Hybrid sup-norm bounds for automorphic forms in higher rank

Radu Toma

Mathematisches Institut, Universität Bonn

Rényi Institute Automorphic Forms Seminar, May 5th, 2022

The sup-norm problem

- $X=\Gamma \backslash G / K$: compact locally symmetric space of rank r
- $\mathcal{Z}(U(\mathfrak{g}))$: algebra of bi-invariant differential operators
- Automorphic form $\phi: \phi \in L^{2}(X),\|\phi\|_{2}=1$, eigenfunction of $\mathcal{Z}(U(\mathfrak{g}))$
- $\Delta \phi=\lambda \phi$, where Δ is the Laplacian on X

Question

How large is $\|\phi\|_{\infty}$ as $\lambda \rightarrow \infty$?

Motivation, local bounds and conjectures

- Related to the theory of quantum chaos and quantum unique ergodicity
- Related to the multiplicity problem, study of nodal domains, subconvexity problem
- Local/generic bound

$$
\|\phi\|_{\infty} \ll \lambda^{(\operatorname{dim} X-r) / 4}
$$

- Example of conjecture: for $G=\operatorname{SL}_{2}(\mathbb{R})$, we expect $\|\phi\|_{\infty}<_{\varepsilon} \lambda^{\varepsilon}$

Problem

Show that $\|\phi\|_{\infty} \ll \lambda^{(\operatorname{dim} X-r) / 4-\delta}$ for some $\delta>0$.

A prototype result

- The general problem seems out of reach in general, so we restrict to X arithmetic and ϕ a joint eigenfunction of the Hecke algebra
- Iwaniec-Sarnak 1995: for ϕ Hecke-Maaß form on arithmetic compact hyperbolic surface X (also non-compact modular curves)

$$
\|\phi\|_{\infty} \ll \varepsilon \lambda^{1 / 4-1 / 24+\varepsilon}
$$

- Many more results in higher rank, over number fields, etc.

The volume aspect

- E.g. $X=\Gamma_{0}(N) \backslash \mathbb{H}$ with $\operatorname{vol}(X)=N^{1+o(1)}$
- Inspired by the level aspect in the subconvexity problem

Question

How large is $\|\phi\|_{\infty}$ as $N \rightarrow \infty$?

- "Local bound": $\|\phi\|_{\infty}<{ }_{\lambda} N^{\varepsilon}$
- Work of Harcos and Templier (2013, N square-free):

$$
\|\phi\|_{\infty} \ll{ }_{\varepsilon} \lambda^{1 / 4-1 / 24} N^{-1 / 6} \lambda^{\varepsilon} N^{\varepsilon}
$$

- More precise version by Saha 2017 for general N

The volume aspect: compact case

- A: indefinite division quaternion algebra over \mathbb{Q}
- If \mathcal{O} is an order in A (subring, full \mathbb{Z}-lattice), then \mathcal{O}^{1} is a cocompact subgroup of $\mathrm{SL}_{2}(\mathbb{R})$
- Let $N=\left[\mathcal{O}_{m}: \mathcal{O}\right]$ for some maximal order \mathcal{O}_{m}
- $\operatorname{vol}\left(\mathcal{O}^{1} \backslash \mathbb{H}\right)=\operatorname{disc}(\mathcal{O})^{1 / 2+o(1)}=\operatorname{disc}(A)^{1 / 2+o(1)} \cdot N^{1+o(1)}$
- Work of Templier (2010) and Saha, Saha-Hu (2020):

$$
\|\phi\|_{\infty} \ll A, \lambda, \varepsilon, N^{-1 / 24+\varepsilon}
$$

Questions

- Uniformity in $\operatorname{disc}(A)$?
- Uniformity in both λ and volume (i.e. hybrid bounds)?
- Volume aspect in higher rank? (only result is due to $\mathrm{Hu}, 2018$, in the depth aspect, non-compact case)

Main theorem

$$
\text { Let } \mathfrak{h}^{n}=\mathrm{SL}_{n}(\mathbb{R}) / \mathrm{SO}(n) \text {. }
$$

Theorem (T. 2022)

Let p be a prime and A a central division algebra of degree p over \mathbb{Q} that is split over \mathbb{R}. Let $\mathcal{O} \subset A$ be an order of covolume $V:=\operatorname{vol} \mathcal{O}^{1} \backslash \mathfrak{h}^{p}$. If ϕ is an L^{2}-normalised Hecke-Maaß form on $\mathcal{O}^{1} \backslash \mathfrak{h}^{p}$ with large eigenvalue λ, then

$$
\|\phi\|_{\infty} \ll \lambda^{\frac{\rho(\rho-1)}{8}-\delta_{1}+\varepsilon} V^{-\delta_{2}+\varepsilon},
$$

where the savings can be taken to be $\delta_{1}=\left(16 p^{3}\right)^{-1}$ and $\delta_{2}=\left(8 p^{3}(p-1)\right)^{-1}$, and the implied constant depends on p and ε.

A similar theorem is given for quaternion algebras over totally real number fields.

Beyond prime degree

Orders of $\mathcal{O}_{0}(N)$-type: locally isomorphic to

$$
\mathcal{O}_{0}(N)_{p}=\left\{\gamma \in M_{n}\left(\mathbb{Z}_{p}\right) \mid \text { last row of } \gamma \equiv(0, \ldots, 0, *) \bmod N \mathbb{Z}_{p}\right\}
$$

Theorem (T. 2022)

Let $n \geq 3$ be an odd integer and A a central division algebra of degree n over \mathbb{Q} that is split over \mathbb{R}. Let $\mathcal{O} \subset A$ be an order of type $\mathcal{O}_{0}(N)$ and let $V:=\operatorname{vol} \mathcal{O}^{1} \backslash \mathfrak{h}^{n}$ be its covolume. If ϕ is an L^{2}-normalised Hecke-Maaß form on $\mathcal{O}^{1} \backslash \mathfrak{h}^{n}$ with large eigenvalue λ, then

$$
\|\phi\|_{\infty} \ll_{A} \lambda^{\frac{n(n-1)}{8}-\delta_{1}+\varepsilon} V^{-\delta_{2}+\varepsilon}
$$

where the savings can be taken to be $\delta_{1}=\left(8 n^{3}\right)^{-1}$ and $\delta_{2}=\left(4 n^{3}(n-1)\right)^{-1}$, and the implied constant depends on n, ε, and the discriminant of A.

Pre-trace formula

Pre-trace formula

$$
\sum_{j \in \mathbb{N}} \tilde{f}\left(\mu_{j}\right)\left|\phi_{j}(z)\right|^{2}=\sum_{\gamma \in \mathcal{O}^{1}} f\left(z^{-1} \gamma z\right)
$$

By the Jacquet-Langlands correspondence (Bădulescu et al. in higher rank), we can use the test function f_{μ} of Blomer-Maga (for $\mathrm{GL}(\mathrm{n})$) and obtain

$$
\begin{aligned}
& |\phi(z)|^{2} \leq \sum_{\gamma \in \mathcal{O}^{1}} f_{\mu}\left(z^{-1} \gamma z\right) \\
& \quad \ll B(\lambda)^{2} \cdot \#\left\{\gamma \in \mathcal{O}^{1}: z^{-1} \gamma z=k+O(\rho), \text { for some } k \in \mathrm{SO}(n)\right\}
\end{aligned}
$$

Here ρ is small enough in terms of n.

The baseline bound

Remark

For n odd, every matrix in $\mathrm{SO}(n)$ has eigenvalue 1 .
If $\gamma \in \mathcal{O}^{1}$ and $z^{-1} \gamma z=k+O(\rho)$, then

$$
\operatorname{nr}(\gamma-1)=\operatorname{det}(k-1+O(\rho))=O_{n}(\rho)
$$

Since ρ is small enough and $\gamma-1$ is an integral element, it follows that $\operatorname{nr}(\gamma-1)=0$ and so $\gamma=1$.
Therefore,

$$
|\phi(z)|^{2} \leq \sum_{\gamma \in \mathcal{O}^{1}} f_{\mu}\left(z^{-1} \gamma z\right) \ll B(\lambda)^{2}=\lambda^{n(n-1) / 4}
$$

The amplified pre-trace formula

Amplifier: introduce a shorter average over Hecke eigenvalues

$$
\sum_{j \in \mathbb{N}} \tilde{f}\left(\mu_{j}\right)\left|\phi_{j}(z)\right|^{2} \cdot\left|\sum_{I \asymp L} a_{j}(I)\right|^{2}
$$

by applying Hecke operators on the pre-trace formula. As in Blomer-Maga (2016), we have

$$
\begin{aligned}
L^{2} \cdot|\phi(z)|^{2} & \ll L^{\varepsilon} B(\lambda)^{2}\left(L+\sum_{\nu=1}^{n} \sum_{l_{1}, l_{2} \asymp L} \frac{1}{L^{(n-1) \nu}} \# \mathcal{O}\left(l_{1}^{\nu} l_{2}^{(n-1) \nu} ; z, \delta\right)\right. \\
& \left.+B(\lambda)^{\frac{-2}{n(n-1)}} \cdot \delta^{-\frac{1}{2}} \sum_{\nu=1}^{n} \sum_{l_{1}, l_{2} \asymp L} \frac{1}{L^{(n-1) \nu}} \# \mathcal{O}\left(l_{1}^{\nu} l_{2}^{(n-1) \nu} ; z, \rho\right)\right),
\end{aligned}
$$

for parameters δ, L.

The counting problem

Here,

$$
\mathcal{O}(m ; z, \delta)=\left\{\gamma \in \mathcal{O}: \operatorname{nr}(\gamma)=m, \quad z^{-1} \gamma z=m^{1 / n}(k+O(\delta))\right\}
$$

For $n=p$ prime, we count

- in the discriminant aspect, taking L small enough in terms of the discriminant
- in the spectral aspect, taking δ small enough in terms of L

In special cases (e.g. $n=2$), we can do both simultaneously.

The discriminant aspect

- Let A_{L} be the \mathbb{Q}-algebra generated by $\bigcup_{1 \leq m \leq L} \mathcal{O}(m ; z, \delta)$.
- If $n=p$ is prime, then $A_{L} \neq A$ implies A_{L} is a field. (rigidity)
- For linear algebra argument, note that A_{L} is contained in the \mathbb{Q}-vector space spanned by $\bigcup_{1 \leq m \leq L^{2 p-2}} \mathcal{O}(m ; z,(2 p-2) \delta)$.
- Let $D=\operatorname{disc}(\mathcal{O})$.

Properness

Lemma

The \mathbb{Q}-vector space spanned by $\bigcup_{1 \leq m \leq L^{2 p-2}} \mathcal{O}(m ; z,(2 p-2) \delta)$ is proper, i.e. not equal to A, if $L \ll D^{1 / 4 p(p-1)-\varepsilon}$, where the implicit constant depends only on p and δ.

Let $\gamma_{1}, \ldots, \gamma_{p^{2}} \in \bigcup_{1 \leq m \leq L^{2 p-2}} \mathcal{O}(m ; z, \delta)$. Then $\operatorname{nr}\left(\gamma_{i} \gamma_{j}\right) \ll L^{4(p-1)}$ and $z^{-1} \gamma_{i} \gamma_{j} z=\operatorname{nr}\left(\gamma_{i} \gamma_{j}\right)^{1 / p}(k+O(\delta))$. In particular

$$
\operatorname{tr}\left(\gamma_{i} \gamma_{j}\right) \ll_{\delta, p} L^{4(p-1) / p}
$$

by applying the trace.

Properness

Lemma

The \mathbb{Q}-vector space spanned by $\bigcup_{1 \leq m \leq L^{2 p-2}} \mathcal{O}(m ; z,(2 p-2) \delta)$ is proper, i.e. not equal to A, if $L \ll D^{1 / 4 p(p-1)-\varepsilon}$, where the implicit constant depends only on p and δ.

Consider now

$$
s=\operatorname{det}\left(\operatorname{tr}\left(\gamma_{i} \gamma_{j}\right)_{i, j}\right)
$$

Then $D \mid s$.
On the other hand, $s \ll L^{4 p(p-1)}$. Thus if $L \ll D^{1 / 4 p(p-1)-\varepsilon}$, then $s=0$. Then $\gamma_{1}, \ldots, \gamma_{p^{2}}$ are not linearly independent, by the non-degeneracy of $\operatorname{tr}(.,$.$) .$

Counting in fields

- So A_{L} is a field for L small enough.
- We count in the ring of integers of A_{L}.
- $\# \mathcal{O}(m ; z, \delta)$ is bounded by number of ideals of norm m times number of suitable units

Counting in fields

- Number of ideals of norm m is bounded by m^{ε}.
- Let $\gamma \in \mathcal{O}^{\times}$with $z^{-1} \gamma z=k+O(\delta)$. Then $z^{-1} \gamma^{j} z=k_{j}+O_{j}(\delta)$.
- Thus $\operatorname{tr}\left(\gamma^{j}\right) \ll_{j} 1$.
- The coefficients $\chi_{\gamma} \in \mathbb{Z}[X]$ can be given in terms of $\operatorname{tr}\left(\gamma^{j}\right)$ for $j=1, \ldots, p$.
- There are only $<_{p} 1$ many possibilities for the χ_{γ}, so only $<_{p} 1$ many possibilities for γ (A_{L} is a field!)

The spectral aspect

Let now $p \geq 3$ be any odd integer.

Lemma

The \mathbb{Q}-algebra generated by $\bigcup_{1 \leq m \leq L} \mathcal{O}(m ; z, \delta)$ is commutative, i.e. a field, if $\delta \ll L^{-2-\varepsilon}$, where the implicit constant depends only on p.

Let $\gamma_{1}, \gamma_{2} \in \bigcup_{1 \leq m \leq L} \mathcal{O}(m ; z, \delta)$. Then

$$
z^{-1} \gamma_{1}^{-1} \gamma_{2}^{-1} \gamma_{1} \gamma_{2} z=k+O(\delta)
$$

As before, subtracting 1 we get $\operatorname{nr}\left(\gamma_{1}^{-1} \gamma_{2}^{-1} \gamma_{1} \gamma_{2}-1\right)=O_{p}(\delta)$. Thus,

$$
\operatorname{nr}\left(\gamma_{1} \gamma_{2}-\gamma_{2} \gamma_{1}\right)=\operatorname{nr}\left(\gamma_{2} \gamma_{1}\right) \cdot \operatorname{nr}\left(\gamma_{1}^{-1} \gamma_{2}^{-1} \gamma_{1} \gamma_{2}-1\right)=O_{p}\left(\delta L^{2}\right)
$$

If $\delta \ll L^{-2-\varepsilon}$, then $\gamma_{1} \gamma_{2}=\gamma_{2} \gamma_{1}$.

Odds and ends

- Now counting in fields is done as before.
- Counting $\# \mathcal{O}(m ; z, \rho)$ is done trivially, by counting ideals and units. We count units again by assuming that $\rho<_{p} 1$ is small enough, so that we are counting in a field by a similar argument.
- Discriminant aspect: $\phi(z) \ll B(\lambda) \cdot D^{\frac{-1}{4 n^{3}(n-1)}+\varepsilon}$
- Spectral aspect: $\phi(z) \ll B(\lambda) \cdot \lambda^{\frac{-1}{2 n^{4}(n-1)}+\varepsilon} \cdot D^{\varepsilon}$
- We interpolate for the hybrid bound, thanks to uniformity.

Special orders

For \mathcal{O} of $\mathcal{O}_{0}(N)$-type, we have

$$
N \mid \operatorname{nr}\left(\gamma_{1} \gamma_{2}-\gamma_{2} \gamma_{1}\right)
$$

- By the argument in the spectral aspect, we are counting in a field as soon as $\delta \ll L^{2} N^{-1}$.
- This gives a simultaneous treatment and better bounds.
- If $p \mid \operatorname{disc}(A)$ and A_{p} is division, then $p \mid \operatorname{nr}\left(\gamma_{1} \gamma_{2}-\gamma_{2} \gamma_{1}\right)$. But this is not the case in general for composite degree.

The quaternion algebra case

For quaternion algebras, we note that $\mathrm{SO}(2)$ only generates a 2-dimensional vector space.
We have

$$
\frac{1}{\prod_{i} \operatorname{nr}\left(\gamma_{i}\right)} \operatorname{det}\left(\operatorname{tr}\left(\gamma_{i} \gamma_{j}\right)_{i, j}\right)=\operatorname{det}\left(\operatorname{tr}\left(k_{i} k_{j}\right)_{i, j}\right)+O(\delta)
$$

for certain $k_{i} \in S O(2)$. By linear dependence, $\operatorname{det}\left(\operatorname{tr}\left(k_{i} k_{j}\right)_{i, j}\right)=0$.

