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URSULA HAMENSTÄDT AND SEBASTIAN HENSEL

Abstract. The free splitting graph of a free group Fn with n ≥ 2 generators
is a hyperbolic Out(Fn)-graph which has a geometric realization as a sphere

graph in the connected sum of n copies of S1 × S2. We use this realization

to construct submanifold projections of the free splitting graph into the free
splitting graphs of proper free factors. This is used to construct for n ≥ 3 a

new hyperbolic Out(Fn)-graph. If n = 3, then every exponentially growing

element acts on this graph with positive translation length.

1. Introduction

The free factor graph FF(Fn) for a free group Fn of rank n ≥ 2 is the graph
whose vertices are conjugacy classes of free factors of Fn and where two such free
factors A1, A2 are connected by an edge of length one if up to a global conjugation
we have A1 ⊂ A2 or A2 ⊂ A1. The free factor graph is a locally infinite Gromov
hyperbolic geodesic metric graph, and the outer automorphism group Out(Fn) of
Fn acts as a group of simplicial automorphisms on FF(Fn) [BF14a].

There are other natural Gromov hyperbolic geodesic metric Out(Fn)-graphs.
The best known is the so-called free splitting graph [HM13], whose first barycentric
subdivision FS(Fn) is defined as follows. The vertices of FS(Fn) are graph of
groups decompositions of Fn with trivial edge groups. Two such graph of groups
decompositions G,G′ are connected by an edge of length one if G′ either is a collapse
or a blow-up of G.

In view of the geometric understanding of the mapping class group of a closed
surface S of genus at least 2 via its action on the curve graph of S and the curve
graph of subsurfaces using subsurface projections, the graph FS(Fn) is significant
for the geometric understanding of Out(Fn). However, much less is known about
FS(Fn) than about the free factor graph, and the action of Out(Fn) is more compli-
cated. For example, it was observed in [HM19] that for sufficiently large n there are
free abelian subgroups of Out(Fn) which act by loxodromic isometries on FS(Fn),
with the same pair of fixed points on the Gromov boundary of FS(Fn).
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2 URSULA HAMENSTÄDT AND SEBASTIAN HENSEL

In spite of this difficulty, it turns out that there is hyperbolicity in Out(Fn)
beyond the free splitting graph. This is clear for n = 2 since Out(F2) = GL(2,Z)
is a hyperbolic group. The following is our main result.

Theorem 1. For n ≥ 3 there exists a hyperbolic geodesic metric Out(Fn)-graph
PGn which admits an equivariant one-Lipschitz projection onto the free splitting
graph. If n = 3 then every exponentially growing automorphism acts with positive
translation length on PGn.

Although for n ≥ 4 the graph PGn does not have the property that every ex-
ponentially growing automorphism acts on it with positive translation length, we
conjecture that such a hyperbolic Out(Fn)-graph exists for all n.

Theorem 1 can be thought of as a strengthening in rank 3 of the following main
result of [BF14b].

Theorem 2 (Theorem 5.1 of [BF14b]). The group Out(Fn) acts by isometries on
a product Y = Y1 × · · · × Yk of k > n hyperbolic spaces so that every exponentially
growing automorphism has positive translation length.

While the proof of Theorem 2 uses the free factor graph and the action of Out(Fn)
on Outer space as the main tool, we use a more topological viewpoint based on the
so-called sphere system graph [HV96] which is defined as follows.

Let M = S1 × S2♯ . . . ♯S1 × S2 be the connected sum of n copies of S1 × S2.
Then M is a closed manifold whose fundamental group equals the free group Fn

with n generators.

A sphere in M is an embedded sphere which is not homotopic to zero. A sphere
system is a collection of pairwise disjoint not mutually homotopic spheres in M .
The sphere system is called simple if it decomposes M into a union of balls.

Denote by SSGn the locally finite graph whose vertices are isotopy classes of sim-
ple sphere systems in M and where two such simple sphere systems are connected
by an edge of length one if they can be realized disjointly. The group Out(Fn) acts
on the graph SSGn properly and cocompactly by work of Laudenbach [L74]. Thus
SSGn is a geometric model for Out(Fn).

Any sphere inM defines up to conjugation a one-edge free splitting of Fn, that is,
a vertex in FS(Fn), and two disjoint spheres S1, S2 define a two-edge free splitting
which collapses to the free splittings defined by S1, S2, that is, they define an edge
in FS(Fn). Thus the sphere graph SGn whose set of vertices is the set of isotopy
classes of spheres in M and whose edges connect spheres which can be realized
disjointly is a topological model for the free splitting graph. There also is a natural
coarsely well defined coarsely Out(Fn)-equivariant two-Lipschitz projection

Θ : SSGn → SGn

which associates to a simple sphere system one of its components.

As for Outer space, there are distinguished paths in SSGn connecting any two
simple spheres systems as follows. Let S be a sphere which intersects the simple
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sphere system Σ. Assume that S is in minimal position with respect to Σ; this
implies that S intersects Σ in the minimal number of components, and each of
these components is an embedded circle in S (see [HiHo17] for a detailed account
on these facts).

An innermost such circle bounds an embedded disk D in S − Σ. Its boundary
∂D is contained in a sphere S0 ∈ Σ. Replace S0 by the spheres obtained by gluing
D to each of the two components of S0 − D. These spheres are disjoint from Σ.
By Lemma 3.1 of [HV96], the sphere system Σ1, obtained from the union of these
two spheres with Σ−S0 by removing parallel copies of the same sphere if there are
any, is simple, and it has fewer intersections with S than Σ. We call Σ1 a sphere
system obtained by surgery of Σ along S. Note that this notion is also defined if S
is a component of a sphere system Σ′.

Repetition of this construction gives rise to so-called surgery sequences which are
distinguished paths in SSGn. It was shown in [HiHo17] that there exists a number
L > 1 such that the image by the map Θ of such a path is an unparameterized L-
quasi-geodesic in SGn: there exists an increasing homeomorphism ρ : [a, b] → [0,m]
such that the path Θ ◦ ρ is an L-quasi-geodesic, that is, it satisfies

dSG(Θ ◦ ρ(s),Θ ◦ ρ(t))/L− L ≤ |s− t| ≤ LdSG(Θ ◦ ρ(s),Θ ◦ ρ(t)) + L

where dSG denotes the distance in the sphere graph.

We use this fact to control submanifold projections of the sphere graph into
the sphere graphs of manifolds M(σ), obtained by cutting M open along a non-
separating sphere σ and filling in the boundary by attachig a ball to each boundary
component. These submanifold projections are defined as follows.

Let σ ⊂ M be a non–separating sphere. The manifold M(σ) is homeomorphic
to the product of n− 1 copies of S1 × S2. Given a non-separatring sphere S ⊂ M
distinct from σ, we define the projection pM(σ)(S) ⊂ M(σ) of S into M(σ) as
follows. If S ⊂ M − σ then put pM(σ)(S) = S ⊂ M(σ). This is well defined as
since S is non-separating, it is essential as a sphere in M(σ). If S intersects σ, then
choose an innermost disk D ⊂ S with boundary on σ and define pM(σ)(S) to be
the sphere in M(σ) which is the union of D with one of the two components of
σ − D. We observe in Section 5 that this is indeed an essential sphere in M(σ).
Furthermore, it determines a point in the sphere graph ofM(σ) which coarsely does
not depend on choices. This projection extends to separating spheres in the same
way, with the exception of separating spheres disjoint from σ which are inessential
as spheres in M(σ). We use this projection and its geometric properties as the
main tool for the construction of the graph PSn.

In [BF14b], a notion of subsurface projection of a free factor into the free splitting
complex of another free factor is defined. Although this projection should be closely
related to ours, the precise relation between these two constructions is unclear. The
article [SS12] contains yet another approach.

The outline of this article is as follows. In Section 2, we define a family of
Out(Fn)-graphs and show that they interpolate between the free factor graph and
the free splitting graph. We also show that these graphs are all hyperbolic.
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In Section 3 we introduce the concept of exponential growth for surgery sequences
in the simple sphere system graph. We show that surgery sequences of exponential
growth are quasi-geodesics. Furthermore, a surgery sequence which projects to a
parameterized quasi-geodesic in the sphere graph has exponential growth. However,
this is not necessary for exponential growth.

In Section 4 we give a detailed analysis of the case n = 2. We show that in
this case, exponential growth of a surgery sequence is equivalent to stating that its
projection to the sphere graph is a parameterized quasi-geodesic. For n ≥ 3 we
also construct surgery sequences which do not define quasi-geodesics in the sphere
system graph.

Section 5 is devoted to the construction of submanifold projections. Most im-
portantly, we show the bounded geodesic image property which is an essential tool
towards the proof of Theorem 1. The proof of Theorem 1 is contained in Section 6.

2. Graphs of free factors

In this section we introduce a family of graphs which interpolate between the
free factor graph and the free splitting graph. We assume that n ≥ 3 throughout.

Definition 2.1. Form ≤ n−2, the level m free factor graph is the graph FFm(Fn)
whose vertices are conjugacy classes of free factors of rank n − 1, and where two
such free factors A1, A2 are connected by an edge of length one if up to a global
conjugation, A1 ∩A2 contains a free factor of rank m.

Clearly the graphs FFm(Fn) are geodesic Out(Fn)-graphs. Furthermore, they
all have the same set of vertices, and for each m ≥ 2 the vertex inclusion defines an
embedding FFm(Fn) → FFm−1(Fn). In other words, FFm(Fn) is obtained from
FFm−1(Fn) by deleting some edges. The next proposition justifies the terminology.

Proposition 2.2. The vertex inclusion defines a 2-quasi-isometry

FF1(Fn) → FF(Fn).

Proof. Since every vertex of FF(Fn) is of distance one to a rank n−1 free factor, the
image of the vertex inclusion FF1(Fn) → FF(Fn) is coarsely dense in FF(Fn).
Furthermore, by construction, any edge path (Ai)0≤i≤k ⊂ FF1(Fn) of length k
induces (non-uniquely) an edge path in FF(Fn) of length 2k with the same end-
points by replacing an edge (Ai, Ai+1) in FF1(Fn) by an edge path (Ai, Bi, Ai+1)
in FF(Fn) of length two, where Bi is a free factor contained in the intersection
Ai ∩Ai+1 which exists by the definition of FF1(Fn).

Thus it suffices to show the following. Let A,B be corank one free factors and let
(Ai) be a geodesic in the free factor graph FF(Fn) connecting A to B. Then there
exists a path (A′

i) in FF1(Fn) connecting A to B whose length does not exceed
the length of the path (Ai).

To show that this is the case, note first that if (Aj , Aj+1, Aj+2) ⊂ FF(Fn) is
an edge path of length 2 and if we have Aj ⊂ Aj+1 ⊂ Aj+2, then Aj , Aj+2 are
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connected by an edge in FF(Fn) and hence (Aj , Aj+1, Aj+2) is not a subarc of any
geodesic in FF(Fn). Thus we may assume that for all i, we have A2i−1 ⊂ A2i ⊃
A2i+1.

Then for each i, we may replace A2i by a corank 1 free factor A′
2i containing A2i.

Since A2i−1 ⊂ (A2i−2 ∩A2i) for all i, this then defines an edge path in FF1(Fn) of
half the length and the same endpoints, which is what we wanted to show. □

Example 2.3. If n = 3 then there is only one graph FF1(F3), and by Proposition
2.2, it is 2-quasi-isometric to the free factor graph.

Our next goal is to relate the graph FFn−2(Fn) to the free splitting graph. We
use a topological version of this graph which was worked out carefully in [AS11].

Lemma 2.4. The sphere graph of M is a topological realization of the free splitting
graph FS(Fn).

Proof. (Sketch) Each sphere S ∈ SGn determines a one-edge free splitting of Fn.
Namely, if S is non-separating, then for a choice of a basepoint x ∈ M − S, the
subgroup of π1(M) of all homotopy classes of loops which are disjoint from S is a
free factor of Fn of rank n−1, and S defines a one-vertex one-loop free splitting (an
HNN-extension) of Fn. If S is separating, then S defines a one-edge free splitting
of Fn by the Seifert van Kampen theorem.

Now let S′ be a sphere which is disjoint from S. Then with the same argument,
S ∪S′ defines a two edge free splitting which collapses to both the splitting defined
by S and S′. Thus the sphere graph maps 2-quasi-isometrically into FS(Fn), with
one-dense image. We refer to [AS11] for a complete proof. □

We need two technical properties of the sphere graph SGn. The first is the
following simple

Lemma 2.5. The subgraph of SGn of all non-separating spheres in M is convex
embedded in SGn: any two non-separating spheres can be connected by a geodesic
in SGn consisting of non-separating spheres.

Proof. Let A,B be non-separating spheres and connect A to B by a geodesic
(Sj)0≤j≤m. For each i consider the sphere S2i+1. It is disjoint from both S2i

and S2i+2. As (Sj) is a geodesic, if S2i+1 is separating then S2i, S2i+2 are con-
tained in the same component U of M − S2i+1 since otherwise the sphere S2i+1

can be deleted from the sequence. Choose a non-separating sphere S′
2i+1 in the

component M − U and replace S2i+1 by S′
2i+1. The resulting path is a geodesic,

and each of the spheres with odd index are non-separating, while the spheres with
even index are unchanged. Proceed in the same way with the spheres S2i. □

Define a subgraph NSGn of SGn as follows. The vertices of NSGn are non-
separating spheres, and two such spheres S1, S2 are connected by an edge of length
one if they can be realized disjointly and if moreover M − (S1 ∪ S2) is connected.

The following is the analog of a well-known result for curve graphs.
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Proposition 2.6. The inclusion NSGn → SGn is a 2-quasi-isometry.

Proof. Since every separating sphere is of distance one to a non-separating sphere,
the graph NSGn is one-dense in SGn. Furthermore, by Lemma 2.5, two vertices
of NSGn can be connected by a geodesic (Si) ⊂ SGn consisting of non-separating
spheres.

It is possible that in the path (Si), there are two adjacent spheres, say the
spheres Si, Si+1, which form a bounding pair, that is, such that M − (Si ∪ Si+1)
is disconnected. We now replace successively each such pair Si, Si+1 by an edge
path Si, Di, Si+1 of length two such that M − (Si ∪Di) and M − (Di ∪ Si+1) are
both connected. To see that this is possible note that if a bounding pair exists then
n ≥ 3. ThenM−(Si∪Si+1) contains a component which is a non-trivial connected
sum of S1 × S2 with the interiors of two balls removed. Such a manifold contains
a non-separating embedded sphere Di. This sphere is disjoint from Si ∪ Si+1, and
M − (Si ∪Di) and M − (Di ∪ Si+1) are both connected.

The length of the modified path (S′
i) is at most twice the length of the path (Si)

connecting the same endpoints. Furthermore, any two consecutive vertices S′
i, S

′
i+1

of this path have the property that M − (S′
i ∪ S′

i+1) is connected. This completes
the proof of the lemma. □

Example 2.7. The free group F2 with two generators is the fundamental group of
a once punctured torus T . Each oriented non-peripheral simple closed curve c on
T determines the conjugacy class of a primitive element of F2, and any conjugacy
class of a primitive element arises in this way. Now primitive elements in F2 are
precisely the generators of corank one free factors of F2. Moreover, conjugacy
classes of corank one free factors of F2 are in bijection with non-separating spheres
in the manifold M . Thus the vertices of NSG2 correspond precisely to the simple
closed curves on T .

Two such conjugacy classes are connected by an edge in NSG2 if they correspond
to disjoint spheres in M . This is the case if and only if they define a free basis of
F2, which is the case if and only if the simple closed curves on T defining these
conjugacy classes intersect up to homotopy in precisely one point. As a consequence,
the graph NSG2 is nothing else than the familiar Farey graph.

The relation between the free splitting graph FS(Fn) and the graph FFn−2(Fn)
is now a consequence of the following observation.

Lemma 2.8. There exists a one-Lipschitz simplicial map NSGn → FFn−2(Fn)
which is surjective on vertices.

Proof. If S1, S2 are vertices in NSGn which are connected by an edge, then for
a choice of a basepoint x ∈ M − (S1 ∪ S2), the spheres Si define corank one free
factors A1, A2 of Fn = π1(M,x) of homotopy classes of loops disjoint from S1, S2,
and these free factors intersect in the corank 2 free factor of homotopy classes of
loops disjoint from both S1∪S2. Thus the edge between S1 and S2 in NSGn defines
an edge in the graph FFn−2(Fn) as claimed in the lemma. □
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As an immediate consequence of Lemma 2.4, Lemma 2.6 and Lemma 2.8, we
obtain

Corollary 2.9. There exists a coarse two-Lipschitz map

FS(Fn) → FFn−2(Fn)

which is surjective on vertices.

Example 2.10. If n = 3 then Proposition 2.2 shows that the free factor graph
is 2-quasi-isometric to the graph FFn−2(Fn). However, it is very different from
the free splitting graph. Indeed, there are elements of Out(F3) which act on the
free splitting graph as loxodromic isometries, but which fix a free factor. Such an
example is discussed in Example 4.2 of [HM19]. It can be constructed with the help
of a relative train track map.

The example can be viewed as a family of spheres in M which are all disjoint
from a fixed simple loop defining a generator of F3, but contain tubes winding
around the loop.

Recall from the introduction that a simple sphere system Σ can be modified to
another simple sphere system by a surgery move in direction of a sphere system Σ′

as follows. Let S′ ∈ Σ′, assumed to be in minimal position with respect to Σ. Then
each component of S′ ∩ Σ is an embedded circle in S′.

An innermost such circle bounds an embedded disk D in S′. Its boundary ∂D is
contained in a sphere S ∈ Σ. The two spheres obtained by gluing D to each of the
two components of S−∂D are disjoint and disjoint from Σ. Let Σ1 be the union of
Σ−S with these two spheres, with parallel copies of the same sphere removed. By
Lemma 3.1 of [HV96], the sphere system Σ1 is simple, and it has fewer intersections
with Σ′ than Σ.

Repetition of this construction, keeping the direction Σ′ fixed (and starting in a
second step from Σ1) are called surgery sequences.

Note that there is a natural coarsely well defined projection τ : NSGn →
FFm(Fn) which factors through the composition of the map from Lemma 2.8
with the inclusion FFn−2(Fn) → FFm(Fn). As in [HiHo17], we use the images of
surgery sequences under the map τ and an argument of [KR14] to show

Theorem 2.11. Each of the graphs FFm(Fn) (m ≤ n− 2) is hyperbolic, and the
natural projections of surgery paths are uniform unparameterized quasi-geodesics in
FFm(Fn).

Proof. We follow [HiHo17] (the proof of Theorem 8.3). Let S0, S1 be non-separating
spheres and assume that τ(S0) and τ(S1) are connected by an edge in FFm(Fn).
Then we can find an embedded rose R in M with vertex p and with m petals so
that the inclusion π1(R, p) → π1(M,p) is π1-injective and such that both S0 and
S1 are disjoint from R.

Namely, let M̃ be obtained fromM by removing the interior of a small ball from
M . Put a basepoint p on the boundary of M̃ . For any non-separating sphere S
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in M choose a lift S̃ of S to M̃ . If τ(S0), τ(S1) are connected in FFm(Fn) by

an edge then there exists g ∈ Fn such that π1(M̃ − S̃0, p) and π1(M̃ − gS̃1g
−1, p)

contain a free factor of rank m defining the conjugacy class of a free factor as in
the definition of an edge in FFm(Fn). Here gS̃1g

−1 denotes the image of S̃1 under

a diffeomorphism of M̃ realizing the conjugation by g.

It follows from Lemma 2.2 of [HV98] that this free factor can be represented
as the fundamental group of a rose R with m petals and basepoint at p which is
disjoint from both S̃0 and gS̃1g̃

−1. Projection of this rose as well as the spheres
S̃0, S̃1 to M yields the statement claimed in the first paragraph of this proof.

Since neither S0 nor S1 intersect the rose R, any surgery path connecting S0 to S1

consists of spheres disjoint from R. As surgery paths are uniform unparameterized
quasi-geodesics in SGn [HiHo17] and hence give rise to uniform unparameterized
quasi-geodesics in NSGn by Proposition 2.6, this implies that the fibers of the
projection τ are uniformly quasi-convex: Any two points in a fiber are connected
by a uniform quasi-geodesic in NSGn which is entirely contained in this fiber.

As a consequence, we can apply the main result of [KR14]. We conclude that
indeed, for any m ≤ n− 2 the level m free factor graph is hyperbolic, and surgery
paths in SGn (that is, edge paths in NSGn at distance two from surgery paths in
SGn) project to uniform unparameterized quasi-geodesics in FFm(Fn). □

3. Exponential growth

For any sphere system Σ and any embbeded finite graph R in M = ♯nS
1 × S2

let
ι(Σ, R)

be the minimal number of intersection points between Σ and a homotopic realiza-
tion of R, counted with multiplicity. Equivalently, this is the minimal number of
intersection points between Σ and a homotopic realization of R such that every
vertex of R is contained in M − Σ.

A simple sphere system Σ is reduced if its complement is connected. Each reduced
sphere system is dual to a unique isotopy class of a rose R ⊂ M which defines the
conjugacy class of a free basis for Fn. Here duality means that up to homotopy,
each component of Σ intersects the rose R in a single point.

Recall that Out(Fn) can be generated by Nielsen moves. Such a Nielsen move
either is a Nielsen twist or a permutation of two rank one free factors in a free basis
(up to conjugation). A Nielsen twist replaces a marked rose R by another marked
rose R′. There is a homotopy equivalence R′ → R which maps a leaf of R′ to a
loop in R which either is a single leaf of R or passes through precisely two leaves.
Thus we have

Lemma 3.1. Let Σ be a simple sphere system, let R be a marked rose and assume
that R′ is obtained from R by a single Nielsen twist; then

ι(Σ, R′) ∈
[
1

2
ι(Σ, R), 2ι(Σ, R)

]
.
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Proof. As the marked homotopy equivalence R′ → R can be represented by a 2 : 1
map, we have ι(Σ, R′) ≤ 2ι(Σ, R). On the other hand, the marked rose R′ is
obtained from R by a single Nielsen twist as well, which immediately shows the
second part of the inequality. □

Let R be the graph whose set of vertices is the set of all marked roses and where
two such roses are connected by an edge of length one if they are related by a
Nielsen move. Then R is an Out(Fn)-graph on which Out(Fn) acts properly and
cocompactly. In other words, R is a geometric realization of Out(Fn).

Sphere systems define another geometric realization of Out(Fn). Namely, let
SSGn be the simple sphere system graph and let dSSG be the distance in SSGn. By
invariance under the action of Out(Fn), cocompactness, and the fact that stabilisers
of simple sphere systems are finite, the sphere system graph is equivariantly quasi-
isometric to Out(Fn).

Given any simple sphere system Σ, we can obtain a reduced sphere system by
removal of some of the spheres. Such a reduced sphere system admits a dual rose.
We call a rose R obtained in this way dual to Σ although R may not be unique. The
coarsely well defined map SSGn → R which associates to a simple sphere system
a dual rose dual is a coaresely Out(Fn)-equivariant quasi-isometry.

Lemma 3.2. There exists a number C0 > 0 with the following properties. Let
Σ0,Σ1 be reduced sphere systems and let R be a rose dual to Σ1; then dSSG(Σ0,Σ1) ≥
C0 log2 ι(Σ0, R).

Proof. In Lemma 3.1 we observed that each Nielsen move decreases intersection
numbers between a rose and a sphere system by at most a factor of two. Since the
graph SSGn is coarsely Out(Fn)-equivariantly quasi-isometric to R, from this the
lemma follows. □

Let (Σi)0≤i≤m be a surgery sequence of simple sphere systems. For each i let
Ri be a rose dual to Σi. Then Ri defines a vertex in the graph R. The distance in
R between Ri and Ri+1 is bounded from above independently of i. We use this to
observe

Lemma 3.3. There exists C1 > 0 with the following property. Let (Σi)0≤i≤m be a
surgery sequence of simple sphere systems, and let (Ri) be a sequence of dual roses;
then

ι(Σm, R1) ≥ C1ι(Σm, R0).

Proof. By definition, the sphere system Σ1 is obtained from Σ0 by one surgery
operation, followed by removal of at most two spheres from the resulting system.
Thus the dual rose R1 is obtained from the rose R0 by a uniformly bounded number
of Nielsen twist (which are the generators of Out(Fn), permutations play no role
here), say at most ℓ of such twists. The lemma now follows from Lemma 3.1. □
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Lemma 3.3 shows that for a surgery sequence (Σi)0≤i≤m, intersection numbers
with Σm of roses dual to Σi decrease at most exponentially along the sequence,
with a fixed exponent depending only on n. We next look at such sequences for
which intersection numbers decrease uniformly exponentially.

Definition 3.4. For a ∈ (0, 1) and k ≥ 1 the surgery sequence (Σi)0≤i≤m has
(a, k)-exponential growth if ι(Σm, Ri+k) ≤ aι(Σm, Ri) and ι(Σ0, Ri) ≤ aι(Σ0, Ri+k)
for all i.

The next result shows that exponential growth yields geometric control.

Theorem 3.5. For all a ∈ (0, 1), k ≥ 1 there is a number ℓ(a, k) > 1 with the
following property. Let Σ,Λ be two simple sphere systems which are connected by
a surgery sequence (Σi). Assume that this sequence has (a, k)-exponential growth.
For each i let Ri be a rose dual to Σi. Then the sequence (Ri) defines an ℓ(a, k)-
quasi-geodesic in the graph R.

Proof. For a number L > 1, an L-Lipschitz retraction of the graph R onto a subset
A ⊂ R is an L-Lipschitz map Υ : R → A such that d(x,Υ(x)) ≤ L for all x ∈ A.
If there exists an L-Lipschitz retraction R → A then since R is a geodesic metric
graph, the inclusion A→ R is weakly L-quasi-convex: For any two points x, y ∈ A
there exists a path in the L-neighborhood of A with the same endpoints which is
an L-quasi-geodesic in R (with additive constant larger than L).

As a consequence, it suffices to show that there is an L-Lipschitz retraction of
R onto a sequence (Ri)0≤i≤m of roses dual to the sphere systems Σi for a constant
L > 1 only depending on a, k (and, of course, the rank n).

Let G ∈ R be a marked rose. We assume that G is embedded in M . Let
κ = log ι(Σ,G)

ι(Λ,G) . We say that P (G) = Ri is roughly balanced for G if

log
ι(Σ, Ri)

ι(Λ, Ri)
∈ [κ+ logC1, κ− logC1]

where C1 ∈ (0, 1) is as in Lemma 3.3. If κ < log ι(Σ,R0)
ι(Λ,R0)

then we put P (G) = Σ,

and similarly we put P (G) = Λ if κ > log ι(Σ,Rm)
ι(Λ,Rm) . By Lemma 3.3 and the choice

of the constant C1 > 0, such a number i exists, and Definition 3.4 yields that it is
coarsely unique: If Rj is another such point then |j − i| ≤ k log κ/ log a.

Now let us assume that G′ is obtained from G by a single Nielsen twist. Then
Lemma 3.1 shows that ∣∣∣∣log ι(Σ, G′)

ι(Λ, G′)
− log

ι(Σ, G)

ι(Λ, G)

∣∣∣∣ ≤ 2 log 2.

Thus as a consequence of (a, k)-exponential growth, we obtain that the intrinsic
distance between P (G) and P (G′) is at most L where L = L(a, k) > 0 is a universal
constant. In other words, the map P is coarsely L-Lipschitz.

Now if G is dual to one of the sphere systems Σi then it follows from the con-
struction that P (G) is contained in a uniformly bounded neighborhood of Σi. As
a consequence, P is indeed a Lipschitz retraction. The lemma follows. □
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While Lemma 3.1 shows that intersection numbers change at most exponentially
with a fixed rate along a one-Lipschitz path in the graph R, the next observation
yields that the distance in SGn yields a lower bound on intersection numbers.

Lemma 3.6. Let S ⊂ M be a sphere and let R ⊂ M be an embedded rose with
n petals and vertex p such that the inclusion R → M defines an isomorphism of
π1(R, p) → π1(M,p). Let S′ ⊂ M be a sphere which intersects R in precisely one
point; then

dSG(S, S
′) ≤ 2 log2 ι(S,R) + 3.

Proof. If S′ is disjoint from S then

dSG(S, S
′) = 1

and there is nothing to show. Thus assume that S′, S intersect and that R intersects
S in k ≥ 1 points.

There are at least two innermost components of S′ − S. Up to homotopy of R,
we may assume that the intersection point between R and S′ is contained in one
of these components, say the component D′. Let D be an innermost component
of S′ − S different from D′; its boundary ∂D decomposes S into two disks D1, D2.
Assume by renaming that the disk D1 has fewer intersections with R than D2.
Then R intersects D1 in at most k/2 points.

Surger S at D so that the surgered sphere S1 is the union D1 ∪ D. Then
ι(S1, R) ≤ k/2. Note that dSG(S, S1) ≤ 1 since S, S1 are disjoint. The lemma now
follows by induction on the length of a surgery sequence connecting S to a sphere
disjoint from S′. □

Recall the coarsely well defined map Θ which associates to a simple sphere system
one of its components. For a number B > 1, define two reduced sphere systems
Σ0,Σ1 to be in B-tight position if BdSG(Θ(Σ0),Θ(Σ1)) ≥ dSSG(Σ0,Σ1).

Corollary 3.7. For every B > 1 there is a number a = a(B) > 0 with the following
property. Let Σ0,Σ1 be two reduced sphere systems which are in B-tight position.
Let R1 be a rose dual to S1; then

dSSG(Σ0,Σ1) ∈ [log2 ι(Σ0, R1)/a, a log2 ι(Σ0, R1)].

Proof. Since Σ0,Σ1 are in B-tight position, we have

dSSG(Σ0,Σ1) ≤ BdSG(Θ(Σ0),Θ(Σ1)).

Thus the corollary follows from Lemma 3.6 and Lemma 3.2. □
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4. Growth and quasigeodesics

The goal of this section is to give some additional geometric information on
surgery sequences in relation to growth. We begin with a detailed analysis of the
case of rank 2.

In this section we only consider particular surgery sequences called full surgery
sequences, defined by the property that we always use all spheres (and remove
multiple copies). That is, we replace a sphere by both spheres obtained from
surgery at a fixed innermost disk.

Recall the map Θ : SSGn → SGn which associates to a simple sphere system
one of its components. In the statement of the following proposition, exponential
growth means (a, k)-exponential growth for some a > 0, k > 0. The constants
depend on each other, but we do not make this dependence quantitative.

Proposition 4.1. For the free group of rank n = 2 and a full surgery sequence
Σi ⊂ SSG2 of simple sphere systems the following are equivalent.

(1) Σi is of exponential growth.
(2) The image sequence Θ(Σi) is a parameterized quasi-geodesic in SG2.

Proof. Since (2) implies (1) by Lemma 3.6 (and in fact, this implication holds true
for any n ≥ 2), it suffices to show that (1) implies (2).

We observed in Example 2.7 that up to uniform quasi-isometry, the graph SG2

can be identified with the Farey graph, where this identification is via viewing the
free group F2 as the fundamental group of a once punctured torus T and viewing
the Farey graph as the curve graph of T .

Furthermore, we have Out(F2) = GL(2,Z), which is a hyperbolic group with
respect to some (and hence any) finite symmetric generating set. Thus any uniform
(that is, with fixed constants) quasi-geodesic γ in Out(F2) is stable: Any other
uniform quasi-geodesic with the same endpoints is contained in a uniformly bounded
neighborhood of γ. Since the surgery sequence Σi is of (a, k)-exponential growth
by assumption, Theorem 3.5 shows that it determines a quasi-geodesic in GL(2,Z)
and hence it is at uniformly bounded distance from a geodesic.

To understand the relation between the geometry of Out(F2) and the geometry
of the Farey graph we first pass to the quotient PSL(2,Z) of the index two subgroup
SL(2,Z) of GL(2,Z), with fiber of order 2. It acts as a group of isometries on the
hyperbolic plane H2. The quotient of H2 by this action is a finite volume orbifold
with one cusp. There exists a PSL(2,Z)-invariant collection H of open horoballs
with pairwise disjoint closure which are centered at the rational numbers and ∞
in ∂H2 = R ∪∞ (here we use the upper half-plane model for H2 and the natural
identification of its Gromov boundary ∂H2 with R ∪∞). This system of horoballs
is precisely invariant under the action of the group PSL(2,Z): if H ∈ H is such a
horoball, and if g ∈ PSL(2,Z) is such that gH∩H ̸= ∅, then gH = H. Furthermore,
the action of PSL(2,Z) on H is transitive. Up to adjusting the system H, the
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complement X = H2 − H is a path connected two-dimensional space on which
PSL(2,Z) acts properly and cocompactly.

Let Stab(H) ⊂ PSL(2,Z) be the stabilizer of a component H ∈ H. Then
Stab(H) is virtually infinite cyclic, and the hyperbolic group PSL(2,Z) is hyperbolic
relative to its system of pairwise conjugate parabolic subgroups Stab(H) (H ∈ H).
Up to quasi-isometry, the Farey graph is then obtained by adding for each H ∈ H
a point to the Cayley graph of PSL(2,Z) and connecting this point to each element
in Stab(H) by an edge of length one. Thus a (uniform) quasi-geodesic in PSL(2,Z)
projects to a uniform quasi-geodesic in the Farey graph if and only the length of
any subsegment which is contained in a uniform neighborhood of Stab(H) for some
H ∈ H is uniformly bounded.

View H2 as the Teichmüller space of marked punctured tori equipped with a
finite volume hyperbolic metric. Then X ⊂ H2 parameterizes such marked tori
whose systole, that is, the length of a shortest closed geodesic, is bounded from
below by universal positive constant ϵ > 0.

Choose a basepoint x ∈ X, and a rose R ⊂ x with two petals such that the
inclusion R → x is an isomorphism on π1 and that the x-length of R is uniformly
bounded. Since the systole of x ∈ X is at least ϵ, such a rose exists, and it is
essentially unique: If a1, a2 is a free basis of F2 defined by the petals of the rose,
then any other such free basis of F2 can be obtained from a1, a2 by a uniformly
bounded number of Nielsen moves.

Let γ : [0, u] → PSL(2,Z) be a uniform quasi-geodesic through γ(0) = Id. Then
γ projects to a uniform quasi-geodesic in the Farey graph if and only if for a number
m > 0 depending on the control constants for the quasi-geodesic, the geodesic in H2

connecting x to γ(u)(x) does not contain any segment of length at least m which
is contained in H2 −X. Note that this makes sense since each horoball H ∈ H is
convex.

We are left with showing that this property is equivalent to (a, k)-exponential
growth for some a, k > 0. To this end put ψ = γ(u) and consider the unit speed
Teichmüller geodesic segment η : [0, τ ] → H2 connecting x to ψ(x), which is just
the unit speed hyperbolic geodesic. Its length τ is given as follows.

Extend η to a Teichmüller geodesic line, again denoted by η. Its endpoints η+, η−
in ∂H2 can be thought of as measured geodesic laminations on the once punctured
torus T . For t ∈ [0, τ ] let q(t) be the area one singular euclidean metric on T
defined by the area one quadratic differential which is the cotangent vector of η at
η(t). The length of η+ with respect to q(t) contracts along the geodesic with the
contraction rate e−u/2, and the length of η− expands with the rate eu/2.

For points in X, the singular euclidean metric defined by an area one quadratic
differential is uniformly bi-Lipschitz equivalent to the hyperbolic metric in the com-
plement of the cusp. The singular euclidean length of a simple closed curve α on x
(that is, the length of a geodesic representative) equals ι(α, η+) + ι(α, η−) where ι
is the intersection form on measured lamination space. Thus for any subsegment
of η of hyperbolic length κ and with endpoints in X, the flat length of the basis



14 URSULA HAMENSTÄDT AND SEBASTIAN HENSEL

elements a1, a2 of F2 with respect to the hyperbolic metric has increased by at most
the factor eκ/2. As for points z ∈ X, this flat length is uniformly proportional to the
length of the corresponding word with respect to a free basis determined by a rose
of uniformly bounded length in z, (a, k)-exponential growth of the path γ implies
the following. There exists a number c > 0 such that for any 0 ≤ a < b ≤ u the
length of the hyperbolic geodesic connecting γ(a)(x) to γ(b)(x) is at least c(b− a).

Now let ζ : [0, p] → H2 be a geodesic arc of length p > 0 connecting two points
on the boundary of a horoball H ∈ H. Since close-by points in X define hyperbolic
tori which are marked uniformly bi-Lipschitz, we may assume that the endpoints
of ζ are contained in the same PSL(2,Z)-orbit. This means that there exists an
element σ ∈ Stab(H) with σ(ζ(0)) = ζ(p). Let ℓ > 0 be the word norm of σ in the
infinite cyclic group Stab(H). Note that this word norm is uniformly proportional
to the word norm in PSL(2,Z). Then the length p of ζ is bounded from above
by b log ℓ + b where b > 0 is a universal constant. As a consequence, for large
enough ℓ the condition of (a, k)-exponential growth is violated. In other words,
(a, k)-exponential growth implies property (2) stated in the proposition, which is
what we wanted to show. □

We next give an example which shows that for n ≥ 3, a surgery sequence which
violates the exponential growth condition in Theorem 3.5 does not define in general
a uniform quasi-geodesic in Out(Fn). We use the following preparation.

Lemma 4.2. Let Σ0,Σ be simple sphere systems and let Σi be a full surgery se-
quence of Σ0 towards Σ. Let R ⊂ M be an embedded rose with m ≤ n petals such
that the inclusion R → M defines an injection on π1 and that ι(R,Σ) = m. Then
for each i we have ι(Σi, R) ≤ ι(Σ0, R) + 2i.

Proof. Put the rose R in minimal position with respect to Σ. This can be achieved
in such a way that it intersects any component of Σ in at most one point. Let S
be a component of Σ and let D ⊂ S be an innermost disk for S − Σi used in the
surgery which transforms Σi to Σi+1. Assume that the boundary of D is contained
in the component Si of Σi. The disk D has at most one intersection point with
R. As a consequence, the two spheres arising from surgery of Si with the disk
D intersect R in at most ι(R,Si) + 2 points. As the intersection of R with the
components of Σi − Si remains unchanged, a simple induction on the length of the
surgery sequence yields the lemma. □

We use the lemma to find for any n ≥ 3 surgery sequences in SSGn which are not
quasi-geodesics for an arbitrarily a priori chosen control constant. For simplicity of
exposition, we only carry out the case n = 3. It will be clear from the discussion
that the construction is valid for any n ≥ 3.

Example 4.3. Consider the free group F3 with a free basis A0 = {a1, a2, a3}. Let
R ⊂ M be a marked rose whose petals define these generators and let Σ0 be the
corresponding dual simple sphere system in M = ♯3S

1 × S2. Denote by S1 ∈ Σ0

the sphere which intersects a1.

Choose a hyperbolic element α ∈ GL(2,Z) = Out(F2) and extend it to an
element of Out(F3) which preserves a1 (up to a global conjugation). Denote the
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thus defined element of Out(F3) again by α. It preserves the conjugacy class of the
one-edge free splitting F3 = ⟨a1⟩ ∗F2 where F2 ⊂ F3 is the free factor generated by
a2, a3. The element α acts on the sphere system graph, preserving the sphere S1.
As the element α of GL(2,Z) is hyperbolic, it is of exponentially growth. This is
well known but also follows from the proof of Proposition 4.1. As the consequence,
the intersection ι(Σ0, α

k(R)) is uniformly exponentially growing in k: there exists
a number c > 0 such that ι(Σ0, α

k(R)) ≥ eck. Furthermore, if p2 denotes the petal
of R corresponding to the generator a2, then the intersection of αk(p2) with Σ0 is
also uniformly exponentially growing.

For each k consider the free basis Ak = {a1αk(a2), a2, a3} of F3. There exists a
number m > 0 and a path in Out(F3) of length 2km+1 which transforms the basis
A0 to Ak. This path consists in first applying k times the automorphism α, which
contributes km to the length of the path. The image of A0 by this automorphism is
the basis a1, α

k(a2), α
k(a3) (up to a global conjugation). Perform a Nielsen twist to

replace a1 by a1α
k(a2) and iterate α−1, extended to F3 by fixing the free splitting

F3 = ⟨a1αk(a2)⟩ ∗ F2. The thus defined path has length 2km+ 1, and its endpoint
ψk maps A0 to Ak. Furthermore, we have that ι(Σ0, ψk(R)) equals ι(Σ0, α(p2)) up
to a universal additive constant and hence these intersection numbers are growing
exponentially in k.

Put Λk = ψk(Σ0). Consider the rose R̂ with two petals, obtained from the rose

R by deleting the petal defining a1. Then ι(Σ0, R̂) = ι(Λk, R̂) = 2 for all k. Thus
by Lemma 4.2, if Σk

i is a full surgery sequence connecting Σ0 to Λk, then for each

i we have ι(Σk
i , R̂) ≤ 2i. By induction, this implies that ι(Σk

i , R) ≤ (pi)2 for a
universal constant p > 0 and all i. Thus, surgery sequences from Σ0 to Λk have
length growing exponentially in k. As a consequence, the surgery paths do not
define a family of uniform quasi-geodesics in Out(F3).

5. Submanifold projection

Let σ0 be a nonseparating sphere in M = Mn = #nS
1 × S2. The metric

completion N̂ of Mn − σ0 with respect to some path metric on Mn is a compact
manifold with two boundary components, corresponding to the two sides of σ0.
The manifold N obtained by gluing a 3-ball to each boundary component of N̂ is
homeomorphic to Mn−1. Our goal is to analyze intersections of spheres with N̂
and use this to define a submanifold projection of the sphere graph of M into the
sphere graph of N .

We begin with a topological observation.

Lemma 5.1. Let S be any sphere in normal position with respect to σ0 which is
not disjoint from σ0. Let D ⊂ S be any innermost disk of S − σ0, and let D0 ⊂ σ0
be an embedded disk in σ0 with the same boundary circle: ∂D = ∂D0. Then the
sphere S′ = D ∪D0 is essential in N .

Proof. Assume by contradiction that S′ is inessential in N . Denote the boundary
component of N̂ which intersects the disk D by ∂+N̂ and the other by ∂−N̂ . Equip
σ0 with the orientation of the oriented boundary component ∂+N̂ of N̂ (for a choice
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of an orientation of N). Since σ0 is non-separating by assumption, this choice of
orientation determines a choice of a generator of H2(M,Z), given by the oriented
inclusion σ0 → M , again denoted by σ0. Furthermore, this choice of orientation
restricts to an orientation of D0 and hence defines an orientation of S′.

Since S′ is an inessential embedded sphere in N , it bounds a ball in N . Because
σ0 and S are in minimal position, the sphere S′ does not bound a ball in the manifold
N̂ . Similarly, the sphere S′ does not bound a ball in the manifold N̂+ obtained

from N̂ by gluing a ball to ∂+N̂ . Namely, otherwise D would be homotopic in
N̂ into ∂+N̂ , violating as before normal position. As a consequence, S′ bounds a
region in N̂ whose second boundary component is ∂−N̂ . Thus S′ is homologous to
±σ0 in M . Inspecting orientations, we obtain that S′ defines the homology class
σ0 in M .

Let Ŝ be the sphere in N obtained by gluing σ0 −D0 to D and equipped with
the orientation inherited from the boundary orientation of ∂+N̂ . For this choice
of orientation, σ0 is the oriented connected sum of S′ and Ŝ. Thus as homolopy
classes in M , we have σ0 = S′ + Ŝ = σ0 + Ŝ and hence Ŝ is homologically trivial in
M . In other words, the embedded sphere Ŝ in M is separating. Furthermore, it is
not homotopically trivial in M , again by minimal position.

Now the second homotopy group π2(M) of M is a free π1(M)-module which is
the direct sum of two submodules V1 ⊕ V2, where V1 is spanned by nonseparating
embedded spheres and V2 is spanned by separating embedded spheres. In other
words, V2 is the kernel of the map π2(M) → H2(M,Z) as π1(M)-modules, where
the action of π1(M) on H2(M,Z) is the trivial action. By the above, the spheres

σ0 and S′ are contained in the submodule V1, and the sphere Ŝ is contained in V2.
As σ0 + S′ = Ŝ (connected sum and hence sum in π2(M)), and all elements are
non-zero, this is impossible. □

Call a sphere S ⊂M − σ0 non-peripheral if its image in the manifold N is non-
trivial. The set of all non-peripheral spheres defines a subgraph NP(σ0) of the
sphere graph of M consisting of sphere disjoint from σ0. Let also P(σ0) be the set
of all spheres which are disjoint from σ0 and peripheral. Note that any such sphere
(with σ0 excluded) is separating.

Lemma 5.1 allows to define a submanifold projection

pσ0
: SGn − P(σ0) → NP(σ0)

(more precisely, the target of the projection is the family of all non-empty finite
subsets of NP(σ0)) in the following way. For a sphere S in M distinct from σ0 and
not peripheral we put pσ0

(S) = S if S is disjoint from σ0, and if S intersects σ0,
then we let pσ0

(S) be the union of all spheres which are obtained by surgery at an
innermost disk of S−σ0. By Lemma 5.1, each such surgery yields a non-peripheral
sphere in M −σ0. The projection pσ0

(Σ) of a sphere system Σ with more than one
component is defined to be the union ∪S∈Σpσ0(S).

There may be spheres in the set pσ0
(Σ) which intersect, but as a subset ofNP(σ0)

it is of uniformly bounded diameter. Namely, all innermost disks of Σ − σ0 are
disjoint. Hence if S1, S2 ∈ pσ0

(Σ) are any two spheres constructed from innermost
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disks D1, D2, then there exist disjoint spheres S′
1, S

′
2 ∈ pσ0

(Σ) such that S′
i is

disjoint from Si (i = 1, 2). Just choose S′
i to be the spheres constructed from two

innermost disks D1, D2 of Σ − σ0 and two disjoint disks in σ0 bounded by the
disjoint boundary circles of D1, D2.

Let SGN = SGn−1 be the sphere graph of the manifold N obtained by cutting
M open along σ0 and capping off the boundary. There exists a natural simplicial
projection

Υσ0
: NP(σ0) → SGN .

Consider the composition

pN = Υσ0
◦ pσ0

: SGn − P(σ0) → SGN .

Our next goal is to establish a control of the images of suitably chosen surgery
paths under the projections pN . This will follow from a stability property of normal
position along such surgery sequences. Note that the disk D2 in the formulation of
the lemma below need not be innermost, which corresponds to the second possibility
listed.

Lemma 5.2. Let Σ1 be a sphere system, and let Σ2 be a sphere which is in normal
position with respect to Σ1. Let Di ⊂ Σi, i = 1, 2 be two embedded disks such that
∂D1 = ∂D2, and such that the interiors of the Di are disjoint. Let S = D1 ∪D2.
Then either

(1) up to homotopy, S is disjoint from Σ1, or
(2) the normal position of S with respect to Σ1 has an innermost disk compo-

nent which is (with boundary gliding on Σ1) isotopic to an innermost disk
component of Σ2.

Proof. Let M̃ be the universal cover of M . We let Σ̃1 be the full preimage of Σ1,
and let Σ2 be a connected lift of Σ2. This contains a unique lift D2 of D2. We
denote by D1 the unique lift of D1 which intersects D2. Then the sphere

S = D1 ∪D2

is a connected lift of S. We modify S and this lift by pushing D1 slightly off Σ̃1

in order to make every intersection of S with Σ̃1 transverse. Note that every such
intersection circle is then contained in D2. In particular, every innermost disk

component of S with respect to Σ̃1 is either contained in Σ2, or contains D1 (and
there is at most one of the latter type).

If there is no innermost disk containing D1, or if the innermost disk containing

D1 is not homotopic (relative to its boundary) into Σ̃1, then S is in normal position
with respect to Σ1. Namely, any other pathology is excluded by normal position
of Σ1 and Σ2. In that case we find an innermost disk component of S which is
contained in D2 and satisfies property ii).

If there is an innermost disk component D ⊃ D1 which is homotopic relative to

its boundary into Σ̃1, then there is a ball B whose boundary is the union of D with

a disk contained in Σ̃1. In this case, we can homotope S by pushing it through this
ball. As a result we obtain a sphere S′ which is again of the form D′

1∪D′
2 with disks



18 URSULA HAMENSTÄDT AND SEBASTIAN HENSEL

contained in Σ1,Σ2, and whose lift intersects Σ̃1 in one less circle. Iterating this

argument, we either terminate in a sphere which is disjoint from Σ̃1 and therefore
has property i), or we obtain property ii) as above. □

Lemma 5.2 allows to define nested surgery sequences Σi as follows. Let Σ0,Σ be
sphere systems, and let S0, S be components of Σ0,Σ which intersect. Choose an
innermost disk D ⊂ S ∈ Σ with boundary on S0 ∈ Σ0 and let D0 ⊂ S0 be a disk
with boundary ∂D0 = ∂D. Perform surgery of S0 by replacing S0 by S1 = D0 ∪D.

Assume that S1 is not disjoint from S. Choose an innermost disk D′ of S − S1,
with boundary on S1. By Lemma 5.2, up to homotopy, the boundary of D′ is
contained in D0 and hence bounds a unique disk D1 ⊂ D0. Perform surgery by
replacing S1 by D1 ∪D′ and iterate this construction.

Lemma 5.3. Let (Si) be a nested surgery sequence of a sphere S0 towards a sphere
S. Then each sphere Si in the sequence is a union of a disk Di ⊂ S0 and a disk
D′

i ⊂ S, with Di+1 ⊂ Di.

Proof. We proceed by induction on the length m of the sequence. The statement is
clear in the case m = 1, so assume that the statement holds true for m−1. Let (Si)
be a nested surgery sequence of lengthm. By induction hypothesis, Sm−1 is a union
of a disk Dm−1 ⊂ S0 and a disk D′

m−1 ⊂ S. By Lemma 5.2, an innermost disk
D ⊂ S of S−Sm−1 has its boundary inDm−1 and hence bounds a diskDm ⊂ Dm−1.
Moreover up to homotopy, either D contains the disk D′

m−1 and hence the sphere
Sm obtained from Sm−1 by nested surgery with innermost component D is a union
of D ⊃ D′

m−1 and Dm ⊂ Dm−1, or it is disjoint from D′
m−1 and once again, the

statement of the lemma is true for Sm. □

Let as before dSG be the distance in the sphere graph of M .

Lemma 5.4. Let (Si) be a nested surgery sequence connecting a non-separating
sphere σ0 to a different sphere S. Let Sk be any point of this surgery sequence
which satisfies dSG(Sk, σ0) ≥ 2. Let N̂ be obtained from M by removal of σ0, and

let N be obtained from N̂ by capping off the boundary spheres. Then

pN (Sk) ∩ pN (S) ̸= ∅.
Consequently, the projections pN (Sk), pN (S) are 2-close in the sphere graph of N .

Proof. Assume without loss of generality that we have chosen representatives of
σ0, S which are in normal position. We will denote these representatives by the
same symbol again.

Let Si be a sphere on the nested surgery sequence. By Lemma 5.3, Si is a union
of two disks Si = D−

i ∪D+
i with D−

i ⊂ σ0 and D+
i ⊂ S.

By Lemma 5.2, either Si is disjoint from σ0, or its normal position has an in-
nermost disk component which is also an innermost disk component of S. In the
latter case, the projections pN (Si), pN (S) intersect as stated in the lemma.

The final statement of the lemma follows from Lemma 5.1. □
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Now we can show the bounded geodesic projection theorem using an argument of
Webb from [We15].

Theorem 5.5. There is a number q > 0 with the following property. Let σ0 be
a nonseperating sphere, and let N the capped off complement of σ0 as before, with
innermost projection pN : SGn − P(σ0) → SGN .

Let (Si)0≤i≤m be any geodesic in SGn which is disjoint from P(σ0)∪{σ0}. Then

d(pN (S0), pN (Sm)) < q.

Proof. By Theorem 1.2 of [HiHo17], there exists a number K > 0 such that surgery
sequences are unparameterized K-quasigeodesics in the sphere graph. Since the
sphere graph is Gromov hyperbolic, there is a constant D > 0 such that a triangle
with K-quasigeodesic sides is D-thin.

For ease of exposition, we distinguish between two cases. First assume that the
geodesic (Si) never enters the (2D+2)-neighborhood of σ0. Consider nested surgery
sequences P and Q joining σ0 to spheres disjoint from S0 and Sm, respectively.

By the thin triangle property, there is a sphere Sk which is of distance at most D
to both P and Q. Furthermore, every point Si for i < k is of distance at most D to
P , and every point Si for i > k is of distance at most D to Q. By Lemma 5.4, the
projections to N of any point on P of distance at least 2 from σ0 intersect and hence
are coarsely the same. Since dSG(Si, σ0) ≥ 2D + 2 for all i, for i ≤ k the sphere
Si is of distance at most D from a point S′

i on P of distance at least D + 2 from
σ0. Thus a geodesic connecting S′

i to Si does not enter the 1-neighborhood of σ0.
Hence the projection pN is defined on such a geodesic, and since pN -is 2-Lipschitz,
the projection of Si, i ≤ k is coarsely equal to the projection of Sk, and similarly
for Si, i ≥ k. This shows that the diameter of the projection is bounded from above
by a universal constant as claimed.

If (Si) does enter the (2D + 2)-ball around σ0, then the argument needs to be
modified in the following way. Let (Si)j≤i≤u be the minimal connected segment in
(Si) which contains all intersection points of (Si) with the (2D+2) -ball around σ0.
The diameter of this segment is at most 4(D+ 1), and since (Si) is a geodesic, the
same is true for its length. By our assumption that (Si) is disjoint from P(σ0)∪{σ0},
the projection pN (Si) is defined for all i, and the assignment i 7→ pN (Si) is 2–
Lipschitz. Hence, we have

diam({pN (Si), j ≤ i ≤ u}) ≤ 8(D + 1).

On the complement of (Si)j≤i≤u the argument used in the first case applies. To-
gether this completes the proof. □

The condition in the theorem simplifies for nonseparating spheres. To exploit
this, recall from Lemma 2.5 that any two non-separating spheres in SGn can be
connected by a geodesic consisting of non-separating spheres. We use this in the
following
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Corollary 5.6. Suppose that σ1, σ2 are two non-separating spheres, and that (Si)
is a geodesic in the sphere graph connecting σ1 to σ2 consisting of non-separating
spheres.

If N is the capped off complement of a non-separating sphere σ0 (as in Theo-
rem 5.5), and

d(pN (σ1), pN (σ2)) ≥ q,

then σ0 = Si for some i.

Proof. As remarked above, any sphere in P(σ0) distinct from σ0 is separating.
Hence, if σ0 ̸= Si for all i, then the geodesic (Si) consisting of non-separating spheres
satisfies the assumption in Theorem 5.5. This yields the desired contradiction. □

A useful more general version of this corollary is the following

Corollary 5.7. For every L > 0 there exists a number q(L) > 0 with the following
property. Let (Si)0≤i≤m be an L-quasi-geodesic edge path in the graph of non-
separating spheres. If N is the capped of complement of a non-separating sphere σ0
and if d(pN (S0), pN (Sm)) ≥ q(L) then σ0 = Si for some i.

Proof. We know that a uniform quasi-geodesic in SGn avoiding P(σ0) has uniformly
small diameter projection into SGN . Thus if the diameter of the projection is large,
it has to pass through P(σ0). As any point in P(σ0) is separating, if the path
consists of non-separating spheres then it has to pass through σ0. □

6. Actions of Out(Fn) on products of hyperbolic spaces

This final section is devoted to the proofs of the results stated in the introduction.
We follow the strategy developed in [BBF15] as used in [BF14b]. The starting point
is the following result of [BBF15].

Theorem 6.1. Let Y be a collection of δ-hyperbolic spaces, and for every pair
A,B ∈ Y of distinct elements suppose that we are given a uniformly bounded subset
πA(B) ⊂ A, called the projection of B to A. Denoting by dA(B,C) the diameter of
πA(B) ∪ πA(C), assume that the following holds: there is a constant K > 0 such
that

(1) if A,B,C ∈ Y are distinct, then at most one of the three numbers

dA(B,C), dB(A,C), dC(A,B)

is greater than K and
(2) for any distinct A,B the set

{C ∈ Y − {A,B} | dC(A,B) > K}

is finite.
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Then there is a hyperbolic space Y and an isometric embedding of each A ∈ Y onto
a convex set in Y so that the images are pairwise disjoint and the nearest point
projection of any B to any A ̸= B is within uniformly bounded distance of πA(B).
Moreover, the construction is equivariant with respect to any group acting on Y by
isometries.

For a non-separating sphere S ⊂M let Y(S) be the following graph. The set of
vertices of Y(S) is the set NP(S) of non-peripheral spheres in M − S. Two such
spheres are connected by an edge of length one if their projections into the sphere
graph SGS of the manifold obtained from M − S by capping off the boundary are
of distance at most one. With this definition, the graph Y(S) is a geodesic metric
graph which is 2-quasi-isometric to the graph SGS and hence it is δ-hyperbolic for
a constant δ > 0 not depending on S. The group Out(Fn) acts on the collection
Y = {Y(S) | S} by isometries.

For S let pS : SGn − P(S) → Y(S) be the submanifold projection defined in
Section 5. Note that in contrast to the construction in Section 5, the target of the
map pS equals the set NP(S) equipped with a metric inherited from SGS . Thus it
makes sense to project the image into the complement of other spheres which may
intersect S. If A is a non-separating sphere and if S is contained in M − A, then
pS is not defined on all of NP(A) = Y(A), but the only exceptions are points in
P(S). Extend the definition of pS to Y(A) by putting

pS(P(S) ∩NP(A)) = pS(A).

Note that this should be viewed as an extension of pS to all of Y(A). This extension
depends on A, but the collection of these extension is equivariant with respect to
the action of Out(Fn).

Proposition 6.2. The collection (Y(S), pS) satisfies the conditions in Theorem
6.1.

Proof. Let B be a non-separating sphere different from S. We begin with showing
that the diameter of the set pS(Y(B)) ⊂ Y(S) is uniformly bounded, independent
of B and S.

To this end we distinguish two cases. In the first case we have dSG(B,S) ≥ 2.
Then B intersects S, furthermore for every C ∈ NP(B) − P(S), the projections
pS(B), pS(C) contain components which are disjoint and hence whose distance in
Y(S) equal one. By the definition of pS , this implies that pS(NP(B)) is contained
in a uniformly bounded neighborhood of pS(B).

If dSG(B,S) = 1 then B ∈ NP(S) since B is non-separating. Then for any
C ∈ NP(B) − P(S), the projection pS(C) is disjoint from B. Once again, by
the definition of the projection pS , we conclude that pS(NP(B)) is contained in a
uniformly bounded neighborhood of B. This completes the proof that the diameters
of the sets pS(Y(B)) (B ̸= S) are bounded from above by a constant not depending
on B,S.

We next verify property (1) in Theorem 6.1. Thus let A,B,C be pairwise distinct
non-separating spheres and suppose that dA(B,C) > 2q where q > 0 is as in
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Theorem 5.5. Choose a geodesic γ connecting B to C consisting of non-separating
spheres. By Corollary 5.6, the geodesic γ has to pass through A. Let i ≥ 1 be
such that γ(i) = A. Then Theorem 5.5 shows that dB(C, γ(i+ 1)) ≤ q. As A and
γ(i+1) are disjoint, the distance between pB(A), pB(γ(i+1)) is uniformly bounded
and hence the same holds true for dB(A,C).

As the roles of B,C can be exchanged, this shows that condition (1) in Theorem
6.1 is fulfilled.

Property (2) follows immediately from Corollary 5.6: the only spheres C so that
the projection dC(A,B) is large appear along a (fixed) geodesic consisting only of
nonseparating spheres, which has finite length. □

As a fairly immediate consequence, we obtain a more precise version of the main
result of [BF14b] in rank 3.

Corollary 6.3. The group Out(F3) admits an isometric action on a product Y =
Y1 × Y2 of two hyperbolic metric spaces so that every exponentially growing auto-
morphism has positive translation length.

Proof. By Theorem 6.1 and Proposition 6.2, the group Out(F3) admits an isometric
action on Y = Y1 × Y2 where Y1 is the free splitting complex or, equivalently, the
sphere graph of M = M3, and where Y2 is a hyperbolic space containing for each
non-separating sphere S the graph Y(S) = SG2 as a convex isometrically embedded
subspace.

A non-separating sphere S in the manifoldM corresponds precisely to the conju-
gacy class of a corank one free factor, consisting of homotopy classes of loops based
at a point p ∈ M − S which do not intersect S. As a consequence, any element of
Out(F3) which preserves such a corank one free factor, defined by the sphere S, and
acts as an exponentially growing automorphism on it acts with positive translation
length on the graph Y(S), which is uniformly quasi-isometric to the Farey graph.
Then such an element acts with positive translation length on Y2 and hence on Y .
We refer to Section 4 for a detailed discussion.

On the other hand, by [HM19], if φ is an exponentially growing automorphism
of F3 then there exists a number j ≥ 1 such that either φj acts with positive
translation length on the sphere graph Y1 of M , or φj preserves a corank one free
factor A and acts with positive translation length on the free splitting complex of
A. Note that the conclusion on the corank stems from the fact that a corank 2 free
factor of F3 is infinite cyclic and hence does not admit any exponentially growing
automorphisms. Together this yields the proof of the corollary. □

The above construction can be interpreted in the following way. Let n ≥ 3 and
let PGn be the graph whose vertices are ordered pairs (S1, S2) of disjoint non-
separating spheres. Two such pairs (S1, S2) and (S′

1, S
′
2) are connected by an edge

of length one if either S1 = S′
1 and the second spheres S2, S

′
2 are connected by an

edge in the graph Y(S1), or if (S
′
1, S

′
2) = (S2, S1). Note that in contrast to similar

constructions for graphs of curves or graphs of disks (see for example [H16]), the
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spheres (S1, S2) and (S′
1, S

′
2) may be connected by an edge although they can not

be realized disjointly. The group Out(Fn) acts on the graph PGn as a group of
simplicial automorphisms.

Since two spheres in the first factor of the points in PGn only are exchanged
if they are disjoint, the first factor projection Π1 : PGn → SGn is an Out(Fn)-
equivariant one-Lipschitz projection onto the 1-dense convex subgraph of non-
separating spheres. Note that PGn is only defined for n ≥ 3.

Theorem 6.4. The graph PGn of non-separating pairs is a hyperbolic Out(Fn)-
graph.

Proof. Given what we achieved so far, the proof is fairly standard. For each non-
separating sphere S ⊂M consider the subgraph

Π−1
1 (S) = {(S, S′) | S′} = H(S) ⊂ PGn

of pairs with one component equal to S. This graph is 2 -quasi-isometric to Y(S)
and hence it is δ-hyperbolic for a number δ > 0 not depending on S.

For S ̸= S′, the intersection H(S) ∩ H(S′) can be viewed as a graph of non-
separating spheres which are disjoint from both S, S′. Thus the diameter of this
intersection in both H(S), H(S′) is uniformly bounded.

Let EG be the electrification of PGn with respect to the family H of subgraphs
H(S). This electrification is the graph obtained from PGn by adding a vertex vS
for each of the graphs H(S) and connecting vS to each vertex in H(S) by an edge.
By construction, this electrification is two-quasi-isometric to the graph of non-
separating spheres and hence it is hyperbolic. In particular, any L-quasi-geodesic
in EG defines a 2L-quasi-geodesic in SGn.

The bounded penetration property in this context states that for every L > 1
there exists a number p(L) > 0 with the following property [H16]. Call an L-quasi-
geodesic edge path in EG efficient if for every non-separating sphere S we have
γ(k) = vS for at most one k. Let γ ⊂ EG be an efficient L-quasi-geodesic and let
S and k be such that γ(k) = vS . If the distance in H(S) between γ(k − 1) and
γ(k+1) is at least p(L) then every efficient L-quasi-geodesic γ′ in EG with the same
endpoints as γ passes through vS . Moreover, if γ′(k′) = vS then the distance in
H(S) between γ(k − 1), γ′(k′ − 1) and γ(k + 1), γ′(k′ + 1) is at most p(L).

By Corollary 5.7 and the fact that EG is 2-quasi-isometric to the graph of non-
separating spheres, the bounded penetration property holds true for the subspaces
H(S). Thus it follows from Theorem 1 of [H16] that PGn is hyperbolic. □

The graph PGn also has the following description. Its vertices are conjugacy
classes of pairs A1 > A2 of free factors, where A1 is of corank 1 and A2 is of corank
2. There are two types of edges. The first type preserves A1 and exchanges A2

by a corank one free factor connected to A2 by an edge in the free splitting graph
of A1. The second type preserves A2 and replaces A1 by a corank one free factor
containing A2 which is connected to A1 by an edge in the free splitting graph of
Fn.
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Note that the group Out(Fn) naturally acts on PGn as a group of simplicial
isometries. Using this graph we can complete the proof of Theorem 1.

Theorem 6.5. The group Out(F3) admits an isometric action on a hyperbolic met-
ric graph such that every exponentially growing automorphism has positive transla-
tion length.

Proof. The proof is immediate from the proof of Corollary 6.3 via noting that by
Theorem 1 of [H16] and the construction of the graph PGn, for each non-separating
sphere S the subgraph H(S) is uniformly quasi-convex and isometric to the graph
Y(S). Thus any exponentially growing automorphism of F3 acts with positive
translation length on PG3. □
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