Lecture 1: Teichmüller geodesics and the curve complex

Ursula Hamenstädt

Universität Bonn

May 28, 2007
1. Introduction

S denotes a *closed* oriented surface of genus $g \geq 2$.

Differential-geometric facts:

Fact 1: S admits a hyperbolic metric (constant curvature -1).

Fact 2: There is a constant $\chi_0 = \chi_0(S)$ such that for every hyperbolic metric g on S there is a *simple closed* g-geodesic of length at most χ_0.

Definition 1: The *mapping class group* $\text{M}(S)$ is the group of isotopy classes of orientation preserving diffeomorphisms of S.

1. Introduction

S denotes a closed oriented surface of genus $g \geq 2$.

Differential-geometric facts:

Fact 1: S admits a hyperbolic metric (constant curvature -1).

Fact 2: There is a constant $\chi_0 = \chi_0(S)$ such that for every hyperbolic metric g on S there is a *simple closed* g-geodesic of length at most χ_0.

Definition 1: The mapping class group $\mathcal{M}(S)$ is the group of isotopy classes of orientation preserving diffeomorphisms of S.
Basic example of a closed 3-manifold:
The *mapping torus* of $\phi \in \mathcal{M}(S)$:

\[M = S \times [0, 1]/ \sim \text{ where } (x, 1) \sim (\phi(x), 0). \]

Basic facts:
1) M is a $K(\pi, 1)$-space.
2) There is an exact sequence

\[0 \to \pi_1(S) \to \pi_1(M) \to \mathbb{Z} \to 0 \]

i.e. $\pi_1(M)$ is a \mathbb{Z}-extension of $\pi_1(S)$.

In particular: $\pi_1(M)$ admits $\pi_1(S)$ as a normal subgroup and the natural \mathbb{Z}-cover of M is diffeomorphic to $S \times \mathbb{R}$.
Basic example of a closed 3-manifold:
The *mapping torus* of $\phi \in \mathcal{M}(S)$:

$$M = S \times [0, 1]/ \sim \quad \text{where} \quad (x, 1) \sim (\phi(x), 0).$$

Basic facts:
1) M is a $K(\pi, 1)$-space.
2) There is an exact sequence

$$0 \to \pi_1(S) \to \pi_1(M) \to \mathbb{Z} \to 0$$

i.e. $\pi_1(M)$ is a \mathbb{Z}-extension of $\pi_1(S)$.
In particular: $\pi_1(M)$ admits $\pi_1(S)$ as a normal subgroup and the natural \mathbb{Z}-cover of M is diffeomorphic to $S \times \mathbb{R}$.

Basic question: How are
- the properties of ϕ
- the "geometry" of M (for a suitable choice of a metric)
- the topology of M
related?
Idea: Try to use an “easy to understand” combinatorial model for the geometry of M and relate this model to the topology of M.

Definition 2: An L-quasi-isometric embedding of a metric space (X, d) into a metric space (Y, d) is a map $F : X \to Y$ such that

$$d(x, y)/L - L \leq d(Fx, Fy) \leq Ld(x, y) + L$$

for all $x, y \in X$. F is an L-quasi-isometry if moreover for every $y \in Y$ there is $x \in X : d(F(x), y) \leq L$.
Basic observations:

1. Let Γ be a finitely generated group with finite symmetric generating set G. The word norm $|g|$ of $g \in \Gamma$ is the minimum of a word in the generators representing g.

 $$d(g, h) = |g^{-1}h|$$

defines a Γ-invariant metric on Γ: $d(ug, uh) = d(g, h) \forall u, g, h$. Any two such metrics are quasi-isometric.
Basic observations:

1. Let Γ be a finitely generated group with finite symmetric generating set \mathcal{G}. The word norm $|g|$ of $g \in \Gamma$ is the minimum of a word in the generators representing g.

$$d(g, h) = |g^{-1}h|$$

defines a Γ-invariant metric on Γ: $d(ug, uh) = d(g, h) \forall u, g, h$. Any two such metrics are quasi-isometric.

2. Let M be a closed 3-manifold with universal covering $\mathbb{R}^3 \Rightarrow$ the fundamental group $\pi_1(M)$ of M acts on $\tilde{M} = \mathbb{R}^3$ freely, properly discontinuously and cocompactly. If g is any Riemannian metric on M then there is a $\pi_1(M)$-equivariant quasi-isometry $F : \tilde{M} \to \Gamma$. The lifts to \tilde{M} of any two metrics on M are quasi-isometric.
2. Let M be the mapping torus of $\phi \in \mathcal{M}(S)$. Choose a hyperbolic metric on S and a metric on M so that $S \to S \times \{0\}/\sim$ is an isometric embedding. Let \hat{M} be the \mathbb{Z}-cover of M.

Can we recover from the “collection of short curves” in \hat{M} the mapping class ϕ and hence the topology of M?
2. Let M be the mapping torus of $\phi \in \mathcal{M}(S)$. Choose a hyperbolic metric on S and a metric on M so that $S \to S \times \{0\}/\sim$ is an isometric embedding. Let \hat{M} be the \mathbb{Z}-cover of M.

Let c be a simple closed geodesic on S of length at most χ_0. Then for each $i \in \mathbb{Z}$, the minimal length of a closed curve in \hat{M} representing $\phi^i(c)$ is uniformly bounded, independent of i.

Question: Can we recover from the ”collection of shorts curves” in \hat{M} the mapping class ϕ and hence the topology of M?
2. The complex of curves

Definition 3: The complex of curves is the simplicial complex whose vertex set $\mathcal{C}(S)$ is the set of all nontrivial free homotopy classes of simple closed curves on S. A collection $c_1, \ldots, c_k \subset \mathcal{C}(S)$ spans a simplex if and only if c_1, \ldots, c_k can be realized disjointly. The curve graph $\mathcal{CG}(S)$ is the one-skeleton of the curve complex.
2. The complex of curves

Definition 3: The complex of curves is the simplicial complex whose vertex set $\mathcal{C}(S)$ is the set of all nontrivial free homotopy classes of simple closed curves on S. A collection $c_1, \ldots, c_k \subset \mathcal{C}(S)$ spans a simplex if and only if c_1, \ldots, c_k can be realized disjointly. The curve graph $\mathcal{CG}(S)$ is the one-skeleton of the curve complex.

Facts: The complex of curves is connected and of dimension $3g - 4$. A simplex of maximal dimension is a pants decomposition of S: After cutting S open along the curves of the simplex we obtain $2g - 2$ pairs of pants. The curve graph is a naturally a locally infinite metric graph.
A pants decomposition for a surface of genus 2
Fact: If $c, d \in \mathcal{C}(S)$ and if $d(c, d) \geq 3$ then c, d fill up S, i.e. c, d decompose S into topological discs.

Definition 4: The intersection number $i(c, d)$ between two simple closed curves c, d is the minimal number of intersections between two curves freely homotopic to c, d.
Proposition 1: There is a number $\kappa = \kappa(S)$ such that $d(c, d) \leq \kappa \log i(c, d) + \kappa$ for all $c, d \in C(S)$.

Proof: Let c, d be simple closed curves on S with minimal intersection number in their free homotopy classes. d intersects $S - c$ in simple arcs with both endpoints on c. There are at most m homotopy classes rel c of such arcs.
Proposition 1: There is a number $\kappa = \kappa(S)$ such that $d(c, d) \leq \kappa \log i(c, d) + \kappa$ for all $c, d \in C(S)$.

Proof: Let c, d be simple closed curves on S with minimal intersection number in their free homotopy classes. d intersects $S - c$ in simple arcs with both endpoints on c. There are at most m homotopy classes rel c of such arcs. Let δ be an arc whose class contains the maximal number of components and let

$$b = \text{ a component of } \partial(N(c \cup \delta)).$$

Then $i(c, b) = 0 \Rightarrow d(c, b) = 1$ and $i(b, d) \leq (m - 1)i(c, d)/m$. \qed
Fix a hyperbolic metric on S.

Definition 5: A *geodesic lamination* on S is a *closed* subset of S foliated into simple geodesics.
Fix a hyperbolic metric on S.

Definition 5: A *geodesic lamination* on S is a *closed* subset of S foliated into simple geodesics.

Recall: The Hausdorff-distance $d_H(A, B)$ of compact subsets A, B of S is

$$d_H(A, B) = \inf\{\epsilon > 0 \mid A \subset U_\epsilon(B), B \subset U_\epsilon(A)\}.$$

The space of compact subsets of S is compact.
Fix a hyperbolic metric on S.

Definition 5: A geodesic lamination on S is a *closed* subset of S foliated into simple geodesics.

Recall: The Hausdorff-distance $d_H(A, B)$ of compact subsets A, B of S is

$$d_H(A, B) = \inf\{\epsilon > 0 \mid A \subset U_\epsilon(B), B \subset U_\epsilon(A)\}.$$

The space of compact subsets of S is compact.

Facts: 1) The space $\mathcal{L}(S)$ of geodesic laminations with the Hausdorff topology is compact.
2) For every geodesic lamination λ, $S - \lambda$ is a hyperbolic surface with geodesic boundary and area $4\pi(g - 1)$.
Fix a hyperbolic metric on S.

Definition 5: A geodesic lamination on S is a *closed* subset of S foliated into simple geodesics.

Recall: The Hausdorff-distance $d_H(A, B)$ of compact subsets A, B of S is

$$d_H(A, B) = \inf\{\epsilon > 0 \mid A \subset U_\epsilon(B), B \subset U_\epsilon(A)\}.$$

The space of compact subsets of S is compact.

Facts: 1) The space $\mathcal{L}(S)$ of geodesic laminations with the Hausdorff topology is compact.
2) For every geodesic lamination λ, $S - \lambda$ is a hyperbolic surface with geodesic boundary and area $4\pi(g - 1)$.

Definition 6: A geodesic lamination λ is *maximal* if $S - \lambda$ is a union of ideal triangles. It is *complete* if in addition λ can be approximated in the Hausdorff topology by simple closed geodesics. It is *minimal* if every half-leaf is dense.
Proposition 2: The diameter of $CG(S)$ is infinite.
Proposition 2: The diameter of $CG(S)$ is infinite.

Proof (Luo): By contradiction: Assume that $\text{diam}(CG(S)) = D < \infty$.
Let μ be a complete minimal geodesic lamination and let $c_i \to \mu$ ($i \to \infty$) in the Hausdorff topology.
$d(c_0, c_i) \leq D \Rightarrow$ assume e.g. that $d(c_0, c_i) = N \forall i$.
Choose b_i, $d(c_0, b_i) = N - 1$, $d(b_i, c_i) = 1 \forall i$.
$b_i \to \mu$ because $i(b_i, c_i) = 0$ means: $b_i \cup c_i$ is as geodesic lamination \Rightarrow converges up to passing to a subsequence to a geodesic lamination.
Repeat with $(b_i) \Rightarrow$ after N steps conclude that $c_0 \to \mu$, a contradiction. \square
3. Pseudo-Anosov mapping classes

The mapping class group acts on $C\mathcal{G}(S)$ as a group of simplicial isometries.

Definition 6: A mapping class $\phi \in \mathcal{M}(S)$ is **pseudo-Anosov** if the orbit of $\langle \phi \rangle \mathcal{M}(S)$ on $C\mathcal{G}(S)$ is *unbounded*. A mapping class ϕ is **periodic** if $|\langle \phi \rangle| < \infty$. A mapping class which is neither periodic nor pseudo-Anosov is **reducible**.
Our basic example:

1) $\phi \in \mathcal{M}(S)$ periodic \iff the mapping torus $M = \text{Maptorus}(\phi)$ of ϕ has a *finite* covering diffeomorphic to $S \times S^1$

\Rightarrow for every smooth metric on M and every $L > 0$ the number of elements in $\pi_1(\hat{M}) = \pi_1(S)$ which can be realized by a curve of length at most L in M is *finite*.
Our basic example:
1) \(\phi \in \mathcal{M}(S) \) periodic \(\iff \) the mapping torus \(M = \text{Maptorus}(\phi) \) of \(\phi \) has a \textit{finite} covering diffeomorphic to \(S \times S^1 \)
\(\Rightarrow \) for \textit{every} smooth metric on \(M \) and every \(L > 0 \) the number of elements in \(\pi_1(\hat{M}) = \pi_1(S) \) which can be realized by a curve of length at most \(L \) in \(M \) is \textit{finite}.

Also: By the \textit{Nielsen realization problem}, \(\phi \) can be realized as an biholomorphic map of a hyperbolic surface
\(\Rightarrow S \rightarrow S/\langle \phi \rangle \) is a branched covering \(\Rightarrow M \) is foliated into smooth circles \(\iff M \) is a \textit{Seifert fibered space}.
Our basic example:

1) $\phi \in \mathcal{M}(S)$ periodic \iff the mapping torus $M = \text{Maptorus}(\phi)$ of ϕ has a *finite* covering diffeomorphic to $S \times S^1$

\Rightarrow for every smooth metric on M and every $L > 0$ the number of elements in $\pi_1(\hat{M}) = \pi_1(S)$ which can be realized by a curve of length at most L in M is *finite*.

Also: By the *Nielsen realization problem*, ϕ can be realized as an biholomorphic map of a hyperbolic surface

$\Rightarrow S \to S/\langle \phi \rangle$ is a branched covering $\Rightarrow M$ is foliated into smooth circles $\iff M$ is a *Seifert fibered space*.

2) ϕ pseudo-Anosov \Rightarrow for $M = \text{Maptorus}(\phi)$ and every smooth metric on M there is some $L > 0$ such that the number of elements of $\pi_1(\hat{M})$ which can be realized by a curve of length at most L is *infinite*.
Afternoon discussion:
Construction of a minimal and complete geodesic lamination on a closed surface S.