Hybrid sup-norm bounds for automorphic forms in higher rank

Radu Toma

Mathematisches Institut, Universität Bonn

Rényi Institute Automorphic Forms Seminar, May 5th, 2022

- $X = \Gamma \backslash G / K$: compact locally symmetric space of rank r
- $\mathcal{Z}(U(\mathfrak{g}))$: algebra of bi-invariant differential operators
- Automorphic form ϕ : $\phi \in L^2(X)$, $\|\phi\|_2 = 1$, eigenfunction of $\mathcal{Z}(U(\mathfrak{g}))$
- $\Delta \phi = \lambda \phi$, where Δ is the Laplacian on X

Question

How large is $\|\phi\|_{\infty}$ as $\lambda \to \infty$?

Motivation, local bounds and conjectures

- Related to the theory of quantum chaos and quantum unique ergodicity
- Related to the multiplicity problem, study of nodal domains, subconvexity problem
- Local/generic bound

$$\|\phi\|_{\infty} \ll \lambda^{(\dim X - r)/4}$$

• Example of conjecture: for $G = SL_2(\mathbb{R})$, we expect $\|\phi\|_{\infty} \ll_{\varepsilon} \lambda^{\varepsilon}$

Problem

Show that
$$\|\phi\|_{\infty} \ll \lambda^{(\dim X - r)/4 - \delta}$$
 for some $\delta > 0$.

• The general problem seems out of reach in general, so we restrict to X arithmetic and ϕ a joint eigenfunction of the Hecke algebra

 Iwaniec-Sarnak 1995: for φ Hecke-Maaß form on arithmetic compact hyperbolic surface X (also non-compact modular curves)

$$\|\phi\|_{\infty} \ll_{\varepsilon} \lambda^{1/4 - 1/24 + \varepsilon}$$

• Many more results in higher rank, over number fields, etc.

• E.g.
$$X = \Gamma_0(N) \setminus \mathbb{H}$$
 with $\operatorname{vol}(X) = N^{1+o(1)}$

• Inspired by the level aspect in the subconvexity problem

Question

How large is $\|\phi\|_{\infty}$ as $N \to \infty$?

- "Local bound": $\|\phi\|_{\infty} \ll_{\lambda} N^{\varepsilon}$
- Work of Harcos and Templier (2013, *N* square-free):

$$\|\phi\|_{\infty} \ll_{\varepsilon} \lambda^{1/4 - 1/24} N^{-1/6} \lambda^{\varepsilon} N^{\varepsilon}$$

• More precise version by Saha 2017 for general N

The volume aspect: compact case

- A: indefinite division quaternion algebra over \mathbb{Q}
- If O is an order in A (subring, full Z-lattice), then O¹ is a cocompact subgroup of SL₂(ℝ)
- Let $N = [\mathcal{O}_m : \mathcal{O}]$ for some maximal order \mathcal{O}_m

•
$$\mathsf{vol}(\mathcal{O}^1 \setminus \mathbb{H}) = \mathsf{disc}(\mathcal{O})^{1/2 + o(1)} = \mathsf{disc}(\mathcal{A})^{1/2 + o(1)} \cdot N^{1 + o(1)}$$

• Work of Templier (2010) and Saha, Saha-Hu (2020):

$$\|\phi\|_{\infty} \ll_{\mathcal{A},\lambda,\varepsilon} N^{-1/24+\varepsilon}$$

• Uniformity in disc(A)?

• Uniformity in both λ and volume (i.e. hybrid bounds)?

• Volume aspect in higher rank? (only result is due to Hu, 2018, in the depth aspect, non-compact case)

Let $\mathfrak{h}^n = \operatorname{SL}_n(\mathbb{R})/\operatorname{SO}(n)$.

Theorem (T. 2022)

Let p be a prime and A a central division algebra of degree p over \mathbb{Q} that is split over \mathbb{R} . Let $\mathcal{O} \subset A$ be an order of covolume $V := \operatorname{vol} \mathcal{O}^1 \setminus \mathfrak{h}^p$. If ϕ is an L²-normalised Hecke-Maaß form on $\mathcal{O}^1 \setminus \mathfrak{h}^p$ with large eigenvalue λ , then

$$\|\phi\|_{\infty} \ll \lambda^{\frac{p(p-1)}{8} - \delta_1 + \varepsilon} V^{-\delta_2 + \varepsilon},$$

where the savings can be taken to be $\delta_1 = (16p^3)^{-1}$ and $\delta_2 = (8p^3(p-1))^{-1}$, and the implied constant depends on p and ε .

A similar theorem is given for quaternion algebras over totally real number fields.

Beyond prime degree

Orders of $\mathcal{O}_0(N)$ -type: locally isomorphic to

 $\mathcal{O}_0(N)_p = \{ \gamma \in M_n(\mathbb{Z}_p) \mid \text{last row of } \gamma \equiv (0, \dots, 0, *) \text{ mod } N\mathbb{Z}_p \}$

Theorem (T. 2022)

Let $n \geq 3$ be an odd integer and A a central division algebra of degree n over \mathbb{Q} that is split over \mathbb{R} . Let $\mathcal{O} \subset A$ be an order of type $\mathcal{O}_0(N)$ and let $V := \operatorname{vol} \mathcal{O}^1 \setminus \mathfrak{h}^n$ be its covolume. If ϕ is an L^2 -normalised Hecke-Maaß form on $\mathcal{O}^1 \setminus \mathfrak{h}^n$ with large eigenvalue λ , then

$$\|\phi\|_{\infty} \ll_{\mathcal{A}} \lambda^{\frac{n(n-1)}{8} - \delta_1 + \varepsilon} V^{-\delta_2 + \varepsilon},$$

where the savings can be taken to be $\delta_1 = (8n^3)^{-1}$ and $\delta_2 = (4n^3(n-1))^{-1}$, and the implied constant depends on n, ε , and the discriminant of A.

Pre-trace formula

$$\sum_{j\in\mathbb{N}} \widetilde{f}(\mu_j) |\phi_j(z)|^2 = \sum_{\gamma\in\mathcal{O}^1} f(z^{-1}\gamma z),$$

By the Jacquet-Langlands correspondence (Bădulescu et al. in higher rank), we can use the test function f_{μ} of Blomer-Maga (for GL(n)) and obtain

$$ert \phi(z) ert^2 \leq \sum_{\gamma \in \mathcal{O}^1} f_\mu(z^{-1}\gamma z)$$

 $\ll B(\lambda)^2 \cdot \#\{\gamma \in \mathcal{O}^1 : z^{-1}\gamma z = k + O(\rho), \text{ for some } k \in SO(n)\}.$

Here ρ is small enough in terms of n.

Remark

For *n* odd, every matrix in SO(n) has eigenvalue 1.

If $\gamma \in \mathcal{O}^1$ and $z^{-1}\gamma z = k + O(
ho)$, then

$$\operatorname{nr}(\gamma-1) = \det(k-1+O(\rho)) = O_n(\rho).$$

Since ρ is small enough and $\gamma - 1$ is an integral element, it follows that $nr(\gamma - 1) = 0$ and so $\gamma = 1$. Therefore,

$$|\phi(z)|^2 \leq \sum_{\gamma \in \mathcal{O}^1} f_\mu(z^{-1}\gamma z) \ll B(\lambda)^2 = \lambda^{n(n-1)/4}.$$

Amplifier: introduce a shorter average over Hecke eigenvalues

$$\sum_{j\in\mathbb{N}} \tilde{f}(\mu_j) |\phi_j(z)|^2 \cdot |\sum_{l\asymp L} a_j(l)|^2,$$

by applying Hecke operators on the pre-trace formula. As in Blomer-Maga (2016), we have

$$\begin{split} L^{2} \cdot |\phi(z)|^{2} &\ll L^{\varepsilon} B(\lambda)^{2} \big(L + \sum_{\nu=1}^{n} \sum_{l_{1}, l_{2} \asymp L} \frac{1}{L^{(n-1)\nu}} \# \mathcal{O}(l_{1}^{\nu} l_{2}^{(n-1)\nu}; z, \delta) \\ &+ B(\lambda)^{\frac{-2}{n(n-1)}} \cdot \delta^{-\frac{1}{2}} \sum_{\nu=1}^{n} \sum_{l_{1}, l_{2} \asymp L} \frac{1}{L^{(n-1)\nu}} \# \mathcal{O}(l_{1}^{\nu} l_{2}^{(n-1)\nu}; z, \rho) \big), \end{split}$$

for parameters δ , L.

Here,

$$\mathcal{O}(m; z, \delta) = \{\gamma \in \mathcal{O} : \operatorname{nr}(\gamma) = m, \quad z^{-1}\gamma z = m^{1/n}(k + O(\delta))\}.$$

- For n = p prime, we count
 - in the discriminant aspect, taking *L* small enough in terms of the discriminant
 - \bullet in the spectral aspect, taking δ small enough in terms of L

In special cases (e.g. n = 2), we can do both simultaneously.

- Let A_L be the \mathbb{Q} -algebra generated by $\bigcup_{1 \le m \le L} \mathcal{O}(m; z, \delta)$.
- If n = p is prime, then $A_L \neq A$ implies A_L is a field. (*rigidity*)

• For linear algebra argument, note that A_L is contained in the \mathbb{Q} -vector space spanned by $\bigcup_{1 \le m \le L^{2p-2}} \mathcal{O}(m; z, (2p-2)\delta)$.

• Let $D = \operatorname{disc}(\mathcal{O})$.

Lemma

The Q-vector space spanned by $\bigcup_{1 \le m \le L^{2p-2}} \mathcal{O}(m; z, (2p-2)\delta)$ is proper, i.e. not equal to A, if $L \ll D^{1/4p(p-1)-\varepsilon}$, where the implicit constant depends only on p and δ .

Let $\gamma_1, \ldots, \gamma_{p^2} \in \bigcup_{1 \le m \le L^{2p-2}} \mathcal{O}(m; z, \delta)$. Then $\operatorname{nr}(\gamma_i \gamma_j) \ll L^{4(p-1)}$ and $z^{-1}\gamma_i \gamma_j z = \operatorname{nr}(\gamma_i \gamma_j)^{1/p} (k + O(\delta))$. In particular

$$\operatorname{tr}(\gamma_i\gamma_j)\ll_{\delta,p} L^{4(p-1)/p},$$

by applying the trace.

Lemma

The Q-vector space spanned by $\bigcup_{1 \le m \le L^{2p-2}} \mathcal{O}(m; z, (2p-2)\delta)$ is proper, i.e. not equal to A, if $L \ll D^{1/4p(p-1)-\varepsilon}$, where the implicit constant depends only on p and δ .

Consider now

$$s = \det(\operatorname{tr}(\gamma_i \gamma_j)_{i,j}).$$

Then $D \mid s$. On the other hand, $s \ll L^{4p(p-1)}$. Thus if $L \ll D^{1/4p(p-1)-\varepsilon}$, then s = 0. Then $\gamma_1, \ldots, \gamma_{p^2}$ are *not* linearly independent, by the non-degeneracy of tr(.,.). • So A_L is a field for L small enough.

• We count in the ring of integers of A_L .

 #O(m; z, δ) is bounded by number of ideals of norm m times number of suitable units • Number of ideals of norm m is bounded by m^{ε} .

• Let $\gamma \in \mathcal{O}^{\times}$ with $z^{-1}\gamma z = k + O(\delta)$. Then $z^{-1}\gamma^j z = k_j + O_j(\delta)$.

• Thus
$$\operatorname{tr}(\gamma^j)\ll_j 1$$
.

- The coefficients $\chi_{\gamma} \in \mathbb{Z}[X]$ can be given in terms of $tr(\gamma^j)$ for j = 1, ..., p.
- There are only ≪_p 1 many possibilities for the χ_γ, so only ≪_p 1 many possibilities for γ (A_L is a field!)

Let now $p \ge 3$ be any odd integer.

Lemma

The Q-algebra generated by $\bigcup_{1 \le m \le L} \mathcal{O}(m; z, \delta)$ is commutative, i.e. a field, if $\delta \ll L^{-2-\varepsilon}$, where the implicit constant depends only on p.

Let $\gamma_1, \gamma_2 \in \bigcup_{1 \leq m \leq L} \mathcal{O}(m; z, \delta)$. Then

$$z^{-1}\gamma_1^{-1}\gamma_2^{-1}\gamma_1\gamma_2 z = k + O(\delta).$$

As before, subtracting 1 we get $nr(\gamma_1^{-1}\gamma_2^{-1}\gamma_1\gamma_2 - 1) = O_p(\delta)$. Thus,

$$\operatorname{nr}(\gamma_1\gamma_2-\gamma_2\gamma_1)=\operatorname{nr}(\gamma_2\gamma_1)\cdot\operatorname{nr}(\gamma_1^{-1}\gamma_2^{-1}\gamma_1\gamma_2-1)=\mathcal{O}_{\rho}(\delta L^2).$$

If $\delta \ll L^{-2-\varepsilon}$, then $\gamma_1 \gamma_2 = \gamma_2 \gamma_1$.

- Now counting in fields is done as before.
- Counting #O(m; z, ρ) is done trivially, by counting ideals and units. We count units again by assuming that ρ ≪_p 1 is small enough, so that we are counting in a field by a similar argument.
- Discriminant aspect: $\phi(z) \ll B(\lambda) \cdot D^{rac{-1}{4n^3(n-1)}+arepsilon}$
- Spectral aspect: $\phi(z) \ll B(\lambda) \cdot \lambda^{\frac{-1}{2n^4(n-1)} + \varepsilon} \cdot D^{\varepsilon}$
- We interpolate for the hybrid bound, thanks to uniformity.

For \mathcal{O} of $\mathcal{O}_0(N)$ -type, we have

$$N \mid \operatorname{nr}(\gamma_1\gamma_2 - \gamma_2\gamma_1).$$

- By the argument in the spectral aspect, we are counting in a field as soon as $\delta \ll L^2 N^{-1}$.
- This gives a simultaneous treatment and better bounds.
- If p | disc(A) and A_p is division, then p | nr(γ₁γ₂ − γ₂γ₁). But this is not the case in general for composite degree.

For quaternion algebras, we note that SO(2) only generates a 2-dimensional vector space.

We have

$$\frac{1}{\prod_{i} \operatorname{nr}(\gamma_{i})} \operatorname{det}\left(\operatorname{tr}(\gamma_{i}\gamma_{j})_{i,j}\right) = \operatorname{det}\left(\operatorname{tr}(k_{i}k_{j})_{i,j}\right) + O(\delta),$$

for certain $k_i \in SO(2)$. By linear dependence, $det(tr(k_ik_j)_{i,j}) = 0$.