surface with boundary which is properly embedded in H. Since H is
assumed to be oriented, the boundary ∂(N(D) ∪ N(E)) of N(D) ∪ N(E) has an
induced orientation which restricts to an orientation of S.

Let (P, σ) be a pair consisting of an outer component P of D−E and an orienta-
tion σ of D which induces an orientation of P . The orientation σ together with the
orientation of H determines an orientation of the normal bundle of D and hence σ
determines a side of D in N(D), say the right side. We claim that the component
Q of the surface S containing the copy of P in ∂N(D) to the right of D is a disk
which contains precisely one other pair (P ′, σ′) of this form, i.e. P ′ is an outer
component of D − E or of E −D, and σ′ an orientation of P ′.

Namely, by construction, each component of ∂N(D) − (A(D) ∪ N(E)) either
corresponds to an outer component of D − E and the choice of a side, or it corre-
sponds to a rectangle component of D − E and a choice of a side. A component
corresponding to a rectangle is glued at each of its two sides which are contained in
the interior of H to a component of ∂N(E)− (A(E) ∪N(D)). In other words, up
to homotopy, the component Q of S can be written as a chain of oriented disks be-
ginning with P and alternating between components of D−E and E−D equipped
with one of the two possible orientations. Since Q is embedded in H and contains
P , this chain can not be a cycle and hence it has to terminate at an oriented outer
component of D − E or E −D which is distinct from (P, σ).

To summarize, each pair (P, σ) consisting of an outer component P of D−E or
E−D and an orientation σ of D or E determines a unique component of the oriented
surface S. This component is a properly embedded disk in H which is disjoint from
D ∪E. Each such disk corresponds to precisely two such pairs (P, σ), so there is a
total of four such disks. Denote these disks by Q1, . . . , Q4. If one of these disks is
essential, say if this holds true for the disk Qi, then Qi is an essential disk disjoint
from both D,E with boundary in X and hence dE(D,Qi) ≤ 1, dE(E,Qi) ≤ 1 and
we are done.

Otherwise define a cycle to be a subset C of {Q1, . . . , Q4} of minimal cardinality
so that the following holds true. Let Qi ∈ C and assume that Qi contains a pair
(B, ζ) consisting of an outer component B of D−E (or of E−D) and an orientation
ζ of D (or E). If Qj is the disk containing the pair (B, ζ ′) where ζ ′ is the orientation
of D (or E) distinct from ζ then Qj ∈ C. Note that two distinct cycles are disjoint.
The length of the cycle is the number of its components.

For each cycle C we construct a properly embedded annulus (A(C), ∂A(C)) ⊂ H
as follows. Remove from each of the disks Qi in the cycle the subdisks which
correspond to outer components of D − E,E − D and glue the disks along the
boundary arcs of these outer components.
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To be more precise, let B be an outer component of D − E corresponding to a
subdisk of Qi and let β = B ∩ E. Then the complement of B in Qi (with a small
abuse of notation) contains the arc β in its boundary, and the orientation of Qi
defines an orientation of β. There is a second disk Qj in the cycle which contains B
and which induces on β the opposite orientation (Qj is not necessarily distinct from
Qi). Glue Qi−B to Qj−B along β and note that the resulting surface is oriented.
Doing this with each of the outer components of D − E and E − D contained in
the cycle yields a properly embedded annulus A(C) ⊂ H as claimed.

If there is a cycle C of odd length then for one of the two disks D,E, say the
disk D, the cycle contains precisely one outer component (with both orientations).
Since the disks Qj are disjoint from D ∪E, this means that a boundary curve γ of
A(C) intersects the disk D in precisely one point, and it intersects the disk E in
at most two points. In particular, γ is an essential curve in ∂H. Lemma 3.2 now
shows that dE(D,E) ≤ 4.

Similarly, if there is a cycle C of length two then there are two possibilities. The
first case is that the cycle contains both an outer component of D−E and an outer
component of E − D. Then a boundary curve γ of A(C) intersects each of the
disks D,E in precisely one point. In particular, γ is an essential curve in ∂H and
dE(D,E) ≤ 3.

If C contains both outer components of say the disk D then a boundary curve
γ of A(C) intersects D in precisely two points, and it is disjoint from E. Let D′

be a disk obtained from D by a simple surgery at an outer components of E −D.
Then either D′ is disjoint from both D,E (which is the case if D′ is composed of
an outer component of E−D and an outer component of D−E) or D′ intersects γ
in precisely one point and is disjoint from D. As before, we conclude from Lemma
3.2 that dE(D,E) ≤ 4.

We are left with the case that there is a single cycle C of length four. Let γ1, γ2
be the two boundary curves of A(C). Then γ1, γ2 are simple closed curves in X
which are freely homotopic in the handlebody H. We claim that γ1, γ2 are freely
homotopic in ∂H. Namely, assume that the disks Qi are numbered in such a way
that Qi and Qi+1 share one outer component of D − E or E −D. Glue the disks
Q1, . . . , Q4 successively to a single disk Q with the surgery procedure described
above (namely, if P is the outer component of D − E or E −D contained in both
Q1, Q2 then remove P from Q1, Q2 and glue Q1 to Q2 along the resulting boundary
arc to form a disk Q̂1, glue Q̂1 to Q3 to form a disk Q̂2, and glue Q̂2 to Q4 to obtain
the disk Q). Since by assumption none of the disks Qi is essential, the disk Q is
contractible. In particular, Q is homotopic with fixed boundary to an embedded
disk in ∂H. Now the annulus A(C) is obtained from Q by identifying two disjoint
boundary arcs and hence A(C) is homotopic into ∂H. Assume from now on that
A(C) ⊂ ∂H.

By construction, each of the simple closed curves ∂D, ∂E intersects A(C) in
precisely two arcs connecting the two boundary components of A(C). These are
exactly the boundary arcs of the outer components of D − E,E −D.

The intersection arcs ∂D∩A(C), ∂E∩A(C) decompose A(C) into four rectangles.
The annulus A(C) has a natural structure of an I-bundle over one of its boundary
circles, with ∂D ∩A(C), ∂E ∩A(C) as a union of fibres.

Let ζ ⊂ ∂D be a component of ∂D − A(C). Then ζ is a union of boundary
components of rectangles embedded in D. Two opposite sides of such a rectangle
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R are contained in ∂D. There is a unique side ρ of R which is contained in ζ, and
the side opposite to ρ is contained in the component ζ ′ of ∂D−A(C) disjoint from
ζ. This decomposition of D into rectangles determines for D the structure of an
I-bundle over ζ. Each component of D ∩E is a fibre of this I-bundle, and the two
components of ∂D ∩A(C) are fibres as well. Similarly, E is an I-bundle over each
component ξ of ∂E −A(C).

Since ∂D∪∂E fills up ∂H, each component of ∂H− (∂D∪∂E) is a polygon, i.e.
a disk bounded by finitely many subarcs of ∂D, ∂E. Such a polygon P is contained
in the boundary of a component V of H− (D∪E). The boundary ∂V of V has two
connected components contained in ∂H. One of these components is the polygon
P , the other component P ′ either is a polygon component of ∂H − (∂D ∪ ∂E), or
it contains a boundary component of ∂H.

The complement of P ∪P ′ in ∂V is a finite collection W of fibred rectangles. The
base of such a rectangle is an edge of the boundary ∂P of the polygon P . Using
again the fact that ∂D∪∂E fills up ∂H, if P ′ is a polygon in ∂H then V is a 3-ball.

As a consequence, each component V of H − (D ∪ E) is a ball whose boundary
consists of P , a finite union R of fibred rectangles with base ∂P and a second
polygonal component P ′ of X− (∂D∪∂E). The I-bundle structure on R naturally
extends to an I-bundle structure on V . Therefore H is an I-bundle. The involution
of the I-bundle which exchanges the endpoints of the interval I preserves each
component V of H − (D ∪ E), and it exchanges the two components of V ∩ ∂H.
This completes the proof of the lemma. �

We use Lemma 3.4 to improve Lemma 3.2 as follows.

Proposition 3.5. Let D,E ⊂ H be essential disks. If there is an essential sim-
ple closed curve α ⊂ ∂H which intersects ∂D, ∂E in at most k ≥ 1 points then
dS(D,E) ≤ 2k + 4.

Proof. Let D,E be essential disks in normal position as in the proposition which
are not disjoint.

Let α be an essential simple closed curve in ∂H which intersects both ∂D and
∂E in at most k ≥ 1 points. We may assume that these intersection points are
disjoint from ∂D ∩ ∂E.

Let p ≥ 2 (or q ≥ 2) be the number of outer components of D−E (or of E−D).
If p = 2, q = 2 then Lemma 3.4 shows that either dE(D,E) ≤ 4 or ∂D, ∂E intersect
some I-bundle generator γ in precisely two points, and we have dS(D,E) = 1.

Let j ≤ k, j′ ≤ k be the number of intersection points of D,E with α. If
min{j, j′} ≤ 1 then dE(D,E) ≤ log2 k + 3 by Lemma 3.2. Thus it suffices to show
the following. If max{p, q} ≥ 3 and min{j, j′} ≥ 2 then there is a simple surgery
transforming the pair (D,E) to a pair (D′, E′) with the following properties.

(1) D′ is disjoint from D, E′ is disjoint from E.
(2) Either D = D′ or E = E′.
(3) The total number of intersections of α with D′ ∪E′ is strictly smaller than

j + j′.

To this end assume without loss of generality that q ≥ 3. If j/2 > j′/3 then
choose an outer component E1 of E − D with at most j′/3 intersections with α.
This is possible because E −D has at least three outer components. Let D1 be a
component of D −E1 which intersects α in at most j/2 points. Then D1 ∪E1 is a
disk which is disjoint from D and has at most j/2 + j′/3 < j intersections with α.
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On the other hand, if j/2 ≤ j′/3 then choose an outer component D1 of D − E
with at most j/2 intersections with α. Let E1 be a component of E −D1 with at
most j′/2 intersections with α and replace E by the disk E1 ∪D1 which is disjoint
from E and intersects α in at most j/2 + j′/2 < j′ points.

This is what we wanted to show. �

For easy reference we note

Corollary 3.6. Let H be a handlebody of genus g ≥ 2 without spots. Let D,E ⊂ H
be disks and assume that there is a simple closed curve γ on ∂H which intersects
both ∂D, ∂E in at most k ≥ 1 points; then dS(D,E) ≤ 2k + 4.

Remark: The arguments in this section use the fact that every simple surgery
of a disk at an outer component of another disk yields an essential disk in H. They
are not valid for handlebodies with spots.

4. Distance in the curve graph

The purpose of this section is to establish an estimate for the distance in the curve
graph of the boundary of the handlebody H which will be essential for a geometric
description of the superconducting disk graph. The results in this section are valid
for an arbitrary oriented surface S of genus g ≥ 0 with m ≥ 0 punctures and
3g − 3 +m ≥ 2.

The idea is to use train tracks on S. We refer to [PH92] for all basic notions and
constructions regarding train tracks.

A train track η (which may just be a simple closed curve) is carried by a train
track τ if there is a map F : S → S of class C1 which is homotopic to the identity,
with F (η) ⊂ τ and such that the restriction of the differential dF of F to the
tangent line of η vanishes nowhere. Write η ≺ τ if η is carried by τ . If η ≺ τ then
the image of η under a carrying map is a subtrack of τ which does not depend on
the choice of the carrying map. Such a subtrack is a subgraph of τ which is itself
a train track. Write η < τ if η is a subtrack of τ .

A train track τ is called large [MM99] if each complementary component of
τ is either simply connected or a once punctured disk. A simple closed curve η
carried by τ fills τ if the image of η under a carrying map is all of τ . A diagonal
extension of a large train track τ is a train track ξ which can be obtained from
τ by subdividing some complementary components which are not trigons or once
punctured monogons.

A trainpath on τ is an immersion ρ : [k, `] → τ which maps every interval
[m,m + 1] diffeomorphically onto a branch of τ . We say that ρ is periodic if
ρ(k) = ρ(`) and if the inward pointing tangent of ρ at ρ(k) equals the outward
pointing tangent of ρ at ρ(`). Any simple closed curve carried by a train track τ
defines a periodic trainpath and a transverse measure on τ . The space of transverse
measures on τ is a cone in a finite dimensional real vector space. Each of its extreme
rays is spanned by a vertex cycle which is a simple closed curve carried by τ . A
vertex cycle defines a periodic trainpath which passes through every branch at most
twice, in opposite direction [H06, Mo03].

Let η be a large train track. If η ≺ τ then τ is large as well. In particular, if
η′ < η is a large subtrack of η and if ξ is a diagonal extension of η′, then a carrying
map F : η → τ induces a carrying map of η′ onto a large subtrack τ ′ of τ , and it
induces a carrying map of ξ onto a diagonal extension of τ ′.
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Definition 4.1. A pair η ≺ τ of large train tracks is called wide if every simple
closed curve which is carried by a diagonal extension of a large subtrack of η fills a
diagonal extension of a large subtrack of τ .

We have

Lemma 4.2. If σ ≺ η ≺ τ and if the pair η ≺ τ is wide then σ ≺ τ is wide.

Proof. Let σ′ be a large subtrack of σ and let ξ be a diagonal extension of σ′. Then
the carrying map σ → η maps σ′ onto a large subtrack η′ of η, and it maps ξ to a
diagonal extension ζ of η′. Similarly, η′ is mapped to a large subtrack τ ′ of τ , and
ζ is mapped to a diagonal extension ρ of τ ′.

A simple closed curve α carried by ξ is carried by ζ. In particular, since η ≺ τ
is wide, α fills a large subtrack of ρ. From this the lemma follows. �

A splitting and shifting sequence is a finite sequence (τi)0≤i≤n of train tracks so
that for each i, τi+1 can be obtained from τi by a sequence of shifts followed by a
single split. We allow the split to be a collision, i.e. to reduce the number of edges.
Note that τi+1 is carried by τi for all i and the pair τi+1 ≺ τi is not wide.

Recall from the introduction the definition of the curve graph CG of S. For an
essential simple closed curve c on S let i(c) ∈ {0, . . . , n} be the largest number with
the following property. There is a large subtrack η of τi(c) so that c is carried by a
diagonal extension ξ of η and fills ξ. If no such number exists then put i(c) = 0.

Define a projection P : CG → (τi)0≤i≤n by

P (c) = τi(c).

Extend the map P to the edges of CG by mapping an edge to the image of one of
its endpoints.

Lemma 4.3. Let c, d be disjoint simple closed curves on S. Assume that P (c) = τi.
If τi ≺ τj is wide then P (d) = τs for some s ≥ j.

Proof. Assume that P (c) = τi ≺ τj is wide. By the definition of the map P , there
is a large subtrack η of τi so that c fills a diagonal extension ξ of η. By Lemma 4.4
of [MM99], since d is disjoint from c, d is carried by a diagonal extension ζ of ξ.
Then ζ is a diagonal extension of η.

Since τi ≺ τj is wide, d fills a diagonal extension of a large subtrack of τj . This
implies that P (d) = τs for some s ≥ j. �

Define a distance function dg on (τi)0≤i≤n as follows. For i < j, the gap distance
dg(τi, τj) between τi and τj is the smallest number k > 0 so that there is a sequence
i0 = i < i1 < · · · < ik = j with the property that for each p < k, the pair
τip+1

≺ τip is not wide. Note that this defines indeed a distance since for each `
the pair τ`+1 ≺ τ` is not wide and hence dg(τi, τj) ≤ j − i. Moreover, the triangle
inequality is immediate from Lemma 4.2.

The following is a consequence of Lemma 4.3. For its formulation, define a map
P from a metric space X to a metric space Y to be coarsely L-Lipschitz for some
L > 1 if d(Px, Py) ≤ Ld(x, y) + L for all x, y ∈ X.

Corollary 4.4. The map P : CG → ((τi), dg) is coarsely 2-Lipschitz.

Define a map Υ : (τi)0≤i≤n → CG by associating to the train track τi one of its
vertex cycles. We have
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Lemma 4.5. The map Υ : ((τi), dg)→ CG is coarsely 22-Lipschitz.

Proof. It suffices to show the following. If τ ≺ η is not wide then the distance in
CG between a vertex cycle α of τ and a vertex cycle β of η is at most 22.

To this end note that if α is a simple closed curve which is carried by a large
train track ξ then the image of α under a carrying map is a subtrack of ξ. If this
subtrack is not large then α is disjoint from an essential simple closed curve α′

which can be represented by an edge-path in ξ (possibly with corners) which passes
through any branch of ξ at most twice. Since a vertex cycle of ξ passes through
each branch of ξ at most twice, this implies that α′ intersects a vertex cycle of ξ in
at most 4 points (see [H06] for details). In particular, the distance in CG between
α and a vertex cycle of ξ is at most 6 [MM99].

On the other hand, if τ is another large train track and if ξ is a diagonal extension
of a large subtrack τ ′ of τ then a vertex cycle of ξ intersects a vertex cycle of τ
in at most 4 points. Hence the distance in CG between a vertex cycle of τ and a
vertex cycle of ξ is at most 5. Together we deduce that the distance in CG between
α and a vertex cycle of τ does not exceed 11.

Now by definition, if τ ≺ η is not wide then there is a curve α which is carried
by a diagonal extension ξ of a large subtrack τ ′ of τ and such that the following
holds true. A carrying map τ → η induces a carrying map of ξ onto a diagonal
extension ζ of a large subtrack of η. The train track ζ carries α and so that α does
not fill a large subtrack of ζ. Since a carrying map ξ → ζ maps a large subtrack of
ξ onto a large subtrack of ζ, the curve α does not fill a large subtrack of ξ.

By the above diskussion, the distance in CG between α and any vertex cycle of
both τ and η is at most 11. This shows the lemma. �

Call a map Φ of a metric space (X, d) into a subset A of X a coarse Lipschitz
retraction if there is a number L > 1 with the following properties.

(1) d(Φ(x),Φ(y)) ≤ Ld(x, y) + L.
(2) d(x,Φ(x)) ≤ L whenever x ∈ A.

We are now ready to show

Corollary 4.6. For any splitting and shifting sequence (τi)0≤i≤n the map Υ ◦P is
a coarse L-Lipschitz retraction of CG for a number L > 1 not depending on (τi) or
on the Euler characteristic of S.

Proof. Let dCG be the distance in the curve graph of S. By Corollary 4.4 and
Lemma 4.5 it suffices to show that dCG(α,Υ ◦ P (α)) ≤ L for a universal constant
L > 1 and every vertex cycle α of a train track τi from the sequence.

To this end observe that since α is a vertex cycle of τi, α is carried by each of
the train tracks τj for j ≤ i, moreover α does not fill a diagonal extension of a large
subtrack of τi. On the other hand, by definition of a wide pair, if τi ≺ τj is wide
then α fills a large subtrack of τj . This means that P (α) = τs for some s ≥ j so
that the pair τi ≺ τs+1 is not wide. The corollary now follows from Lemma 4.5. �

Remark: The above diskussion immediately implies that the image under Υ of
a splitting and shifting sequence of train tracks is an unparametrized quasi-geodesic
in CG for a constant not depending on the Euler characteristic of S. A non-effective
version of this result was earlier established in [MM04] (see also [H06]).
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5. Quasi-geodesics in the superconducting disk graph

Recall the definition of the graph SDG. Our goal is to show that the natural
map which associates to a disk its boundary defines a quasi-isometric embedding
of SDG into the curve graph CG of ∂H. To simplify the notation we identify in the
sequel a disk in H with its boundary circle. Thus we view the vertex set of SDG
as a subset of the curve graph CG.

The argument is based on the results in Section 2-3 and a construction from
[MM04]. This construction uses a specific type of surgery sequences of disks which
can be related to train tracks as follows.

Let H be a handlebody of genus g ≥ 2 without spot. Let D,E ⊂ H be two disks
in normal position. Let E′ be an outer component of E −D and let D1 be a disk
obtained from D by simple surgery at E′.

Let α be the intersection of ∂E′ with ∂H. Then up to isotopy, the boundary
∂D1 of the disk D1 contains α as an embedded subarc. Moreover, α is disjoint from
E. In particular, given an outer component E′′ of E −D1, there is a distinguished
choice for a disk D2 obtained from D1 by simple surgery at E′′. The disk D2 is
determined by the requirement that α is not a subarc of ∂D2. Then for an outer
component of E −D2 there is a distinguished choice for a disk D3 obtained from
D2 by simple surgery at an outer component of E − D2 etc. We call a surgery
sequence (Di) of this form a nested surgery path in direction of E. Note that the
boundary of each disk Di is composed of a single subarc of ∂D and a single subarc
of ∂E.

The following result is due to Masur and Minsky (this is Lemma 4.2 of [MM04]
which is based on Lemma 4.1 and the proof of Theorem 1.2 in that paper).

Proposition 5.1. Let D,E ⊂ ∂H be any disks. Let D = D0, . . . , Dn be a nested
surgery path in direction of E which connects D to a disk Dn disjoint from E. Then
for each i ≤ n there is a train track τi on ∂H with a single switch such that the
following holds true.

(1) τi carries ∂E and ∂E fills up τi.
(2) τi+1 ≺ τi.
(3) The disk Di intersects τi only at the switch.

The train tracks τi in the proposition are constructed as follows.
Let α = ∂D, β = ∂E. Assume that the curves α, β are smooth (for a smooth

structure on ∂H) and fill up ∂H. This means that the complementary components
of α ∪ β are all polygons or once holed polygons where in our setting, a hole is a
boundary component of ∂H. Let P be a complementary polygon which has at least
6 sides. Such a polygon exists since the Euler characteristic of ∂H is negative. Its
edges are subsegments of α and β. Let I be a boundary edge of P contained in α.
Collapse α − I to a single point with a homotopy F of ∂H. This can be done in
such a way that the restriction of F to β is nonsingular everywhere. The resulting
graph has a single vertex. Collapsing the bigons in the graph to single arcs yields
a train track τ with a single switch [MM04].

Let b ⊂ β be an outer arc for E −D and let a ⊂ α− I be the subarc of α which
is bounded by the endpoints of b and which does not intersect the interval I. Then
a ∪ b is the boundary of a disk D1 obtained from D by nested surgery at b. The
new train track τ1 obtained from the above construction is obtained from β ∪ a by
collapsing the arc a to a single point (we refer to [MM04] for details).
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In the remainder of this section we identify a disk in H with its boundary circle
on ∂H. Thus we view the vertex set of the superconducting disk graph SDG as a
subset of the vertex set of the curve graph CG of ∂H. We are now ready to show

Theorem 5.2. There is an effectively computable number L > 1such that the vertex
inclusion defines an L- quasi-isometric embedding SDG → CG.

Proof. As before, let dS be the distance in SDG and let dCG be the distance in CG.
We have to show the existence of a number c > 0 with the following property. If
D,E are any disks then

dS(D,E) ≤ cdCG(∂D, ∂E).

By Proposition 5.1, there is a nested surgery path D = D0, . . . , Dn connecting
the disk D0 = D to a disk Dn which is disjoint from E, and there is a sequence
(τi)0≤i≤n of one-switch train tracks on ∂H such that τi+1 ≺ τi for all i < n and
that Di intersects τi only at the switch.

By Theorem 2.3.1 of [PH92], there is a splitting and shifting sequence τ0 = η0 ≺
· · · ≺ ηs = τn connecting τ0 to τn and a sequence 0 = u0 < · · · < un = s so
that ηuq

= τq for 0 ≤ q ≤ n. Since the disk Di intersects τi only at the switch,
the boundary ∂Di of Di intersects a vertex cycle of τi in at most two points and
hence the distance in the curve graph CG between ∂Di and a vertex cycle of τi is at
most three. Now the disks Di and Di+1 are disjoint and consequently the distance
in CG between a vertex cycle of τi and a vertex cycle of τi+1 is at most 7. Thus
by Corollary 4.6 and the definition of the no-gap distance, it suffices to show the
existence of an effectively computable number b > 0 with the following property.
Let k < i be such that the pair τi ≺ τk is not wide; then dS(Di, Dk) ≤ b.

Since τi ≺ τk is not wide there is a large subtrack τ ′i of τi, a diagonal extension
ζi of τ ′i and a simple closed curve α carried by ζi with the following property. Let
τ ′k be the image of τ ′i under a carrying map τi → τk and let ζk be the diagonal
extension of τ ′k which is the image of ζi under a carrying map induced by a carrying
map τ ′i → τ ′k. Then α does not fill a large subtrack of ζk.

Since ζi is a diagonal extension of the large subtrack τ ′i of τi and since Di

intersects τi only at the switch, the intersection number between ∂Di and ζi is
bounded from above by a constant κ ≥ 2 which does not exceed a constant multiple
of the Euler characteristic of S.

For each p ∈ [k, i], the image of τ ′i under a carrying map τi → τp is a large
subtrack τ ′p of τp, and there is a diagonal extension ζp of τ ′p which carries α. We
may assume that ζu ≺ ζp for u ≥ p. The disk Dp intersects ζp in at most κ points.

For each p ∈ [k, i] let βp ≺ ζp be the subtrack of ζp filled by α. Then βp is
connected and not large. The union Yp of a thickening of βp with the components
of ∂H − βp which are either simply connected or once holed disks is a proper
connected subsurface of ∂H for all p. The boundary of Yp can be realized as a
union of simple closed curves which are embedded in βp (but with cusps). The
carrying map βp+1 → βp maps Yp+1 into Yp. In particular, either the boundary
of Yp+1 coincides up to homotopy with the boundary of Yp or Yp+1 is a proper
subsurface of Yp. This means that there is a boundary circle of Yp+1 which is
essential in Yp and hence in ∂H. In other words, the subsurfaces Yp are nested, and
hence their number is bounded from above by a universal constant h > 0 depending
linearly on the Euler characteristic of S.
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Since ∂Dp intersects ζp in at most κ points, the number of intersections between
∂Dp and ∂Yp is bounded from above by a universal constant χ > 0 (κ times the
maximal number of branches of a train track on ∂H will do, and this number is
quadratic in the Euler characteristic of S). As a consequence, there are h essential
simple closed curves c1, . . . , ch in ∂H so that for every p ∈ [k, i] there is some
r(p) ∈ {1, . . . , h} with

ι(∂Dp, cr(p)) ≤ χ.
Each of the curves cj is a fixed boundary component of one of the subsurfaces Yp.

By reordering, assume that r(i) = 1. Let v1 be the minimum of all numbers
p ∈ [k, i] such that r(v1) = 1. Proposition 3.5 shows that

dS(Di, Dv1) ≤ 2χ+ 8.

On the other hand, we have dS(Dv1 , Dv1−1) = 1. Again by reordering, assume
that r(v1 − 1) = 2 and repeat this construction with the disks Dv1−1, . . . , Dk and
the curve c2. In a ≤ h steps we construct in this way a decreasing sequence
i ≥ v1 > · · · > va = k such that dS(Dvu , Dvu−1

) ≤ 2χ + 9 for all u ≤ a. This
implies that

dS(Di, Dk) ≤ h(2χ+ 9)

which is what we wanted to show. �

The asymptotic dimension asdim(X) of a metric space X is the infimum of all
numbers n ≥ 1 such that the following holds true. For any r > 0, there exists a
covering of X of n− 1 families U0dots,Un of r-disjoint uniformly bounded subsets
of X such that ∪iU i is a cover of X. Here the family U i is called r-disjoint the
distance between any two sets in the family U i is at least r.

As an immediate consequence of Theorem 5.2 we observe

Corollary 5.3. The graph SDG is hyperbolic, and its asymptotic dimension is at
most 4g − 4.

Proof. A quasi-isometrically embedded geodesic metric subgraph of a hyperbolic
geodesic metric graph satisfies the thin triangle condition and hence it is hyperbolic.

Furthermore, it is immediate from the definition that the existence of a quasi-
isometric embedding f : X → Y implies that asdim(X) ≤ asdim(Y ). Now the
asymptotic dimension of the curve graph of a closed surface of genus g is at most
4g − 4 [BB15] (see also the earlier work [BF08] for finiteness) and therefore the
asymptotic dimension of SDG is at most 4g − 4 as claimed. �

As a corollary, we obtain the statement of the theorem 3 from the introduction.

Corollary 5.4. Let H be a handlebody of genus g ≥ 2 without spots. Then the
vertex inclusion SDG → CG is a quasi-isometric embedding.

A hyperbolic geodesic metric space Y admits a Gromov boundary. This boundary
is a topological space on which the isometry group of Y acts as a group of home-
omorphisms. The remainder of this section is devoted to determine the Gromov
boundary of the graph SDG.

Let L be the space of all geodesic laminations on ∂H (for some fixed hyperbolic
metric) equipped with the coarse Hausdorff topology. In this topology, a sequence
(µi) converges to a lamination µ if every accumulation point of (µi) in the usual
Hausdorff topology contains µ as a sublamination. Note that the coarse Hausdorff
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topology on L is not T0, but its restriction to the subspace ∂CG ⊂ L of all minimal
geodesic laminations which fill up ∂H (i.e. which intersect every simple closed geo-
desic transversely) is Hausdorff. The space ∂CG equipped with the coarse Hausdorff
topology can naturally be identified with the Gromov boundary of CG [K99, H06].

Let
∂H ⊂ ∂CG

be the closed subset of all geodesic laminations which are limits in the coarse Haus-
dorff topology of boundaries of disks in H. The handlebody group Map(H) acts on
∂CG as a group of transformations preserving the subset ∂H. The Gromov bound-
ary of SDG can now fairly easily be determined from Corollary 5.4. To this end we
first observe

Lemma 5.5. The Gromov boundary of SDG is a closed Map(H)-invariant subset
of ∂H.

Proof. Since the vertex inclusion SDG → CG defines a quasi-isometric embedding,
the Gromov boundary of SDG is the subset of the Gromov boundary of CG of all
endpoints of quasi-geodesic rays in CG which are contained in SDG.

By the main result of [H06] (see [K99] for an earlier account of a similar state-
ment), a simplicial quasi-geodesic ray γ : [0,∞) → CG defines the endpoint lam-
ination ν ∈ ∂CG if and only if the curves γ(i) converge as i → ∞ in the coarse
Hausdorff topology to ν. As a consequence, the Gromov boundary of SDG is a
subset of ∂H, and this subset is clearly Map(H)-invariant.

We are left with showing that the Gromov boundary of SDG is a closed subset
of ∂CG. To this end note that by Corollary 5.4, there is a number p > 1 such
that for every L > 1, any L-quasi-geodesic in SDG is an Lp-quasi-geodesic in CG.
Moreover, for a suitable choice of p, any vertex in SDG can be connected to any
point in the Gromov boundary of SDG by a p-quasi-geodesic.

Now let (νi) be a sequence in the Gromov boundary of SDG which converges in
∂CG to a lamination ν. Let ∂D be the boundary of a disk and let γ : [0,∞)→ CG
be a quasi-geodesic ray issuing from γ(0) = ∂D with endpoint ν. By hyperbolicity
of CG and by the diskussion in the previous paragraph, there is a number R > 0 and
for every k ≥ 0 there is some i(k) > 0 such that a p-quasi-geodesic in SDG ⊂ CG
connecting γ(0) to νi(k) passes through the R-neighborhood of γ(k) in CG. Since
k > 0 was arbitrary, this implies that the entire quasi-geodesic ray γ is contained
in the R-neighborhood of the subset SDG of CG. Using once more hyperbolicity,
we conclude that there is a quasi-geodesic ray in CG connecting γ(0) to ν which is
entirely contained in SDG. But this just means that ν is contained in the Gromov
boundary of SDG. �

The handlebody group Map(H) naturally acts on the Gromov boundary of SDG
as a group of homeomorphisms. Since Map(H) is a subgroup of the mapping class
group Mod(∂H), by naturality this action is compatible with the action of the
mapping class group on the Gromov boundary of the curve graph. From Lemma
5.5 and the following observation (which is essentially contained in Theorem 1.2 of
[M86]), we conclude that ∂H is indeed the Gromov boundary of SDG.

Lemma 5.6. The action of the handlebody group Map(H) on ∂SDG is minimal.

Proof. Let (∂Di) be a sequence of boundaries of disks Di converging in the coarse
Hausdorff topology to a geodesic lamination µ ∈ ∂H. For each i let Ei be a disk
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which is disjoint from Di. Since the space of geodesic laminations equipped with the
usual Hausdorff topology is compact, up to passing to a subsequence the sequence
(∂Ei) converges in the Hausdorff topology to a geodesic lamination ν which does not
intersect µ (we refer to [K99, H06] for details of this argument). Now µ is minimal
and fills up ∂H and therefore the lamination ν contains µ as a sublamination. This
just means that (∂Ei) converges in the coarse Hausdorff topology to µ.

Since the genus of H is at least two, for every separating disk in H we can
find a disjoint non-separating disk. Thus the diskussion in the previous paragraph
shows that every µ ∈ ∂H is a limit in the coarse Hausdorff topology of a sequence
of non-separating disks. However, the handlebody group acts transitively on non-
separating disks. Minimality of the action of Map(H) on ∂SDG follows. �

As an immediate consequence of Lemma 5.5 and Lemma 5.6 we obtain

Corollary 5.7. ∂H is the Gromov boundary of SDG.

The following definition is taken from the beginning of Section 3 of [H16].

Definition 5.8. A connected essential subsurface X of ∂H is called thick if the
following conditions are satisfied.

(1) Every disk intersects X.
(2) X is filled by boundaries of disks.

By the remark after Lemma 3.1 of [H16], a thick subsurface X of ∂H is distinct
from a sphere with at most four holes and from a torus with a single hole.

Our first goal is to show that the asymptotic dimension of the electrified disk
graph of a thick subsurface of X is finite. To this end denote by dCG,X the distance
in the curve graph CG of X and by dE,X the distance in the electrified disk graph
of X.

In Definition 3.3 of [H16], an I-bundle generator in X is defined to be an essential
simple closed curve γ ⊂ X with the following property. There is a compact surface
F with non-empty boundary ∂F , there is a boundary component α of ∂F , and
there is an orientation preserving embedding Ψ of the oriented I-bundle I(F ) over
F into H which maps α to γ and which maps Fα onto the complement in X of a
tubular neighborhood of the boundary ∂X of X. The surface F is called the base
of the I-bundle generated by γ.

By what we showed so far, if X does not contain an I-bundle generator then
EDG(X) = SDG(X) and there is nothing to show. Thus assume that there is an
I-bundle generator γ ⊂ X. Let

E(γ) ⊂ EDG(X)

be the complete subgraph of EDG(X) whose vertices are disks intersecting γ in
precisely two points. Define

E = {E(γ) | γ}
where γ runs through all I-bundle generators in X. By definition, SDG(X) is
2-quasi-isometric to the E-electrification of EDG(X).

Let now D be a disk with boundary ∂D ⊂ X which intersects some I-bundle
generator γ in precisely two points. Then D is an I-bundle over a simple arc β ⊂ F
with boundary on γ (see p.21-22 in [H16]). We call β the projection of ∂D to F .

By Lemma 4.2 of [H16], the map which associates to a disk D ∈ E(γ) the
projection of ∂D to the base surface F extends to a 2-quasi-isometry of E(γ) onto
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the electrified arc graph of F which is 4-quasi-isometric to the curve graph of F
(see Lemma 4.1 of [H16] for a proof of this folclore result). In particular, by [BB15]
we have

Proposition 5.9. The asymptotic dimension of the graph E(γ) is bounded from
above by 4g(F )− 3 + p where h ≤ g/2 is the genus of F and where p is the number
of boundary components.

As a corollary, we obtain

Corollary 5.10. Let X ⊂ ∂H be a thick subsurface of genus g(X) ≥ 0 with p
boundary components; then asdim(EG(X)) ≤ 8g(X)− 6 + 2p.

Proof. The graph EG(X) is hyperbolic and hyperbolic relative to the subgraphs
E(γ), with electrification the graph SDG(X). By Proposition 5.9, the asymptotic
dimension of each of the graphs E(γ) is not smaller than 4g(F )− 3 + p′ where F is
the base surface of the I-bundle and p′ is the number of its boundary components.
Note that 4g(F )−3 +p′ ≤ 4g(X)−4 +p and therefore by Proposition 2.3, we have
asdim(EG(X) ≤ 8g(X)− 6 + 2p as claimed. �

As a consequence of Corollary 5.10 and the results in [H16] we are now ready to
show

Theorem 5.11. The asymptotic dimension of the disk graph of a handlebody of
genus g is bounded from above by (6g − 6)(4g − 4).

Proof. By the main result of [H16] and the above estimates of asymptotic dimen-
sion, there is a sequence G1, . . . ,G3g−3 of hyperbolic graphs with the following prop-
erties.

(1) G1 = EG(∂H).
(2) For each i ≥ 2, Gi is a hyperbolic graph which is hyperbolic relative to a

family H of hyperbolic subgraphs. The H-electrification of Gi equals the
graph Gi−1. The asymptotic dimension of each graph in the family is at
most 2(4g − 4).

Applying Proposition 2.3 inductively 3g − 3 times then yields that indeed, the
asymptotic dimension of the disk graph is at most ((6g − 6)(4g − 4). �

6. Disks for a handlebody with a single spot

A handlebody with spots is a handlebody H of genus g ≥ 1 with m ≥ 1 marked
points, called spots, on the boundary. We view the boundary ∂H of such a handle-
body as a surface with m punctures.

A disk in a handlebody with spots is a disk D in H whose boundary ∂D is
disjoint from the spots. We require that ∂D is an essential simple closed curve in
∂H, i.e. it is neither contractible nor homotopic into a spot. Two such disks are
isotopic if there is an isotopy between them which is disjoint from the spots. We
use the terminology introduced in Section 2 also for handlebodies with spots.

For the remainder of this section we consider a handlebody H of genus g ≥ 2
with a single spot p. Our goal is to prove the first part of Theorem 4 from the
introduction.

Let H0 be the handlebody obtained from H by forgetting the spot and let

Φ : H → H0
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be the natural forgetful map. Let CG be the curve graph of ∂H and let CG(∂H0)
be the curve graph of ∂H0.

Lemma 6.1. The map Φ induces a simplicial surjection

Π : CG → CG(∂H0)

which maps diskbounding curves to diskbounding curves.

Proof. Since H has a single spot, the image under the map Φ of an essential simple
closed curve γ on ∂H is an essential simple closed curve Φ(γ) on ∂H0. The curve
γ is diskbounding if and only if this is the case for Φ(γ). Moreover, if γ, δ are
disjoint then this holds true for Φ(γ),Φ(δ) as well. This immediately implies the
lemma. �

Theorem 7.1 of [KLS09] shows that for every simple closed curve c in ∂H0 the
preimage Π−1(c) of c in the curve graph CG of ∂H is a tree Tc which can be described
as follows.

Let H2 be the universal covering of ∂H0 and let S(c) be the preimage of c in
H2. Let T be the tree whose vertex set is the set of components of H2 −S(c), and
where two components are connected by an edge if their closures intersect. View
the spot p as the basepoint for the fundamental group of ∂H0. We assume that p
does not lie on c. Then π1(∂H0, p) acts transitively on T as a group of simplicial
isometries. The tree Tc is π1(∂H0, p)-equivariantly isomorphic to T (see Section 7
of [KLS09] for details).

A section for the projection Π : CG → CG(∂H0) is a map Λ : CG(∂H0)→ CG so
that Π ◦ Λ = Id. The next observation is essentially due to Harer (see [KLS09]).

Lemma 6.2. For each γ ∈ CG there is an isometric section Λ : CG(H0)→ CG for
the projection Π : CG → CG(H0) passing through γ.

Proof. Fix a hyperbolic metric on ∂H0. Every simple closed curve on ∂H0 can be
represented by a unique simple closed geodesic. The union of these geodesics has
area zero and hence there is a point x ∈ ∂H0 which is not contained in any such
geodesic. View x as the marked point in ∂H.

Define a map Λ : CG(∂H0) → CG as follows. To a vertex of CG(∂H0), i.e. a
simple closed curve on ∂H0, associate the isotopy class Λ(γ) of γ viewed as a curve
in ∂H = (∂H0, x). Clearly Π ◦Λ is the identity on vertices of CG(∂H0). If α, β are
disjoint simple closed curves on ∂H0 then their geodesic representatives are disjoint
as well, and Λ(α),Λ(β) are disjoint simple closed curves in ∂H. Thus Λ extends to a
simplicial section. Since Π is distance non-increasing, Λ is an isometric embedding
of CG(∂H0) into CG.

Consider the Birman exact sequence

(2) 0→ π1(∂H0, x)→ Mod(∂H)→ Mod(∂H0)→ 0.

The action of π1(∂H0, x) on the curve graph of ∂H is fibre preserving. Indeed,
the restriction of this action to a fixed fibre is just the action of π1(∂H0, x) on the
geometric realization of the fibre as described in the text preceding this proof. In
particular, this action is transitive on vertices in the fibres (see [KLS09] for details).
Equivalently, for every simple closed curve α on ∂H and any curve β ∈ Π−1(Π(α))
there is a mapping class ψ ∈ π1(∂H0, x) < Mod(∂H) so that ψ(α) = β.

Since the map ψ acts as a fibre preserving simplicial isometry on the curve graph
of ∂H, the composition ψ◦Λ is a new isometric section for the map Π. This implies
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that for every vertex of CG there is an isometric section for the projection Π whose
image contains that point. This is what we wanted to show. �

Remark: 1) The proof of Lemma 6.2 contains some additional information.
Namely, two simple closed curves γ, δ on ∂H are contained in the image of an
isometric section CG(∂H0)→ CG as constructed by Harer [KLS09] and used in the
proof of Lemma 6.2 if the spot is not contained in a component of ∂H − (γ ∪ δ)
which is a punctured bigon, i.e. a component whose boundary consists of a single
subarc of γ and a single subarc of δ.

2) In [MjS12] (see also [H05]), the authors define a metric graph bundle to consist
of graphs V,B and a surjective simplicial map p : V → B with the following
properties.

(1) For each b ∈ V(B), Fb = p−1(b) is a connected subgraph of V , and the
inclusion maps i : V(Fb)→ V are uniformly metrically proper for the path
metric db induced on Fb as measured by a non-decreasing surjective function
f : N→ N.

(2) For any two adjacent vertices b1, b2 of V(B), each vertex x1 of Fb1 is con-
nected by an edge with a vertex in Fb2 .

If the fibres are trees then we speak about a metric tree bundle.
By Lemma 6.2, the graph projection Π : CG → CG(H0) satisfies the second

property in the definition of a metric tree bundle. However, the first property
states that for every b ∈ B the distance in V between any two points x, y ∈ Fb is
bounded from below by f(db(x, y)), and this property is violated for the map Π. As
an example, let c1, c2 be two disjoint non-separating simple closed curves in ∂H0,
let x ∈ ∂H0 − (c1 ∪ c2) and let ζ be a loop in π1(∂H0 − c1, x) which fills ∂H0 − c1.
Then the point pushing map β defined by ζ via the Birman exact sequence (2) acts
as a hyperbolic isometry and hence with positive translation length on the fibre
over c2 although the distance in CG(H) between any two points on the orbit is at
most two.

Thus we can not use Theorem 5.2 to deduce that the superconducting disk graph
of H is quasi-isometrically embedded in the curve graph CG of ∂H. In fact we have

Proposition 6.3. The disk graph of H is not a quasi-convex subset of the curve
graph of ∂H.

Proof. The curve graph of ∂H is hyperbolic, and pseudo-Anosov elements of the
mapping class group of ∂H act as hyperbolic isometries on the curve graph. If
γ ∈ π1(∂H0, x) is filling, i.e. if γ decomposes ∂H0 into disks, then the image Ψ(γ) of
γ in Mod(∂H) via the Birman exact sequence (2) is pseudo-Anosov [Kr81, KLS09].

Let ϕ be a diffeomorphism of ∂H0 which fixes the basepoint x and which defines
a pseudo-Anosov element of Mod(H0). We require that a quasi-axis for the action
of ϕ on CG(H0) passes uniformly near the boundary of a disk and that moreover
for any diskbounding simple closed curve ζ, the distance in CG(H0) between ϕkζ
and the quasi-convex subset of diskbounding curves tends to infinity as k →∞.

Such a pseudo-Anosov element can be found as follows. Each pseudo-Anosov
element fixes two filling projective measured laminations, and the set of pairs of
such fixed points is dense in PML × PML. The closure in PML of the set of
diskbounding simple closed curves is nowhere dense in PML, and a pseudo-Anosov
element ϕ whose pair of fixed points is contained in the complement will do.
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Since ϕ fixes the point x, it acts on the fundamental group π1(∂H0, x) of ∂H0,
moreover it can be viewed as an element of Mod(∂H). We denote this element of
Mod(∂H) again by ϕ.

Let β ⊂ ∂H0 − {x} be a diskbounding curve near a quasi-axis of ϕ. Via the
isometric section Λ : CG(∂H0) → CG defined by x as in Lemma 6.2, we can view
β as a diskbounding curve in ∂H. Let γ ∈ π1(∂H0, x) be a filling curve. For each
k > 0 let βk be the image of β under point-pushing by the curve ϕk(γ). Then βk
is diskbounding, moreover we have

βk = (ϕk ◦Ψ(γ) ◦ ϕ−k)(β).

A quasi-axis in CG of the pseudo-Anosov element ϕk ◦ Ψ(γ) ◦ ϕ−k is the image
under ϕk of a quasi-axis of Ψ(γ). By hyperbolicity of CG, via perhaps replacing γ
by a multiple we may assume that a geodesic in CG connecting β to βk is close in
the Hausdorff topology to the composition of three arcs. The first arc connects β
to a quasi-axis ζ of ϕk ◦Ψ(γ)◦ϕ−k, the second arc travels along ζ and the third arc
connects ζ to βk. However, by the choice of ϕ, for suitable choices of k and suitable
multiplicities of γ, such a curve is arbitrarly far in CG from the set of diskbounding
curves. �

7. Handlebodies with at least two spots

In this section we show the second part of Theorem 4 from the introduction. We
continue to use the notations from Section 2-4.

As mentioned at the end of Section 2, the fact that surgery of disks in handlebod-
ies with spots may produce peripheral disks causes substantial difficulty. Indeed,
we showed in Section 5 that for handlebodies H with a single spot and genus g ≥ 2,
boundaries of disks do not form a quasi-convex subset of the curve graph of ∂H.
To understand disk graphs in handlebodies with at least two spots we first estab-
lish a weaker analog of Lemma 3.1 and then analyze in detail disks which become
peripheral after a single surgery.

As a warm-up, observe that for handlebodies H with a single spot, Lemma 3.1 is
valid. Namely, for any two disks D,E with boundary in ∂H which are not disjoint
and for any outer component E′ of E −D, at least one of the disks obtained from
D by surgery at E′ is not peripheral. Thus the proof of Lemma 3.1 carries over
without modification. Denote as before by dD and dE the distance in the disk graph
and the electrified disk graph, respectively. We obtain

Lemma 7.1. If ∂H contains a single spot then for any disks D,E in H we have

dD(D,E) ≤ ι(∂D, ∂E)/2 + 1.

For convenience of notation in the proof of the following lemma, we define the
intersection between a peripheral curve α in ∂H and any other curve β in ∂H as
ι(α, β) = 0.

Lemma 7.2. Let H be a handlebody with n ≥ 2 spots. Then for any two disks
D,E in H we have

dE(D,E) ≤ ι(∂D, ∂E)/2 + 1.

Proof. As in the proof of Lemma 3.1, we proceed by induction on ι(∂D, ∂E). The
case ι(∂D, ∂E) = 0 is immediate from the definitions. Thus assume that the claim
of the lemma holds true whenever ι(∂D, ∂E) ≤ k − 1 for some k ≥ 1.
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Let α = ∂D, β = ∂E ⊂ ∂H be diskbounding simple closed curves with ι(α, β) =
k. If there is an essential simple closed curve γ ⊂ ∂H disjoint from α ∪ β then
dE(D,E) ≤ 1 by the definition of the electrified disk graph and there is nothing
to show. Thus assume that α ∪ β decomposes ∂H into disks and one-holed disks.
Then a componenet of ∂H − (α ∪ β) is a polygon or one-holed polygon with sides
alternating between subarcs of α and subarcs of β. A complementary polygon has
at least four sides. A punctured bigon is a complementary component which is a
one-holed disk bounded by a single subarc of α and a single subarc of β.

Let E′ be an outer component of E − D (see Section 2 for the terminology).
Surgery of D at E′ yields two disks B1, B2 in H. The boundaries of these disks are
simple closed curves α1, α2 in ∂H which are disjoint from α, moreover ι(αi, β) ≤
k − 2 = ι(α, β)− 2. If at least one of the disks B1, B2 is essential, say if this holds
true for B1, then B1 is a disk with dE(D,B1) = 1 and ι(∂B1, ∂E) ≤ k − 2. Thus
the induction hypothesis can be applied to B1 and E and shows the lemma.

If both disks B1, B2 are non-essential then α = ∂D bounds a twice punctured
disk D0 which is embedded in ∂H. The curve β = ∂E decomposes D0 into two
once punctured disks A1, A2 and a set of rectangles.

a1

A1 A2

alpha

beta

Figure B

The once punctured disk Ai (i = 1, 2) is bounded by a subarc ai of α and a
subarc bi of β. Let pi be the spot contained in Ai. The arc ai is an outer arc for
the disk E. For i = 1, 2 surger E at the outer arc ai to a disk whose boundary βi is
obtained from β by replacing the arc bi with the arc ai. Then ι(α, βi) ≤ ι(α, β)− 2
and hence if either β1 or β2 is essential then the claim follows as before from the
induction hypothesis.

Thus we are left with the case that both curves β1, β2 are peripheral. Then β
bounds a disk E0 ⊂ ∂H punctured at p1, p2. The intersection D0 ∩E0 is a union of
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the once punctured bigons A1, A2 and a collection of rectangles. More precisely, if
R = E0− (A1∪A2) then the intersections of R with ∂D0 decompose R into a chain
of rectangles R1, . . . , Rs such that for even i, the rectangle Ri is contained in the
twice punctured disk D0, and for odd i the rectangle Ri is contained in ∂H −D0.
The number s of rectangles is odd, and ι(∂D, ∂E) = ι(α, β) = 2s+ 2.

Assume for the moment that s = 1, i.e. that the rectangle R does not intersect
D0. Then R is homotopic relative to α to an embedded arc ρ in ∂H−D0. Thus ∂H
contains an essential simple closed curve γ which is disjoint from D0 ∪R, and γ is
disjoint from both D0, E0 and hence from D and E. This shows that dE(D,E) ≤ 1
which is what we wanted to show.

If s ≥ 3 then assume without loss of generality that the arc a1 ⊂ A1 is contained
in the boundary of the rectangle R1. Homotope the rectangle R1 relative to α to
a rectangle R̂1 such that the side ρ of R̂1 which is opposite to a1 is a subarc of
a2 ⊂ α. Attach to ρ a disk G ⊂ A2 punctured at p2. The union A1 ∪ R̂1 ∪ G is
a disk B0 ⊂ ∂H punctured at p1 and p2. The boundary of B0 bounds a properly
embedded disk B in H. By the case s = 1 diskussed above, we have dE(D,B) ≤ 1.

On the other hand, ι(∂B, β) ≤ 2s− 2 = ι(α, β)− 4 and hence the claim follows
as before from the induction hypothesis. �

We next establish a version of Proposition 3.5 for disks D,E in handlebodies
with at least two spots on the boundary which become peripheral after closing one
of the spots. To ease terminology we say that a disk D ⊂ H encloses two spots
p1, p2 in ∂H if D is homotopic with fixed boundary to a disk D0 ⊂ ∂H punctured
at the points p1, p2.

Lemma 7.3. Let D,E be two disks in H which enclose the same spots p1 6= p2 ∈ X.
If there is a simple closed curve γ ⊂ ∂H which intersects ∂D, ∂E in at most k ≥ 1
points then dE(D,E) ≤ 2k + 12.

Proof. Let D,E be as in the lemma, with boundaries ∂D = α, ∂E = β. Then
α, β bound disks D0, E0 ⊂ ∂H punctured at the points p1, p2. Up to isotopy, the
intersection D0 ∩E0 is a union of two once punctured bigons A1, A2 and a disjoint
union of rectangles. The punctured bigon Ai (i = 1, 2) is bounded by a subarc of
α and a subarc of β. Assume that Ai contains the spot pi (i = 1, 2).

Let γ ⊂ ∂H be a simple closed curve which intersects both α, β in at most k
points. If γ is not disjoint from α then γ ∩D0 is a union of at most k/2 pairwise
disjoint arcs. By modifying γ with an isotopy we may assume that these arcs are
disjoint from the punctured disks A1, A2. For i = 1, 2 choose a compact arc ci ⊂ D0

which connects the punctured bigon Ai to γ and whose interior is disjoint from γ.
Let moreover γ0 be one of the two subarcs of γ which connect the two endpoints of
c1, c2 on γ. The concatenation c1 ◦ γ0 ◦ c−12 (read from left to right) of c1, γ0, c

−1
2 is

an embedded arc in ∂H connecting A1 to A2.
Let C0 ⊂ ∂H be an embedded rectangle with two opposite sides contained in

the interior of ∂A1∩D0, ∂A2∩D0 which is a thickening of the arc c1 ◦γ0 ◦ c−12 . The
union of C0 with A1 ∪ A2 is a disk B0 punctured at p1, p2 whose boundary ∂B0

intersects γ in at most two points, one intersection point each near the endpoints
of c1, c2, and it intersects ∂D0 = α in at most 2k points.

Let B ⊂ H be a properly embedded disk with boundary ∂B = ∂B0. The disk
B encloses the spots p1, p2. By Lemma 7.2, we have dE(D,B) ≤ k + 1. Thus
via replacing D by B we may assume that γ intersects D in at most two points.
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Repeating this construction with the disk E implies that it suffices to show the
following. If the simple closed curve γ ⊂ ∂H intersects each of the curves ∂D, ∂E
in at most two points then dE(D,E) ≤ 10. Note that since ∂D, ∂E are separating
simple closed curves, the curve γ intersects ∂D0 = ∂D, ∂E0 = ∂E in either two or
zero points.

In the case that γ is disjoint from both D0, E0 we are done, so assume (via
possibly exchanging D0 and E0) that γ intersects ∂E0 in precisely two points. If
γ is not disjoint from D0 then we may assume that γ ∩ D0 is disjoint from E0.
Moreover, in this case we may assume that each of the two curves obtained from
γ by replacing γ ∩ D0 by a subarc of α = ∂D with the same endpoints is not
peripheral. Namely, otherwise γ bounds a disk B in H and the claim follows from
Lemma 7.2 applied to D,B and to B,E.

Let R be the component of E0−D0 containing γ∩E0. Let E1 be the component
of E0−R which contains the once punctured disk A1. Note that E1 is disjoint from
γ. The intersection E1∩D0 is a finite union of disjoint rectangles. Let R̂ ⊂ E1∩D0

be the component which is closest to the once punctured disk A2 in D0. This
means that there is an embedded arc c3 ⊂ D0 with one endpoint in R̂ and the
second endpoint in A2 which intersects E1 only at one endpoint. Let E2 ⊂ E1

be the union of the component of E1 − R̂ containing A1 with R̂. Note that E2 is
disjoint from γ. The union of the once punctured disk E2, a thickening of the arc c3
and the once punctured disk A2 is a twice punctured disk V embedded in ∂H. Let
D1 ⊂ H be a properly embedded disk with boundary ∂D1 = ∂V . Then D1 encloses
the spots p1, p2. Moreover, if the rectangle component R of E0−D0 containing the
intersection of E0 with γ is the component of E0 −D0 which contains ∂A2 ∩ ∂D0

in its boundary then ι(∂D1, ∂E) = 4.
We distinguish three cases.

Case 1: γ ∩D0 6= ∅ and R̂ is contained in the component of D0 − γ containing
A1, or, equivalently, γ ∩D0 lies between R̂ and A2.

Then the punctured disk V and hence D1 is disjoint from the essential simple
closed curve γ′ which is obtained from γ by replacing the γ∩D0 by the subarc of α
with the same endpoints which contains A2 ∩ α. Since both D and D1 are disjoint
from γ′, we have dE(D,D1) = 1. Moreover, D1 intersects γ in precisely two points.
Replace D by D1.

Case 2: γ ∩D0 = ∅.
Then D1 is disjoint from γ, and dE(D,D1) = 1. Replace D by D1.

Case 3: γ ∩D0 6= ∅ and R̂ is contained in the component of D0 − γ containing
A2.

Then D1 is disjoint from γ. Thus the pairs of disks D,D1 and D1, E satisfy the
hypothesis in Case 2. Therefore this case follows from two applications of Case 2,
applied to D,D1 and D1, E provided that we can show that under the assumption
of Case 2 above, we have dE(D,E) ≤ 5.

We now continue to investigate Case 1 and Case 2. Using the above notations
for Case 1 and Case 2, let Q be the component of D0 − R̂ containing A2. The
components of V ∩ E0 which are different from once punctured disks are up to
isotopy contained in Q∩E0. Since the subdisk E1 ⊂ E0−R is disjoint from Q this
implies that the rectangle component R1 of E0 − V which contains γ ∩E0 has one
side on the boundary of the disk component of V ∩ E0 which is punctured at p1.
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Reapply the above construction with the disks D1 and E, but with the roles
of the punctures p1, p2 exchanged. Let V ′ be the twice punctured disk obtained
from this construction. Since the component of E0 − V containing the intersection
with γ is the rectangle adjacent to the bigon component of V ∩ E0 punctured at
p1, the remark before Case 1 above shows that ∂V ′ ∩ ∂E0 consists of four points.
In particular, if D2 ⊂ H is the properly embedded disk with boundary ∂D2 = ∂V ′

then dE(D2, E) ≤ 3 by Lemma 7.2.
An application of the above analysis to D1 and E yields the following. If either

γ is disjoint from D1 or if γ is not disjoint from D2 then dE(D1, D2) = 1, moreover
dE(D2, E) ≤ 3 and hence dE(D1, E) ≤ 4.

To summarize, we have.

i) In Case 2 above, dE(D,E) ≤ 5.
ii) In Case 1, either the pairs of disks D1, E also satisfy Case 1 and then

dE(D,E) ≤ 5, or there is a disk D′ which is disjoint from γ.
iii) In Case 3, there is a disk D′ which is disjoint from γ.

As a consequence, either dE(D,E) ≤ 5 or there is a disk D′ with dE(D
′, D) ≤

5, dE(D
′, E) ≤ 5 which is what we wanted to show. �

We use Lemma 7.2 and Lemma 7.3 to show the second part of Theorem 4.

Proposition 7.4. Let H be a handlebody with n ≥ 2 spots. Then the map EDG →
CG which associates to a disk its boundary is a 16-quasi-isometry.

Proof. Let γ ⊂ ∂H be any simple closed curve. Let p1, p2 be two spots of ∂H.
Then there is an embedded arc α ⊂ ∂H connecting p1 to p2 which intersects γ in
at most one point. A thickening of α is a diskbounding simple closed curve in X
which intersects γ in at most two points. Thus any simple closed curve in ∂H is at
distance two in CG from a diskbounding simple closed curve. Moreover, by Lemma
7.2, for any disk D in H there is a disk D′ which encloses the spots p1, p2 and such
that dE(D,D

′) ≤ 2.
As a consequence, it suffices to show the following. If the disks D,E both enclose

the spots p1, p2 in ∂H then

dE(D,E) ≤ 16dCG(∂D, ∂E)

where dCG denotes the distance in the curve graph of ∂H.
Let (γi)0≤i≤` be a geodesic in CG connecting ∂D = γ0 to ∂E = γ`. The curve γi

is disjoint from γi+1.
Since for each i < ` the simple closed curves γi, γi+1 are disjoint, there is a simple

arc in ∂H connecting p1 to p2 which intersects each of the curves γi and γi+1 in at
most one point. A thickening of such an arc is a curve βi,i+1 which bounds a disk
Bi,i+1 enclosing p1 and p2. The curve βi,i+1 intersects both γi and γi+1 in at most
two points.

By Lemma 7.3,
dE(Bi−1,i, Bi,i+1) ≤ 16 ∀i.

This means that D can be connected to E by a path in EDG whose length does not
exceed 16dCG(∂D, ∂E). This shows the proposition. �
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