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Abstract. We show that for a non-hyperelliptic component Q of a stratum
of quadratic differentials with at least two zeros of odd order, the Lyapunov

spectrum of the Kontsevich Zorich cocycle over Q with respect to the invariant

Lebesgue measure is simple. This is a consequence of a much more general
result which applies to flat bundles over affine invariant manifolds whose mon-

odromy is Zariski dense in Sp(2m,R) or SL(n,R).
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1. Introduction

The mapping class group Mod(S) of a closed surface S of genus g ≥ 2 acts
by precomposition of marking on the Teichmüller space T (S) of marked complex
structures on S. The action is properly discontinuous, with quotient the moduli
space Mg of complex structures on S.

The fiber over a Riemann surface x ∈ Mg of the Hodge bundle

Π : H → Mg

equals the vector space of holomorphic one-forms (or abelian differentials) on x.
The Hodge bundle is a holomorphic vector bundle (in the orbifold sense) over the
complex orbifold Mg of complex dimension g. The complement H+ of its zero
section decomposes into strata of differentials with zeros of a fixed number and
fixed multiplicities. There is a natural GL+(2,R)-action on H+ preserving any
connected component of a stratum. The subgroup SL(2,R) also preserves the sphere
subbundle of area one abelian differentials. The action of the diagonal subgroup is
called the Teichmüller flow Φt.

Period coordinates on a component Q of a stratum of abelian differentials with
singular set Σ ⊂ S are obtained by integration of a holomorphic one-form q ∈ Q
over a basis of the relative homology group H1(S,Σ,Z). Thus a tangent vector of
Q defines a point in H1(S,Σ,C)∗.

By the groundbreaking work of Eskin, Mirzakhani and Mohammadi [EMM15],
the orbit closures of the GL+(2,R)-action on the moduli space of abelian differen-
tials are precisely the so-called affine invariant manifolds. Such manifolds C+ are
cut out by linear equations in period coordinates. The real hypersurface C ⊂ C+
of differentials of area one admits a distinguished Φt-invariant ergodic probability
measure µ in the Lebesgue measure class.

The preimage of an affine invariant manifold C in the Teichmüller space of abelian
differentials decomposes into connected components which are permuted by the
action of the mapping class group. Choose such a component C̃ and let Γ ⊂ Mod(S)

be the stabilizer of C̃; we then have C = Γ\C̃. If C is a non-hyperelliptic component
of a stratum of abelian differentials, then Γ is a subgroup of Mod(S) of finite index
[CS21, H21]. In contrast, if C is a Teichmüller curve then Γ is the Veech group of
C and hence it is virtually free.

Let now G be either the symplectic group Sp(2m,R) or the linear group SL(n,R)
and let ρ : Γ → G be a homomorphism. Then ρ defines a flat bundle G → C with
fiber G. There also is an associated flat vector bundle V → C, defined by the
standard linear action of G. Parallel transport with respect to the flat connection
in V then defines the monodromy group of the flat bundle V → C, which coincides
with the group ρ(Γ). The flat connection also determines an extension Ψt of the
Teichmüller flow Φt on C to V.

Let us assume that this extension fulfills the requirements for an application of
the Oseledec multiplicative ergodic theorem with respect to the invariant probabil-
ity measure µ on C in the Lebesgue measure class. Then the Lyapunov spectrum
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λ1 < · · · < λk for the extension Ψt of Φt is defined. The multiplicity of a Lya-
punov exponent λi equals the maximal dimension of a linear subspace V ⊂ Vq

for a µ-generic point q ∈ C so that for any 0 ̸= X ∈ V , the asymptotic growth
rate lim supt→∞

1
t log |Ψ

tX| for some suitable norm | | on V is precisely λi. The
Lyapunov spectrum is called simple if this multiplicity is one for all i.

The following is our main result.

Theorem 1. If the image ρ(Γ) of ρ is Zariski dense in G, then the Lyapunov
spectrum of the flow Ψt is simple.

There are several interesting cases to which Theorem 1 can be applied. Namely,
the most natural homomorphism ρ : Mod(S) → Sp(2g,Z) is defined by the action
of Mod(S) on the first cohomology group H1(S,Z) of S, equipped with the cup
product. The flat vector bundle over Mg defined by this representation is just the
Hodge bundle. The pull-back Π∗H of the Hodge bundle to the hypersurface in H
of area one differentials is a flat vector bundle defining an extension of Φt which is
commonly called the Kontsevich Zorich cocycle. The flat connection is called the
Gauss Manin connection. The following is due to Avila and Viana [AV07b].

Corollary 1. Let Q be a component of a stratum of abelian differentials. Then
the Lyapunov spectrum of the Kontsevich Zorich cocycle over Q with respect to the
invariant Lebesgue measure is simple.

Interestingly, the corollary was established before a thorough investigation of
the Zariski closure of the Kontsevich Zorich cocycle over a component of a stratum
of abelian differentials was carried out (see [GR17]). Note that for general repre-
sentations ρ with the property that the Zariski closure of the monodromy group
of the corresponding flat bundle is a proper algebraic subgroup H of G, a Cartan
subalgebra of H may not contain a regular element of the Cartan subalgebra of G
and simplicity of the Lyapunov spectrum is obstructed.

The rank of an affine invariant manifold C is defined by

rk(C) = 1

2
dimC(pTC)

where p is the projection of H1(S,Σ,C)∗ into H1(S,C)∗ = H1(S,C) [W14]. The
rank of a component of a stratum equals g.

If we denote by ZR the projection of the tangent bundle of C to H1(S,R) ⊂
H1(S,C) then ZR is a flat symplectic [AEM17, F16] subbundle of the restriction of
Π∗H to C. Thus ZR is invariant under the Gauss Manin connection. In Section 4
we verify that the monodromy group of ZR is Zariski dense in the symplectic group
Sp(ZR,R) of ZR and hence we obtain.

Corollary 2. Let C be an affine invariant manifold; then the Lyapunov spectrum
of the flat bundle ZR → C with respect to the invariant Lebesgue measure is simple.

We can also consider the pull-back of the Hodge bundle to the moduli space
P : S → Mg of area one quadratic differentials on S. As before, it decomposes
into strata of differentials with the same number of zeros of the same multiplicities.
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Each quadratic differential determines uniquely an orientation cover, which is a
two-sheeted branched cover of S, equipped with an abelian differential. Thus com-
ponents of strata of quadratic differentials define affine invariant manifolds in the
moduli space of abelian differentials on the covering surface. The natural invariant
measure in the Lebesgue measure class on the branched covering affine invariant
manifold is the lift of the Masur Veech measure on the component.

Components of strata of quadratic differentials were classified by Lanneau [L08].
As we only consider strata of differentials without simple poles and with at least
three zeros, non-hyperelliptic components of any stratum are unique [L08].

Corollary 3. Let Q be a non-hyperelliptic component of a stratum of quadratic
differentials on a surface of genus g ≥ 3 with at least two zeros of odd order. Then
the restriction of the Kontsevich Zorich cocycle to Q is Zariski dense. Thus the
Lyapunov spectrum of the Kontsevich Zorich cocycle over Q is simple with respect
to the Masur Veech measure.

The statement of the corollary does not seem to be true for non-excecptional
components of strata of quadratic differentials with a single zero. We do not know
what happens for components of strata of quadratic differentials with more than
one zero but all zeros of even order. Simplicity of the Lyapunov spectrum for the
Kontsevich Zorich cocycle over the principal stratum of quadratic differentials was
announced by Eskin and Rafi, using different methods.

Let now h = 6g − 6 and consider again the sphere bundle S → Mg of area one
quadratic differentials. Denote by Λ the set of all periodic orbits for the Teichmüller
flow on S (here we represent orbits of abelian differentials by orbits of their squares).
We know that [H13]

♯{γ ∈ Λ | ℓ(γ) ≤ R} hR
ehR

→ 1 (R→ ∞).

Call a subset A of Λ typical if

♯{γ ∈ A | ℓ(γ) ≤ R} hR
ehR

→ 1 (R→ ∞).

To each periodic orbit γ ∈ Λ is associate a conjugacy class of a pseudo-Anosov
mapping class which maps to a conjugacy class of an element A(γ) ∈ Sp(2g,R). As
the characteristic polynomial of a symplectic matrix is invariant under conjugation,
we can ask for the eigenvalues of A(γ) without ambiguity. By abuse of notation we
call the collection of these eigenvalues the spectrum of γ. Using [H23] we obtain.

Corollary 4. The spectrum of a typical periodic orbit γ ∈ Λ consists of 2g pairwise
distinct real eigenvalues.

The mapping class group Mod(S) also acts on the spaceML ofmeasured geodesic
laminations as a group of transformations, preserving the Thurston symplectic form.
This space is not a vector space, however via pull-back it defines a flat bundle over
the bundle S → Mg. If Q ⊂ S denotes the principal stratum of area one quadratic
differentials, then a measured geodesic lamnation pulls back to an absolute real
cohomology class on the orientation cover ofQ. Thus with a small abuse of notation,
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we can ask for the Lyapunov spectrum of the Teichmüller flow on Q for the flat
bundle with fiber ML.

Corollary 5. Let Q ⊂ S be the principal stratum of area one quadratic differentials.
Then the Lyapunov spectrum of the bundle over Q with fiber ML is simple with
respect to the invariant Lebesgue measure on Q.

It would be interesting to relate the statement of the corollary to the embedding
of Teichmüller space into the moduli space of principally polarized abelian varieties.
As it stands, it seems rather curious.

Strategy of the proofs and organization of the article: Our argument has
three partially independent parts.

In the first part, which is carried out in Section 3 and is based on earlier results
in [H13, H23], we establish a non-uniform shadowing property for the Teichmüller
flow on an affine invariant manifold C which is reminiscent of familiar results in
hyperbolic dynamics. This is used to associate to an orbit segment beginning
and ending in a suitably chosen open subset Y of C a pseudo-Anosov element in
Mod(S) in such a way that concatenation of orbit segments (which is not required
to be continuous) translates into multiplication of group elements. The resulting
subsemigroup Ω(Γ0) of Mod(S) consists entirely of pseudo-Anosov mapping classes.

The image of the subsemigroup Ω(Γ0) of Mod(S) under the homomorphism ρ
defines a subsemigroup of a symplectic group or the special linear group. For the
standard representation ρ : Mod(S) → Sp(2g,Z) and an affine invariant manifold
C, the target group is the group Sp(ZR,R) introduced above. The second part
of our approach consists in establishing Zariski density of the monodromy of ZR
over any affine invariant manifold. Its proof is contained in Section 4 and builds
on results of Wright [W15] on horizontally periodic translation surfaces in affine
invariant manifolds. We also use the results from Section 3 and tools from the
theory of algebraic groups developed in the context of strong approximation.

Having established Zariski density, we proceed by proving an explicit local ver-
sion, formulated in terms of semigroups generated by periodic orbits which start
in a fixed open contractible subset of C. This local version is then used to apply a
result of Avila and Viana [AV07a] to a symbolic system encoding the Teichmüller
flow on strata of abelian or quadratic differentials which was constructed in [H11].
This leads to the proof of Theorem 1 and the corollaries.

For the proof of Corollary 3 we have to verify Zariski density of the restriction of
the Kontsevich Zorich cocycle to a non-hyperelliptic component of a stratum with
at least two zeros of odd order. This is done by reducing the statement to Zariski
density of the cocycle over a non-hyperellipitic component of a stratum of abelian
differentials with a single zero, that is, to the results in Section 4.

In the introductory Section 2 we introduce the Hodge bundle and the Gauss
Manin connection, and establish some basic properties of affine invariant manifolds.

Acknowledgement: The first and second part of this article are more detailed
versions of the second part of arXiv:1409.5978. Most of the third part was supported
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author was in residence at the MSRI in Berkeley, California, in spring 2015. This
work was also supported by the Advanced Grant ”Moduli” of the European Science
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2. The geometry of affine invariant manifolds

The goal of this section is to collect some geometric and dynamical properties of
affine invariant manifolds which are used throughout this article.

2.1. The Hodge bundle. Let Mg be the moduli space of closed Riemann surfaces
of genus g. This is the quotient of Teichmüller space T (S) under the action of the
mapping class group Mod(S) and is naturally endowed with the structure of a
complex orbifold.

The Hodge bundle H → Mg is a holomorphic vector bundle over Mg (in the
orbifold sense). Its fiber over a manifold point X ∈ Mg equals the vector space of
holomorphic one-forms (abelian differentials) on X. As the map which associates to
a holomorphic one-form on X its real part is an isomorphism of real vector spaces,
as a real vector bundle, the Hodge bundle has the following description.

The action of the mapping class group Mod(S) on the first real cohomology
group H1(S,R), equipped with the symplectic structure given by the cup product,
defines a homomorphism

Ψ : Mod(S) → Sp(2g,Z).

The Hodge bundle is then the flat orbifold vector bundle

(1) Π : H = T (S)×Mod(S) H
1(S,R) → Mg

for the standard right action of Mod(S) on Teichmüller space T (S) by precomposi-
tion of marking, and the left action of Mod(S) on H1(S,R) via Ψ. This description
determines a flat connection on H which is called the Gauss Manin connection.
This connection preserves the symplectic structure on the fibers.

As the Hodge bundle H is a holomorphic vector bundle over the complex orbifold
Mg, it is a complex orbifold in its own right, and the same holds true for the
complement H+ ⊂ H of the zero section in H. The pull-back

Π∗H → H+

of H to H+ is a holomorphic vector bundle on H+ (in the orbifold sense). The
pull-back of the Gauss-Manin connection is a flat connection on Π∗H which we call
again the Gauss Manin connection.
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2.2. Strata and affine invariant manifolds. The Hodge bundle H+ is naturally
decomposed into strata, determined by the number and order of the zeros of the
abelian differential. Strata need not be connected, but they have at most three
connected components [KZ03]. A stratum is a complex orbifold in its own right.
The closure in H+ of a component of a stratum equals a union of strata. The area of
an abelian differential is well defined, and the locus of area one abelian differentials
is a cross section for the action of the multiplicative group (0,∞) by scaling. The
Teichmüller flow Φt acts on H+ preserving the area as well as the strata.

The fact that strata are orbifolds rather than manifolds gives rise to significant
technical difficulties. As in [H13], we circumvent this difficulty by restricting all
constructions to the manifold points. Concretely, let Q ⊂ H+ be a component of a
stratum of area one abelian differentials. Define the good subset Qgood of Q to be

the set of all points q ∈ Q with the following property. Let Q̃ be a component of
the preimage of Q in the Teichmüller space of marked abelian differentials and let
q̃ ∈ Q̃ be a lift of q; then an element of Mod(S) which fixes q̃ acts as the identity on

Q̃ (compare [H13] for more information on this technical condition). Then Qgood

is precisely the subset of Q of manifold points. Lemma 4.5 of [H13] shows that the
good subset Qgood of Q is open, dense and Φt-invariant, furthermore it is invariant
under scaling.

By the construction of Qgood, for any smooth arc η : [0, a] → Qgood and any

choice q̃ of a preimage of η(0) in the Teichmüller space H̃+ of marked abelian
differentials, there exists a unique lift η̃ of η through η̃(0) = q̃, and this lift depends
smoothly on η̃ (and q̃).

Definition 2.1. A closed curve η : [0, a] → Qgood defines the conjugacy class
of a pseudo-Anosov mapping class φ ∈ Mod(S) if the following holds true. Let

η̃ : [0, a] → Q̃ be a lift of η to an arc in the Teichmüller space of abelian differentials.
Then ψη̃(a) = η̃(0) for a unique ψ ∈ Mod(S), and we require that ψ is conjugate
to φ.

As any two lifts of an arc in Qgood to the Teichmüller space of marked abelian
differentials are translates of each other by some element in the mapping class group,
the property captured in Definition 2.1 does not depend on any choices made.

The Hodge bundleH → Mg is the quotient under the action of the mapping class

group of the trivial bundle H̃ → T (S) whose fiber equals the first real cohomology
H1(S,R), equipped with the symplectic structure defined by the cup product. The

mapping class group acts on the fibers of the vector bundle H̃ → T (S) through the
representation Ψ preserving the symplectic structure. The characteristic polyno-
mial of a symplectic matrix is invariant under conjugation. Using Definition 2.1,
the above discussion easily leads to the following statement (here parallel transport
means parallel transport with respect to the Gauss Manin connection).

Lemma 2.2. Let η ⊂ Qgood be a closed curve which defines the conjugacy class of
a pseudo-Anosov mapping class φ ∈ Mod(S). Then the characteristic polynomial
of the holonomy map obtained by parallel transport of the bundle Π∗H along η
coincides with the characteristic polynomial of the map Ψ ◦ φ ∈ Sp(2g,Z).
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Proof. Since the Gauss Manin connection is flat, parallel transport along a closed
based loop in Qgood is invariant under homotopy with fixed basepoint in Qgood and
hence the holonomy along such a based loop is an invariant of its class in π1(Qgood).
Furthermore, moving the basepoint, i.e. changing the loop with a free homotopy,
results in conjugation of the holonomy map.

Now the characteristic polynomial of an element A ∈ Sp(2g,Z) is invariant under
conjugation and hence the characteristic polynomial of the holonomy of a loop
in Qgood only depends on the free homotopy class of the loop. For a loop η :
[0, a] → Qgood which defines the conjugacy class of a pseudo-Anosov element φ,
this polynomial can be computed as follows.

Choose any lift η̃ of η to the Teichmüller space H̃ of area one abelian differentials.
Since η ⊂ Qgood, such a lift only depends on η and the choice of a preimage of

η(0) in H̃. By the definition of the Gauss Manin connection, the characteristic
polynomial of the holonomy map along η is the characteristic polynomial of Ψ ◦ ζ
where ζ ∈ Mod(S) is the unique element which maps the endpoint η̃(a) of η̃ back
to η̃(0). As ζ is conjugate to φ and hence Ψ ◦ ζ is conjugate to Ψ ◦ φ, the lemma
follows. □

LetQ+ be a component of a stratum of (not area normalized) abelian differentials
on the surface S with fixed number and multiplicities of zeros. Throughout this
article we use the notation Q+ if we are looking at differentials whose area may
be different from one, but most of the time we consider components of strata of
differentials (abelian or quadratic) of area one. Denote by Σ ⊂ S the set of zeros
of a differential in Q+.

Period coordinates for Q+ are defined by integration of a differential q ∈ Q+

over a basis of H1(S,Σ;Z). These coordinates take values in H1(S,Σ;R)∗⊗RC and
induce an affine structure on Q+.

An abelian differential q ∈ Q+ defines an atlas on S − Σ whose chart transi-
tions are translations. Postcomposition of these charts with a fixed element of the
group GL+(2,R) defines a new such atlas and hence a new element in Q+. This
construction defines an affine action of GL+(2,R) on Q+. The induced action of
the diagonal subgroup is just the Teichmüller flow.

An affine invariant manifold C+ in Q+ is the closure in Q+ of an orbit of the
GL+(2,R)-action. Such an affine invariant manifold is complex affine in period
coordinates [EMM15]. In particular, C+ ⊂ Q+ is a complex suborbifold. Period
coordinates determine a projection

p : TC+ → Π∗H⊗R C|C+
to absolute periods (see [W14] for a clear exposition). The image p(TC+) is flat, i.e.
it is invariant under the restriction of the Gauss Manin connection to a connection
on Π∗H⊗R C|C+

.

By the main result of [F16], there is a holomorphic subbundle Z of Π∗H|C+
such

that
p(TC+) = Z ⊕ Z.
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We call Z the absolute holomorphic tangent bundle of C+. As a consequence, the
bundle p(TC+) is invariant under the complex structure on Π∗H⊗R C obtained by
extension of scalars.

As a real vector bundle, Z is isomorphic to p(TC+)∩Π∗H|C+. Since Z is complex,
the bundle p(TC+) ∩Π∗H → C+ is symplectic [AEM17].

Define the rank of the affine invariant manifold C+ as [W14]

rk(C+) =
1

2
dimC p(TC+) = dimCZ.

With this definition, components of strata are affine invariant manifolds of rank g.

3. Non-uniform hyperbolic dynamics of the Teichmüller flow

The geodesic flow Ψt on the unit tangent bundle T 1M of a closed negatively
curved manifoldM is an Anosov flow and hence has the following strong shadowing
property [Bw73].

Fix a Riemannian metric on T 1M which induces a distance function d. There
exist numbers ϵ > 0, R > 0 with the following properties. Let x1, . . . , xm ⊂ T 1M
be an arbitrary chain of points and let Ri > R (1 ≤ i ≤ m) be a sequence of
sufficiently large numbers. Assume that we have d(ΨRi(xi), xi+1) < ϵ for all i, and
where xm+1 = x0. Then there exists a periodic orbit γ for Ψt which uniformly fellow
travels the (discontinuous) concatentation of the orbit segments βi : t → Ψt(xi)
(0 ≤ t ≤ Ri). Furthermore, the perodic orbit represents a conjugacy class in
the fundamental group of M which can be reconstructed from the chain of orbit
segments βi.

A component Q of a stratum of area one abelian differentials is not compact, and
the Teichmüller flow Φt acting on Q is not hyperbolic. However, it is non-uniformly
hyperbolic in a precise quantitative sense, see [H13, H23] for more information.
We shall use this non-uniform hyperbolicity to establish a non-uniform version
of the shadowing property of hyperbolic geodesic flows for the restriction of the
Teichmüller flow to affine invariant manifolds..

For the formulation of our main result, for an affine invariant manifold C of area
one abelian differentials denote by Cgood ⊂ C the Φt-invariant open dense set of
good points. Call a point q ∈ C birecurrent if q is contained in both the α- and the
ω-limit set of its orbit under Φt. By the Poincaré recurrence theorem, almost every
point with respect to any invariant probability measure has this property.

The idea is to use non-uniform hyperbolicity of the Teichmüller flow on C to
establish the shadowing property for orbit segments whose endpoints are con-
tained in small contractible neighborhoods of an arbitrarily fixed finite collection
{q1, . . . , qk} ⊂ Cgood of birecurrent points. The size of the neighborhoods, for ex-
ample measured with respect to some choice of a Riemannian metric, depends on
the points, and the minimal length of the connecting orbit segments will depend on
the points as well. The following definition formalizes this concept of shadowing.
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Definition 3.1. Let Y = {Yi | i ∈ I} be a non-empty finite collection of open
relatively compact subsets of an affine invariant manifold C. For some n > 0,
an (n,Y)-pseudo-orbit for the Teichmüller flow Φt on C consists of a sequence of
points q0, q1, . . . , qm ∈ C and a sequence of numbers t0, . . . , tm−1 ∈ [n,∞) with the
following property. For every 1 ≤ j ≤ m, there exists some κ(j) ∈ I such that
Φtj−1qj−1, qj ∈ Yκ(j). The pseudo-orbit is called periodic if qm = q0.

Although we describe a pseudo-orbit by a sequence of pairs (qi, ti) ∈ C × (0,∞),
we view a pseudo-orbit as a finite ordered collection of compact orbit segments such
that the endpoint of the i − 1-th segment is close to the starting point of the i-th
segment.

Any periodic orbit of Φt in a component of a stratum is determined by the
conjugacy class of a pseudo-Anosov mapping class, so that the periodic orbit is the
projection of the unit tangent line of an axis of an element in this conjugacy class.
We encode this information in the following notion of a characteristic curve.

Definition 3.2. Let Y = ∪i∈IYi be a collection of open relative compact subsets of
the affine invariant submanifold C. Assume that the closure of each Yi is contained
in an open relatively compact contractible subset Vi of Cgood and that the sets Vi
are pairwise disjoint. Consider a periodic (n,Y)-pseudo-orbit, specified by points
q0, q1, . . . , qm = q0 ∈ C, numbers t0, . . . , tm−1 ∈ [n,∞) and indices κ(j) ∈ I.
Connect Φtj−1qj−1 to qj by an arc αj in Vκ(j). The concatenation of the orbit
segments connecting qj−1 to Φtj−1qj−1 with the arcs αj defines a closed curve η in
C which we call a V-characteristic curve of the pseudo-orbit, where V = {Vi | i ∈ I}.

It is immediate from this definition that a V-characteristic curve of an (n,Y)-
pseudo-orbit depends on choices, but its free homotopy class does not depend on
any choices made.

The following is the main result of this section. Note that the sets Yj are not
required to satisfy any additional topological properties beyond being open and
relatively compact.

Theorem 3.3. Let C be an affine invariant manifold, let q1, . . . , qk ∈ Cgood be
birecurrent points, and for each j let Uj be a neighborhood of qj in Cgood. Then
there are open relative compact neighborhoods

Yj ⊂ Vj ⊂ Uj

of qj, where Vj is contractible, and there is a number R0 > 0 with the following
property.

Let Y = {Yj | j}, let V = {Vj | j} and let η be a V-characteristic curve of a
periodic (R0,Y)-pseudo-orbit, given by points y0, . . . , ym−1, ym = y0 and numbers
ti > R0 such that Φti−1yi−1, yi ∈ Yκ(i) for some κ(i) ∈ {1, . . . ,m}. Then there is a
periodic orbit γ ⊂ Cgood for Φt which passes through each of the sets Vκ(i) at times
close to

∑
s≤i−1 ts and which defines the same conjugacy class in Mod(S) as η.

The following is a consequence of Theorem 3.3 and Theorem C of [Ra14].
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Corollary 3.4. Under the assumption of Theorem 3.3, the periodic orbit uniformly
fellow-travels its defining pseudo-orbit.

Proof. Since the set {q1, . . . , qk} is finite, its projection to the moduli space Mg is
contained in the ϵ-thick part of moduli space for some ϵ > 0 depending on the set,
and the same holds true for the sets V1, . . . , Vk.

Now the periodic orbit γ can be decomposed into segments whose endpoints are
contained in the sets Vj and hence which are close to the endpoints of the orbit
segments defining the pseudo-orbit η. Furthermore, if the starting points of two
such corresponding segments α ⊂ γ and β ⊂ η are contained in the sets Vi and the
endpoints are contained in Vj , then lifts of α, β to arcs in the Teichmüller space
of abelian differentials which begin in the same lift of the set Vi have endpoints in
the same lift of Vj . Thus such lifts define Teichmüller geodesic arcs with endpoints
in the ϵ-thick part of Teichmüller space which are uniformly close. Theorem C
of [Ra14] now states that the corresponding Teichmüller geodesics uniformly fellow
travel and hence the same holds true for the characteristic curve of the pseudo-orbit
and the corresponding periodic orbit. □

3.1. Product structures and the Hodge distance. In this subsection we intro-
duce local product structures for affine invariant manifolds C consisting of area one
abelian differentials and the Hodge distance on strong stable and strong unstable
manifolds. We then formulate some quantitative version of non-uniform hyperbol-
icity of the Teichmüller flow which was established in [H13, H23].

An affine invariant manifold C+ ⊂ H+ is described in period coordinates as the
set of solutions of a system of linear equations [EMM15]. Here as before, we write
C+ if we consider differentials whose area is not necessarily one. In particular, each
manifold point of C+ has a neighborhood U which is mapped by period coordinates
homeomorphically onto an open subset V of an affine subspace of H1(S,Σ;R)∗⊗RC
where Σ is the set of zeros of the differentials in the stratum containing C+. This
affine subspace is invariant under the complex structure induced from the complex
structure on H1(S,Σ;R)∗ ⊗R C [F16].

In period coordinates, a local leaf of the strong unstable foliation W su through
a point w ∈ H1(S,Σ;R)∗ ⊗R C consists of all differentials whose real parts coincide
with the real part of w, and the local leaf of the strong stable foliation W ss consists
of all differentials whose imaginary parts coincide with the imaginary part of w. As
C+ is complex affine in period coordinates, we obtain

Lemma 3.5. Let C be an affine invariant manifold of area one abelian differen-
tials. Then Cgood ∩W i is a smooth foliation of Cgood into leaves of real dimension
dimC(C+)− 1 (i = ss, su).

Lemma 3.5 implies that for every affine invariant manifold C, every point q ∈
Cgood has a neighborhood with a product structure. We next define a set with a
product structure formally. The definition we give is a bit less restrictive than other
of its versions, but it is convenient for the purpose of this section.
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The real and imaginary part, respectively, of a marked abelian differential ω are
smooth closed one-forms on S which vanish precisely at the points in Σ. Thus
their kernels define smooth one-dimensional subbundles of the tangent bundle of
S − Σ which integrate to one-dimensional oriented foliations on S − Σ. These
foliations are measured foliations on S, that is, they are equipped with a transverse
invariant measure. The transverse measure is obtained by integration of the real
and imaginary part of ω, respectively, over arcs in S − Σ which are transverse to
the foliation. The foliation defined by the real part of the differential is called
the vertical foliation, and the foliation defined by the imaginary part is called the
horizontal foliation.

The space of marked equivalence classes of projective measured foliations PMF
on S is equipped with a natural topology so that it is homeomorphic to a sphere of
dimension 6g − 7. Here two measured foliations are equivalent if they coincide up
to Whitehead moves. As this will not be important for us, we omit a more detailed
discussion. Period coordinates for the component Q of a stratum containing C show
that nearby differentials in Q whose real parts define the same class in H1(S,Σ;R)∗
determine equivalent vertical marked measured foliations on S.

Definition 3.6. Let C be an affine invariant manifold and let C̃ be a component of
the preimage of C in the Teichmüller space of marked abelian differentials. A subset
Ṽ of C̃ admits a product structure if there are two disjoint compact subsets D,K of
the set of (marked) projective measured foliations on S, viewed as projective classes
of points in H1(S,Σ;R)∗ via integration of the transverse measure along arcs with
endpoints in Σ, with the following properties.

(1) The sets D,K are homeomorphic to closed balls of dimension

m = dimC(C+)− 1.

(2) There is a continuous map

Λ : D ×K → Ṽ

such that for any pair (ξ, ν) ∈ D ×K, the horizontal projective measured
foliation of Λ(ξ, ν) equals ξ, and its vertical projective measured foliation
equals ν.

(3) There is some ϵ > 0 such that

Ṽ = ∪−ϵ≤t≤ϵ ∪(ξ,ν)∈D×K ΦtΛ(ξ, ν).

A closed contractible set V ⊂ Cgood with dense interior admits a product structure

if some (and hence any) component Ṽ of V of the preimage of V in the Teichmüller
space of marked abelian differentials has a product structure.

We say that an open subset U of Cgood has a product structure if its closure has
a product structure in the sense of Definition 3.6. We refer to Section 3.1 of [H13]
for a detailed description of this construction for strata. The requirement (1) in
Definition 3.6 is made for convenience of exposition; we will occasionally talk about
a set with a product structure which only has properties (2) and (3) above.

The following observation is immediate from the definition.
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Lemma 3.7. Let U ⊂ Cgood be an open or closed set with a product structure as in
Definition 3.6. Then each component of the intersection of U with an orbit of the
Teichmüller flow is an arc of length 2ϵ.

Proof. Let V ⊂ Cgood be a set with a product structure, and let Ṽ be a component
of the preimage of V in the Teichmüller space of marked abelian differentials. As
V is contained in Cgood and is contractible, a component of the intersection of V
with an orbit of the Teichmüller flow lifts to a component of the intersection of
Ṽ with an orbit of the Teichmüller flow. The lemma is now immediate from the
definition and the fact that the Teichmüller flow preserves the projective class of
the horizontal and vertical measured foliation, respectively. □

Let Ṽ be as in (3) of Definition 3.6. For each z̃ ∈ Ṽ , the product structure
determines a closed local strong unstable manifold

W su
loc(z̃)

containing z̃ which is homeomorphic to a closed ball of dimension m. This set
consists of all points whose marked horizontal measured foliation coincides with the
marked horizontal measured foliation of z̃, and whose marked vertical projective
measured foliation is contained in the set K. Similarly we obtain a local strong
stable manifold W ss

loc(z̃) by exchanging the roles of the horizontal and the vertical

measured foliations. The sets W i
loc(z̃) (i = ss, su) need not be contained in Ṽ , but

every ỹ ∈ W i
loc(z̃) can be moved into Ṽ with a small translate along the flow line

of Φt through ỹ. For z ∈ V we let W i
loc(z) be the projection to C of W i

loc(z̃) where

z̃ ∈ Ṽ is the preimage of z (i = ss, su). Note that these sets are contained in Cgood
by invariance of Cgood under the Teichmüller flow.

Example 3.8. Let Q be a component of a stratum of abelian or quadratic differ-
entials. Let q ∈ Qgood and let Asu be a neighborhood of q in W su

loc(q). Then for a
sufficiently small neighborhood Ass of q in W ss

loc(q) and every z ∈ Ass there exists
a holonomy homeomorphism

Ξz : Asu → Ξz(A
su) ⊂W su

loc(z)

with Ξz(q) = z determined by the requirement that Ξz(u) ∈ ∪−ϵ≤t≤ϵΦ
tW ss

loc(u) for
some small ϵ > 0 and all u ∈ Asu. The holonomy homeomorphisms Ξz are smooth
and depend smoothly on z.

Define V (Ass, Asu) = ∪z∈AssΞzA
su and

V (Ass, Asu, t0) = ∪−t0≤t≤t0Φ
tV (Ass, Asu).

If we choose Ai to be a sufficiently small ball neighborhood of q in W i
loc(q) and

t0 sufficiently small, then V (Ass, Asu, t0) is a neighborhood of q with a product
structure in the sense of Definition 3.6.

The tangent bundle of the strong stable or strong unstable foliation of a com-
ponent Q of a stratum can be equipped with the so-called modified Hodge norm
which induces a Hodge distance dH on the leaves of the foliation of a stratum of
abelian differentials.
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The following result is the first part of Theorem 8.12 of [ABEM12]. As before,
Q denotes a component of a stratum of abelian differentials.

Theorem 3.9. There exists a number cH > 0 not depending on choices such that
for every q ∈ Q, any q′ ∈W ss

loc(q) and all t > 0 we have

dH(Φtq,Φtq′) ≤ cHdH(q, q′).

The following is Theorem 2 of [H23]. It quantifies the idea of non-uniform hy-
perbolicity of the Teichmüller flow. In its formulation, Bi(q, r) denotes the ball of
radius r about q for the Hodge distance on the local leaf W i

loc(q) of the foliation
W i through q. The balls Bi(u, r0) are not required to be contained in the set U
(i = ss, su).

Theorem 3.10. Let q ∈ Qgood be a birecurrent point. Then there is a number r0 =
r0(q) > 0, and there is a neighborhood U of q in Qgood with the following property.
Let z ∈ U be birecurrent; then for every a > 0 there is a number T (z, a) > 0 so
that for all T > T (z, a), we have ΦTBss(z, r0) ⊂ Bss(ΦT (z), a) and ΦTBsu(z, a) ⊃
Bsu(ΦT (z), r0).

Let us explain the similarities and differences of Theorem 3.10 with the familiar
properties of an Anosov flow on a closed manifold. First, the statement is local and
only applies to birecurrent points in Qgood. The neighborhood U of the birecurrent
point q can not be made uniform in size, measured for example with respect to the
distance function of a smooth Riemannian metric. The contraction times T (z, a)
depend on the birecurrent point z ∈ U . However, the size of the neighborhood
of the point z in its local strong stable manifold does not depend on z, which is
precisely what is needed to establish counting results from the mixing properties of
the Masur Veech measure. By restriction, the theorem immediately carries over to
affine invariant manifolds.

3.2. Shadowing and Anosov closing. The goal of this subsection is to prove
Theorem 3.3.

Proof of Theorem 3.3. The proof is divided into three steps. In the first step, we
construct the neighborhoods Yj ⊂ Vj ⊂ Uj of the points qj and determine the
number R > 0 whose existence is stated in the theorem. These sets have some
additional properties used to obtain the dynamical control we need.

In the second step we consider the element φ ∈ Mod(S) determined by a V-
characteristic curve of a periodic (R,Y)-pseudo orbit, and we show that it is pseudo-
Anosov. In particular, it determines a periodic orbit for the Teichmüller flow in the
moduli space of abelian or quadratic differentials. In a thrid step We use a fixed
point argument to show that this orbit is contained in C and has the properties
stated in the proposition.

Step 1.

Using the notation from the theorem, for each j ≤ k choose a closed contractible
neighborhood Vj ⊂ Uj of qj with a product structure which furthermore has the
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properties stated in Theorem 3.10. Recall that such a product structure is deter-
mined by a choice Ṽj of a component of the preimage of Vj in the Teichmüller space
of marked abelian differentials, of two closed disjoint subsets Dj ,Kj of the space of
projective measured foliations which are homeomorphic to closed balls of dimension
d = dimC(C+)− 1, an embedding

Λj : Dj ×Kj → Ṽj

and a number ϵj > 0 with the properties stated in Definition 3.6.

For z̃ ∈ Ṽj denote by W ss
loc(z̃) the local strong stable manifold of z̃ defined by Ṽj

as explained after Lemma 3.7 and let similarly W su
loc(z̃) be the local strong unstable

manifold. We require that the projections into C of the union of all these local
strong stable and strong unstable manifolds are contained in a fixed contractible
subset of Uj . Note that as explained after Lemma 3.7, this is not automatic as
some of these local manifolds may not be contained in Vj , but it can be achieved
by making Vj smaller if necessary.

For z ∈ Vj we denote by W i
loc(z) the projection to C of the set W i

loc(z̃) where z̃

is the preimage of z in Ṽj ; this does not depend on the choice of the component Ṽj .
By perhaps decreasing the size of Vj we may assume that W i

loc(z̃) ⊂ Bi(z̃, r0) for
all z̃ ∈ Vj , where r0 > 0 is as in Theorem 3.10.

Recall from Example 3.8 that for two points z̃, ũ ∈ Ṽj there is a holonomy map

Ξ(ũ, z̃) :W su
loc(ũ) →W su

loc(z̃).

For each ṽ ∈ W su
loc(ũ), the point Ξ(ũ, z̃)(ṽ) is the unique point in W su

loc(z̃) whose
marked vertical measured foliation coincides with the marked vertical measured
foliation of ṽ (up to equivalence defined by Whitehead moves).

The holonomy maps Ξ(ũ, z̃) are smooth and depend smoothly on ũ, z̃. In partic-
ular, they are bilipschitz for the Hodge distance dH . Furthermore, if z̃ ∈ W su

loc(ũ)
then Ξ(ũ, z̃) = Id. Thus by perhaps decreasing the size of the sets Vj we may
assume that the bilipschitz constants for these holonomy maps are at most 2.

Choose a compact neighborhood Zj ⊂ Vj of qj with a product structure which
is contained in the interior of Vj . For z ∈ Zj let W i

loc,Zj
(z) (i = su, ss) be the local

strong stable and strong unstable manifold for Zj . By continuity and compactness,
there exists a number r > 0 such that for any z ∈ Zj , the dH -distance between the
set W i

loc,Zj
(z) and the boundary of W i

loc(z) is at least r.

By Theorem 3.9 and Theorem 3.10 and the choice of the sets Zj , we can find a
contractible neighborhood Yj ⊂ Zj of qj with a product structure and a number
Tj > 0 with the following property. If z ∈ Yj and if T > Tj then

dH(ΦT z′,ΦT z′′) ≤ r

4
for all z′, z′′ ∈W ss

loc(z) and(2)

dH(Φ−T z′,Φ−T z′′) ≤ r

4
for all z′, z′′ ∈W su

loc(z).

Namely, choose Tj > 0 so that the estimate (2) is satisfied for z = qj and T = Tj
and the constant r/8cH instead of r/4. Such a number exists by Theorem 3.10 and
the choice of the sets Vj . By continuity, the estimate (2) with r/4cH then holds
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true for this number Tj and for all points z in a neighborhood Yj of qj which can be
chosen to be contractible, with a product structure. By Theorem 3.9, the estimate
(2) then holds true for all T ≥ Tj and for all z ∈ Yj . Define Y = {Yj},V = {Vj}
and let R = maxj Tj .

Step 2.

Using the notations from Step 1, let η be a V-characteristic curve of a periodic
(R,Y)-pseudo-orbit. By definition, η is determined by points yi ∈ Yκ(i), numbers
ti > R (0 ≤ i ≤ m − 1) and arcs in the contractible sets Vκ(i). Parameterize η in
such a way that for each orbit segment, the parameterization coincides with the
parametrization as a flow line of the Teichmüller flow and that η(

∑
i<ℓ ti + ℓ) = yℓ

(i.e. the connecting arcs αj are parametrized on a unit interval). For simplicity of
notation, assume that η(0) ∈ Y0. Let T =

∑
j tj +m > 0 be such that η(T ) = η(0).

Let as before Q be the component of the stratum containing C and let Q̃ be
a component of the preimage of Q in the Teichmüller space of marked abelian
differentials. Let C̃ ⊂ Q̃ be a component of the preimage of C. Let Ṽ0 be a
component of the preimage of V0 contained in C̃. Let η̃ be a lift of η to C̃ which
begins at η̃(0) = ỹ0 ∈ Ṽ1. Then there is a (unique) element φ ∈ Mod(S) which maps

the endpoint η̃(T ) of η̃ back to ỹ0. As any element of Mod(S) either stabilizes C̃ or

maps C̃ to a disjoint component of the preimage of C, we know that φ ∈ Stab(C̃).

By Lemma 5.1 of [H13] (and after perhaps increasing the number R > 0 and
decreasing the sets Yi), the mapping class φ is pseudo-Anosov (see also the bottom
of p.523 of [H13] and [H23]). For completeness, we sketch the proof.

It is known that a mapping class φ is pseudo-Anosov if and only if it acts on
the curve graph of S with positive translation length. Moreover, there exists a
coarsely well defined map Υ from the Teichmüller space to the curve graph which
associates to a point in Teichmüller space, viewed as a marked hyperbolic metric on
S, a systole, that is, a shortest simple closed geodesic. The restriction of this map
to any Teichmüller geodesic segment is a uniform unparameterized quasi-geodesic.
The diameter of the image of a Teichmüller geodesic ray is infinite if this ray recurs
to the thick part of Teichmüller space for arbitrarily large times.

As each of the points qj is birecurrent, for any lift q̃j of qj to the Teichmüller
space of marked abelian differentials, the image under Υ of the Teichmüller geodesic
ray whose unit cotangent line is the orbit {Φtqj | t ≥ 0} has infinite diameter. If ũ
is sufficiently close to q̃j , then the Φt-orbits of ũ and q̃j uniformly fellow travel for
any a priori given time interval. This implies that up to making the sets Yj smaller
and the number R > 0 larger, the following holds true.

Let η be the characteristic curve of an (R,Y)-pseudo-orbit starting in Y0 and let
η̃ be the lift of η to the Teichmüller space of marked abelian differentials starting
in Ṽ0. Then η̃ projects to a path in the curve graph which consists of uniform
unparameterized quasi-geodesic segments, with a priori specified lower bound on
the diameter. These segments extend to segments (by extending the flow line
segments in η by a large but fixed amount) which are coarsely overlapping along
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quasi-geodesic arcs whose diameter is bounded from below by another a priori
chosen constant.

By the local to global property of such a path in the curve graph, which is a
hyperbolic geodesic metric space, the lift η̃ through Ṽ0 of the characteristic curve η
maps to an unparameterized uniform quasi-geodesic in the curve graph of infinite
diameter. This quasi-geodesic is invariant under the mapping class φ, and φ acts
on it as a translation whose translation length is bounded from below by a positive
constant not depending on the pseudo-orbit. By perhaps decreasing the size of the
sets Yj further, such a lower bound can be arbitrarily prescribed. But this just
means that for sufficiently small Yj , the mapping class φ is pseudo-Anosov.

Step 3.

Our goal is to show that the mapping class φ defines a periodic orbit γ in C with
the properties stated in the proposition. Note that this is not implied by the fact
that φ ∈ Stab(C̃). To this end we use a variation of the argument in the proof of
Proposition 5.4 of [H13].

Let γ̃ ⊂ H̃+ be the cotangent line of the axis in Teichmüller space of the pseudo-

Anosov element φ. The curve γ̃ is a φ-invariant orbit of the Teichmüller flow in H̃+

which projects to the periodic orbit γ. The (biinfinite) lift η̃ of the characteristic
curve η is contained in a uniformly bounded neighborhood of γ̃. Namely, this lift is
invariant under the action of φ and hence by invariance, the Hausdorff distance (for
some Mod(S)-invariant Riemannian metric) between γ̃ and η̃ equals the Hausdorff
distance between compact fundamental domains on these lifts for the action of φ
and hence is finite.

The pseudo-Anosov element φ acts with north-south dynamics on the Thurston
sphere PMF of projective measured foliations of the surface S. This means that
φ has precisely two fixed points in PMF , one is attracting, the other repelling.
Furthermore, if ũ ∈ γ̃ is arbitrary, then the vertical projective measured foliation ν
of ũ equals the attracting fixed point of φ, and the horizontal projective measured
foliation ξ of ũ equals the repelling fixed point of φ.

Recall the definition of the sets Dj ,Kj ⊂ PMF defining the set Ṽj , where Ṽ0 is
intersected by η̃. We claim that it suffices to verify that with the above notation,
we have ξ ∈ D0, ν ∈ K0. Namely, every flow line of the Teichmüller flow in the
Teichmüller space of abelian differentials which is defined by a differential with
horizontal measured foliation in D0 and vertical measured foliation in K0 passes
through the set Ṽ0, in particular it is entirely contained in C̃ by invariance of C̃
under the Teichmüller flow. Thus if ξ ∈ D0, ν ∈ K0 then the periodic orbit γ is
contained in C, and it passes through the set V0. As the initial point of the periodic
pseudo-orbit was arbitrarily chosen among the starting points in Y of the orbit
segments which determine the pseudo-orbit, we deduce that the periodic orbit γ
passes through each of the sets Vκ(i), and the crossing times fulfill the estimate
stated in the proposition. Thus γ has all the properties stated in the proposition.
The estimate on translation length is a consequence of the fellow traveling property
for orbit segments with controlled lifts to the Teichmüller space of marked abelian
differentials.
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Using the argument on p.524 of [H13], we show that indeed ν ∈ K0. To this end
we claim that

Φ−t0W su
loc(η̃(t0)) ⊂W su

loc(ỹ0).

Namely, since t0 > R and since η(t0) ∈ Yκ(1), the estimate (2) shows that the

dH -diameter of A = Φ−t0W su
loc(η̃(t0)) is at most r/4. On the other hand, the

set A contains the point η̃(0) = ỹ0 ∈ Ỹ0 ⊂ Ṽ0. As by assumption, the Hodge
distance between ỹ0 and the boundary of W su

loc(ỹ0) is at least r, we indeed have
Φ−t0W su

loc(η̃(t0)) ⊂ W su
loc(ỹ0). In particular, if we denote by Kκ(1) ⊂ PMF the

closed set of all horizontal projective measured foliations for points in the compo-
nent Ṽκ(1) of the preimage of Vκ(1) containing η̃(t0), then we have Kκ(1) ⊂ K0.

The above reasoning can be iterated: For s ≥ 1 let Kκ(s) be the set of all hor-
izontal projective measured foliations of all marked abelian differentials which are
contained in the component Ṽκ(s) of the preimage of Vκ(s) containing η̃(

∑
j<s tj+s).

We show by induction on s that for any s ≥ 1, the set Kκ(s) is entirely contained
in K0. The case s = 1 was discussed in the previous paragraph, so let us assume
that this holds true for all s < s0 for some s0 ≥ 2. Replacing the starting point
y0 of the periodic pseudo-orbit by y1, we conclude from the induction hypothesis
that Kκ(s0) ⊂ Kκ(1). However, we showed above that Kκ(1) ⊂ K0. This yields the
induction step.

To summarize, for each t > 0 the vertical projective measured foliation of η̃(t) is
contained in the compact set K0. Now the attracting fixed point of φ is the limit
as t → ∞ of the vertical projective measured foliation of η̃(t). Namely, the path
η̃ is invariant under the pseudo-Anosov element φ. Since φ acts with north-south
dynamics on PMF , any non-constant orbit on PMF under forward iteration of φ
converges to the attracting fixed point of φ. Thus this attracting fixed point of φ
is indeed contained in the compact set K0.

Reversing the direction of the flow Φt and replacing φ by φ−1, the same argument
applies to the repelling fixed point of φ and shows that this repelling fixed point is
contained in D0. In particular, the periodic orbit of Φt defined by φ is contained
in C, and it passes through V0. As remarked earlier, this suffices for the proof of
the proposition. □

Remark 3.11. Let C be an affine invariant manifold, contained in a component Q
of a stratum, and let C̃ be a component of the preimage of C in the Teichmüller space
of abelian differentials. If φ ∈ Mod(S) defines a periodic orbit of the Teichmüller
flow on C, then φ is a pseudo-Anosov mapping class which is conjugate to an element
of Stab(C̃). However, it is not true that any pseudo-Anosov mapping class in Stab(C̃)
determines a periodic orbit for Φt contained in the closure of C. An example of this
situation is the case that C equals a non-principal stratum of abelian differentials
with at least one simple zero. In this case the preimage of C in the Teichmüller
space of abelian differentials is connected [CS21] and hence the stabilizer of this
preimage equals the entire mapping class group. However, the set of periodic orbits
for the Teichmüller flow contained in the closure of C is a proper subset of the set
of all periodic orbits.
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In the case of a single birecurrent point q on an affine invariant manifold C,
Proposition 3.3 predicts for every contractible neighborhood U of q a nested set of
neighborhoods Y ⊂ V ⊂ U of q and a number R > 0 with the following property.
For every y ∈ Y and T > R so that ΦT y ∈ Y , there is a periodic orbit passing
through V of period close to T which defines the same conjugacy class in Mod(S)
as a characteristic curve of the periodic (R, Y )-pseudo-orbit (y, T ).

Note also that filtering the sets Yi ⊂ Vi is necessary in the above argument as
it is used to specify the precise location of the periodic orbit constructed from a
closed pseudo-orbit.

3.3. Semigroups defined by recurring orbits. The goal of this subsection is
to establish a parameterized version of Theorem 3.3. This is needed to associate to
a periodic orbit of Φt on an affine invariant manifold C which passes through an a
priori chosen subset of C an element of the mapping class group Mod(S) rather than
a conjugacy class in Mod(S) in such a way that concatentation of orbit segments
in a pseudo-orbit corresponds to multiplication of group elements. That this is
possible is reminiscent of the idea that the Teichmüller flow admits a symbolic
coding [AGY06, H11] by a subshift of finite type, and the characteristic property
of a Markov chain is precisely that the future is independent of the past.

Let again q ∈ Cgood be a good birecurrent point. Let U ⊂ Cgood be a neighbor-
hood of q and let Y ⊂ V ⊂ U be a nested family of neighborhoods of q in Cgood
as in Theorem 3.3. We may assume that the sets Y, V are contractible and have a
product structure and that any connected component of the intersection with Y or
V of an orbit segment of the Teichmüller flow is an arc of fixed length 2δ > 0 (this
is a straightforward consequence of the construction). Put V = V .

For R0 > 0 as in Theorem 3.3 let y ∈ Y and let T > R0 be such that ΦT y ∈ Y .
A V-characteristic curve of this orbit segment determines uniquely a periodic orbit
γ of Φt which intersects V in an arc of length 2δ. There may be more than one such
intersection arc, but there is a unique arc determined by the requirement that the
parametrized periodic orbit starting at a point in this arc uniformly fellow-travels
the pseudo-orbit defined by the parameterized orbit segment t→ Φty (0 ≤ t ≤ T ).
Choose the midpoint of this intersection arc as a basepoint for γ and as an initial
point for a unit speed parametrization of γ.

Let Γ0 be the set of all parameterized periodic orbits of this form for points
y ∈ Y with ΦT y ∈ Y (T > R0). There is a bijection between such periodic orbits
and subsets of ΦTV ∩ V containing points in ΦTY ∩ Y . With some care, these
subsets can be chosen to be components of ΦTV ∩ V [H13], but we will not need
this somewhat technical fact in the sequel.

Fix once and for all a lift Ṽ of the contractible set V to a component C̃ of
the preimage of C in the Teichmüller space of marked abelian differentials. A
parametrized periodic orbit γ which starts in V lifts to a subarc of a flow line of
the Teichmüller flow on C̃ with starting point in Ṽ . The endpoint of this arc is
mapped to its starting point by a pseudo-Anosov element Ω(γ) ∈ Mod(S). The
conjugacy class of Ω(γ) is uniquely determined by γ, and the element Ω(γ) only

depends on the choice of Ṽ (and the component of γ∩V as explained above). Thus
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a characteristic curve of a sufficiently long orbit segment beginning and ending in
Y determines a pseudo-Anosov mapping class in Mod(S).

The following proposition is a parameterized version of shadowing as established
in Theorem 3.3.

Proposition 3.12. For γ1, . . . , γm ∈ Γ0, there is a point z ∈ V , and there are
numbers 0 < t1 < · · · < tm with the following properties.

(1) Φtiz ∈ V for all i.
(2) For each i ≤ m, a V -characteristic curve of the orbit segment {Φtz | ti−1 ≤

t ≤ ti} defines the element Ω(γi) in Mod(S).
(3) A V -characteristic curve of the orbit segment {Φtz | 0 ≤ t ≤ tm} deter-

mines a parameterized periodic orbit γ for Φt with initial point in V , and
Ω(γ) = Ω(γk) ◦ · · · ◦ Ω(γ1).

Note that we can not expect that the point z is contained in the smaller set
Y ⊂ V .

Proof of Proposition 3.12. The proposition is a fairly immediate consequence of
Theorem 3.3 and the definitions.

Namely, recall that an orbit γ ∈ Γ0 is constructed from a point y ∈ Y and a
number s(γ, y) > R0 so that Φs(γ,y)y ∈ Y . The orbit γ then is the unique periodic
orbit determined by the characteristic curve of the pseudo-orbit (y, s(γ, y)).

Now let γ1, . . . , γm ∈ Γ0, and for each i ≤ m let (yi, si) be as in the previous
paragraph for γi. By Theorem 3.3, there exists a parameterized periodic orbit γ ∈ C
beginning at a point z ∈ V which passes through V at times ti close to

∑
ℓ<i−1 sℓ

and which defines the same conjugacy class in Mod(S) as the concatenation of
the pseudo-orbits (y1, s1), . . . , (ym, sm). But this just means that for each i a V-
characteristic curve of the orbit segment ∪t∈[ti−1,ti]Φ

tz defines the element Ω(γi) in
Mod(S). It is now immediate from the construction that γ can be parameterized
in such a way that the properties in the proposition are fulfilled. □

As a consequence, the subsemigroup

⟨Ω(Γ0)⟩ < Mod(S)

generated by {Ω(γ) | γ ∈ Γ0} consists of pseudo-Anosov elements whose corre-
sponding periodic orbits are contained in the affine invariant manifold C and pass
through the set V . This can be viewed as a version of Rauzy-Veech induction as
used in [AV07b, AGY06] which is valid for all affine invariant manifolds, in partic-
ular for strata of quadratic differentials, or as a version of symbolic dynamics for
the Teichmüller flow on affine invariant manifolds.
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4. Zariski density for affine invariant manifolds

The goal of this section is to show that the mondromy of an affine invariant
manifold is Zariski dense. Throughout this section we assume that g ≥ 2, and we
use the assumptions and notations from Section 2.

Let Q+ ⊂ H+ be a component of a stratum and let C+ ⊂ Q+ be an affine
invariant manifold. Recall from Section 2 that the image of the projection p :
TC+ → Π∗H⊗RC|C+ to absolute periods is a flat subbundle of Π∗H⊗RC|C+ which
is invariant under both the complex structure defined by enlargement of coefficients
(the tensor product) as well as the complex structure of the Hodge bundle. We
denote by 2ℓ ≥ 2 its complex dimension. Then p(TC+) ∩ Π∗H|C+ is a flat bundle
Z = ZR whose fibre is a symplectic subspace of the fibre of Π∗H (recall that the
fibre of Π∗H can be identified with H1(S,R)) of real dimension 2ℓ. As before, by
a flat subbundle of the bundle Π∗H|C+ we mean a bundle which is invariant under
the restriction of the Gauss Manin connection. We call Z the absolute real tangent
bundle of C+. The Gauss Manin connection restricts to a flat connection on Z.

Definition 4.1. Themonodromy group of the affine invariant manifold C+ of rank ℓ
is the subgroup of Sp(2ℓ,R) which is generated by parallel transport of the absolute
real tangent bundle Z for the restriction of the Gauss Manin connection along loops
in C+ based at some fixed point p.

The fact that the monodromy group is a subgroup of Sp(2ℓ,R) follows from the
fact that the Gauss Manin connection is symplectic. Its conjugacy class does not
depend on any choices made.

A geometric description of the monodromy group of C+ is as follows. Observe
first that the monodromy coincides with the monodromy of the restriction of the
bundle Z to the intersection C of C+ with the moduli space of area one abelian

differentials. Let C̃ be a component of the preimage of C in the Teichmüller space
of abelian differentials. The stabilizer Stab(C̃) of C̃ in the mapping class group maps
via the natural surjective homomorphism Ψ : Mod(S) → Sp(2g,Z) to a subgroup
of Sp(2g,Z). There is a linear symplectic subspace H ⊂ R2g of dimension 2ℓ which

is preserved by Ψ(Stab(C̃)). The monodromy group of C then is the projection of

Ψ(Stab(C̃)) to the group Sp(H) = Sp(2ℓ,R) of symplectic automorphisms of H.
This description is immediate from the description of the Gauss Manin connection
in Section 2.1.

Example 4.2. If C+ is a Teichmüller curve, then the monodromy group of C+
is just the Veech group of C+, acting on the two-dimensional symplectic subspace
of H1(S,R) which is spanned by the real and imaginary part, respectively, of an
abelian differential ω ∈ C+. Thus this monodromy group is a lattice in Sp(2,R) =
SL(2,R), in particular it is Zariski dense in SL(2,R).

Our goal is to show that the monodromy group of any affine invariant manifold
is Zariski dense in Sp(2ℓ,R) (using the above convention). We will make use of
the fact that an abelian differential on S defines a singular euclidean metric on S
with cone points of cone angle a multiple of 2π at the zeros of the differential. This
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singular euclidean metric is given by a family of charts, defined on the complement
of the zeros of the differential, with chart transitions being translations. As it is
customary in the literature, if we view an abelian differential on S as a singular
euclidean metric, we refer to these data as a translation surface. We denote such
a translation surface by X or by a pair (X,ω) if we like to specify the abelian
differential ω which defines the translation structure. Note that ω can be read off
from the horizontal and vertical measured foliations of the translation surface.

We begin with invoking a result of Wright [W15]. He introduced the following
two deformations of a translation surface (X,ω).

The horocycle flow is defined as part of the SL(2,R)-action,

ut =

(
1 t
0 1

)
⊂ SL(2,R),

and the vertical stretch is defined by

at =

(
1 0
0 et

)
⊂ GL+(2,R).

For a collection Y of horizontal cylinders on a translation surface X (i.e. cylinders
foliated by leaves of the horizontal foliation), define the cylinder shear uYt (X) to
be the translation surface obtained by applying the horocycle flow to the cylinders
in Y but not to the rest of X. Similarly, the cylinder stretch aYt (X) is obtained by
applying the vertical stretch only to the cylinders in Y.

A translation surface (X,ω) is called horizontally periodic if it is a union of
horizontal cylinders. A horizontal cylinder in a translation surface defines a class
in H1(S,Z) which is the oriented core curve of the cylinder. A cylinder family in
a translation surface defines such a class if the core curves of its cylinders are all
homologous. If we talk about the homology class of a cylinder family, then we
implicitly require that this is the case. Note that as the core curve of a cylinder is
a simple closed curve, it defines a primitive integral homology class. Hence if two
cylinders in a translation surface define collinear homology classes, that is, classes
which are scalar multiples of each other, then they define the same homology class
up to sign. In fact, the signs have to match up as well. Namely, these signs are
determined by integration of the cohomology class Re(ω).

In the sequel, via the natural pairing

⟨, ⟩ : H1(S,R)×H1(S,R) → R

between first homology and first cohomology of S, we view a class in H1(S,R) as an
element of H1(S,R)∗. The following lemma is a consequence of the work of Wright
[W15].

Lemma 4.3. Let C+ be an affine invariant manifold of rank ℓ. Then there exists
a horizontally periodic surface (X,ω) ∈ C+ with the following properties.

(1) There is a decomposition of X into ℓ + 1 collections Y1, . . . ,Yℓ,Yℓ+1 of
horizontal cylinder families. The family Yℓ+1 may be empty.
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(2) The homology classes of the cylinder families Yi (i ≤ ℓ) span a subspace L
of the dual Z∗ of Z = p(TC+)∩Π∗H|C+ of dimension ℓ, and the moduli of
all of the cylinders in each of the collections Yi (i ≤ ℓ) are rational.

(3) For each i ≤ ℓ, the cylinder shear uYi
t (X) remains in C+.

(4) For any contractible neighborhood U of (X,ω) in C+, the real parts

{[Re(z)] ∈ H1(S,R) | z ∈ U}
span the dual L∗ of L.

Proof. Let (X,ω) ∈ C+ be a translation surface with the maximal number of parallel
cylinders. We may assume that these cylinders are horizontal. By Theorem 1.10
of [W15] and its proof, (X,ω) is horizontally periodic, and the core curves of the
horizontal cylinders span a subspace of the dual Z∗ of Z of dimension ℓ. No set
of core curves of parallel cylinders on a translation surface Y ∈ C+ may span a
subspace of Z∗ of dimension greater than ℓ. As the core curves of these cylinders
define integral homology classes with pairwise trivial homological intersection, there
exists an isotropic (for the symplectic structure) subspace of Z∗ of dimension ℓ =
1
2dimZ∗ spanned by integral points in the homology of S.

By Definition 4.6 of [W15], two cylinders in X are called C+-parallel if they are
parallel at X and at every nearby X ′ ∈ C+. Being C+-parallel is an equivalence
relation on the set of cylinders. Lemma 4.7 of [W15] states that two cylinders in
X are C+-parallel if and only if their homology classes are collinear (and hence
coincide).

Let Zi (i = 1, . . . , k) be the set of equivalence classes of horizontal cylinders in
(X,ω) for this equivalence relation. By the choice of (X,ω), we have k = ℓ, i.e. the
horizontal cylinders of (X,ω) group into precisely ℓ equivalence classes. Lemma 4.11
of [W15] shows that the cylinder shear of any of the C+-parallel cylinder families
Zi remains in C+.

Consider one of the families Zi. The cylinder shear for Zi remains in C+. Corol-
lary 3.4 of [W15] states that if the moduli of the cylinders in this family are not
all rationally dependent, then there is a proper decomposition Zi = A ∪ B so that
the cylinder shears for the families A,B remain in C+. Thus we can subdivide the

cylinder family Zi = ∪jZj
i where j ≥ 1, where the moduli of the cylinders in each

of the families Zj
i are rationally dependent and such that for each j, the cylinder

shear u
Zj

i
t (X) remains in C+.

By Theorem 5.1 of [W15], for all i ≤ ℓ the vertical stretch aZi
t of the cylinder

family Zi is contained in C+. This vertical stretch changes the moduli of the cylin-
ders in the family Zi while keeping the moduli of the cylinders in the family Zj

fixed for all j ̸= i. If A1, A2 ⊂ Zi are cylinders with rationally dependent moduli,
then the moduli of their images under the vertical stretch are rationally dependent
as well. As a consequence, by successively modifying (X,ω) with a sequence of ver-
tical stretches of the cylinder families Zi (i = 1, . . . , ℓ) we can assure that the image
surface (X ′, ω′), which is again horizontally periodic, has the following property.
For each i, the moduli of the cylinders in the cylinder family Y1, . . . ,Yℓ which are
the images in X ′ of the families Z1

1 , . . . ,Z1
ℓ are rational.
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Let Yℓ+1 = X ′ − ∪iYi. Then the surface (X ′, ω) and the cylinder families Yi

have the properties (1)-(3) stated in the lemma.

We are left with showing property (4). To this end choose a lift ω̃ of the differ-
ential ω to the Teichmüller space of abelian differentials. This choice determines
the subspace L of H1(S,R) spanned by the homology classes of the cylinders in the
cylinder families of ω̃.

The bundle Z is a complex subbundle of the restriction of the pull-back Π∗H of
the Hodge bundle H to C+. Thus for each q ∈ C+ there is a complex structure Jq on
Z which depends on q. This complex structure is compatible with the symplectic
structure (which does not depend on q). This construction equips the flat bundle
Z → C+ with the structure of a complex vector bundle, and this complex structure

lifts to a complex structure on the pull-back bundle Z̃ → C̃+.

Since the complex structure Jω̃ on Z̃ω̃ is compatible with the symplectic struc-
ture, the Lagrangian subspace L of Z̃∗

ω̃ is totally real for Jω̃. Here by abuse of
notation, we transfer the complex structure on Z to a complex structure on its
dual and denote it by the same symbol. As a consequence, the real linear span of
L and the linear Lagrangian subspace Jω̃L of Z̃∗

ω̃ equals all of Z̃∗
ω̃.

Now the C∗-action on C̃+ which associates to a pair (q, θ) ∈ C̃+ ×C∗ the abelian

differential θq is holomorphic and commutes with the natural action of C∗ on Z̃q:

The restriction of the bundle Z̃ to an orbit of the C∗-action is a trivial complex
vector bundle over C∗, that is, the product of C∗ with a complex vector space. As
L is a Lagrangian subspace of Z̃∗

ω̃ which annihilates the projection of the tangent
space of W ss

loc(ω̃) at ω̃ to absolute periods, we obtain that Jω̃L is a Lagrangian

subspace of Z̃∗
ω̃ which annihilates the projection of the tangent space of W su

loc(ω̃) at
ω̃ to absolute periods. Hence the restriction of Jω̃L to the projection of the tangent
space ofW ss

loc(ω̃) at ω̃ is non-degenerate. As a consequence, by the implicit function

theorem, the real parts of all differentials contained in any neighborhood Ỹ of ω̃
project to an open subset of L∗. □

Remark 4.4. Algebraically primitive Teichmüller curves in the stratum of abelian
differentials with a single zero on surfaces of genus 2 show that in general, the
cylinder families which arise in Lemma 4.3 consist of more than one cylinder. Ex-
amples are McMullen’s L-shaped billiards (Theorem 1.5 of [McM03]) which are
horizontally periodic, with two homologous horizontal cylinders. A straightforward
computation shows that the moduli of these cylinders are rationally dependent.

Define a piecewise affine transformation of a translation surface (X,ω) to be
a continuous self-map F : X → X with the following property. There exists an
F -invariant decomposition X = ∪iXi into finitely many components with geodesic
boundary for the singular euclidean metric, and the restriction of F to each of
these components is affine. In contrast to an affine automorphism of (X,ω), we
allow that F is non-trivial but that the restriction of F to some of the components
Xi equals the identity. A cylinder shear of a collection Y of horizontal cylinders
with non-empty complement is such a piecewise affine transformation. If the result
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of such a transformation is isometric to (X,ω) then we call the piecewise affine
transformation a piecewise affine automorphism of (X,ω).

A transvection in a 2ℓ-dimensional symplectic vector space over a field K is a
map A ∈ Sp(2ℓ,K) which fixes a subspace of K2ℓ of codimension one and has
determinant one (see [Hl08]). Any map of the form

α→ α+ ι(α, β)β

for some 0 ̸= β ∈ K2ℓ (here as before, ι is the symplectic form) is a transvection.
We call this map a transvection by β.

Recall that a Dehn multitwist along a simple closed multicurve, that is, the
disjoint union c = c1 ∪ · · · ∪k of k simple closed curves, is a map of the form
T j1
c1 ◦ · · · ◦T

jk
ck

where for each i ≤ k, Tci is a positive Dehn twist about ci and ji ∈ Z.

Corollary 4.5. Let C+ be an affine invariant manifold of rank ℓ ≥ 1. Then there
is a horizontally periodic surface (X,ω) ∈ C+, and there is a free abelian group
of rank ℓ of piecewise affine transformations of (X,ω) which preserves C+. This
group of piecewise affine transformations contains a lattice Λ, that is, a subgroup
isomorphic to Zℓ, which acts on (X,ω) as a group of Dehn-multitwists, and it acts
on H1(S,R) as a group of transvections of rank ℓ.

Proof. Let (X,ω) be a translation surface as in Lemma 4.3. Let Yi (i ≤ ℓ) be one
of the cylinder families whose existence was shown in Lemma 4.3. The moduli of
all cylinders in the family are rational. Moreover, the cylinder shear uYi

t (X) for
this cylinder family remains in C.

As all the moduli of the cylinders in the cylinder families Yi are rational, this
cylinder shear is eventually periodic. This means that for each i there exists some
number ri > 0 such that for some fixed marking of the surfaceX, the surface uYi

ri (X)
is the image of X by a Dehn multitwist Ti about the core curves of the cylinders in
Yi. In particular, this multitwist defines a piecewise affine automorphism of (X,ω).

Since the core curves of the horizontal cylinders in X are pairwise disjoint, the
Dehn multitwists Ti commute. Therefore these multitwists generate a free abelian
group of rank ℓ of piecewise affine automorphisms of X. The multitwist Ti acts as
a transvection on H1(S,R) by a homology class of the form

∑
s b

s
i ζ

s
i where bsi ∈ Z

and where ζsi runs through the homology classes of the waist curves of the oriented
cylinders in the family Yi. Recall that these homology classes all coincide and are
non-trivial, furthermore the coefficients bsi are all positive (provided that we chose
the positive cylinder shear) and hence the class

∑
s b

s
i ζ

s
i is a positive multiple of

the class defined by one of the cylinders in the family.

Each of the homology classes ai =
∑

s b
s
i ζ

s
i (i ≤ ℓ) induces a linear functional

on the fibre of pTC+ = Z at X. The corollary now follows from the fact that by
the choice of (X,ω), the rank of the subspace of pTC∗

+ spanned by these homology
classes equals ℓ. Then the subgroup of Mod(S) generated by the Dehn multitwists
Ti (i = 1, . . . , ℓ) acts on H1(S,R) as an abelian group of transvections of rank ℓ. □
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Our criterion for Zariski density relies on a result of Hall [Hl08]. For its formu-
lation, for a prime p ≥ 2 let Fp be the field with p elements. Then Sp(2g, Fp) is
a finite group. Therefore for every A ∈ Sp(2g, Fp) there is some ℓ ≥ 1 such that
Aℓ = A−1. As a consequence, if G < Sp(2g, Fp) is any subsemigroup then for all
x, y ∈ G we have xy−1 ∈ G as well and hence G < Sp(2g, Fp) is a group.

In the formulation of the following lemma, ι denotes the symplectic form on a
symplectic vector space F 2ℓ

p over Fp of rank 2ℓ.

Lemma 4.6. Let p ≥ 3 be an odd prime and let G < Sp(2ℓ, Fp) be a subgroup
generated by 2ℓ transvections by the elements of a set E = {e1, . . . , e2ℓ} ⊂ F 2ℓ

p

which spans F 2ℓ
p . Assume that there is no nontrivial partition E = E1 ∪ E2 so that

ι(ei1 , ei2) = 0 for all eij ∈ Ej. Then G = Sp(2ℓ, Fp).

Proof. For each i write Ai(x) = x+ ι(x, ei)ei. Let G < Sp(2ℓ, Fp) be the subgroup
generated by the transvections A1, . . . , A2ℓ. Since the vectors e1, . . . , e2ℓ span F 2ℓ

p ,
the intersection of the invariant subspaces of the transvections Ai (i ≤ 2ℓ) is trivial.

We claim that the standard representation of G on F 2ℓ
p is irreducible. Namely,

assume to the contrary that there is an invariant proper linear subspace W ⊂ F 2ℓ
p .

Let 0 ̸= w ∈W ; then there is at least one i so that ι(w, ei) ̸= 0. By invariance, we
have w + ι(w, ei)ei ∈W and hence ei ∈W since Fp is a field.

As a consequence, W is spanned by some of the ei, say by ei1 , . . . , eik , and if j
is such that ι(eis , ej) ̸= 0 for some s ≤ k then ej ∈ W . However, this implies that
W = F 2ℓ

p by the assumption on the set E = {ei}.

To summarize, G is an irreducible subgroup of Sp(2ℓ, Fp) generated by transvec-
tions (where irreducible means that the standard representation of G on F 2ℓ

p is
irreducible). Furthermore, as p is an odd prime by assumption, the order of each
of these transvections is not divisible by 2. Theorem 3.1 of [Hl08] now yields that
G = Sp(2ℓ, Fp) which is what we wanted to show. □

Remark 4.7. By Proposition 6.5 of [FM12], Lemma 4.6 is not true for p = 2.

We use Lemma 4.6 to establish a criterion for Zariski density of a subgroup of
Sp(2ℓ,R) acting on a 2ℓ-dimensional symplectic subspace of H1(S,R). As before,
we use the standard pairing ⟨, ⟩ between homology and cohomology to view a class
in H1(S,R) as an element of H1(S,R)∗. A symplectic automorphism of H1(S,R)
induces a symplectic automorphism ofH1(S,R). Recall also that the real part Re(q̃)
and the imaginary part Im(q̃) of a marked abelian differential q̃ define a cohomology
class [Re(q̃)], [Im(q̃)] ∈ H1(S,R). For a symplectic subspace E of H1(S,R) denote
by Sp(E∗) the group of symplectic automorphisms of its dual E∗.

By a weighted oriented simple multicurve c on S we mean a simple oriented
multicurve with integral weights. Such a weighted oriented simple multicurve c
defines a Dehn multitwist about the components of c, where the weight of each
component determines the multiplicity of the twist about the component, and the
weight together with the orientation of the multicurve determines the sign of the
twist (positive or negative).
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For a fixed choice of a marking of S, a weighted oriented simple multicurve defines
a homology class [c] ∈ H1(S,Z) as the weighted sum of the homology classes of its
components. We always assume in the sequel that this class is non-trivial. Then
the Dehn multitwist about such a multicurve is a transvection in Sp(2g,Z).

The following proposition is the main technical tool towards the proof of Zariski
density of the monodromy of C.

Proposition 4.8. Let C be an affine invariant manifold of rank ℓ, let C̃ be a
component of the preimage of C in the Teichmüller space of abelian differentials
and let Z = p(T C̃+) ∩Π∗H|C+.

Let c1, . . . , cℓ be pairwise disjoint weighted oriented simple multicurves whose
(marked) homology classes [ci] span a subspace L of Z∗ of rank ℓ. Let U ⊂ C be an
open contractible set and let Ω(Γ0) ⊂ Mod(S) be the subsemigroup determined by

a pair of open contractible subsets Y ⊂ V of U and lifts Ỹ ⊂ Ṽ ⊂ Ũ of U to the
Teichmüller space or marked abelian differentials as in Proposition 3.12.

Assume that the cohomology classes {[Re(z̃)] | z̃ ∈ Ỹ } span the dual L∗ of L and

that ⟨[Re(z̃)], [ci]⟩ > 0 for all z̃ ∈ Ỹ and all i. Then the subsemigroup of Sp(Z∗)
generated by Ψ(Ω(Γ0)) and the transvections Ψ(Tci) which are the images of the
Dehn multitwists Tci about the weighted oriented multicurves ci is Zariski dense in
Sp(Z∗). If g = ℓ then for all but finitely many primes p ≥ 3, this semigroup surjects
onto Sp(2g, Fp).

Proof. Let C be an affine invariant manifold of rank ℓ. Let U ⊂ C be an open con-
tractible set with the properties stated in the proposition and let Ũ be a component
of the preimage of U in the Teichmüller space of marked abelian differentials.

Let Y ⊂ V ⊂ U be a pair of open subsets of U as in Proposition 3.3 and use
these sets and a fixed component Ṽ ⊂ Ũ of the preimages of V to construct the
subsemigroup Ω(Γ0) of Mod(S).

Let c1, . . . , cℓ be pairwise disjoint simple oriented weighted multicurves. With
respect to some fixed marking of S, used for the choice of the lift Ũ of U to the
Teichmüller space of marked abelian differentials, assume that the homology classes
[ci] of ci span a linear subspace L of Z∗ of dimension ℓ. As the multicurves ci are
pairwise disjoint, this subspace is isotropic. By the assumption in the proposition,
the cohomology classes [Re(z̃)] ∈ H1(S,R) of the real parts Re(z̃) of the differentials
z̃ ∈ Ỹ span the dual L∗ of L in the symplectic vector space Z.

Any periodic orbit passing through Y defines an element of the group Ω(Γ0).
As periodic points for Φt are dense (which follows among others from Proposition

3.3 but is well known, see for example [W15]), we can choose a lift z̃ ∈ Ỹ ⊂ Ṽ
of a periodic point z ∈ Y for Φt which defines the pseudo-Anosov mapping class
φ ∈ Ω(Γ0) < Mod(S). By assumption, we have ⟨[Re(z̃)], [ci]⟩ ≠ 0 for all i. The
mapping class φ preserves the Φt-orbit of z̃.

There is a number κ > 1 such that φ∗Re(z̃) = κ−1Re(z̃), moreover κ is the
Perron Frobenius eigenvalue for the action of φ on H1(S,R). In particular, φ∗
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preserves the subspace kerRe(z̃) and, by duality, it acts on the cone ⟨Re(z̃), ·⟩ > 0
as an expansion, with attracting invariant line spanned by Re(z̃)∗. This implies
that as k → ∞ the homology classes [φkci] converge up to rescaling to a class u ∈
H1(S,R) whose contraction with the intersection form ι defines ±[Re(z̃)], viewed
as a linear functional on H1(S,R). By this we mean that ι(u, a) = ⟨±[Re(z̃)], a⟩ for
all a ∈ H1(S,R). As a consequence, for all sufficiently large n > 0 and all i, j ≤ ℓ
we have ι([φnci], [cj ]) ̸= 0. Choose once and for all such a number n.

Let G < Mod(S) be the group generated by the semigroup Ω(Γ0) as well as the
Dehn multitwists Ti = Tci (i ≤ ℓ). Then G contains the multitwists φnTiφ

−n =
Tφnci (see Fact 3.7 on p.73 of [FM12] for this equation).

Let A1 < Z∗ be the linear subspace of rank ℓ which is the common fixed set
in Z∗ for the transvections Ψ(Tci) of Z∗ (i = 1, . . . , ℓ). Then A1 is a Lagrangian
subspace of the symplectic vector space Z∗ which is spanned by the homology
classes [c1], · · · , [cℓ]. Let A2 ⊂ A1 be the common fixed set in Z∗ of the transvec-
tions which are the images under the map Ψ of all multitwists Ti, φ

nTjφ
−n. Since

ι([φnci], [cj ]) ̸= 0 for all i, j by the assumption on n, the linear subspace A2 of A1 is
of codimension s ≥ 1. Let i1, . . . , is ⊂ {1, . . . , ℓ} be such that the homology classes
[cj ], [φ

ncip ] ∈ H1(S,Z) (j ≤ ℓ, p ≤ s) are independent over R and that the common
fixed set in Z∗ of the transvections defined by the Dehn multitwists Tci , Tφncip

is
A2.

Assume that the dimension of A2 is positive. By assumption, the set of the real
parts of all differentials in Ỹ span L∗. Thus we can find some ỹ ∈ Ỹ such the
linear functional ⟨[Re(ỹ)], ·⟩ on L is non-trivial on A2. As this condition is open,
and periodic points for Φt are dense, we may assume that ỹ is the preimage of a
periodic point of Y . Arguing as in the previous paragraph, we find a multitwist β in
the subgroup G of Mod(S) generated by Ω(Γ0) and the Dehn multitwists Tci so that
the common fixed set in Z∗ of the group generated by Ψ(β) and the transvections
Ψ(Tci),Ψ(Tφncip )

has codimension at least one in A2.

Repeat this construction. In at most ℓ steps we find integral homology classes
a1, . . . , aℓ, aℓ+1, . . . , a2ℓ ∈ H1(S,Z) (where for i ≤ ℓ the class ai is the class [ci] of
the oriented weighted multicurve ci) with the following properties.

(1) Let W ⊂ H1(S,R) be the real vector space spanned by the classes ai. The
dimension of W equals 2ℓ. Viewing W as a linear subspace of H1(S,R)∗,
its restriction to Z is non-degenerate. In particular, W is a symplectic
subspace of H1(S,R).

(2) ι(aj , ai) ̸= 0 for all i ≤ ℓ, j ≥ ℓ+ 1.
(3) For each j the transvection b → b + ι(b, aj)aj is contained in the group

generated by Ψ(Ω(Γ0)) and the transvections Ψ(Tci) (i ≤ ℓ).

By the choice of the homology classes ai, the (2ℓ, 2ℓ)-matrix (ι(ai, aj)) whose
(i, j)-entry is the homology intersection number ι(ai, aj) is integral and of maximal
rank. Choose a prime p ≥ 5 so that each of the entries of (ι(ai, aj)) is prime to p. All
but finitely many primes will do. Then the reduction mod p of the matrix (ι(ai, aj))
is of maximal rank as well. In particular, if Fp denotes the field with p elements then
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the reductions mod p of the homology classes ai span a 2ℓ-dimensional symplectic
subspace Wp of H1(S, Fp).

Let Λ < Sp(W ) be the subgroup of the symplectic group ofW which is generated
by the transvections with the elements ai. The group Λ is defined over Z and hence
its reduction Λp mod p is defined. Lemma 4.6 shows that Λp = Sp(2ℓ, Fp). Note
that property (2) above guarantees that all conditions in Lemma 4.6 are fulfilled.
Since this is true for all but finitely many p, Λ is a Zariski dense subgroup of the
group of symplectic automorphisms of W [Lu99]. By duality, this implies that
the subgroup G of Sp(Z∗) generated by Ψ(Tci) and Ψ(Ω(Γ0)) is Zariski dense in
Sp(Z∗).

If g = ℓ, then any element in Ψ(Ω(Γ0)) as an automorphism of Z∗ is defined
over Z and hence Ψ(ω(Γ0)) can be reduced to a subset of Sp(2g, Fp) for any prime
p. Since Γ0 and hence Ω(Γ0) is a semi-group, its reduction mod p is a subgroup of
Sp(2g, Fp). It then follows from the above proof that this group is all of Sp(2g, Fp)
for all but finitely many p. This completes the proof of the proposition. □

Let again C+ be an affine invariant manifold of rank ℓ ≥ 1. Recall from Definition
4.1 the definition of the monodromy group of an affine invariant manifold C+ of rank
ℓ. We can now summarize the discussion in this section as follows.

Corollary 4.9. The monodromy group of any affine invariant manifold C+ of rank
ℓ is Zariski dense in Sp(2ℓ,R) = Sp(ZR,R).

Proof. Let C+ be an affine invariant manifold of rank ℓ ≥ 1, and let C ⊂ C+ be its
subset of differentials of area one.

Choose a translation surface (X,ω) ∈ C with the properties stated in Corollary
4.5. Choose a marking of the translation surface, that is, a lift ω̃ of ω to the
Teichmüller space of abelian differentials. By Corollary 4.5, there exists a smooth
submanifold N of the component C̃ of the preimage of C which is diffeomorphic
to Rℓ and consists of differentials with the same horizontal measured foliation as
(X, ω̃). Thus a neighborhood of (X, ω̃) of this submanifold of C̃ is contained in the
leaf W ss

loc(ω̃) of the local strong stable manifold of (X, ω̃).

The submanifold N contains the orbit of ω̃ under a free abelian subgroup Λ of
Mod(S) of rank ℓ consisting of marked Dehn multitwists contained in the group of
piecewise affine automorphisms of (X,ω). Denote by [ci] the homology classes of
the marked weighted oriented multicurves defining these multitwists (i = 1, . . . , ℓ)

and let L be the Lagrangian subspace of Z̃∗ spanned by these homology classes.

Let Ũ be a neighborhood of ω̃. As by construction, we have ⟨[Re(ω̃), [ci]⟩ > 0

for all i and this is an open condition, by decreasing the size of Ũ we may assume
that that this condition is fulfilled for all z̃ ∈ Ũ . Via further restricting the size of
Ũ we may assume that Ũ projects to a contractible subset U of C.

Now by part (4) of Lemma 4.3, the real parts [Re(z̃)] of the points z̃ ∈ Ũ span
the dual L∗ of L. Thus the corollary follows from Proposition 4.8. □
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5. From global to local Zariski density

Consider as before an affine invariant manifold C. Let C̃ be a component of
the preimage of C in the Teichmüller space of abelian differentials; then we have
C = Λ\C̃ where Λ is the stabilizer of C̃ in the mapping class group of S.

Let ρ : Λ → G be a homomorphism where for the moment, G is an arbitrary
simple algebraic group defined over R. The image ρ(Λ) is a subgroup of G whose
Zariski closure is defined. A natural example is the representation arising from the
restriction of the homomorphism ρ : Mod(S) → Sp(2g,Z) defined by the restric-
tion of the Kontsevich Zorich cocycle. Another example is the action of Λ on the
symplectic subspace of H1(S,R) which defines the absolute real tangent bundle ZR
of C+.

The homomorphism ρ : Λ → G defines a flat principal bundle P → C with fiber
G. This fiber bundle comes equipped with a natural flat connection and hence we
can talk about the monodromy of the connection.

The goal of this section is to pass from global to local information regarding
the Zariski closure of ρ(Λ). Consider a good birecurrent point q ∈ Cgood. For an
open contractible neighborhood U ⊂ Cgood of q let G(U) be the Zariski closure of
the subgroup of G generated by those periodic orbits for Φt which pass through U
(by identifying basepoints via parallel transport in U as before). By definition, if
V ⊂ U is an open and contractible set then G(V ) ⊂ G(U).

The Zariski closure of a subgroup of G is an algebraic subgroup of G. Now any
descending sequence G ⊃ G1 ⊃ G2 ⊃ · · · of properly nested algebraic subgroups of
G is finite, where properly nested means that Gi+1 is a proper algebraic subgroup
of Gi. This implies that there exists an open contractible neighborhood V of q such
that for any open contractible neighborhood W ⊂ V of q, we have G(W ) = G(V ).
We call G(V ) the local monodromy group of q and denote it by G(q).

We aim at comparing these local monodromy groups for different basepoints
in Cgood. To explain the dependence on basepoints, note that given a subgroup
H of a given group G, conjugation by elements of H preserves H and hence this
conjugation action does not cause any ambiguity towards identifying the subgroup.

Lemma 5.1. Any two local monodromy groups G(q), G(z) (q, z ∈ Cgood) coincide.

Proof. Let q, z ∈ Cgood be good birecurrent points. By symmetry, it suffices to show
that the group G(z) is a subgroup of G(q).

To this end let Uq be any open contractible subset of Cgood such that G(Uq) =
G(q) and choose similarly an open contractible subset Uz of Cgood so that G(Uz) =
G(z).

By Theorem 3.3, we can find neighborhoods Yz ⊂ Vz ⊂ Uz of z, Yq ⊂ Vq ⊂
Uq of q and a number n > 0 with the following properties. The sets Vz, Vq are
contractible. Write Y = {Yq, Yz} and let u0, u1, u2, u3 be a periodic (n,Y)-pseudo-
orbit for Φt, with u0 = u3 ∈ Yz and u1, u2 ∈ Yq. There are numbers ti > n such
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that Φtiui ∈ Yκ(i+1) where κ(i+1) = q for i = 0, 1 and κ(i+1) = z otherwise. Such
a pseudo-orbit exists since the Teichmüller flow on C is topologically transitive.

Let V = {Vq, Vz} and let η be a V-characteristic curve for this pseudo-orbit. By
Proposition 3.3, the characteristic curve η determines a parametrized periodic orbit
ν for Φt beginning in Vz, and this orbit passes through Vq.

Choose a component C̃ of the preimage of C in the Teichmüller space of abelian
differentials and let Ṽz ⊂ C̃ be a component of the preimage of Vz. Let ũ0 be the
preimage of u0 in Ṽz. For this fixed choice, the parameterized periodic orbit ν
determines a pseudo-Anosov element Ω(ν) ∈ Mod(S) as follows. Let η̃ be the lift
of the characteristic curve η for the pseudo-orbit beginning at ũ0. Then Ω(ν) maps
the endpoint of η̃ back to its starting point.

Let Ṽq ⊂ C̃ be the component of the preimage of Vq which contains Φt0 ũ0. If η
′

is a characteristic curve of a pseudo-orbit defined by points u0, u
′
1, u2, u3 = u0, with

u′1 ∈ Yq, and times t0, t
′
1, t2 > n, and if ν′ is the corresponding periodic orbit, then

the element Ω(ν)−1 ◦ Ω(ν′) (read from right to left) of Mod(S) maps the endpoint

of the lift beginning in Ṽz of the concatentation η−1 ◦ η′ (read from right to left)
back to its starting point ũ0. Recall that this makes sense since η, η′ begin and end
at the same point u0 ∈ Yz.

Thus ρ(Ω(ν)−1 ◦ Ω(ν′)) equals the holonomy for parallel transport with respect
to the flat connection of the following loop. Fix the point u0 ∈ Yz as a basepoint.
The (n,Y)-pseudo-orbit given by the points u0, u1, u2 and the times t0, t1 determine
the homotopy class with fixed endpoints of an arc β connecting u0 to u2, and there
is an arc β′ for the (n,Y)-pseudo-orbit given by the points u0, u

′
1, u2 and the times

t0, t
′
1. These arcs are constructed in such a way that they end at u2. The holonomy

of the concatenation of β′ with the inverse of β equals the element ρ(Ω(ν)−1◦Ω(ν′))
(again read from right to left).

Choose an open contractible neighborhoodW of the distinguished orbit segment
connecting u0 to u1. Parallel transport in W identifies the fiber Pu0

∼ G of P at
u0 with the fiber Pu1

∼ G of P at u1. This identification maps ρ(Ω(ν)−1 ◦ Ω(ν′))
to ρ(Ω(ξ)−1 ◦Ω(ξ′)) where Ω(ξ′) is the element of Mod(S) constructed from Ṽq and
from a parametrized periodic orbit of Φt through Vq determined by the one-segment
periodic pseudo-orbit (u′1, t

′
1), and where ξ is defined by the periodic pseudo-orbit

u1, u2, u0, u1 based in Yq. As Ω(ξ),Ω(ξ|prime) ∈ G(q), this implies that indeed,
G(q) ⊂ G(z) and hence G(z) = G(q) by symmetry. □

Definition 5.2. An affine invariant manifold C of rank ℓ is locally Zariski dense
for ρ : Λ → G if for every birecurrent point q ∈ Cgood we have G(q) = G.

We are now ready to show

Theorem 5.3. An affine invariant manifold C is locally Zariski dense for ρ if and
only if ρ(Λ) ⊂ G is Zariski dense.
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Proof. Clearly if C is locally Zariski dense for ρ then ρ is Zariski dense. Thus we
have to show that Zariski density implies local Zariski density.

To see that this is the case assume otherwise. Let q ∈ Cgood be a birecurrent
point; then there exists a periodic orbit γ ⊂ Cgood whose monodromy is not con-
tained in G(q). Choose a point z ∈ γ; then z is birecurrent and the monodromy ρ(γ)
of γ (based at z) is contained in the local monodromy group G(z) but not in G(q).
However by Lemma 5.1, we have G(z) = G(q) and hence this is a contradiction. □

Corollary 4.9 shows that the monodromy group of the absolute real tangent
bundle ZR of C+ is Zariski dense in Sp(ZR,R) and hence we obtain

Corollary 5.4. The monodromy of an affine invariant manifold is locally Zariski
dense.

6. Simplicity of the Lyapunov spectrum

The goal of this section is to use Theorem 5.3 and the results of [AV07a] to
complete the proof of Theorem 1 from the introduction.

Let Q be a component of a stratum of area one abelian differentials, and Φt the
Teichmüller flow on Q. Let C ⊂ Q be an affine invariant manifold. There exists a
Φt-invariant ergodic Borel probability measure µ on Q whose support equals C and
which is in the Lebesgue measure class of C. The measure µ is absolutely continuous
with respect to the stable and unstable foliation of C and ergodic (see for example
[AEM17]).

Let as before Λ ⊂ Mod(S) be the stabilizer of a component of the preimage of C
in the Teichmüller space of abelian differentials. Let ρ : Λ → G be a representation
where G = Sp(2m,R) or G = SL(n,R) and assume that ρ(Λ) is Zariski dense in
G. Denote by P → C the flat G-principal bundle defined by ρ and let V → C be
the induced flat vector bundle. The natural flat connection on V determines an
extension Ψt of the Teichmüller flow on C by parallel transport.

Choose a continuous norm | | on V compatible with the symplectic structure
if G = Sp(2m,R). Assume that the function q → log ∥Ψ1(q)∥ is integrable with
respect to µ, where ∥ ∥ denotes the operator norm with respect to the norm | |.

Example 6.1. Using the notations from Section 4, consider as before the absolute
real tangent bundle ZR of C+ which can be thought of as the projection of the
tangent bundle of C to absolute periods. It is a flat invariant subbundle of the
restriction of the Hodge bundle H to C and hence it determines an extension Ψt

of the Teichmüller flow on C. By Corollary 4.9, the monodromy of this bundle is
Zariski dense in the corresponding symplectic group Sp(2ℓ,R).

The bundle ZR can be equipped with the Hodge norm | | which is defined as
follows. A point v ∈ ZR is a real first cohomology class on the surface S, that is,
v ∈ H1(S,R). Equipped with the cup product, ZR is a symplectic vector space.
The basepoint P (v) = q ∈ C of v determines a complex structure Π(q) on S. There
exists a unique holomorphic one-form ω on S for the complex structure Π(q) whose
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real part ℜ(ω), as a closed one-form, defines the cohomology class v. Put |v| =
∫
S
ω,

the area of the flat metric determined by ω. We refer to [ABEM12] for a detailed
account on this norm.

Now using period coordinates and the fact that the Teichmüller flow Φt is the
restriction to the diagonal group of the natural SL(2,R) action on C, it follows
easily (and is well known) that the operator norm of Ψt with respect to the Hodge
norm | | on ZR satisfies

e−t ≤ ∥Ψt(q)∥ ≤ et for all t, q.

As a consequence, the function q → log ∥Ψ1(q)∥ is integrable with respect to the
probability measure µ.

Let as before U ⊂ Cgood be an open contractible subset. Since the bundle V → C
is flat, for x, y ∈ U the holonomy map

Hx,y : Vx → Vy

defined by parallel transport along a path in the open contractible set U only
depends on the choice of U . Since | | was chosen to be a continuous norm on V, in
a flat trivialization of V over U , the norm of a vector X ∈ Vq depends continuously
on q ∈ U . Thus we have

Lemma 6.2. Every q ∈ Cgood admits an open contractible neighborhood U such
that for x, y ∈ U , the holonomy map Hx,y : Vx → Vy is 2-bi-Lipschitz with respect
to the norm | |.

By our assumption on | | and ergodicity of µ, Oseledec’s multiplicative theorem
can be applied. It yields a Ψt-invariant measurable filtration V 1 ⊂ V 2 ⊂ · · · ⊂ V k =
V of µ-measurable subbundles V i of V corresponding to the Lyapunov exponents
λ1 < λ2 < · · · < λk. More specifically, for µ-almost every q ∈ C and any v ∈
V i
q \ V i−1

q we have

λi = lim
t→∞

1

t
log |Ψtv|.

The Lyapunov spectrum is called simple if the dimension of V i equals i for all i.

In [AV07a], Avila and Viana established a criterion which guarantees simplicity
of the Lyapunov spectrum for a certain class of cocycles over a countable Markov
shift with respect to an invariant probability measure which is absolutely continuous
with respect to the stable and unstable foliation and satisfies some mild extra
assumptions. Our goal is to reduce Theorem 1 to [AV07a].

To reduce the study of the extension Ψt of the Teichmüller flow to the study of
a cocycle over a countable Markov shift we use the following result from [H11] for
the Teichmüller flow on a component Q of abelian or quadratic differentials.

Theorem 6.3 (Theorem 1 of [H11]). There exists

• a topologically transitive subshift of finite type (Ω, σ)
• a σ-invariant dense Borel set U ⊂ Ω containing all normal sequences
• a suspension (X,Θt) of σ over U , given by a positive bounded continuous
roof function on U
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and a finite-to-one semi-conjugacy Ξ : (X,Θt) → (Q,Φt) which maps the space
of σ-invariant Borel probability measures on U continuously onto the space of Φt-
invariant probability measures on Q.

Let as before Q be the component of a stratum of abelian differentials containing
the affine invariant manifold C. By Theorem 6.3, there exists a σ-invariant Borel
probability measure µ̂ on U ⊂ Ω which is mapped by the semi-conjugacy Ξ to µ
in the following sense. Let ρ : U → (0, R] be the roof function which defines the
suspension (X,Θt). Recall that this roof function is bounded. Define the measure
µ̃ on the suspension X by

dµ̃ = dµ̂× dt.

If B ⊂ Ω is any Borel set, then we have

µ̃{(x, t) | x ∈ B, 0 ≤ t < ρ(x)} =

∫
B

ρ dµ̂.

As the roof function ρ is bounded, this construction defines a finite Θt-invariant
Borel measure µ̃ on (X,Θt) (it may not be a probability measure) which is mapped
by Ξ to a positive multiple of µ. Since µ is ergodic under the action of Φt, the
measure µ̂ is ergodic under the action of σ.

As Ξ is a semi-conjugacy, it maps stable and unstable manifolds for Θt to stable
and unstable manifolds for Φt. Since µ is absolutely continuous with respect to the
stable and unstable foliation of Φt, the measure µ̂ is absolutely continuous with
respect to the stable and unstable foliation of the shift σ. However, if C is a proper
affine invariant submanifold of Q then µ̂ is not of full support.

Via the map Ξ, the bundle V pulls back to a measurable flat bundle Ṽ over
the intersection of the support of µ̃ with the suspension of the set U ⊂ Ω. By
equivariance of the semi-conjugacy Ξ with respect to the flows Θt and Φt, the pull-
back of the flat connection induces an extension Ψ̃t of the flow Θt to a flow on
Ṽ (note that this just means equivariance of Ψ̃t with respect to pull-back). The

extension Ψ̃t is defined for µ̃-almost every x ∈ X and all t ∈ R. Since Ξ∗µ̃ = aµ
for a number a > 0, the Lyapunov spectrum for (Ψt, µ) is simple if and only if the

Lyapunov spectrum for the pull-back flow (Ψ̃t, µ̃) is simple.

The measurable bundle Ṽ over X restricts to a measurable bundle Π : V̂ → Ω.
The flow Ψ̃t induces a transition map F̂ : V̂ → V̂ by

F̂ (x) = Ψ̃ρ(x)(x).

Clearly F̂ is a cocycle for σ, that is, we have

F̂ (σ(x)) ◦ F̂ (x) = Ψ̃ρ(σ(x))(σ(x)) ◦ Ψ̃ρ(x)(x)

(here a matrix acts on a vector by left multiplication and hence multiplication is
read from right to left).

Although the bundle V̂ is only measurable and not defined outside of the support
of µ̂, the pull-back of the norm on V induces a norm | | on V̂. Furthermore, as the
roof function for the suspension (X,Θt) is bounded, from the assumptions on | | we
deduce that all requirements for an application of Oseledec’s theorem are fulfilled
for (F̂ , µ̂). We have
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Lemma 6.4. The Lyapunov spectrum of (Ψt, µ) is simple if and only if the Lya-

punov spectrum of (F̂ , µ̂) is simple.

Proof. We only show that if the Lyapunov spectrum of (F̂ , µ̂) is simple, then the

same holds true for the Lyapunov spectrum of (Ψ̃t, µ̃). Simplicity of the Lyapunov
spectrum for (Ψt, µ) then follows by the above discussion. This is the only impli-
cation we are interested in.

Let R > 0 be an upper bound for the roof function ρ. Assume that the Lyapunov
spectrum for (F̂ , µ̂) is simple. Let λ1 < · · · < λk be the Lyapunov exponents and
assume that mini{λi − λi−1} = 4ϵ > 0. Let x ∈ Ω be a density point for µ̂ so that

the Lyapunov exponents can be computed using the point x via iteration of both F̂
and F̂−1. By ergodicity of µ̂ and the Birkhoff ergodic theorem, the set of all such
points has full µ̂-measure. Applying the Oseledec multiplicative ergodic theorem
to both F̂ and F̂−1, we obtain the following.

Write F̂N (x) = F̂ (σn−1(x)) ◦ · · · ◦ F̂ (x). Then there exists a decomposition

V̂x
∼= Rk = E1 ⊕ · · ·⊕Ek and a number N0 > 0 such that with respect to the norm

| |, for any N > N0 and any X ∈ Ei with |X| = 1 we have

|F̂N (x)X| ∈ [eN(λi−ϵ), eN(λi+ϵ)].

For N > N0 let T (N) > 0 be such that ΘT (N)x = σNx. We know that

T (N)(x) =

N−1∑
j=0

ρ(σj(x)) ≤ RN.

Furthermore, as Ψ̂T (N)(x) = F̂N (x), for X ∈ Ei we have

(3) |Ψ̂T (N)X| ∈ [eT (N)((N/T (N)(λi−ϵ)), eT (N)((N/T (N)(λi+ϵ))].

In particular, by the choice of ϵ, the logarithms of the dilatations of the map Ψ̂T (N)

on the subspaces Ei differ by at least the factor 2ϵN/T (N), independent of N > N0.

As µ is ergodic with respect to σ, by the Birkhoff ergodic theorem (and perhaps
adjusting the basepoint x), as N → ∞ we have T (N)/N → κ for κ =

∫
ρ dµ̂ > 0

and hence N
T (N) → 1

κ . Inserting into (3) and taking into account the choice of ϵ

yields simplicity of the Lyapunov spectrum for (Ψ̃t, µ̃). □

We next inspect the cocycle (F̂ , µ̂) over the subshift (Ω, σ), equipped with the
measure µ̂. As for proper affine invariant manifolds the measure µ̂ is not of full sup-
port and, furthermore, the cocycle is only measurable, this is not possible directly.
Instead we use the geometric information to construct from the affine invariant
manifold C and the subshift (Ω, σ) a Markov shift on countably many symbols to
which the work [AV07a] can be applied.

The construction of the shift requires some preparation as follows. Recall that
a cylinder set for the subshift of finite type (Ω, σ) is a set of the form

[α−i, . . . , α−1;α0;α1, . . . , αk] = {x | xj = αj for j = −i, . . . , k}.
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Here the αi are letters from the finite alphabetA defining Ω, and for any consecutive
letters αi, αi+1 of the word defining the cylinder, we have Aαi,αi+1 = 1 where
(Aαi,αj ) is the transition matrix which determines the subshift of finite type. We
call a cylinder [α0] given by a single letter in position zero a basic cylinder. In the
sequel, all cylinders will be defined a word α−i · · ·α0 · · ·αk in the alphabet A with
i, k ≥ 0.

For every cylinder Y and every x = (xi) ∈ Y we define the local stable manifold

W s
loc,Y (x) = {(zi) ∈ Y | zi = xi for i ≥ 0}

and the local unstable manifold by

Wu
loc,Y (x) = {(zi) ∈ Y | zi = xi for i ≤ 0}.

For every basic cylinder [α0] ⊂ Ω, there exists a measurable roof function ρ[α0] :
[α0] ∩ U → (0, R] where R > 0 is a fixed constant. These roof functions determine
the suspension (X,Θt). We call the set

{(x, t) ∈ ([α0] ∩ U)× [0, R] | 0 ≤ t < ρ[α0](t)}

a box for the suspension. A box is saturated with respect to its vertical foliation,
and the finitely many boxes define a partition of X. Note however that as Ξ is not
injective in general, the boxes do not define a partition of Ξ(X).

From now on we only work with the subshift (Ω, σ) and we view the map Ξ as a
map defined on U ⊂ Ω (by abuse of notation). Let us suppose that x ∈ U ⊂ Ω is the
preimage under the map Ξ of a point in Cgood, equivalently that Ξ(x) = q ∈ Cgood.
As C is a locally closed subset of Q, there exists a neighborhood U ⊂ Qgood of q
in the stratum Q containing C such that U ∩ C is connected and homeomorphic to
a ball satisfying the properties in Lemma 6.2. Furthermore, we may assume that
U ∩ C has a local product structure. Choose an open contractible neighborhood
V ⊂ U ⊂ Qgood with the same properties as U and compact closure in U .

Since the map Ξ : U → Q is continuous and cylinders in Ω define a basis of the
topology, there exists a cylinder Y = [α−i, . . . ;α0; . . . , αk] containing x with the
property that Ξ(Y ) ⊂ V . Since a local stable manifold for the Teichmüller flow
on C is a submanifold of a local stable manifold for the Teichmüller flow on Q,
by making Y smaller if necessary we also may assume that for every y ∈ Y , the
closure of Ξ(Wu

loc,Y (y) ∩ U) in Q intersects C in a subset of a contractible set of

a stable manifold in C and similarly for Ξ(W s
loc,Y (y) ∩ U). If these conditions are

satisfied, then we call Y a C-good cylinder. The above discussion yields that every
x ∈ Ξ−1(Cgood) is contained in some C-good cylinder.

Of course C-good cylinders containing a given point x ∈ Ξ−1(Cgood) are by no
means unique. Our next goal is to circumvent this problem by constructing a
partition of Ξ−1(Cgood) by countably many C-good cylinders. This is carried out in
the following

Lemma 6.5. There exists a countable collection P = {Pi | i} of pairwise disjoint
C-good cylinders whose intersections with Ξ−1(Cgood) define a measurable partition
of Ξ−1(Cgood) ⊂ U .
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Proof. To construct the partition we review from [H11] the basic properties of the
map Ξ.

An element αi of the finite alphabet A of Ω corresponds to a combinatorial type
of a large marked numbered train track τ on the surface S. The train track τ is
contained in the collection LT (Q) associated to the component Q and is equipped
with a numbering of its branches. We refer to [H24] and the appendix for a summary
of the basic properties of these train tracks.

Denote by ML the space of measured geodesic laminations on S, equipped with
the weak∗-topology. This space is naturally homeomorphic to R6g−6 \ {0}. The
closed subset V0(τ) ⊂ ML of all measured geodesic laminations which are carried
by τ and which deposit the total mass one on τ is homeomorphic to a closed
cell of dimension dimC(Q)− 1 and hence contractible. Let moreover V∗(τ) be the
contractible cone of all measured geodesic laminations which are carried by the dual
bigon track of τ . Equivalently, this is the cone of all measured geodesic laminations
which hit τ efficiently. The appendix contains more information.

There exists a continuous function

ι : ML×ML → [0,∞),

the so-called intersection form, which is homogeneous under scaling a measured
lamination with a positive real. It restricts to a function ι : V0(τ)×V∗(τ) → [0,∞).
Any pair (µ, ν) ∈ V0(τ) × V∗(τ) with ι(µ, ν) ̸= 0 determines a pair (µ, ν̂) with
ι(µ, ν̂) = 1 by rescaling of ν. For fixed µ, the map (µ, ν) → (µ, ν̂) is invariant under
scaling the lamination ν with a positive real. Thus if we denote by P projectiviza-
tion, then the map (µ, ν) → (µ, ν̂) defines an embedding of the open dense (see
[H24]) subset

D(τ) = {(µ, [ν]) ∈ V0(τ)× PV∗(τ) | ι(µ, [ν]) ̸= 0}
of V0(τ)×PV∗(τ) into V0(τ)×V∗(τ). In the sequel we freely identify the set D(τ)
with its image under the natural embedding into V0(τ)× V∗(τ).

It was shown in [H24] that if a pair (ξ, η) ∈ D(τ) jointly fills up S, that is, if for
any measured lamination ν we have ι(ξ, ν) + ι(η, ν) > 0, then this pair defines an
abelian differential in the closure of the component Q. Recalling that τ corresponds
to the letter αi ∈ A, the set of pairs (ξ, η) ∈ D(τ) which define a point in Q is an
open subset U([αi]) of D(τ) ⊂ V0(τ)×PV∗(τ). This set is an immersed suborbifold
of Q of codimension one, and it is a transversal for the Teichmüller flow on Q.
A component of its preimage in the Teichmüller space of marked differentials is
contractible. We refer to [H24] for details.

The image under the map Ξ of the basic cylinder [αi] ⊂ Ω corresponding to
τ equals the subset of U([αi]) of uniquely ergodic pairs, which means that both
measured geodesic laminations in the pair are uniquely ergodic. In other words,
if we identify [αi] ∩ U with its image under Ξ, then we can view [αi] ∩ U as a
measurable dense subset of the transversal U([αi]).

To summarize, for each of the finitely many elements αi of the alphabet A, there
exists an immersion U([αi]) → Q extending Ξ in the sense described in the previous
paragraph. It was shown in [H11] that the finite union of the images of the sets
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U([αi]) where αi runs through the alphabet A define a global transversal Σ for the
Teichmüller flow on Q in the following sense:

(1) Σ is an immersed suborbifold of Q of codimension one.
(2) There exists a number R > 0, and for any q ∈ Q there exists a number

t ∈ [0, R) such that Φtq ∈ Σ.
(3) If q ∈ Σ, then there exists a number t(q) > 0 so that Φs(q) ̸∈ Σ for all

s ∈ (0, t(q)). The number t(q) depends continuously on q.

Note that the number t(q) > 0 appearing in the third statement above is not
bounded from below by a positive constant. The transversal Σ contains the image
Ξ(U) of U as a measurable dense subset which has full measure with respect to the
disintegration of every Φt-invariant probability measure on Q. We refer to [H11]
for more details on this fact.

Since C is a closed connected Φt-invariant suborbifold ofQ and hence its topology
as a subspace of Q has a countable basis, the intersection of C with the transversal
Σ has at most countably many connected components. Each such component is a
closed subset of C. We use this information to construct inductively a countable
collection P of pairwise disjoint C-good cylinders in Ω whose intersections with
Ξ−1(Cgood) define a partition of Ξ−1(Cgood) ⊂ U as follows.

Consider the collection P̂0 of all basic cylinders [αi] ⊂ Ω (αi ∈ A) with the
property that U([αi]) intersects Cgood, equivalently that [αi]∩Ξ−1(Cgood) ̸= ∅. Note

that (Cgood ∩Σ) ⊂ ∪{U([αi]) | [αi] ∈ P̂0}. If [αi] ∈ P̂0 is a C-good cylinder then we
require that [αi] ∈ P. Let P0 ⊂ P be the collection of all C-good basic cylinders
obtained in this way. This is a finite set.

In a second step, consider a basic cylinder [αi] ∈ P̂0−P0. This cylinder can be de-
composed as a disjoint finite union of length three cylinders of the form [α−j ;αi;αℓ].

Let P̂1 be the union over all [αi] ∈ P̂0 −P0 of all those subdivision cylinders which
intersect Ξ−1(Cgood). As before, this is a finite set. Furthermore, it is clear from

the construction that the cylinders in P̂1 ∪P0 cover Ξ−1(Cgood). Denote by P1 the

union of those among the cylinders from P̂1 which are C-good. This is a finite set.
Proceed inductively by subdividing cylinders in P̂1 − P1 into cylinders of length
five etc.

Let P be the union of all cylinders obtained inductively in this fashion. Each
cylinder in P is C-good by construction. Since every point x ∈ Ξ−1(Cgood) is con-
tained in some C-good cylinder and since a subcylinder of a C-good cylinder which
intersects Ξ−1(Cgood) is C-good by definition, the cylinders from the collection P
define a partition of Ξ−1(Cgood). Furthermore, the number of cylinders is countable
as they can be sorted by their (finite) cylinder length and the number of cylinders
of uniformly bounded length is finite. This completes the proof of the lemma. □

By Lemma 6.5, a point x ∈ Ξ−1(Cgood) is contained in a unique C-good cylinder
P from the countable cylinder family P. By the definition of a C-good cylinder,
for P ∈ P, the set ∆(P ) = P ∩ U ∩ Ξ−1(Cgood) is mapped by Ξ into a contractible
subset of Cgood with the properties stated in Lemma 6.2. Furthermore, if P ∈ P
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and if x ∈ ∆(P ), then there exists some t(x) ∈ (0, R] such that Θt(x)(x) ∈ P ′ for
some P ′ ∈ P, but Θtx ̸∈ P for any t ∈ (0, t(x)). Equivalently, we have σ(x) ∈ P ′.
That this statement indeed holds true for all x ∈ Ξ−1(Cgood) rather than for points
of a subset of full µ̂-mass is a direct consequence of the construction of the cylinder
family P as detailed in the proof of Lemma 6.5.

Our goal is to use the cylinders P ∈ P to construct a Markov shift over the
countable alphabet P to which the results of [AV07a] can be applied. This is done
by constructing a transition matrix in the following way.

To simplify the notation, put ∆ = Ξ−1(Cgood); then ∆(P ) = ∆∩P for all p ∈ P.
If P, P ′ ∈ P and if there exists some y ∈ ∆(P ) with σ(y) ∈ P ′, then we define
AP,P ′ = 1, and define AP,P ′ = 0 otherwise. Denote by (Υ, τ) the Markov shift on
the alphabet P defined by this transition matrix.

It follows from the construction that there exists a natural measurable embedding
Υ → Ω which is equivariant with respect to the shifts τ and σ and whose image has
full µ̂-mass. Thus the measure µ̂ defines a τ -invariant measure on Υ, again denoted
by µ̂. Moreover, the extension F̂ of the shift σ determines an extension of the shift
τ , denoted again by F̂ , whose Lyapunov spectrum with respect to the measure µ̂
on Υ is simple if and only if the same holds true for the Lyapunov spectrum of Ψt

with respect to µ.

We next translate the extension F̂ of the shift τ on Υ into an iteration property
of (symplectic) matrices. Namely, any measurable map A : Υ → G defines a cocycle
FA over the shift τ by

FA : Υ× Rk → Υ× Rk, FA(x, v) = (τ(x), A(x)v).

Note that this definition is just a direct translation of the cocycle into the pull-back
of the flat principal bundle over C with fiber G.

Our next goal is to verify that there is a measurable map L : Υ → G with
controlled properties which induces the cocycle F̂ over τ in this way.

Lemma 6.6. There exists a measurable map L : Υ → G with the following prop-
erties.

(1) For any P, P ′ ∈ P the restriction of L to ∆(P ) ∩ τ−1(P ′) is constant.

(2) The map L determines the cocycle F̂ over τ .

Proof. By the definition of a C-good cylinder, for any P ∈ P, the image under Ξ of
∆(P ) is contained in an open contractible subset U(P ) of Cgood with the properties
stated in Lemma 6.2.

Denote as before by V the flat vector bundle over C defined by ρ. There exists a
flat trivialization of V|U(P ) which consists of a local basis (symplectic if G is the
symplectic group) whose basis elements have norm contained in the interval [1/2, 2]
(recall that the norm | | is not flat). We choose a fixed such flat trivialization of
V for each P ∈ P and call it preferred. In the sequel we shall also talk about the
preferred trivialization of V̂ over P by abuse of notation, identifying V̂|P with its
image under Ξ.
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Now let P, P ′ ∈ P be such that AP,P ′ = 1. Then it follows from the construction
that we have P ∩ σ−1(P ′) ̸= ∅. More precisely, if we denote by W ⊂ U(P ) the
closure of the intersection Ξ(U ∩ P ∩ τ−1(P ′)) ∩ C, then there exists a continuous
map τ : W → (0, R] such that for all x ∈ W we have Φt(x)(x) ∈ U(P ′). As a
consequence, since the preferred trivializations of V on U(P ) and U(P ′) are flat,
the matrix L(x) ∈ G which determines the map x → Ψt(x)(x) with respect to
the preferred trivializations of V on U(P ) and U(P ′) does not depend on x ∈ W .
Note that this statement uses in a crucial way the fact that the transversal Σ
for the Teichmüller flow on Q is an immersed codimension one suborbifold of Q
which intersects the affine invariant manifold C in an immersed codimension one
suborbifold, so that it makes sense to talk about continuity.

That the map L also has the second property stated in the lemma follows from its
construction: Namely, the map L encodes the cocycle F̂ with respect to preferred
trivializations on the C-good cylinders in the collection P. □

To summarize, to complete the proof of Theorem 1 it suffices to show that the
cocycle defined by the map L has simple Lyapunov spectrum with respect to the
measure µ̂ on Υ. This is accomplished by a direct application of the main result of
[AV07a]. We have to verify that the map L and the measure µ̂ fulfill the conditions
stated in [AV07a].

From now on we shall work exclusively with the shift (Υ, τ) on the countable
alphabet P. For such a shift, cylinders [αi, . . . ;α0; . . . , αk] are defined as for the
subshift of finite type Ω, and similarly we define cylinders of Υu = Pn≥0 and
Υs = Pn≤0, corresponding to the case i = 0 and k = 0, respectively. The phase
spaces Υ and Υu,Υs are endowed with the topologies generated by their cylinders.
Call cylinders in Υ,Υu,Υs of the form [α0] defined by a single letter of the alphabet
P in position zero (for Υ,Υu) or −1 (for Υs) basic.

Let Pu : Υ → Υu and P s : Υ → Υs be the natural projections. There are
one-sided shifts τu : Υu → Υu and τs : Υs → Υs defined by

τu ◦ Pu = Pu ◦ τ and τs ◦ P s = P s ◦ τ−1.

For x = (xn) ∈ Υ put xu = Pu(x) and xs = P s(x). Then x → (xs, xu)
is an embedding of Υ into Υs × Υu. The image consists of all pairs of one-sided
infinite strings which are contained in Υu,Υs, that is, which fulfill the compatibility
condition given by the matrix AP,P ′ which defines Υ, and whose starting letters
(at position zero) coincide. Note there is a small deviation of our conventions from
the ones chosen in [AV07a].

For each (xi) ∈ Υ, one can identify the local stable set

W s
loc(x

u) =W s
loc(x) = {(yn)n | xn = yn for all n ≥ 0}

with a basic cylinder in Υs, and the local unstable set

Wu
loc(x

s) =Wu
loc(x) = {(yn)n | xn = yn for all n ≤ 0}

with a basic cylinder in Υu via the projections P s and Pu.
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For x ∈ Υ, n ≥ 1 put

Ln(x) = L(τn−1(x)) ◦ · · · ◦ L(x)
(read from right to left as a product of matrices). Following [AV07a], we say that
L admits stable holonomies if the limit

Hx,y = lim
n→−∞

Ln(y)−1Ln(x)

exists for any pair of points x and y in the same local stable set, and depends
continuously on x, y. Unstable holonomies are defined in the same way, with n→ ∞
in the same local unstable set.

Lemma 6.7. L admits stable holonomies which are constant on local stable and
unstable manifolds.

Proof. To show that stable holonomies exist and are constant it suffices to show
the following. Let P ∈ P, let x ∈ ∆(P ) and let y ∈ W s

loc(x); then L(x) = L(y).
Namely, if this is indeed the case then constant stable holonomies follows by using
this identity inductively over the forward orbit of x under τ .

However, by construction, if x ∈ ∆ ∩ P and if y ∈ W s
loc(x) then we have

τ(x), τ(y) ∈ P ′ for the same cylinder P ′, specified by the letter in the string defining
x at position 1. That L(x) = L(y) now follows from Lemma 6.6.

The argument for the existence of local unstable holonomies is identical and will
be omitted. □

The following definition is due to Avila and Viana [AV07a]. For its formulation,
let x be any periodic point for τ . A point z ∈ Υ is called a homoclinic point of x
if z ∈ Wu

loc(x) and if there exists some N > 0 so that τN (z) ∈ W s
loc(x). Then we

define the transition map
ψx,z : Rk → Rk

by
ψx,z = Hs

σN ,x · LN (z) ·Hu
x,z.

Definition 6.8. The map L : Υ → G is called simple for τ if there exists a periodic
point x of period N > 0 and some homoclinic point z of x such that

(1) LN (x) is diagonalizable over R, and the absolute values of the eigenvalues
are pairwise distinct.

(2) For any invariant subspaces E and V of Rk with dim(E)+dim(V ) = k, we
have ψx,z(E) ∩ V = {0}.

Example 6.9. A point in the flag variety F for the symplectic group Sp(2ℓ,R) is a
filtration of isotropic (for the symplectic form ω) subspaces E = E1 ⊂ · · · ⊂ Eℓ such
that dim(Ei) = i. Two such flags E1, E2 are transverse if we have E1

ℓ ∩ E2
ℓ = {0}.

This implies in particular that the map η : X ∈ E1
ℓ → ω(X, ·) is an isomorphism of

E1
ℓ onto the dual (E2

ℓ )
∗ of E2

ℓ .

Assume furthermore that the flags are opposite, which means that for each i, the
annihilator of the i-dimensional linear subspace η(E1

i ) ⊂ (E2
ℓ )

∗, which is a linear
subspace of E2

ℓ of dimension ℓ− i, is transverse to E2
i . Then the flag E1 determines
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a basis v1, . . . , vℓ of E
2
ℓ up to multiplying a basis vector with a nonzero real by the

following requirements.

• span{v1, . . . , vi} = E2
i for all i.

• vi is contained in the annihilator of η(E1
ℓ−i−1).

Note that by the above assumption, the annihilator of η(E1
ℓ−i−1) intersects E2

i in

a one-dimensional subspace. In the same way we obtain from E2 a basis of E1
ℓ .

Let E3 be a third flag which is transverse to both E1 and E2. It then follows
that E3

ℓ is transverse to both E1
ℓ and E2

ℓ , furthermore the bases of E1
ℓ determined

by E2, E3 are linearly independent, that is, no two basis elements are collinear.

Now let us suppose that the opposite flags E1, E2 are the attracting and re-
pelling flags, respectively, of a proximal element A ∈ Sp(2ℓ,R). By proximality, the
eigenvalues of A have mutually distinct absolute values, and the one-dimensional
eigenspaces are the lines spanned by the basis of R2ℓ constructed from the two flags
E1, E2.

Let B ∈ Sp(2ℓ,R) be another proximal element, with attracting and repelling
flags E3, E4, respectively, and so that any two flags E i, Ej are opposite. There exists
a basis transformation V : R2ℓ → R2ℓ which transforms the basis constructed from
the pair E1, E2 to the basis constructed from the pair E3, E4. Write this linear map
as a matrix with respect to the basis defined by the pair E1, E2. As the four flags
E i are pairwise opposite, all the minors of this matrix are non-zero. Then for any
pair of A-invariant subspaces E, V of R2ℓ with dim(E) + dim(F ) = 2ℓ, we have
B(E) ∩ V = {0}.

It was shown by Benoist (Section 3.6 of [Be97]) that any Zariski dense semigroup
Γ ⊂ Sp(2ℓ,R) contains proximal elements φ,ψ whose fixed point flags E1, E2 and
E3, E4 are pairwise opposite.

A completely analogous discussion also applies to the group SL(n,R), where the
flag variety is just the variety of full flags in Rn. As this is well known, we omit
further details.

In the following proposition, we refer to the above example for convenience.

Proposition 6.10. Let q ∈ Cgood be a birecurrent point and let U ⊂ Cgood be a
contractible neighborhood of q. If ρ(Λ) ⊂ G is Zariski dense in G, then there exists
a pair (x, y) ∈ Υ2 consisting of a periodic point x ∈ Υ and a homoclinic point z for
x with the properties in Definition 6.8 for the extension L of the shift (Υ, τ).

Proof. Since by assumption the subgroup ρ(Λ) ⊂ G is Zariski dense, it is locally
Zariski dense by Proposition 5.3. Thus any birecurrent point q ∈ Cgood has a
contractible neighborhood U ⊂ Cgood with a local product structure defining a
semi-group Γ0 ⊂ Sp(2ℓ,R) with the following properties.
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(1) There exists a periodic point q ∈ U for Φt, of period T > 0, such that the
map ΨT (q) is proximal, with all eigenvalues of distinct absolute values, and
attracting and repelling opposite flags E1, E2.

(2) For any neighborhood V ⊂ U of q, there is a periodic point b ∈ V , of period
τ > 0, such that the map Ψτ (b) is proximal, with all eigenvalues of distinct
absolute values, and the attracting and repelling flags E3, E4 for Ψτ (y) are
opposite to the flags E1, E2.

Namely, since ρ(Λ) ⊂ G is Zariski dense, the same holds true for the semi-group
ρ(Γ0). Thus we can find two elements in that semigroup by [Be97] with the above
properties (see the above example for more details).

By construction of the shift space Υ and the fact that the image of the map
Ξ : X → Q contains all Φt-orbits of abelian differentials q with uniquely ergodic
vertical and horizontal measured foliations, there exists a periodic point x ∈ Υ such
that Ξ(x) = Φtq for some t ∈ [0, R). Note that the image of the periodic point x
under the map Ξ may cover the periodic orbit for q a nontrivial multiple of times,
however this does not alter the properties of the orbit we are looking at. By an
adjustment of U by a translate under the Teichmüller flow we may in fact assume
that Ξ(x) = q.

Let X = [P0, . . . , Pk] (with Pi ∈ P) be the fundamental cylinder for the point x
so that x = · · ·X ·X · · · ∈ Υ. By possibly decreasing the size of the neighborhood U
we may assume that there exists some y ∈ X so that Ξ(y) = b. Note that this holds
true by the construction of the map Ξ in spite of the fact that the shift space Υ
is totally disconnected. We refer to the proof of Lemma 6.5 for more information.
Then the periodic word in the alphabet P defining b is of the form · · ·Z · Z · · ·
where Z = XY for some nontrivial string Y .

Let Ys ∈ P be the last letter in the word defining Y . Then AYs,P0
= 1 where as

before, A is the transition matrix defining the shift space (Υ, τ). As a consequence,
the string v = · · ·X ·XY ·X · · · defines a word in Υ and hence it defines a homo-
clinic point for the periodic point x. Furthermore, since local stable and unstable
holonomies are constant, the extension L of the shift τ is defined at the point v,
and it has the property (2) in Definition 6.8. □

Proof of Theorem 1. By construction, the measure µ̂ on (Υ, τ) is absolutely con-
tinuous with respect to the stable and unstable foliation. Proposition 6.10 shows
that the cocycle over (Υ, τ) fulfills the assumptions in Theorem A of [AV07a]. Thus
Theorem 1 now follows from Theorem A of [AV07a]. □

7. Applications

In this section we use Theorem 1 and the results from Section 4 to prove the
corollaries from the introduction.
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Proof of Corollary 1. The corollary is well known. Let Q be a component of a
stratum of abelian differentials. By Corollary 4.9, the monodromy group of Q is
Zariski dense, that is, the Kontsevich Zorich cocycle over Q is Zariski dense. The
corollary now follows from Theorem 1. □

Proof of Corollary 2. The corollary is immediate from Corollary 4.9 and Theorem
1. □

Proof of Corollary 3. By Theorem 1, it suffices to show that for any non-hyperelliptic
component Q of a stratum of quadratic differentials with at least two zeros of odd
order the restriction of the Kontsevich Zorich cocycle to Q is Zariski dense.

As the proof of this fact is a consequence of some more technical results estab-
lished in [H24], we carry it out in the appendix (Proposition A.1). □

Proof of Corollary 4. Consider the Teichmüller flow Φt on the sphere bundle S →
Mg of area one quadratic differentials. There is an invariant probability measure µ
on S in the Lebesgue measure class which gives full mass to the principal stratum.
It was shown in [H13] that this measure can be obtained with Bowen’s construction:
Namely, for each R > 0 let Λ(R) be the set of all periodic orbits of Φt of length at
most R, where we take the union of all orbits over all strata of abelian or quadratic
differentials. This amounts to collecting all conjugacy classes of pseudo Anosov
mapping classes of translation length at most R. Then

µ = lim
R→∞

hehR
∑

γ∈Λ(R)

δγ

where δγ denotes the natural invariant Lebesgue measure on the periodic orbit.

Let λ1 < · · · < λ2g be the Lyapunov spectrum of the flow Φt with respect to the
measure µ. By Corollary 3, we know that the Lyapunov spectrum is simple and
hence there exists a number ϵ > 0 so that λi−λi−1 ≥ 4ϵ. On the other hand, it was
shown in [H23] that for every δ > 0, the property A for a periodic orbit γ to have
eigenvalues whose normalized logarithms are contained in the interval [λi−δ, λi+δ]
for all i is typical. Choosing δ < ϵ, this implies that the eigenvalues of a typical
orbit are real and pairwise distinct, which is what we wanted to show. □

Proof of Corollary 5. Let Q be the principal stratum of area one quadratic differ-
entials. It consists of differentials with precisely 4g − 4 simple zeros. There is a
double orientation cover for this stratum which is branched at each of the zeros. An
application of the Hurwitz formula shows that the Euler characteristic of the cov-
ering surface S′ equals −8g−8. The principal stratum Q lifts to an affine invariant
manifold C in the moduli space of area one abelian differentials on S′.

Let ι be the involution of S′ so that ι\S′ = S. The cohomology H1(S′,R)
decomposes as H1(S′,R) = V + ⊕ V − where V ± is the eigenspace with respect
to the eigenvalue ±1 for the action of ι. The absolute real tangent space of the
preimage of Q is the space V −, and V + is isomorphic to H1(S,R). Counting
dimensions yields that the dimension of V − equals 6g−6, which coincides with the
dimension of ML. Furthermore, ML lifts to an open cone in V −.



LYAPUNOV SPECTRUM 45

By Corollary 4.9, the monodromy of C is Zariski dense and hence the corollary
follows ones more from Theorem 1. □

Appendix A. Train tracks and components of strata

The goal of this appendix is to summarize some results of [H24] in the form we
need. We also establish Zariski density for the Kontsevich Zorich cocycle over a
non-hyperelliptic component Q of a stratum of quadratic differentials with at least
two zeros of odd order which is used in the proof of Corollary 3.

A train track on a closed surface S is an embedded graph τ of class C1 in S. All
vertices are required to be trivalent. At each vertex v, called a switch, there is a
non-trivial partition of the edges of τ incident on v corresponding to the direction
of their inward pointing tangents a v. Informally (and somewhat incorrectly) we
call the two sets in the partition incoming and outgoing edges, respectively. The
complementary components of τ all have negative Euler characteristic. This Euler
characteristic is computed by adding to the usual Euler characteristic the number
−k/2 where k is the number of cusps of the component. Thus a disk with k cusps
at the boundary has Euler characteristic −k/2 + 1.

A geodesic lamination µ on S is carried by τ if there is a carrying map F : S → S
of class C1 which is homotopic to the identity, with F (µ) ⊂ τ and whose derivative
restricted to a leaf of µ vanishes nowhere. If µ admits a transverse measure, then
via a carrying map, the lamination defines a non-negative weight function on the
edges, called branches of τ , satisfying the switch condition: For each switch v, the
sum of the weights of the incoming branches at v equals the sum of the weights of
the outgoing branches. A non-negative weight function which satisfies this system
of liner equations will be called admissible.

Let ML be the space of measured geodesic laminations on S equipped with the
weak∗-topology. It is homeomorphic to R6g−6 − {0}. There exists a continuous
pairing

ι : ML → ML → [0,∞),

the so-called intersection form. A pair of measured geodesic laminations (µ, ν)
jointly fills up S if for every measured lamination ζ we have ι(µ, ζ)+ ι(ν, ζ) > 0. A
pair of measured geodesic laminations which jointly fills up S determines uniquely
a quadratic or abelien differential.

To each component Q of a stratum of area one abelian or quadratic differentials
there is associated a distinguished collection LT (Q) of train tracks [H24]. To de-
scribe their properties, note that from a train track τ which fills, that is, whose
complementary components are all simply connected, one can construct a second
dual bigon track τ∗. A train track τ ∈ LT (Q) fills and has the following properties.

(1) τ is recurrent, that is, it admits an admissible weight function which is
positive on every branch.

(2) τ is transversely recurrent, that is, its dual bigon track admits an admissible
weight function which is positive on every branch.
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(3) Let V(τ) and V(τ∗) be the convex cone of admissible weight functions on
τ and τ∗, respectively. Let

Z(τ) = {(µ, ν) ∈ V(τ)× V(τ∗) | (µ, ν) jointly fill up S};
then each pair in Z(τ) defines a quadratic differential (or an abelian differ-
ential if τ is orientable), and the set of such differentials is the closure of
an open subset of Q+ (not necessarily area normalized).

By the classification of Lanneau [L08], a stratum of quadratic differentials with at
least two zeros on a surface of genus g ≥ 3 has at most two connected components,
and if there are two components, then one of them is hyperelliptic. The remainder
of this appendix is devoted to the proof of the following

Proposition A.1. Let Q be a non-hyperelliptic component of a stratum of area
one quadratic differentials on a surface of genus g ≥ 3 with at least two zeros of
odd order. Then the monodromy of the Kontsevich Zorich cocycle over Q is Zariski
dense.

Proof. We begin with constructing for each non-hyperelliptic component Q of area
one quadratic differentials with at least two zeros of odd order an explicit example
of a train track τ ∈ LT (Q).

Let g ≥ 3 and consider a non-hyperelliptic component Eg of a stratum of abelian
differentials with a single zero on the surface of genus g. To this component is
associated a collection LT (Eg) of large train tracks with the properties (1),(2),(3)
above. Let η be such a train track. It is orientable, that is, there exists a consistent
orientation of its branches, where consistent means that for each switch v the orien-
tations of the branches incident on v match up to an orientation of a neighborhood
of v. Moreover, η has a single complementary component which is an ideal polygon
P with 4g − 4 sides. We refer to [H24] for more information.

Assume that the zeros of the differentials in Q of odd order (which is always
even) are of multiplicity 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk where k ≥ 2 by assumption.
Choose an embedded arc ζ1 in the polygon P which connects two distinct sides of P ,
has endpoints in the interior of some branches of P and is tangent to the branches
at its endpoints. We require that ζ cuts from P a polygon P1 with m1 + 2 sides.
Since m1 is odd, the union of η with ζ1 is a train track which is not orientable.

Choose a second such arc which cuts from the polygon P −P1 a polygon P2 with
m2 sides. Subdivide in the same way the polygon P−(P1∪P2) into polygons whose
number of sides is predicted by the zeros of differentials inQ and their multiplicities.
As η ∈ LT (Eg) and Eg is non-hyperelliptic, this construction yields a train track
τ ∈ LT (Q′) for a non-hyperelliptic component Q′ of the stratum containing Q
and hence τ ∈ LT (Q) by uniqueness. Note that τ contains η as a subtrack, that
is, it contains η as an embedded subgraph, and τ is obtained from η by adding a
collection of small branches. We refer to [H24] for more details of this construction.

A pseudo-Anosov mapping class φ ∈ Mod(S) admits a train track β as a train
track expansion if φ(β) ≺ β, that is, if φ(β) is carried by β. By definition, this
means that there exists a map F : S → S of class C1 which is homotopic to the
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identity and maps φ(β) → β in such a way that the restriction of the differential of
F to φ(β) vanishes nowhere. If β ∈ LT (Q′) for some component Q′ of a stratum
of abelian or quadratic differentials, then the periodic orbit of Φt corresponding to
φ is contained in a component of a stratum in the closure of Q′. Thus if Q′ = Eg
then this orbit is in fact contained in Eg.

If φ,ψ ∈ Mod(S) admit η ∈ LT (Eg) as a train track expansion, then the same
holds true for φ ◦ ψ. Thus the mapping classes with this property form a semi-
subgroup H0 of Mod(S). It follows from [H11, H24] and Theorem 5.3 and Corollary
4.9 that the image under the homomorphism ρ : Mod(S) → Sp(2g,Z) of the semi-
subgroup H0 of Mod(S) is Zariski dense in Sp(2g,R).

Now note that by the construction of the train track track τ , there exists a
number k0 > 0 so that any φ ∈ H admits a positive power φk for some k ≤ k0
with the property that φk also admits τ as a train track expansion. This power is
characterized by the requirement that it preserves every horizontal separatrix of an
abelian differential on its axis. We refer once more to [H24] for more details. As a
consequence, the semi-subgroup H of H0 of all elements which admit τ as a train
track expansion maps to a Zariski dense subgroup of Sp(2g,R).

Now choose any φ ∈ Mod(S) which admits τ as a train track expansion and
such that φ defines a periodic orbit for Φt contained in Q. We refer to [H24] for the
existence of such an element. Then for any ψ ∈ H, the concatentation ψ ◦φ admits
τ as a train track expansion, and the corresponding periodic orbit is contained in
Q. Since ψ ∈ H was arbitrary and the image of H is Zariski dense in Sp(2g,Z), this
implies that the monodromy of the Kontsevich Zorich cocycle over the component
Q is Zariski dense. □

The proof of Proposition A.1 makes an essential use of the existence of zeros
of odd order for differentials in Q. It does not apply to components of strata of
quadratic differentials with all zeros of even multiplicity, and we do not know how
to determine the Zariski closure of the Kontsevich Zorich cocycle in that case.
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[AEM17] A. Avila, A. Eskin, and M. Möller, Symplectic and isometric SL(2,R)-invariant sub-
bundles of the Hodge bundle, J. Reine Angew. Math. 732 (2017), 1–20.

[AGY06] A. Avila, S. Gouezel, and J.C. Yoccoz, Exponential mixing for the Teichmüller flow,

Publ. Math. Inst. Hautes Études Sci. 104 (2006), 143–211.
[AV07a] A. Avila, and M. Viana, Simplicity of Lyapunov spectra: A sufficient condition, Por-

tugaliae Mathematica 64 (2007), 311–376.

[AV07b] A. Avila, and M. Viana, Simplicity of Lyapunov spectra: Proof of the Kontsevich-
Zorich conjeccture, Acta Math. 198 (2007), 1–56.

[Be97] Y. Benoist, Proprietes asymptotiques des groupes lineaires, Geom. Funct. Anal. 7

(1997), 1–47.
[Bw73] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429–460.

[CS21] A. Calderon, and N. Salter, Higher spin mapping class groups and strata of abelian

differentials over Teichmüller space, Adv. Math. 389 (2021), Paper No. 107926, 56
pp.



48 URSULA HAMENSTÄDT
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[H24] U. Hamenstädt, Periodic orbits in the thin part of strata, J. Reine Angew. Math. 209

(2024), 41–89.

[KZ03] M. Kontsevich, and A. Zorich, Connected components of the moduli space of Abelian
differentials with prescribed singularities, Invent. Math. 153 (2003), 631–678.

[L08] E. Lanneau, Connected components of the strata of the moduli space of quadratic

differentials, Ann. Sci. Ec. Norm. Sup. 41 (2008), 1–56.
[Lu99] A. Lubotzky, One for almost all: generation of SL(n,p) by subsets of SL(n,Z), in

“Algebra, K-theory, groups and education”, T. Y. Lam and A. R. Magid, Editors,
Contemp. Math. 243 (1999).

[McM03] C. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer.

Math. Soc. 16 (2003), 857–885.
[Ra14] K. Rafi, Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014), 3025–3ß53.

[R08] I. Rivin, Walks on groups, counting reducible matrices, polynomials, and surface and

free group automorphisms, Duke Math. J. 142 (2008), 353–379.
[W14] A. Wright, The field of definition of affine invariant submanifolds of the moduli space

of abelian differentials. Geom. Top. 18 (2014), 1323–1341.

[W15] A. Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Top.
19 (2015), 413–438.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT BONN
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