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LOCAL MARKED LENGTH SPECTRUM RIGIDITY
[after Guillarmou and Lefeuvre]

by Ursula Hamenstädt

INTRODUCTION

The search for characterizing a smooth Riemannian metric on a smooth closed man-
ifold M by easy to define geometric quantities has a long and fruitful history, usually
described as rigidity problems.

A particularly appealing rigidity problem can be formulated as follows. Consider a
closed manifold M of dimension n ≥ 2, equipped with a Riemannian metric g0 of non-
positive sectional curvature. By the Hadamard Cartan theorem, the universal covering
M̃ of M is diffeomorphic to Rn and hence M is a classifying space for its fundamental
group π1(M). Each nontrivial conjugacy class c in π1(M) can be represented by a closed
geodesic γc, of minimal length L(γc) in the corresponding free homotopy class. If we
denote by C the set of all conjugacy classes in π1(M), then the metric g0 determines a
function Lg0 : C → (0,∞) by defining Lg0(c) = Lg0(γc) (c ∈ C). This function is called
the marked length spectrum of g0. It also makes sense for metrics on M which are not
nonpositively curved.

The following conjecture was formulated by Burns and Katok BK85 but may have
been known earlier.

Conjecture 0.1. — Let g0 be a negatively curved Riemannian metric on a closed
manifold M . If g is another metric on M so that Lg = Lg0 : C → (0,∞), then g, g0 are
strongly isometric.

Here two metrics g, g0 are called strongly isometric if there exists a diffeomorphism φ

isotopic to the identity such that φ∗g = g0. The following major progress towards this
conjecture is the main result of GL19.

Theorem 0.2 (Guillarmou and Lefeuvre). — Let g0 be a smooth nonpositively curved
metric on a closed manifold M of dimension n whose geodesic flow is Anosov. Then
there exists a neighborhood U of g0 in the CN -topology for some N > 3n/2 + 8 such
that any metric in U with the same marked length spectrum as g0 is strongly isometric
to g0.
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One may also consider a similar question where we replace the function Lg0 by the
unmarked length spectrum, that is, we just look at the set of lengths of closed geodesics
onM , viewed as a subset of (0,∞) with no additional structure. However, this question
has a negative answer, already for closed hyperbolic surfaces. The first examples of
non-isometric hyperbolic surfaces with the same unmarked length spectrum are due to
Vigneras V80.

The goal of this survey is to give a short historical account on partial results towards
the marked length spectrum conjecture and to outline the main steps of the proof of
Theorem 0.2, giving a more detailed explanation of its assumptions along the way.

1. EARLIER RESULTS TOWARDS THE MARKED LENGTH
SPECTRUM CONJECTURE

Nonpositively curved Riemannian metrics on closed oriented surfaces of genus h ≥ 2
have always been considered as a test case for the understanding of negatively curved
metrics on manifolds of all dimensions, although the analogy is problematic due to the
fact that by uniformization, any smooth metric g on such a surface S is conformally
equivalent to a hyperbolic metric. That is, there is a smooth function ρ on S so that
the metric eρg is of constant curvature −1. This gives strong additional constraints
which do not exist in higher dimension.

In contrast to hyperbolic metrics on closed manifolds of dimension at least 3, a
hyperbolic metric on a surface S of genus h ≥ 2 is not unique up to isometry: There is
an entire moduli space of isometry classes of hyperbolic metrics on S of dimension 6h−6.
Such hyperbolic metrics can be constructed explicitly, and there is a collection of 6h−5
conjugacy classes of simple closed curves on S, that is, curves without self-intersection,
whose lengths completely determine the hyperbolic metric Sch93.

Understanding the marked length spectrum of a negatively curved metric g on S

in a fixed conformal class is already interesting. The corresponding rigidity question
was answered affirmatively by Katok K88. His argument immediately extends to the
following

Theorem 1.1 (Katok). — Let g, g0 be two smooth conformally equivalent Riemannian
metrics of negative curvature on a closed manifold M of dimension n ≥ 2. If g, g0 have
the same marked length spectrum then they are isometric.

The proof of this result is quite short. We present a sketch as it rests on two basic
principles which are important cornerstones for later progress. For this and for later use,
define the geodesic flow Φt on the unit tangent bundle P : T 1M →M of a Riemannian
manifold (M, g) by Φtv = γ′v(t) where γv is the geodesic with initial velocity v. The
flow Φt preserves the Lebesgue Liouville measure µ, which is locally defined by a smooth
volume form on T 1M whose integration over the fibers of the bundle T 1M equals the
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volume element of the metric g on M . Periodic orbits of Φt are precisely the unit
tangent lines of closed geodesics.

IfM is closed and the metric onM is negatively curved, then the flow Φt is an Anosov
flow: Let X be its generator. There exists a dΦt-invariant decomposition

(1) TT 1M = E+ ⊕ E− ⊕ RX,

and there exists a number α > 0 with

‖dΦ∓tw‖ ≤ e−αt‖w‖

for every w ∈ E±, with a suitable choice ‖ ‖ of a norm on TT 1M defined by some
Riemannian metric. The decomposition (1) is called the Anosov splitting. It is known
to be Hölder continuous, but in general, it is not smooth.

The Anosov property for Φt has the following two consequences. First, the normalized
Lebesgue Liouville measure µ̂ = µ/µ(T 1M) is ergodic for Φt. This means that whenever
A ⊂ T 1M is a Φt-invariant Borel set, then either µ̂(A) = 0 or µ̂(T 1M − A) = 0. In
particular, by the Birkhoff ergodic theorem, for any L2-integrable function f on T 1M

and for µ̂-almost every v ∈ T 1M , we have∫
fdµ̂ = lim

t→∞

1
t

∫ t

0
f(Φsv)ds.

Here the existence of the limit on the right hand side of this equation is part of the
statement of the theorem.

Furthermore, the following Anosov closing lemma holds true. Let d be any distance
function on T 1M defined by a Riemannian metric. Then for any δ > 0, there are
numbers ε = ε(δ) > 0, and T0 = T0(δ) > 0 with the following property. If for some
v ∈ T 1M and some T > T0, we have d(v,ΦTv) < ε, then there exists a periodic orbit η
for Φt, of period L(η) ∈ [T − δ, T + δ], such that d(Φtv, η(t)) < δ for all t ∈ [0, T ].

Since continuous functions on compact spaces are uniformly continuous, one obtains
as a consequence of the Birkhoff ergodic theorem and the Anosov closing lemma the
following.

Corollary 1.2. — Let f : T 1M → R be a continuous function. Then for every ε > 0
and T0 > 0, there exists a periodic point v for Φt of period T > T0 such that

| 1
T

∫ T

0
f(Φtv)dt−

∫
fdµ̂| < ε.

Sketch of a proof of Theorem 1.1. — Let g, g0 be negatively curved metrics on the same
closed manifold M such that g = ρg0 for a smooth function ρ on M . Assume that g, g0
have the same marked length spectrum. By perhaps exchanging g and g0 we may
assume that vol(M, g) ≤ vol(M, g0) (here vol denotes the volume).

Denote by P : T 1M0 →M the unit tangent bundle of M for the metric g0, equipped
with the Lebesgue Liouville measure µ, and let ω be the volume element of g0 on M .
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Then ρn/2ω is the volume element for the metric g on M and hence naturality under
pull-back shows that

(2)
∫
T 1M0

(P ∗ρ)n/2dµ = vol(Sn−1)vol(M, g) = vol(T 1M, g) ≤ µ(T 1M0).

On the other hand, the integral of the function ρ1/2 over each closed geodesic γ for
the metric g0, parameterized by arc length, is the g-length of γ. As the marked length
spectra of g and g0 coincide, this length is not smaller than the g0-length Lg0(γ) of γ.
Thus if we denote by Φt the geodesic flow on T 1M0, then for every periodic orbit η of
Φt, we have

(3)
∫
η
(P ∗ρ)1/2dt ≥ L(η)

where L(η) is the period of the orbit (which is just the length of the corresponding
closed geodesic for g0).

Write µ̂ = µ/µ(T 1M0). By Corollary 1.2, since the function (P ∗ρ)1/2 on T 1M0 is
continuous and fulfills the inequality (3) for all periodic orbits η for Φt, we have

(4)
∫
T 1M0

(P ∗ρ)1/2dµ̂ ≥ 1.

Together with inequality (2), this shows that
∫
T 1M0

(P ∗ρ)1/2dµ̂ ≥ 1 ≥
∫
T 1M0

(P ∗ρ)n/2dµ̂.
It now follows from the Hölder inequality that this is possible only if the function ρ is
constant and hence if g, g0 are isometric.

The proof of Theorem 1.1 motivates the following extension of Conjecture 0.1.

Conjecture 1.3. — Let g, g0 be two negatively curved metrics on a closed manifold
M . If Lg(c) ≥ Lg0(c) for each conjugacy class c ∈ C, then vol(M, g) ≥ vol(M, g0), with
equality only if g, g0 are strongly isometric.

Shortly after the appearance of the article of Katok, Conjecture 0.1 for surfaces was
settled by Otal O90 and, independently, Croke C90. They showed

Theorem 1.4 (Croke, Otal). — Let g, g0 be two smooth nonpositively curved metrics
on a closed surface of genus g ≥ 2. If g, g0 have the same marked length spectrum, then
they are isometric.

The approach of both authors is similar and rests on the following two facts. The
first fact is valid in all dimensions.
Fact 1: If two metrics g, g0 on a closed manifold M of dimension n ≥ 2 are non-
positively curved, have the same marked length spectrum and Anosov geodesic flows Φt

on their unit tangent bundles T 1M , T 1M0, then these geodesic flows are time preserving
conjugate: There exists a Hölder continuous map F : T 1M → T 1M0 such that Φt ◦F =
Φt. The map F gives information on the coupling of lengths of periodic orbits which
are in a suitable sense close to each other.
Fact 2: For a closed surface S with non-positively curved metric g, one can reconstruct
the Lebesgue Liouville measure on the unit tangent bundle T 1S of S from the marked
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length spectrum using the fact that for surfaces, geodesics which intersect transversely
a given open geodesic segment in the universal covering S̃ of S form an open subset
of the space of all geodesics on S̃ whose measure (for the projection to the space of
geodesics on S̃ of the Liouville measure on the unit tangent bundle of S̃) equals π times
the length of the segment. As a consequence, if two such metrics g, g0 have the same
marked length spectrum, then the time preserving conjugacy between their geodesic
flows conjugates the Liouville measures for g, g0, and the volumes of S with respect to
g, g0 coincide.

Embarking from these two facts, the proof of the marked length spectrum rigidity
theorem for surfaces uses an ingenious and fairly elementary but purely 2-dimensional
construction.

The only global result which is known in all dimensions is the following special case
of Conjecture 0.1 H99.

Theorem 1.5 (Hamenstädt). — Let (M, g0) be a closed rank 1 locally symmetric man-
ifold. If g is another negatively curved metric on M with the same marked length
spectrum as g0, then the metrics g, g0 are strongly isometric.

The proof of this result consists of two independent steps. The first step resembles
the approach for surfaces. Namely, it is shown that whenever g, g0 are metrics on M

with Anosov geodesic flow and such that the Anosov splitting for g0 is of class C1,
and if the metrics have the same marked length spectrum, then the volumes of g, g0
coincide. In fact, a time preserving conjugacy between the geodesic flows for g, g0
maps the Lebesgue Liouville measure for g to the Lebesgue Liouville measure for g0.
Examples of metrics with C1-Anosov splitting are locally symmetric metrics or metrics
whose sectional curvature is strictly 1/4-pinched.

With this information, the rigidity statement follows from the following deep theorem
of Besson, Courtois and Gallot BCG95. For its formulation, define the volume entropy
of a negatively curved metric on a closed manifold M to be the quantity

hvol = lim
R→∞

1
R

log vol(B(x,R))

where B(x,R) is the ball of radius R about x in the universal covering M̃ of M . The
limit is known to exist and to be independent of the basepoint x.

Theorem 1.6 (Besson, Courtois and Gallot). — Let g0 be a negatively curved locally
symmetric metric on a closed Riemannian manifold M of dimension at least 3 and let
g be another metric of negative curvature. If the volume entropy of g is not bigger than
the volume entropy of g0, then vol(M, g) ≥ vol(M, g0), with equality if and only if g and
g0 are isometric.

Now for a metric g with the same marked length spectrum as the locally symmetric
metric g0, the volume entropies (which are the topological entropies of the geodesic
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flows) coincide, and the volumes also coincide by Theorem 1.5. Hence the metrics are
isometric by Theorem 1.6.

It took twenty more years for a complete solution of a local version of Conjecture
0.1. The approach of Guillarmou and Lefeuvre GL19 introduces new tools towards this
question, mainly from microlocal analysis. The remainder of this note is devoted to a
discussion of the main parts of the work of Guillarmou and Lefeuvre. This is organized
into three sections, each of which focusses on a different aspect of the proof.

2. CONTROLLING THE ACTION OF THE DIFFEOMORPHISM
GROUP

LetM be a smooth closed manifold of dimension n ≥ 2. Denote by DiffN+1,α
0 (M) the

group of diffeomorphisms of M which are isotopic to the identity, equipped with the
CN+1,α-topology, where N ≥ 1 is some fixed integer. This topology is defined using an
auxiliary Riemannian metric to measure norms of differentials, and a suitable covering
by charts to obtain a Hölder structure (see P16 for more information on the latter). If
g is any non-positively curved metric on M and if φ ∈ DiffN+1,α

0 (M), then the g-length
of any conjugacy class in the fundamental group of M coincides with its φ∗g-length.
Thus to understand the marked length spectrum rigidity question, it is necessary to
understand the action of DiffN+1,α

0 (M) on the space of Riemannian metrics.
It is well known that through any given metric g0, it is possible to construct a slice

transverse to the orbit of the group DiffN+1,α
0 (M) in an open neighborhood of g0 in the

space of metrics, equipped with the CN,α-topology. Such a slice is by no means unique,
and the first step will be to find a slice which is adapted to the marked length spectrum
problem.

The space of smooth metrics is an open convex subset of the vector space of smooth
section of the 2-fold symmetric tensor product S2T ∗M of T ∗M . Let ∇ be the Levi
Civita connection of g0 and let σ : ⊗m+1T ∗M → Sm+1T ∗M be the symmetrization
operator. The symmetrized derivative is defined by

δ∗ = σ ◦ ∇ : C∞(M ;SmT ∗M)→ C∞(M ;Sm+1T ∗M).

Note that if ρ ∈ C∞(M ;T ∗M) is a smooth one-form, then

(5) δ∗ρ = −1
2Lρ]g0

where ρ] is the vector field dual to ρ and, as usual, Lρ] denotes the Lie derivative.
The divergence operator is the formal adjoint

δf = −Tr(∇f)

of δ∗ where the trace is taken in the first two variables. A symmetric tensor field f is
divergence free if δf = 0.
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The formula (5) shows that the image of the operator δ∗, acting on 1-forms, consists
precisely of the infinitesimal deformations of the metric with a 1-parameter group of
diffeomorphisms. It is now natural to try to find a slice in the space of all metrics
transverse to the orbit of the diffeomorphism group by first constructing a good closed
subspace in the vector space of sections of S2T ∗M , equipped with a suitable structure
of a Banach space, which is complementary to the image of δ∗. Note that the vector
space of smooth sections of S2T ∗M is just the tangent space of the space of metrics on
M .

Elliptic theory provides a natural approach to this problem. Namely, the second
order self adjoint (for the standard L2-metric) differential operator

δδ∗ : C∞(M ;S2T ∗M)→ C∞(M ;S2T ∗M)

is elliptic (Sh94 p.84), and this is used by Sharafutinov Sh94 and Croke and Shara-
futinov to show

Theorem 2.1 (Theorem 2.2 of CS98). — For N > 1, α ∈ (0, 1), a tensor field f ∈
CN,α(M ;S2T ∗M) admits a unique decomposition

f = f s + δ∗p, δf s = 0.

Furthermore, there exists a number C1 = C1(N,α) > 0 such that

‖f s‖CN,α(M ;S2T ∗M) ≤ C1‖f‖CN,α(M ;S2T ∗M).

The mechanism behind this result is that as

〈δδ∗v, v〉 = 〈δ∗v, δ∗v〉

for all smooth sections v of T ∗M , the kernel of δ∗ coincides with the kernel of δδ∗, and
this is a finite dimensional vector space consisting of smooth one-forms by ellipticity of
the operator δδ∗. Here 〈, 〉 denotes the L2-inner product.

As a consequence, the restriction of the operator δ to Im(δ∗) is injective. As Im(δ) =
Im(δδ∗), and as the kernel of δδ∗ is a finite dimensional vector space of smooth sections,
there exists a unique p orthogonal to this kernel so that δδ∗p = δf . Then putting
f s = f − δ∗p defines a decomposition as claimed.

Theorem 2.1 was used by Croke and Sharafutinov to establish an infinitesimal version
of Theorem 0.2 which rules out nontrivial deformations of a given Riemannian metric
preserving the marked length spectrum. For the formulation of their result and later use
let T 1M be the unit tangent bundle of the metric g0 and define an evaluation operator

π : CN,α(M ;S2T ∗M)→ CN,α(T 1M), πf(v) = f(v, v).

Theorem 2.2 (Corollary 1.6 of CS98). — Let (M, g0) be a closed non-positively cur-
ved manifold, with Anosov geodesic flow, and let f ∈ CN,α(M ;S2T ∗M) be such that
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∫
γ πf(γ′) = 0 for every closed geodesic γ on M . Then there exists a smooth 1-parameter
group of diffeomorphisms ψt such that

f = d

dt
|t=0ψ

∗
t g0.

Remark 2.3. — Corollary 1.6 of CS98 is stated for negatively curved metrics on M .
However, the proof only uses non-positive curvature and an Anosov geodesic flow.

Let MetN,α be the convex cone of all Riemannian metrics on M of class CN,α. Its
tangent space at the smooth metric g0 is the vector space CN,α(M ;S2T ∗M). Theorem
2.1 shows that there exists a direct decomposition of this tangent space into the in-
finitesimal deformations by diffeomorphisms, and the kernel of the divergence operator
δ. Note that δ depends on the metric g0.

To pass from infinitesimal to local, it is natural to use an implicit function theorem
for Banach spaces. The first step towards this goal is to establish a local version of
Theorem 2.1 and show that near g0, metrics g for which the tensor field g − g0 is
divergence free define a slice transverse to the orbit of the diffeomorphism group.

Namely, the natural map

(6) DiffN+1,α
0 (M)×MetN,α → MetN,α

is smooth. The vector space V ⊂ CN,α(M ;S2T ∗M) of divergence free symmetric 2-
tensors is closed and transverse to the image of the tangent space of DiffN+1,α

0 (M) at
the identity. Thus by the inverse function theorem for Banach manifolds, there exists
a neighborhood U of (Id, g0) in DiffN+1,α

0 (M)× V such that the restriction to U of the
map defined in equation (6) is a diffeomorphism onto its image, which is a neighborhood
of g0 in MetN,α. This then leads to the following slice result.

Proposition 2.4 (Lemma 4.1 of GL19). — For any N > 1 and α ∈ (0, 1) there exist
numbers ε > 0 and C2 > 0 such that for any g satisfying ‖g − g0‖CN,α < ε, there exists
a unique φ ∈ DiffN+1,α

0 (M) close to Id such that φ∗g− g0 is divergence free with respect
to g0 and ‖φ∗g − g0‖CN,α < C2‖g − g0‖CN,α. Moreover, g ↪→ φ is smooth.

As a consequence, it is enough to study metrics in the slice obtained from g0 by adding
a divergence free symmetric tensor field. We call this slice the slice of divergence free
metrics (note that it depends on g0). Theorem 2.2 provides an infinitesimal rigidity
result, but this does not suffice to control the marked length spectrum on metrics near
g0 in the slice. Establishing a method obtain such a control is the main novelty of the
work of Guillarmou and Lefeuvre. The remainder of this section introduces the strategy
used.

First, to be able to work in the tangent space of MetN,α at a nonpositively curved
metric g0 whose geodesic flow is Anosov, it is convenient to normalize the marked length
spectrum at g0 as follows.
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Let as before C be the set of all conjugacy classes of π1(M). Define

L : MetN,α ⊂ CN,α(M ;S2T ∗M)→ `∞(C), L(g)(c) = Lg(c)
Lg0(c) .

The map L is a map between Banach spaces, and standard estimates show that it is
differentiable. A calculation establishes the formula

(7) dLg0(h)(c) = 1
2Lg0(c)

∫ Lg0 (c)

0
hγc(t)(γ′c(z), γ′c(t))dt

where γc is the geodesic for g0 in the free homotopy class c. This expression is called
the X-ray transform. It contains the infinitesimal information on the behavior of the
marked length spectrum under a smooth deformation of the metric g0.

Denote by 1 the function which gives the value 1 to each c ∈ C. From formula (7)
and an estimate established with fairly standard methods one obtains

Proposition 2.5 (Proposition 2.1 of GL19). — There exists a constant C3 =
C3(g0) > 0 such that

‖L(g)− 1− dLg0(g − g0)‖`∞ ≤ C3‖g − g0‖2
C3(M ;S2T ∗M)

for all g in a sufficiently small neighborhood of g0 in the C3-topology.

Let us inspect the terms in the estimate of Proposition 2.5. A tangent vector at g0
of the space of smooth metrics on M is a smooth section h of S2T ∗M . At each point
x ∈M , the matrix h(x) is symmetric and hence it can be diagonalized with respect to
g0. This means that there is an orthonormal basis e1, . . . , en of eigenvectors for h, with
corresponding eigenvalues a1, . . . , an. Then for any unit vector v ∈ T 1

xM , we have

|h(x)(v, v)| ≤ max{|ai| | i} = ‖h(x)‖

where ‖h(x)‖ is the spectral norm of the symmetric matrix h(x). As

‖dLg0(h)‖`∞ ≤
1
2 sup{‖h(x)‖ | x} ≤ 1

2‖h‖C
0(M ;S2T ∗M)

by equation (7), Proposition 2.5 makes the approximation of the X-ray transform near
g0 by its derivative quantitative.

This is however not enough for an application of the inverse function theorem to
a neighborhood of g0 in the slice of divergence free metrics towards the local marked
length spectrum rigidity. Namely, although it follows from Theorem 2.2 that on a
tangent vector to this slice at g0, the differential of the X-ray transform does not
vanish, the result is not quantitative. Indeed, the standard tool for obtaining a norm
control which is sufficient for an application of the implicit function theorem is to invert
the derivative of the map considered and establish a norm control for this inverse.

The idea for obtaining such a control is as follows. Instead of working directly with
the X-ray transform, one may work with distributions on T 1M contained in a suitably
chosen Sobolev space. The distributions of interest are the functions πf where f is a
divergence free section of S2T ∗M . Instead of inverting the X-ray transform, one may
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try to invert the generator X of the geodesic flow, viewed as a first order differential
operator on T 1M , on a suitably chosen space of distributions, and, similarly to the
statement of Theorem 2.1, use this to analyze the kernel of X consisting of invariant
distributions which give rise to nontrivial contributions for the X-ray transform.

That this program can be made precise and quantitative using tools from microlocal
analysis is the main achievement of the article GL19 and leads to its main technical
result. In its formulation, the diffeomorphism φ is as in Proposition 2.5, that is, it is
such that φ∗g− g0 is divergence free. Furthermore, H−1−s(M ;S2T ∗M) is the L2-based
Sobolev space of sections of S2T ∗M .

Theorem 2.6 (Theorem 3 of GL19). — Let (M, g0) be as before and let N > 3n/2+8.
For all small s > 0, there are ν = O(s) and C4 = C4(g0) > 0 such that the following
holds: There exists ε > 0 such that for any CN -metric g satisfying ‖g − g0‖CN (M) < ε,
there is a diffeomorphism φ close to Id such that

‖φ∗g − g0‖H−1−s(M ;S2T 1M) ≤ C4 · ‖g − g0‖(1+ν)/2
CN (M) · ‖L(g)− 1‖(1−ν)/2

`∞(C)

where 1(c) = 1 for each c ∈ C.

Theorem 2.6 immediately implies Theorem 0.2. Namely, if g0, ε are in the statement
of Theorem 2.6 and if ‖g − g0‖CN (M) < ε is such that g, g0 have the same marked
length spectrum, then L(g) = 1. Thus if φ is a diffeomorphism as in Theorem 2.6, then
Theorem 2.6 shows that

‖φ∗g − g0‖H−1−s(M ;S2T ∗M)) = 0.

But g0, φ
∗g are metrics of class CN for N > 3/2n+ 8 and hence this is possible only if

φ∗g = g0, that is, if g and g0 are strongly isometric.
The remaining two sections are devoted to discuss the main ingredients of the proof

of Theorem 2.6.

3. INVERSION ON A SPACE OF DISTRIBUTIONS

The assumption that the geodesic flow Φt for the metric g0 is an Anosov flow enters
in the proof of Theorem 2.2 in the form of a so-called Livshitz theorem for a cohomology
equation defined by the flow. This can be viewed as a structural result for the kernel of
the linear operator dLg0 , acting on sufficiently regular sections of S2T ∗M . It is based
on an analysis of the behavior of the restriction of a function on T 1M to strong stable
and strong unstable manifolds for the Anosov flow, which are leaves of a foliation of
T 1M tangent to the subbundles of TT 1M arising in the Anosov splitting.

To make this precise let us denote as before by X the generator of the geodesic
flow. View the vector field X as a first order linear differential operator on smooth
functions on T 1M . If F : T 1M → R is smooth, then the function f = X(F ) satisfies∫
γ f(Φtv)dt = 0 for each periodic orbit γ for the geodesic flow.
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Vice versa, by LMM86, the latter property characterizes the range of X: If f :
T 1M → R is sufficiently regular, and if the integral of f over each periodic orbit for Φt

vanishes, then there exists a function F of controlled regularity such that f = X(F ).
The case of interest is when f = πσ for a smooth section σ of S2T ∗M . Namely,

the X-ray transform of a section σ of S2T ∗M is up to the factor 1/2 obtained by
integration of the function πσ with respect to the countably many Φt-invariant Borel
probability measures on T 1M which are the normalizations of the Lebesgue measures
on the periodic orbits. Each such measure in turn can be viewed as a distribution on
T 1M , and this distribution lies in the kernel of the adjoint of the operator X.

Now by invariance of the Lebesgue Liouville measure µ under the geodesic flow, we
have 〈Xρ, ψ〉 = −〈ρ,Xψ〉 for any smooth functions ρ, ψ where 〈, 〉 is the L2 inner
product on T 1M . Hence the densely defined operator −iX is self-adjoint on L2.

The spectral theorem for self-adjoint operators tells us that SpecL2(−iX) ∈ R. This
implies that for Re(λ) > 0, the resolvents

R−(λ) = (−X − λ)−1, R+(λ) = (−X + λ)−1

are well defined on L2(T 1M), and they can be determined explicitly. Namely, we have

(8) R+(λ)f(y) =
∫ ∞

0
e−λtf(Φt(y))dy, R−(λ)f(y) = −

∫ 0

−∞
eλtf(Φt(y))dt.

In particular, these resolvents depend analytically on λ.
We are interested in inverting the operator −X, that is, in the case λ = 0. To this

end one can try to meromorphically extend the resolvent operators across the imaginary
line and study its behavior at λ = 0. For this it is necessary to work with a suitably
defined space of distributions on which such an extension acts and which is invariant
under the extension. The setup for this construction is the following theorem of Faure
and Sjöstrand (Theorem 1.4 of FS11).

Theorem 3.1 (Faure and Sjöstrand). — There exists a number c > 0, and for all
s > 0 and r < 0, there is a Hilbert space Hr,s such that −X defines a maximal
closed unbounded operator on Hr,s. Furthermore, Hs(T 1M) ⊂ Hr,s ⊂ Hr(T 1M), and
if Re(λ) > −c min(|r|, s), then

−X − λ : Dom(X) ∩Hr,s → Hr,s

(here Dom(X) = {u ∈ Hr,s;Xu ∈ Hr,s}) is an unbounded Fredholm operator of index 0
depending analytically on λ. The operator −X − λ is invertible for Re(λ) large enough
on these spaces, the inverse coincides with R−(λ) when acting on Hs(T 1M), and it
extends meromorphically to the half-plane Re(λ) > −cmin(|r|, s), with poles of finite
multiplicity as a bounded operator on Hr,s. For −X + λ, the same holds with a Sobolev
space Hs,r satisfying the same properties.

As a consequence of this theorem, near λ = 0, the operators −X−λ are all Fredholm
operators of index 0, defined on the same subdomain of a fixed Hilbert space, with range
in thi sHilbert space. Furthermore, this Hilbert space is determined by two numbers
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s > 0, r < 0, it is a subspace of the Sobolev space Hr(T 1M), and for small enough
s > 0, it contains the densely embedded space of L2-functions on which the resolvent
of −X − λ for Re(λ) 6= 0 can be written down explicitly.

The explicit formula (8) allows to estimate for Re(λ) > 0 the expression
(9)
λ〈R+(λ)u, v〉 =

∫ T

0

∫
T 1M

λe−λtu(Φty)v(y)dµ̂(y)dt+
∫ ∞
T

∫
T 1M

λe−λtu(Φty)v(y)dµ̂(y)dt

where as before, µ̂ denotes the normalized Lebesgue Liouville measure. Now the
geodesic flow on T 1M is contact Anosov and hence mixing for µ̂, that is, if u, v ∈
L2(T 1M) then we have∫

T 1M
u(Φty)v(y)dµ̂(y)→ 〈u, 1〉〈v, 1〉 (t→∞).

Thus for large T , the second summand on the right hand side of equation (9) is ar-
bitrarily close to e−λT 〈u, 1〉〈v, 1〉, where in this estimate, the number T can be chosen
independent of λ, while the first term is bounded from above by (1− e−λT )‖u‖L2‖v‖L2 .
Letting λ tend to zero and using the same reasoning for R−(λ) then shows the following

Lemma 3.2 (Lemma 2.5 of G17). — The only pole of R±(λ) on the imaginary line iR
is λ = 0, and it is a simple pole of residue ±1⊗ 1.

Here the notation 1⊗1 stands for the L2-orthogonal projection onto the space of con-
stant functions, which by ergodicity equals the eigenspace of X acting on L2-functions
for the eigenvalue 0.

One can now look at the second term R0 in the Laurent expansion for R+ at 0 acting
on the Hilbert space Hr,s and the second term −R∗0 in the Laurent expansion of R− at
0 acting on the Hilbert space Hs,r (s > 0, r < 0) which appear in Theorem 3.1. These
operators are characterized by

R+(λ) = 1⊗ 1
λ

+R0 +O(λ), R−(λ) = −1⊗ 1
λ
−R∗0 +O(λ).

Multiplying the first equation with −X + λ from the left yields
Id = 1⊗ 1 + (−X + λ)R0 +O(λ)

and hence, putting λ = 0, we have
Id− 1⊗ 1 = −XR0 = −R0X = XR∗0 = R∗0X

as operators C∞(T 1M) → C−∞(T 1M). This identity extends to those Sobolev spaces
on which the operators are bounded. The following result of Guillarmou establishes the
important properties of these operators.

Theorem 3.3 (Theorem 2.6 of G17). — For all s > 0 and r < 0, the operator
Π = R0 +R∗0 : Hs(T 1M)→ H−r(T 1M) is bounded and satisfies

XΠf = 0 for all f ∈ Hs(T 1M),
and ΠXf = 0 for all f ∈ Hs+1(T 1M).
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Furthermore, if f ∈ Hs(T 1M) is orthogonal to the constant functions, then for u+ =
−R0f ∈ Hs,r, u− = R∗0f ∈ Hr,s we have Xu+ = Xu− = f . Moreover, f ∈ ker(Π) ∩
Hs(T 1M) if and only if there exists s′ > 0 and u ∈ Hs′(T 1M) such that Xu = f . In
this case the solution u is in fact contained in Hs(T 1M).

This theorem identifies the intersection of the range of the differential operator X
with the Sobolev space Hs(T 1M) with the kernel of the pseudo-differential operator
Π. Furthermore, its image is contained in the kernel of X and hence in the space of
invariant distributions which should control an extension of the X-ray transform. As Π
is bounded, one may hope to quantify the idea that functions of the form πσ where σ
is a sufficiently regular divergence free section of S2T ∗M give rise to non-trivial X-ray
transforms.

Since the operator Π : Hs(T 1M)→ H−r(T 1M) is a bounded pseudo-differential oper-
ator of degree −1, and is constructed from the resolvent of an elliptic operator, it is nat-
ural to expect that it is elliptic as well. The evaluation operator π : Ck(M ;S2T ∗M)→
Ck(T 1M), πσ(v) = σ(v, v), extends to a map Hs(M ;S2T ∗M) → Hs(T 1M), again de-
noted by π, and by Theorem 2.2 and Theorem 3.3, the image under π of the space
of divergence free sections of S2T ∗M is complementary to the kernel of Π, at least
whenever these sections are sufficiently regular.

The strategy is now to show that the restriction of Π to the closure in Hs(T 1M)
of the set of functions of the form πf is injective, where f is a divergence free section
of S2T ∗M . The following statement says that this holds indeed true, with controlled
norm.

Theorem 3.4 (Lemma 3.3 of GL19). — There exists a number C5 > 0 such that

‖f‖H−s−1(M ;S2T ∗M) ≤ C5(‖Ππf‖H−s(T 1M) + |〈πf, 1〉|L2(T 1M)

for all f ∈ H−s(M ;S2T ∗M) ∩ ker δ and s > 0.

The proof of Theorem 3.4 uses in an essential way additional insight into the restric-
tion of the operator Π to the space πf where f is a divergence free section of S2T ∗M .
Namely, denote by π∗ : C−∞(T 1M)→ C−∞(S2T ∗M) the push-forward on distributions
defined by

〈π∗u, f〉 = 〈u, πf〉.
Building on the earlier works FS11 and DZ16, Theorem 3.5 of G17 shows that the
operator Π0 = π∗Ππ is a self-adjoint pseudo-differential operator of order−1 on S2T ∗M ,
and its restriction to the kernel of δ is elliptic in the following sense. There exist pseudo-
differential operators P, S,R of order 1,−2,−∞ so that

PΠ0 = Id + δ∗Sδ +R.

Lemma 3.6 of G17 then shows that in the situation at hand, the restriction of Ππ to the
space of divergence free distributions which vanish on constants is injective, and this
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is used together with boundedness of pseudodifferential operators on Sobolev spaces to
establish Theorem 3.4.

4. STABILITY ESTIMATES

Theorem 3.4 is not sufficient to complete the proof of Theorem 2.6. Namely, although
Π is a pseudo-differential operator of degree −1 and bounded, and it is constructed from
the resolvents of −X ± λ, it is a priori unclear how the norm of Ππf in H−s(T 1M)
relates to the `∞-norm of L − 1. Thus it remains to convert the term on the right
hand side of Theorem 3.4 to a term involving the X-ray transform, provided that the
divergence free section f of S2T ∗M is sufficiently regular.

This is done by interpolation between Sobolev spaces. The link to the X-ray trans-
form is through Corollary 1.2 and a conversion of an L1-norm using a positivity state-
ment. The latter builds on the following result of LT05.

Theorem 4.1 (Lopes and Thieullen). — Let α ∈ (0, 1] and let X be the generator of
the geodesic flow of g0. There exists C6 = C6(g0) > 0 and β ∈ (0, 1) such that for any
u ∈ Cα(T 1M) satisfying∫

γ
u ≥ 0 for every periodic orbit γ for Φt,

there exist h ∈ Cαβ(T 1M) and F ∈ Cαβ(T 1M) such that F ≥ 0 and u + Xh = F .
Moreover,

‖F‖Cαβ ≤ C‖u‖Cα .

We now apply this result to πf for a section f ∈ CN,α(M ;S2T ∗M) with δf = 0.
Theorem 3.4 states that

(10) ‖f‖H−s−1(M ;S2T ∗M) ≤ C5(‖Ππf‖H−s(T 1M) + |〈πf, 1〉|L2(T 1M)).

If
∫
γ πf ≥ 0 for every periodic orbit γ for Φt (which is the case if g0 + f and g0 have

the same marked length spectrum), then Theorem 4.1 shows the existence of a function
h satisfying Xh = F − πf where F ≥ 0. By the norm bounds in Theorem 4.1, we have
Xh ∈ Cαβ(T 1M) and hence the function Xh is contained in the domain of the operator
Π and in fact lies in the kernel of Π. Thus in the inequality (10), one may replace πf
by πf +Xh.

On the other hand, by Theorem 3.3 for s > 0 and r = −s, the operator Π is bounded
as an operator Hs(T 1M)→ H−s(T 1M) and therefore we obtain

‖f‖H−s−1(M ;S2T ∗M) ≤ C7‖πf +Xh‖Hs(T 1M)

for a universal constant C7 > 0.
For ease of notations, in the remainder of this section, C > 0 denotes a constant

which is universal but whose precise value may change from line to line.
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Standard interpolation between Sobolev spaces yields

(11) ‖f‖H−s−1(M ;S2T ∗M) ≤ C · ‖πf +Xh‖νHβ(T 1M) · ‖πf +Xh‖1−ν
L2

where ν = s
β
. Furthermore, we have

(12) ‖πf +Xh‖L2 ≤ ‖πf +Xh‖1/2
L∞ · ‖πf +Xh‖1/2

L1 .

Since the function πf +Xh is non-negative, we also have

(13) ‖πf +Xh‖L1 =
∫
T 1M

(πf +Xh)dµ =
∫
T 1M

πfdµ.

Now Corollary 1.2 and the formula for the X-ray transform shows that

(14) |
∫
πfdµ| ≤ (2vol(T 1M)) · ‖dLg0(f)‖`∞(C).

Inequalities (12, 13, 14) together yield

‖πf +Xh‖L2 ≤ C · ‖πf +Xh‖1/2
L∞ · ‖dLg0(f)‖1/2

`∞(C)

and

(15) ‖f‖H−1−s(M ;S2T ∗M) ≤ C · ‖πf +Xh‖νHβ(T 1M) · ‖πf +Xh‖(1−ν)/2
L∞ · ‖dLg0(f)‖(1−ν)/2

`∞(C) .

Replacing the first two terms on the right hand side of this inequality by ‖f‖(1+ν)/2
Cα

where α > β is as in Theorem 4.1 is the statement of Theorem 5 of GL19
For the completion of Theorem 2.6 in the special case that

∫
γ πf ≥ 0 for every periodic

orbit γ for ΦT , which suffices for the completion of the proof of Theorem 0.2, one may
now use Proposition 2.5 to replace the term ‖dLg0(f)‖`∞(C) by ‖L(g0 + f) − 1‖`∞(C).
This is not possible directly as it induces an error term, quadratic in the C3-norm of
f . Instead, taking advantage of the freedom to choose s and ν, the completion of the
proof of Theorem 2.6 requires some additional estimates but no fundamental new idea.

As another beautiful application of this line of ideas, one obtains a local version of
Conjecture 1.3.

Theorem 4.2 (Theorem 2 of GL19). — Let (M, g0) be a closed manifold of non-
positive curvature whose geodesic flow is Anosov and let N > n

2 + 2. There exists ε > 0
such that for any smooth metric g satisfying ‖g − g0‖ < ε, the following holds true. If
Lg(γ) ≥ Lg0(γ) for all conjugacy classes c ∈ C of π1(M), then vol(M, g) ≥ vol(M, g0),
with equality only if there exists a diffeomorphism φ of M with φ∗g = g0.
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