

2 Segal spaces as invertible infinity-operads

BONN INTERNATIONAL

- GRADUATE SCHOOL
- OF MATHEMATICS

Tashi Walde

Advisors: Catharina Stroppel, Tobias Dyckerhoff

Operads and dendroidal sets

Slogan: Operads are categories with "many-to-1-morphisms".

Definition (operads)

An **operad** \mathcal{O} consists of

- 1. objects (a.k.a. colors) x, y, z, \dots
- 2. a set of *n*-ary operations of the form $f:(x_1,x_2,\ldots,x_n)\longrightarrow y$
- 3. a unital, associative composition law.

Example: vector spaces with multi-linear maps.

- **Op** := category of operads
- Op ⊃ Cat := category of categories (i.e. operads with only 1-ary operations)

Plane rooted trees give rise to operads with {objects} = {edges}; operations freely generated by vertices.

- Cat $\supset \Delta :=$ full subcategory spanned by linear orders (i.e. linear trees)
- $\mathbf{Op} \supset \Omega_{\pi} := \text{full subcategory spanned by plane rooted trees.}$

Definition [MW07] (dendroidal objects)

A dendroidal (resp. simplicial) object in a $(\infty$ -)category \mathcal{C} is a functor $\Omega_{\pi}^{\mathrm{op}} \longrightarrow \mathcal{C}$ (resp. $\Delta^{\mathrm{op}} \to \mathcal{C}$).

Segal objects

Dendroidal/simplicial sets are dendroidal/simplicial objects in the category of sets.

Easy fact: The functor $N_d: \mathbf{Op} \longrightarrow \mathbf{dSet}$ is fully faithful with essential image = {Segal dendroidal sets}

Definition [CM] (Segal dendroidal objects)

A dendroidal object $\mathcal{X}: \Omega_{\pi}^{\mathrm{op}} \to \mathcal{C}$ in some $(\infty$ -)category \mathcal{C} is called **Segal** if the canonical map

$$\mathcal{X}(\overline{T_1} \cup_e \overline{T_2}) \stackrel{\simeq}{\longrightarrow} \mathcal{X}(\overline{T_1}) \times_{\mathcal{X}(e)} \mathcal{X}(\overline{T_2})$$

is an equivalence in \mathcal{C} for every grafting $T_1 \cup_e T_2$ of two trees T_1 and T_2 along an edge e.

Given a Segal dendroidal set $\mathcal{X}: \Omega_{\pi} \to \mathbf{Set}$ we can recover the operad by:

- set of colors = $\mathcal{X}(\eta)$
- set of *n*-ary operations = $\mathcal{X}(C_n)$
- composition: $\mathcal{X}(\mathbf{C}_n) \times_{\mathcal{X}(e)} \mathcal{X}(\mathbf{C}_m) \xleftarrow{\simeq} \mathcal{X}(\mathbf{C}_n \cup_e \mathbf{C}_m) \xrightarrow{\mathcal{X}(\text{collapse map})} \mathcal{X}(\mathbf{C}_{n+m-1})$

The localization functor \mathcal{L}

Construction

The functor $\mathcal{L}_{\pi} : \Omega_{\pi}^{\text{op}} \longrightarrow \Delta$ maps each tree to the linearly ordered set of "areas between the branches".

- \mathcal{L}_{π} sends the corolla $C_n \in \Omega_{\pi}$ to $[n] \in \Delta$
- \mathcal{L}_{π} sends all collapse maps to isomorphisms

Theorem [Wal]

The functor $\mathcal{L}_{\pi} \colon \Omega_{\pi} \longrightarrow \Delta$ exhibits the simplex category Δ as the ∞ -categorical localization of Ω_{π} at the set of collapse maps.

Fact [CM]: complete Segal dendroidal spaces are a model for ∞ -operads:

 $\{\infty\text{-operads}\} \simeq \{\text{complete Segal dendroidal spaces}\} \subset \operatorname{Fun}(\Omega_{\pi}^{\operatorname{op}}, \mathfrak{Spaces})$

The 2-Segal condition on simplicial objects $\mathcal{X}: \Delta^{\mathrm{op}} \to \mathcal{C}$ (due to Dyckerhoff-Kapranov [DK]) captures associativity and unitality of the "multivalued composition" $\mathcal{X}_{\{0,1\}} \times_{\mathcal{X}_{\{1\}}} \mathcal{X}_{\{1,2\}} \longleftarrow \mathcal{X}_{\{0,1,2\}} \longrightarrow \mathcal{X}_{\{0,2\}}$. Examples:

- Waldhausen's S-construction from algebraic K-theory yields categorifications of Hall algebras
- categorifications of convolution algebras (e.g. Hecke algebras)

Variants: structured operads

additional structure	category	type of tree	localization functor maps a tree too
none	Δ	plane, rooted	linearly ordered set of areas between the branches
cyclic	Λ	plane, rootable	cyclic set of areas between the branches
symmetric	$\mathbf{Fin}^{\mathrm{op}}_{\star}$	rooted	set of leaves plus basepoint (=root)
cyclic symmetric	$\mathbf{Fin}^{\mathrm{op}}_{ eqarnothing}$	rootable	non-empty set of incoming arrows

- $\Lambda = \text{Connes'}$ cyclic category
- $\mathbf{Fin}_{\star} = \text{category of pointed finite sets}$
- $\mathbf{Fin}_{\neq\varnothing}=$ category of non-empty finite sets

References

[CM] Denis-Charles Cisinski and Ieke Moerdijk. Dendroidal Segal spaces and ∞ -operads. arXiv:1010.4956v2.

[DK] Tobias Dyckerhoff and Mikhail Kapranov. Higher Segal spaces I. arXiv:1212.3563v1.

[MW07] Ieke Moerdijk and Ittay Weiss. Dendroidal sets. Algebraic & Geometric Topology, 7:1441–1470, 2007.

[Wal] Tashi Walde. 2-Segal spaces as invertible ∞ -operads. arXiv:1709.09935.

2017 Mathematisches Institut twalde@math.uni-bonn.de