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Abstract. We show that the absolute period foliation of the principal stratum
of abelian differentials on a surface of genus g ≥ 3 is ergodic.

1. Introduction

The moduli space of area one abelian differentials on a surface of genus g ≥
2 naturally decomposes into strata of differentials with prescribed numbers and
multiplicties of zeros. Period coordinates on such a stratum Q are defined by
evaluation of an abelian differential on a basis for homology of the surface relative
to the zeros of the differential. These coordinates define on Q the structure of
a real analytic orbifold. If Q is a stratum of differentials with more than one
zero then it admits a natural foliation whose leaves consist of differentials with
(locally) fixed absolute periods. This foliation is smooth and has been analyzed in
[McM13, McM14, MinW14]; it is called the absolute period foliation.

A smooth foliation of an orbifold Q is called ergodic if any Borel subset of Q
which is saturated for the foliation either has full or vanishing Lebesgue measure.
In [McM14], tools from homogeneous dynamics are used to show that the absolute
period foliation of the principal stratum in g = 2, 3 is ergodic. Here the principal
stratum is the stratum of all differentials with only simple zeros. Calsamiglia,
Deroin and Francaviglia [CDF15] completely classified the closures of the leaves
of the absolute period foliation of the principal stratum. As a consequence, they
obtain ergodicity of the absolute period foliation of the principal stratum in every
genus.

Our main goal is to give a simple proof of the latter fact.

Theorem. The absolute period foliation of the principal stratum is ergodic in every

genus g ≥ 2.

We do not know whether the absolute period foliation of a componente of a
stratum which is not principal is ergodic. Ergodicity seems likely in the presence of
a dense leaf. The existence of a dense leaf for a specific component of the stratum
of differentials with two zeros of order g−1 (namely, the component containing the
so-called Arnoux-Yoccoz surface) was established in [HW15].

Date: March 28, 2017.
Keywords: Abelian differentials, affine invariant manifolds, absolute period foliation

AMS subject classification: 37C40, 37C27, 30F60

Research partially supported by ERC Advanced Grant “Moduli”.

1



2 URSULA HAMENSTÄDT
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2. The absolute period foliation

In this section we establish some properties of the absolute period foliation on
arbitrary components of strata of area one abelian differentials with at least two
zeros.

Thus let Q be a component of a stratum of differentials with k ≥ 2 zeros in the
moduli space of area one abelian differentials on a surface of genus g ≥ 2. Then Q is
a hypersurface in a component QR+

of a stratum of nontrivial abelian differentials
without area constraint. The absolute periods of an abelian differential ω ∈ QR+

,
obtained by integrating the differential over a basis of absolute homology, define a
local submersion of orbifolds

QR+
⊃ U → H1(X,C)/Aut(X)

whose fibres are the leaves of the absolute period foliation AP(QR+
) of QR+

. The
local submersion of orbifolds commutes with the natural action of the multiplicative
group R+ by rescaling and hence the absolute period foliation of QR+

restricts to
a foliation AP(Q) of the hypersurface Q. This foliation is transverse to the fibres
of the canonical projection π : Q → Mg (here Mg denotes the moduli space of
Riemann surfaces of genus g).

The leaf AP(ω) of AP(Q) through ω is locally a flat submanifold of Q which
can explicitly be described [MinW14, McM13].

Assume for the moment that Q is the principal stratum. Denote by Z(ω) the
zero set of ω ∈ Q. The cardinality of Z(ω) equals 2g − 2. At each zero p ∈ Z(ω)
there is an infinitesimal deformation of ω called the Schiffer variation [McM13]
which is defined as follows.

Let X be the Riemann surface underlying ω. Choose a complex coordinate z
for X near p so that in this coordinate, ω can be written as ω = (z/2)dz. Such
a coordinate is unique up to multiplication with −1. Choose a vertical arc At =
i[−2u, 2u] in this coordinate where t = u2. Slit X open along At and fold each of
the two resulting arcs so that z is identified with −z (see p.1235 of [McM13]).

The result is a new Riemann surfaceXt with a distinguished arc Bt and a natural
holomorphic map ft : X−At → X−Bt. The one-form ωt with f∗

t ωt = ω is globally
defined, and it only depends on the parameter t and on the choice of the zero p of
ω. The Schiffer variation of X is

Sch(ω, p) = dXt/dt|t=0.

It will be useful to have a geometric description of the deformation of the one-
forms ωt defining the Schiffer variation. Namely, there are four horizontal separa-
trices at p for the flat metric defined by ω. In a complex coordinate z near p so
that ω = (z/2)dz, the horizontal separatrices are the four rays contained in the
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real or the imaginary axis. The restriction of ω to these rays defines an orientation
on the rays. This orientation is determined by the requirement that a nontrivial
tangent vector X for one of these rays defines the positive orientation if and only
if ω(X) > 0. Note that this makes sense since the restriction of ω to these rays is
a real valued one-form. With respect to this orientation, the two rays contained
in the real axis are outgoing from p, while the rays contained in the imaginary
axis are incoming. The Schiffer variation slides the singular point backwards along
the incoming rays in the imaginary axis. Thus if one of the two separatrices in the
imaginary axis is a saddle connection for ω, then the flat length of the corresponding
saddle connection for ωt is decreasing with t.

If ω has a zero of order n ≥ 2 at p then the Schiffer variation at p is defined as
follows (see p.1235 of [McM13]). Choose a coordinate z near p so that ω = zndz
in this coordinate. This choice of coordinate is unique up to multiplication with
eℓ2πi/n+1 for some ℓ ≤ n. There are n + 1 horizontal separatrices at p for the flat
metric defined by ω whose orientations point towards p. For small u > 0 cut the
surface S open along the initial subsegments of length 2u of these n+ 1 horizontal
segments. The result is a 2n+2-gon which we refold as in the case of a simple zero.

Now let C be a smooth simple loop enclosing the zero p ∈ Z(ω). Then the
Schiffer variation at p is the real part δ(C,−1/ω) of a complex twist deformation
δ(C, v) of X about C where v is a holomorphic vector field along C.

Namely, there is a vector tw(C) tangent to AP(Q) at ω defined by

〈tw(C), E〉 = C · E
where E ∈ H1(X,Z(ω)) and where · is the natural intersection pairing

H1(X − Z(ω))×H1(X,Z(ω)) → R.

The tangent space at ω to the absolute period foliation is generated by the trans-
formations tw(Cp), p ∈ Z(ω), subject to the relation

∑

tw(Cpi
) = 0 (see p.1236

of [McM13]). The leaves of the absolute period foliation AP(Q) are complex sub-
orbifolds of Q (this is viewed as a local statement). If Q is the principal stratum
then the leaves of AP(Q) have complex dimension 2g− 3. We refer to [McM13] for
details and an explanation of these notations.

Note that the tangent bundle of AP(Q) is naturally equipped with a complex
structure J as well as with a real structure. The subbundle of TAP(Q) spanned
by the twist deformations corresponding to the Schiffer variations is a maximal real
subbundle for this real structure. By abuse of notation, we call a twist deformation
corresponding to a Schiffer variation again a Schiffer variation, i.e. we view Schiffer
variations as locally defined paths in the leaves of the absolute period foliation.

Let Q̂ be a finite normal cover of the stratum Q such that there is a consistent
numbering of the zeros of q ∈ Q̂ varying continuously with q. To construct such
a cover observe that an arbitrary numbering of the zeros of q ∈ Q extends locally
continuously to a numbering of the zeros of any nearby differential. Thus such a
numbering can continuously be extended along any loop in Q. In this way one
obtains a homomorphism from the fundamental group of Q into the symmetric
group in k variables whose kernel defines the desired cover Q̂ of Q.
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The absolute period foliation of Q lifts to a foliation AP(Q̂) of Q̂. With the

above convention, the real subspace of the tangent space of AP(Q̂) can be identified
with the vector space of all k-tuples a = (a1, . . . , ak) ∈ R

k of real numbers with
∑

i ai = 0 in the following way. At a zero p ∈ Z(ω), the Schiffer variation with
weight parameter a ∈ R at p is just the deformation s → ωas of ω where the
differential ωas on the right hand side is obtained in the above way by a slit along
an arc Asa of length 4

√
as. In this way a real weight at the zero p of ω determines

a deformation of ω. The vector a ∈ R
k defines a smooth vector field Xa on Q̂ by

requiring that for each ω ∈ Q̂, the value of Xa at ω is the tangent at ω of the
deformation for the weight parameters (a1, . . . , ak) at the numbered zeros of ω.
Thus Xa is tangent to the absolute period foliation.

An abelian differential ω on a Riemann surface X defines a flat metric on X
and two singular foliations. The tangent bundle of the horizontal foliation consists
precisely of all tangent vectors on X on which the evaluation of ω is real.

Example 2.1. Let ω1, ω2 be two abelian differentials on two closed surfaces S1, S2

of genus g1, g2. Assume that the area of ωi is ai for some ai > 0 with a1 + a2 = 1.
Cut a small horizontal slit into S1, S2 of the same length. The differentials ωi

define a decomposition of these slits into two oriented arcs of the same length with
the same endpoints. Glue S1 to S2 by a crosswise isometric orientation preserving
identification of these oriented arcs. The result is an area one abelian differential
ω on a surface of genus g1 + g2 with two singular points p1, p2 (the images of the
endpoints of the slits) which are connected by two homologous horizontal saddle
connections of the same length. Assume that the orientation defined by ω of these
saddle connections points from p1 to p2. The deformation induced by the Schiffer
variation with weight parameters (−1, 1) at the pair (p1, p2) decreases the length of
the slit and limits in a surface with nodes. This surface with nodes consists of the
surfaces S1, S2 attached at one point, equipped with an abelian differential which
maps to the differentials ω1, ω2 by the marked point forgetful map.

The Teichmüller flow Φt on Q is defined by ℜΦtω = et/2ℜω and ℑΦtω = e−t/2ω
where we view ℜω,ℑω as real relative cohomology classes. This flow lifts to a
smooth flow on Q̂ denoted by the same symbol. Its derivative acts on the tangent
bundle of Q̂. We have

Lemma 2.2. dΦtXa = etXa.

Proof. Let ω ∈ Q̂ and let F be the horizontal foliation of ω. The Teichmüller flow
expands the horizontal foliation F of ω with the expansion rate et/2. Thus if As

is an arc of length 4
√
s in the imaginary axis for the preferred coordinate near the

zero p of ω (recall that this arc is horizontal for the flat metric defined by ω) then

the image ΦtAs of As in Φtω is an arc of length 4et/2
√
s = 4

√
ets in the imaginary

axis of a preferred coordinate. Thus the push-forward by Φt of the deformation of
ω defined by the vector field Xa is the deformation of Φtω defined by the vector
field Xeta = etXa. �

The vector field Xa defines a flow Λt
a on Q̂. This flow is incomplete as a hor-

izontal saddle connection may give rise to a finite flow line limiting on a lower
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dimensional stratum (see p.1235 of [McM13]). There may also be limit points on
surfaces with nodes as described in Example 2.1. However, if q does not have any
horizontal saddle connection then the flow line of Λt

a through q is defined for all
times [MinW14].

The component Q is equipped with the Masur-Veech measure λ. This measure
is a Φt-invariant Borel probability measure contained in the Lebesgue measure
class which is constructed as follows. Period coordinates on QR+

define on QR+

the structure of a complex orbifold. The standard Lebesgue measure in these
coordinates does not depend on choices as transition maps are volume preserving
and hence gives rise to a Lebesgue measure on QR+

. Up to normalization, the
Masur-Veech measure associates to a set U ⊂ Q the measure of the cone ∪0<t<1tU
(here as before, R+ acts on abelian differentials by scaling).

The Masur-Veech measure lifts to a Φt-invariant finite Borel measure on Q̂ which
we denote again by λ. As almost every point with respect to the Masur-Veech
measure λ is a differential without horizontal saddle connection, Λt

a defines a flow

on a subset of Q̂ of full Lebesgue measure.

For a 6= b the flows Λt
a and Λs

b
commute and hence these flows fit together

to a (local) action of the group R
k−1 on Q̂. This action is smooth, and its local

orbits naturally develop to a smooth foliation of Q̂ called the real REL foliation

[MinW14]. This foliation is a subfoliation of the absolute period foliation. It can
be more conceptually defined using period coordinates on the component QR+

of a
stratum in the moduli space of all abelian differentials, but as we do not need this
description, we refer to [MinW14] for details.

A leaf of the local strong unstable foliation of Q̂ consists of abelian differentials
with the same horizontal foliation (up to Whitehead moves).

Lemma 2.3. The real REL foliation is a subfoliation of the strong unstable foli-

ation of Q̂ which is invariant under the action of the Teichmüller flow and under

holonomy along the strong stable foliation.

Proof. By construction, for every a = (a1, . . . , ak) ∈ R
k with

∑

i ai = 0, the lo-
cal flow of the vector field Xa preserves the horizontal measured foliation of an
abelian differential up to Whitehead moves. Now the strong unstable foliation of
Q̂ is defined as follows. Its leaf through ω locally consists of all area one abelian
differentials whose horizontal measured foliation coincides up to Whitehead moves
with the horizontal measured foliation of ω. Thus the vector fields Xa are tangent
to the strong unstable foliation of Q̂. As a consequence, the real REL foliation is a
subfoliation of the strong unstable foliation, and it is smooth. We refer to [McM14]
for a detailed analysis of this foliation in the case g = 2.

Together with Lemma 2.2, this implies invariance under the action of the Te-
ichmüller flow. Invariance under holonomy along the strong stable foliation follows
from the fact that a leaf of the real REL foliation can be characterized as the set
of all abelian differentials in the stratum with fixed horizontal foliation and the
property that the vertical foliations all define the same absolute cohomology class
(see [MinW14]). The lemma follows. �



6 URSULA HAMENSTÄDT

Remark 2.4. It is easy to see that the flows Λt
a preserve the Masur-Veech measure

λ of the stratum. It is an interesting question whether any of these flows is ergodic.
Our proof of ergodicity of the absolute period foliation does not give any information
to this end.

The above discussion shows that the absolute period foliation has an affine struc-
ture (see [MinW14] and p.1236 of [McM13] for more details and compare also
[LNW15]).

Recall that there is a natural circle action on Q and on Q̂. To a point eis on the
unit circle S1 ⊂ C

∗ and an abelian differential q we associate the differential eisq.
For a ∈ R

k with zero mean, for eis ∈ S1 and for ω ∈ Q̂ let

Λt
eisa(ω) = e−isΛt

a(e
isω).

Then (t, ω) → Λt
eisaω defines a flow on Q̂ which preserves the absolute period

foliation.

Following [EMZ03] we define the principal boundary of the component Q of a
stratum as follows. Let ω ∈ Q and assume that ω has a horizontal saddle connection
and that the set of horizontal saddle connections of ω is a forest, i.e. it does not
have cycles. Let p1, p2 be the endpoints of such a saddle connection α, chosen such
that α points from p1 to p2 with respect to the orientation defined by ω, and let
a be the vector (−1, 1) at p1, p2. (Strictly speaking, we view (−1, 1) as a vector
in R

k whose remaining coordinates vanish. The above construction then yields a
tangent vector of Q̂. However, the choice of α singles out two zeros of ω and hence
the corresponding Schiffer variation makes sense in Q). Then the arc t → Λt

aω
limits on a differential ζ for which the points p1, p2 coalesce, and there are no other
identifications of zeros. The differential ζ is obtained from ω by collapsing the saddle
connection α. Recall that by assumption, α is the only saddle connection which
connects p1 and p2. Furthermore, ζ is contained in a component of a stratum in
the boundary of Q, and we call such a component a finite core face of the principal
boundary of Q. If k is the number of zeros of a differential in Q, then the number of
zeros of a differential in a finite core face of Q equals k−1. In particular, the (real)
dimension of a finite core face of Q equals dim(Q)−2. Iteration of this construction
gives rise to faces of the principal boundary of higher codimension; these faces are
not called core faces.

A second degeneration which gives rise to a point in the principal boundary
is the contraction of two or more homologous saddle connections (connecting the
same zeros and of the same length). In this case the resulting surface is a surface
consisting of two or more smooth components which are connected at nodes. The
sum of the genera of these surfaces equals g. The resulting abelian differential does
not vanish identically on any of the smooth components of this surface with nodes,
and it has a regular point or a zero at a node. We call a component of abelian
differentials on a surface with nodes arising in this way an infinite face of Q.

We call the infinite face a core face if it consists of abelian differentials on surfaces
comprised of two smooth components which are attached at a single separating
node. Note that there are up to ⌊g/2⌋ core faces which correspond to the type of
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the decomposition, i.e. to a decomposition g = g1 + g2 with g1, g2 ≥ 1. The node
is viewed as a marked point on each of the smooth components of the surface with
nodes. We call an abelian differential in an infinite core face regular if the node is
not a zero for the restriction of the abelian differential to a smooth component of
the surface. By convention, this also means that the differential does not vanish
identically on any smooth component of the underlying surface with nodes. A
point which is not regular is called singular. The set of singular points is of real
codimension two. We refer to [EMZ03] for a detailed discussion of these concepts.

To summarize, there is a decomposition of the principal boundary of Q into
faces (see p.76 of [EMZ03]). Each face either is a component of a stratum in the
adherence of Q with fewer zeros, or it corresponds to a configuration which consists
of a decomposition of the surface into surfaces Si of genus gi with

∑

i gi = g, a
combinatorial configuration of attachment data which organizes the glueing at the
nodes and numbers bj ≥ 0 which describe the order of the zero of the differentials

at the node (see [EMZ03] for more details). If we let Q be the union of Q with its
principal boundary, then the core faces are the faces in Q of real codimension two.

3. Ergodicity

In this section we restrict the discussion to the principal stratum Q (which is well
known to be connected). Denote by Q the union of Q with its principal boundary.

Note that Q properly contains the entire moduli space of area one abelian differ-
entials. Furthermore, if Σ is a surface with a single separating node in the boundary
of the Deligne Mumford compactification of moduli space whose smooth part con-
sists of two surfaces S1, S2 of genus g1, g2 ≥ 1, respectively, with g1 + g2 = g, then
the homology of Σ can naturally be identified with the homology of S. In partic-
ular, if ω is a regular abelian differential in an infinite core face of the principal
boundary of Q then the absolute periods of ω are defined.

For ǫ > 0 let B(ǫ) be the disk of radius ǫ in the complex plane. The disk

is invariant under the holomorphic involution z → −z. We denote by B̂(ǫ) =
B(ǫ)/± Id its quotient (which is homeomorphic to a disk as well).

In Section 9 of [EMZ03] the reader can find versions of the following proposition
for more general components of strata of abelian differentials. However, these
versions are more complicated.

Proposition 3.1. Let F be an infinite core face of the principal boundary of Q
and let ω ∈ F be a regular point. Then there is a number ǫ > 0, and there is a

neighborhood V of ω in F , a neighborhood U of ω in Q, and a homeomorphism

ϕ : V × B̂(ǫ) → U with the following properties.

(1) ϕ(x, 0) = x for all x ∈ V .

(2) ϕ({x} × B̂(ǫ)) ⊂ AP(x).
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Proof. A regular point ω ∈ F is defined by two abelian differentials ω1, ω2 on
surfaces S1, S2 attached at a marked point p1, p2. The marked point pi is a regular
point for ωi. In particular, there is a canonical holomorphic coordinate near pi
which maps pi to zero and so that in this coordinate, the differential ωi equals the
differential dz.

Using this identification of a neighborhood of pi with a neighborhood of the com-
plex plane, take a vector γ in the complex plane of sufficiently small length r < ǫ,
slit S1, S2 open at the marked points in direction of γ and glue the abelian differ-
entials ω1, ω2 along the slits as described in Example 2.1. The resulting differential
ϕ̂(ω, γ) has the same absolute periods as ω, and ϕ̂(ω, 0) = ω. Furthermore, we have
ϕ̂(ω, γ) = ϕ̂(ω,−γ) and therefore ϕ̂ descends to a map ϕ : V × B(ǫ)/ ± Id → Q
where V is a neighborhood of ω in F .

By Lemma 9.8 of [EMZ03], for a sufficiently small neighborhood V of ω and for
sufficiently small ǫ > 0, the map ϕ is a homeomorphism of V × B(ǫ)/ ± Id onto a
neighborhood U of ω in Q with the properties stated in the proposition. �

The measure in the statement of the following lemma is the Masur-Veech mea-
sure.

Lemma 3.2. For almost every ω ∈ Q, the leaf AP(ω) intersects every infinite core

face of the principal boundary of Q in regular points.

Proof. We say that a translation surface ω (ie a Riemann surface X equipped
with a singular euclidean metric defined by a holomorphic one-form ω) has an
isolated bigon of type (g1, g2) where g1 + g2 = g if it admits a pair of homologous
saddle connections α1, α2 connecting two zeros p1, p2 with the following property.
There is no other saddle connection parallel to αi, moreover α1 ∪ α2 decomposes
S into a surface of genus g1 and a surface of genus g2. Since the Teichmüller flow
preserves saddle connections and only changes their direction and length, the set
of points ω ∈ Q which admit an isolated bigon of type (g1, g2) is invariant under
the Teichmüller flow.

The set of directions of a translation surface containing a saddle connection
is countable and hence of measure zero. Thus Proposition 3.1 shows that for all
g1, g2 ≥ 1 with g1+g2 = g, the set of all points ω ∈ Q which admit an isolated bigon
of type (g1, g2) has positive Masur-Veech measure (see also [EMZ03] for details).
By invariance of the set of translation surfaces with isolated bigon of type (g1, g2)
under the Teichmüller flow on Q and ergodicity of the Masur-Veech measure, we
conclude that this set has full measure.

Let ω ∈ Q and assume that there is some eis ∈ S1 with the property that
eisω has an isolated horizontal bigon. Assume that this bigon is defined by a pair
(α1, α2) of homologous saddle connections with endpoints at the zeros p1, p2 of ω.
We assume that the points p1, p2 are ordered in such a way that with respect to
the orientation defined by eisω, the saddle connections α1, α2 connect p1 to p2.
Then the flow line t → Λt

a(e
isω) defined by the vector a with coordinates (weights)

(−1, 1) at the points p1, p2 and vanishing weight at every other zero of ω collapses
the pair (α1, α2) of horizontal saddle connections of eisω to a point. (As before,
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strictly speaking this flow is only defined on the cover Q̂ of Q, however since we fix
two zeros determined by the isolated bigon, it makes sense in Q). This means that
there is some τ > 0 such that Λt

a(e
isω) is defined for 0 ≤ t < τ , and the surfaces

Λt
a(e

isω) converge as t ր τ to a surface in the infinite core face of the principal
boundary of type (g1, g2). The lemma follows from the observation that the path
t → e−isΛt

a(e
isω) is contained in AP(ω). �

A subset of Q is saturated for the absolute period foliation if it is a union of
leaves.

Corollary 3.3. The set S of points ω ∈ Q such that AP(ω) intersects every infinite

core face of the principal boundary of Q is saturated for the absolute period foliation

and of full Masur-Veech measure.

Remark 3.4. As the results of [EMZ03] used in the proof of Corollary 3.3 are also
valid for strata of differentials with at least two zeros, the corollary holds true for
those strata as well.

A smooth foliation of Q is ergodic for the Masur-Veech measure if every Borel set
A ⊂ Q which is saturated for the foliation either has full measure or measure zero.
Note that this notion of ergodicity only depends on the measure class of the Masur-
Veech measure λ, which is the Lebesgue measure class. Thus for the purpose of
showing ergodicity, we may replace the Masur-Veech measure by another measure
in its class, and we will do so at several instances to facilitate the argument. To
reflect the irrelevance of the choice of an explicit representative, we shall from now
on talk about a Lebesgue measure if we mean the Masur-Veech measure or any
measure in its measure class.

A finite core face of the principal boundary of a stratum is a component P of
another stratum. Hence if g ≥ 3 and if P consists of differentials with more than
one zero, then the absolute period foliation of P is defined.

For an infinite core face F of the principal boundary, the absolute period foliation
is defined as well. Namely, such an infinite core face consists of abelian differentials
on closed surfaces S1, S2 of genus g1 ≥ 1, g2 ≥ 1 and g1 + g2 = g. Write S1 ⊔ S2

for the surface obtained by attaching S1 and S2 at a single point, viewed as a
surface with a node. The moduli spaces of abelian differentials on S1, S2 determine
a moduli space of abelian differentials on S1 ⊔ S2 and an absolute period foliation.
We require that the area of an abelian differential on S1 ⊔S2 equals one and hence
the areas of S1 and S2 for the differential add up to one.

Define
QS1⊔S2

= {((ω1, p1), (ω2, p2))}
where ωi is a nontrivial abelian differential on Si with simple zeros and one marked
(regular) point pi and such that the areas of the differentials ω1, ω2 sum up to one.
Then QS1⊔S2

naturally has the structure of a real analytic orbifold. Furthermore,
we have

QS1⊔S2
= ∪b∈(0,1)QS1⊔S2

(b, 1− b)

where a point in QS1⊔S2
(b, 1 − b) gives area b to S1. If g1 6= g2 then the infinite

core face F can naturally be identified with QS1⊔S2
, and if g1 = g2 then F is the
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quotient of QS1⊔S2
under the involution ι which exchanges the two components of

the pair.

Note that for each b ∈ (0, 1), QS1⊔S2
(b, 1 − b) is a real hypersurface in QS1⊔S2

which is equipped with an absolute period foliation in its own right. Furthermore,
QS1⊔S2

(b, 1− b) is equipped with a natural Lebesgue measure class. Thus it makes
sense to talk about ergodicity of the absolute period foliation for this measure class,
and this is the notion of ergodicity used in the following

Lemma 3.5. If the absolute period foliation of the principal stratum of S1, S2 is

ergodic then so is the absolute period foliation of QS1⊔S2
(b, 1− b).

Proof. Write b1 = b and b2 = 1 − b. Then QS1⊔S2
(b1, b2) is the space of pairs

((ω1, p1), (ω2, p2)) where ωi is an abelian differential on Si of area bi with simple
zeros and a marked point pi (here the node is at the marked point).

Let QSi
(bi) be the principal stratum in the moduli space of abelian differentials

on Si of area bi. There is a natural node forgetting map

P : QS1⊔S2
(b1, b2) → QS1

(b1)×QS2
(b2).

This map is a fibration whose fibre over a point (ω1, ω2) can naturally be identified
with the product (S1, ω1) × (S2, ω2) (it consists of the pair of marked points).
The fibration respects absolute periods and therefore if ω ∈ QS1⊔S2

(b1, b2) then
P−1(Pω) ⊂ AP(ω).

Equip QS1
(b1)×QS2

(b2) with the product of the Masur-Veech measures (for any
choice of normalization). This is a measure in the Lebesgue measure class. The
fibre of P over a point (ω1, ω2) is equipped with a natural Lebesgue measure (the
product of the Lebesgue measures defined by the differentials ωi on the surfaces Si).
There is a natural Lebesgue measure µ on QS1⊔S2

(b1, b2) so that P∗µ equals the
chosen Lebesgue measure on the base, with the above family of Lebesgue measures
as conditional measures on the fibres (see [EMZ03] for details).

The above discussion now shows that a Borel set A ⊂ QS1⊔S2
(b1, b2) which is sat-

urated for the absolute period foliation maps to a Borel subset of QS1
(b1)×QS2

(b2)
which is saturated for the absolute period foliation, and it coincides with P−1(PA)
up to a set of measure zero. Thus ergodicity of the absolute period foliation on
QSi

(bi) implies ergodicity of the absolute period foliation on QS1⊔S2
(b1, b2). �

By Corollary 3.3, the set S of points ω ∈ Q such that the closure of AP(ω) in Q
intersects the infinite core face F defined by the surface with nodes S1 ⊔S2 has full
measure. In particular, if A ⊂ Q is a Borel set of positive Lebesgue measure which
is saturated for the absolute period foliation, then A ∩ S is a Borel set of positive
Lebesgue measure which is saturated for the absolute period foliation and which
intersects any neighborhood of F in Q in a set of positive Lebesgue measure.

Recalling Proposition 3.1, for a fixed infinite core face F denote by ∂A ⊂ F the
Borel set of all regular points with the following property. For each x ∈ ∂A, there
exists a neighborhood V of x in ∂A, a neighborhood U of x in Q, a number ǫ > 0
and a homeomorphism ϕ : V × B̂(ǫ) → U such that ϕ({x} × B̂(ǫ))− {x} ⊂ A.
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Since A∩S is saturated for the absolute period foliation, it follows from Propo-
sition 3.1 that ∂A is saturated for the absolute period foliation. Namely, in any
neighborhood of the form U = ϕ(V × B̂(ǫ)) ⊂ Q described in Proposition 3.1, the

set A is saturated for the local foliation into the leaves ϕ({x}× B̂(ǫ))∩Q and hence

U ∩A = ϕ
(

(V ∩ ∂A)× B̂(ǫ)
)

∩ Q.

In particular, as A∩S intersects any neighborhood of F in a set of positive Lebesgue
measure and as the Lebesgue measure class on U ∩ Q is the class of a product
measure, the set ∂A is of positive Lebesgue measure.

We observed above that the core face F is a (perhaps trivial) quotient of QS1⊔S2
.

Let Π : QS1⊔S2
→ F be the natural projection. Using the above discussion we are

now able to give a more precise information on the set A.

Corollary 3.6. Let A ⊂ Q be a Borel set which is saturated for the absolute period

foliation and of positive Lebesgue measure. Let F be an infinite core face defined

by a surface with nodes S1 ⊔ S2. If the absolute period foliation of the principal

stratum of S1, S2 is ergodic then there is a Borel set C ⊂ (0, 1) of positive Lebesgue

measure such that up to a set of measure zero, we have

Π−1(∂A) = ∪s∈CQS1⊔S2
(s, 1− s).

Furthermore, A has full measure in Q if and only if ∂A has full measure in F .

Proof. The above discussion shows that the set Π−1(∂A) ⊂ QS1⊔S2
is saturated

for the absolute period foliation and of positive Lebesgue measure. If the absolute
period foliation of S1, S2 is ergodic then Lemma 3.5 shows that there is a Borel set
C ⊂ (0, 1) of positive Lebesgue measure such that Π−1(∂A) = ∪s∈CQS1⊔S2

(s, 1−s).

By Proposition 3.1, if A has full Lebesgue measure in Q then ∂A has full measure
on F .

Vice versa, suppose that ∂A has full measure in F . Proposition 3.1 then shows
that there is an open neighborhood Z of F in Q such that A∩Z has full Lebesgue
measure. As A is saturated for the absolute period foliation, Corollary 3.3 now
implies that A has full Lebesgue measure. �

Before we complete the proof of the theorem from the introduction we establish
a simple measure theoretic lemma which is needed in its proof. For its formulation,
let

(1) D = {(b1, b2, b3) ∈ R
3 | bi > 0, b1 + b2 + b3 = 1}

be the standard open two-simplex in R
3 equipped with the natural Lebesgue mea-

sure.

Lemma 3.7. Let D0 ⊂ D be a Borel set of positive Lebesgue measure. Assume

that there are Borel sets C1, C3 ⊂ (0, 1) such that

D0 = {(b1, b2, b3) ∈ D | b1 ∈ C1} = {(b1, b2, b3) ∈ D | b3 ∈ C3}.
Then D −D0 has vanishing Lebesgue measure.
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Proof. Let λ be the Lebesgue measure on (0, 1). Define

essup(Ci) = sup{a > 0 | λ(Ci ∩ [a, 1]) > 0} ∈ (0, 1] and

essinf(Ci) = inf{a > 0 | λ(Ci ∩ [0, a]) > 0} ∈ [0, 1) (i = 1, 3).

It follows from the two descriptions of the set D0 in the lemma that λ-almost every
b < 1− essinf(C1) is contained in C3. Namely, on the one hand, for a fixed density
point b1 ∈ C1, in a triple (b1, b2, b3) which is a density point of D0 we can choose
b2 as small as we wish, on the other hand, we also can choose b2 as close to 1− b1
as we wish.

As a consequence, up to a set of measure zero, the set C3 contains the interval
(0, c) for c = 1−essinf(C1) > 0, in particular we have essinf(C3) = 0. By exchanging
the roles of C1 and C3 we conclude that essinf(C1) = 0 as well. But C3 ⊃ (0, c) for
c = 1 − essinf(C1) and therefore C3 = (0, 1) = C1. This yields that up to a set of
measure zero, we have indeed D0 = D. �

We are now ready to show

Theorem 3.8. The absolute period foliation AP(Q) of the principal stratum in

genus g ≥ 2 is ergodic.

Proof. We use induction on the genus g of S. The case g = 2, 3 is due to McMullen
[McM14]. Let g ≥ 6 and assume that the proposition holds true for g − 4 and for
g − 2.

Let Q be the principal stratum of abelian differentials on a surface of genus g.
Let A ⊂ Q be a Borel subset which is saturated for the absolute period foliation
and which is of positive Lebesgue measure. Then the same holds true for A ∩ S
where S ⊂ Q is as in Corollary 3.3.

Let S1, S3 be a surface of genus two and let S1 ⊔ S2 ⊔ S3 be the surface with
two nodes obtained by attaching S1, S3 to a surface S2 of genus g − 4 at a single
point each. The surface S1⊔S2⊔S3 has three smooth components which are closed
surfaces of genus 2 and g − 4, respectively, with one or two marked points.

The surface with nodes S1⊔S2⊔S3 defines a face G of the principal boundary ofQ.
This face can be identified with the moduli space of area one abelian differentials on
S1⊔S2⊔S3 with only simple zeros and which do not vanish identically on a smooth
component. This moduli space can be described as follows. Let QS1⊔S2⊔S3

be the
space of triples ((ω1, p1), (ω2, p

1
2, p

2
2), (ω3, p3)) where ωi is an abelian differential of

area bi > 0 on the surface Si with only simple zeros and such that
∑

i bi = 1, and

where pji are distinct marked points on the surface Si. Then G is the quotient of
QS1⊔S2⊔S3

under the involution ι which exchanges the first and third entry in the
triple and exchanges the points p12 and p22. We refer to [EMZ03] for a more detailed
description of the faces of the principal boundary of Q.

Write
QS1⊔S2⊔S3

= ∪bi>0,b1+b2+b3=1QS1⊔S2⊔S3
(b1, b2, b3)

where an abelian differential in the space QS1⊔S2⊔S3
(b1, b2, b3) gives area bi to Si.

Note that the map F which associates to a differential ζ ∈ QS1⊔S2⊔S3
the triple
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F (ζ) = (b1, b2, b3) ∈ R
3 determined by the requirement that ζ ∈ QS1⊔S2⊔S3

(F (ζ))
is continuous.

Since any closed Riemann surface of genus h ≥ 2 admits abelian differentials
with simple zeros, there is an open subset U of Q (here Q denotes as before the
union of Q with its principal boundary) of the form

U = (V × B̂(ǫ)× B̂(ǫ))/J
with V ⊂ QS1⊔S2⊔S3

open and invariant under the involution ι, and where J
acts as ι on V and as the standard involution on B̂(ǫ) × B̂(ǫ) exchanging the
two components of a point in the product. Moreover, for each x ∈ V , the set
({x, ιx} × B̂(ǫ) × B̂(ǫ))/J is contained in a leaf of the absolute period foliation.
The existence of such an open set U follows from the construction in Proposition
3.1 (compare also the discussion in [EMZ03]).

Namely, a regular point in the face defined by the surface with nodes S1⊔S2⊔S3

consists of a triple (ω1, ω2, ω3) of abelian differentials on surfaces S1, S2, S3 attached
at marked points (where S1, S3 contains a single marked point, and S2 contains two
marked points). These marked points are regular for ωi. Two applications of the
construction in the proof of Proposition 3.1 at the two nodes then yields an open
set U in Q with the required properties.

As the set A is saturated for the absolute period foliation, it follows from Propo-
sition 3.1 and its proof and from two applications of Corollary 3.6 that there is
a ι-invariant Borel subset Z of QS1⊔S2⊔S3

of positive Lebesgue measure which is
saturated for the absolute period foliation and such that up to a set of measure
zero, the intersection of A with the set U equals

(

((V ∩ Z)× B̂(ǫ)× B̂(ǫ))/J
)

∩ Q.

By Corollary 3.6, it now suffices to show that the set Z has full Lebesgue measure.

By induction hypothesis and the case g = 2 established in [McM14], the absolute
period foliation of the principal stratum for each of the surfaces Si is ergodic. Note
that as we assume that g ≥ 6, the genus of S2 is at least two. By Lemma 3.5, applied
to three surfaces instead of two (which follows from exactly the same argument),
this implies that there is a Borel subset D0 of the set D = {(b1, b2, b3) ∈ R

3 | bi >
0, b1+b2+b3 = 1} such that up to a set of measure zero, the subset Z of QS1⊔S2⊔S3

satisfies
Z = ∪x∈D0

QS1⊔S2⊔S3
(x).

Moreover, the Lebesgue measure of D0 is positive. Our goal is to show that the
Lebesgue measure of D −D0 vanishes.

Let Σ be a surface of genus g−2 (which should be viewed as a smooth component
of a surface with a single node in the Deligne Mumford compactification of the
moduli space of S whose second smooth component is the surface S1). The surface
with nodes S2 ⊔ S3 determines an infinite core face of the moduli space of abelian
differentials on Σ. There is then a natural identification of V × (B̂(ǫ) − {0}) with
an open subset of the principal stratum in the moduli space of abelian differentials
on S1 ⊔ Σ which is obtained by opening the second node as described in the proof
of Proposition 3.1.
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By Corollary 3.6 and the induction hypothesis, applied to S1 and Σ, there is a
Borel set C1 ⊂ (0, 1) of positive Lebesgue measure such that

Z = ∪b∈C1
QS1⊔Σ(b, 1− b).

As a consequence, the set D0 is of the form

(2) D0 = {(b1, b2, b3) | b1 ∈ C1, b1 + b2 + b3 = 1}.
Exchanging the roles of S1 and S3 shows that on the other hand, there is a Borel
set C3 ⊂ (0, 1) of positive Lebesgue measure such that

(3) D0 = {(b1, b2, b3) | b3 ∈ C3, b1 + b2 + b3 = 1}.
Since the Lebesgue measure of D0 is positive, Lemma 3.7 yields that D −D0 is a
set of measure zero and therefore Z has full Lebesgue measure. The induction step
now follows from Corollary 3.6 as advertised before.

To complete the proof of the theorem we are left with showing ergodicity of the
absolute period foliation for g = 4 and g = 5.

We begin with the case g = 4. We can not use the argument from the induction
step directly, but we will use a similar argument. To this end let now S be a surface
of genus 4 and consider a core face F of the principal boundary of the moduli space
of abelian differentials on S defined by a surface with nodes S1 ⊔ S2 where Si is a
surface of genus 2. Using the above notations, the face F can be identified with
the quotient of the space QS1⊔S2

under the involution ι which exchanges the two
factors. As above, our analysis is local, in a neighborhood of F , and hence we
may ignore the presence of the involution ι and argue directly in the space QS1⊔S2

,
replacing Borel sets in QS1⊔S2

/ι by their preimages in QS1⊔S2
.

Let A ⊂ S ⊂ Q be a Borel set which is saturated for the absolute period foliation
and of positive Lebesgue measure. Choose an open neighborhood U = V × B̂(ǫ) in
Q of a regular point in F . Using the fact that the absolute period foliation of the
principal stratum on a surface of genus 2 is ergodic [McM14], Corollary 3.6 shows
that there is a Borel set E ⊂ (0, 1) of positive Lebesgue measure such that

(4) A ∩ U =
(

(∪b∈EQS1⊔S2
(b, 1− b) ∩ V )/ι×B(ǫ)

)

∩ Q.

Note that this identity holds true for all open subsets of Q with the properties
described in Proposition 3.1. Following the strategy used in the induction step, our
goal is to show that E has full Lebesgue measure.

Replace A ∩ U by its preimage under the involution ι. By abuse of notation,
we denote this set again by A. Decompose the surface S2 into two tori T2, T3 and
examine the corresponding core face of the principal boundary of S2. If the absolute
period foliation on a torus were ergodic, we could use exactly the argument from
the induction step. However, this is not the case, so we have to be more careful.

Consider the face G = QS1⊔T2⊔T3
of the principal boundary of Q determined by

the decomposition S1 ⊔ T2 ⊔ T3. There is an open subset O of Q of the form

O = W × B̂(ǫ)× B̂(ǫ)
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where W ⊂ QS1⊔T2⊔T3
. Identity (4) shows that up to a set of measure zero, we

have

(5) A ∩O =
(

(∪b∈E,b2+b3=1−bQS1⊔T2⊔T3
(b, b2, b3) ∩W )× B̂(ǫ)× B̂(ǫ)

)

∩O.

In other words, using the above notation, the following holds true. Let

D0 = {(b1, b2, b3) | b1 ∈ E, b1 + b2 + b3 = 1} ⊂ D

where the set D is defined in (1); then

(6) A ∩O =
(

(∪x∈D0
QS1⊔T2⊔T3

(x) ∩W )× B̂(ǫ)× B̂(ǫ)
)

∩O.

In particular, A ∩O is saturated for the foliation of O into sets of the form {ω} ×
T (s)× B̂(ǫ) where ω is an abelian differential of area 1− s on a surface Σ of genus
three obtained by opening up the first node in the surface with nodes S1 ⊔ T2 ⊔ T3

and where T (s) denotes the moduli space of area s abelian differentials on flat tori
with one marked point.

This observation allows to use the argument from the induction step. Namely,
the surface with nodes Σ⊔T3 determines a core face of the principal stratum Q for
S. Since the absolute period foliation of the principal stratum in genus 3 is ergodic
[McM14] and since A is saturated for the foliation of O into the sets of the form

{ω} × T (s) × B̂(ǫ), there is a Borel set C ⊂ (0, 1) of positive Lebesgue measure
such that

(7) A ∩O =
(

(∪s∈CQΣ⊔T3
(1− s, s) ∩W )× B̂(ǫ)× B̂(ǫ)

)

∩O.

Comparing with the equation (5) for A ∩ O, an application of Lemma 3.7 now
shows that C has full measure in (0, 1). Then Corollary 3.6 yields that A has full
measure as well which is what we wanted to show.

Note that the argument given for g = 4 applies to any g ≥ 4 (we included
the somewhat simpler argument for the case g ≥ 6 to give a more transparent
exposition of the main idea). In particular, this argument applies to the case g = 5.
This completes the discussion of the base of the induction and finishes the proof. �

Remark 3.9. Our proof of ergodicity of the absolute period foliation of the princi-
pal stratum is also valid for other strata provided that two conditions are satisfied.
First we have to be careful about the distributions of zeros on the smooth compo-
nents of the core faces of the principal boundary. More importantly, to start the
induction step we have to establish ergodicity for two base cases of distinct genus.
In case of the principal boundary, these two cases are due to McMullen and are
proved with completely different methods which can not be applied if the genus is
at least 4. In fact I do not know a single example of a component of a stratum
with more than one zero which is not principal and where ergodicity of the absolute
period foliation is known.
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