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1 Introduction

The twentieth century has shown that modular forms and their generalisations, auto-
morphic forms, represent one of the most powerful theories in number theory. In the
simplest cases, these are a priori analytic or geometric objects, but they encode vast
amounts of information about the integers and interesting arithmetic quantities. Many
methods were developed for investigating automorphic forms and extracting this infor-
mation, inspired by analysis, algebraic geometry, representation theory, etc. This essay
presents the starting point of the analytic theory of automorphic forms.

A modular form for SL2(Z) is a holomorphic function on the complex upper half
plane, which behaves well under the action of SL2(Z) by Möbius transformations. As
presented in the next section, the upper half plane is isomorphic to the quotient of
SL2(R) by its compact subgroup SO(2). Under this identification, the action of SL2(Z)
is simply multiplication on the left. For more versatility in applications and possibil-
ities of generalisation, it is useful to ”lift” a modular form to a function on the full
group SL2(R) that is invariant under the action of SL2(Z) (see [Bor08, §5.14]). We will
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therefore analyse functions defined on the quotient SL2(Z)\SL2(R), which are called
automorphic functions.

A very fruitful way of understanding functions defined on a group is to consider the
group’s regular representation. More precisely, there is a Haar measure on SL2(Z)\SL2(R)
which defines an L2 space of functions. The group SL2(R) acts on this Hilbert space by
the right regular representation ρ, explicitly

ρgf (x) = f (xg),

for g ∈ SL2(R) and f a square-integrable function. The main goal is to provide a ”spec-
tral” decomposition of this representation, which is almost a decomposition into irre-
ducible representations. To understand why that might be useful, let us consider a
similar case described by Fourier analysis.

We can compare our situation with the additive group R of real numbers. Its quo-
tient R/Z by the discrete subgroup Z is isomorphic to the circle and thus compact.
The right regular representation of R on L2(R/Z) decomposes into a direct sum of ir-
reducible representations by the Fourier series expansion. More precisely, for each
n ∈ Z, the subspace generated by x 7→ e2πinx is R-invariant, and these generate the
whole Hilbert space. Discrete decompositions are typical for compact quotients. Yet,
returning to our original situation, the quotient SL2(Z)\SL2(R) is not compact, and this
introduces a ”continuous” part in its decomposition.

A continuous decomposition is similar to the Fourier analysis of the whole group
R. The decomposition here is given by Fourier inversion or by the Plancherel theorem
for the Fourier transform. Fourier inversion identifies a Schwarz function on R with
the integral (morally speaking, a continuous sum) of functions t 7→ e2πiξt over ξ ∈ R,
with coefficients given by the Fourier transform f̂ (ξ). This is not a decomposition into
invariant subspaces, since the functions e2πiξt are not square-integrable. But the one-
dimensional spaces they generate are invariant under the regular representation. Thus,
by analogy, this is a continuous decomposition of the regular representation of R.

In our case, the regular representation of SL2(Z)\SL2(R) decomposes into a discrete
part, resembling Fourier series, and a continuous part, resembling Fourier inversion.
The discrete part is made up of the space of cusp forms and the constant functions,
while the continuous part is the space generated by incomplete theta series. In analogy
with Fourier inversion, the functions e2πiξt correspond in our continuous decomposi-
tion to Eisenstein series (generalisations of the classical ones in modular forms). One
should remark that the generalised Eisenstein series have many applications beyond
this decomposition, for example in Rankin-Selberg theory.

A treatment of the applications of the theory developed here would go far beyond
the scope of this essay. Nevertheless, it is important to mention the Selberg trace for-
mula. This has a significant theoretical, but also historical relevance, being the ultimate
goal that Selberg wanted to achieve while working on the decomposition described
above. This trace formula describes the trace of certain operators on L2(SL2(Z)\SL2(R))
in two different ways (it has a ”spectral side” and a ”geometric side”) and can be re-
garded as a generalisation of the Poisson summation formula in the Fourier analysis
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analogy. It has applications in geometric and arithmetic problems, for example, prov-
ing an asymptotic law for the length of closed geodesics on hyperbolic Riemann sur-
faces (see [Iwa02, §10.9]).

The material presented in this essay is classical, and there are many study resources
for this subject. In the presentation, we follow Lang [Lan75] and Godement [God66]
quite closely1, but use some ideas and notation from [Kub73], [Bor08] and the online
notes of Paul Garrett, as well.

2 The basics of the group G and some representations

This section introduces the basic objects and tools of our investigation. Let G be the
special linear group SL2(R).

2.1 The action on the upper half plane and group decompositions

A good starting point for understanding the group SL2(R) is the study of its action on
the upper half plane H := {z ∈ C | Imz > 0}. This action is given by Möbius transforma-
tions, that is, (

a b
c d

)
· z =

az+ b
cz+ d

.

This action is transitive, as can be seen from the orbit of the imaginary root i ∈ H.
Indeed, for any x+ iy ∈H we have(

1 x
0 1

)(√
y 0

0 1/
√
y

)
· i = x+ iy.

One can easily compute that the stabiliser of i is the orthogonal group SO(2) := K , so
that we have an identification G/K �H of topological spaces. These remarks imply that
G has a decomposition as G =NAK , where

N =
{
n(x) =

(
1 x
0 1

)
: x ∈ R

}
,

A =
{
a(y) =

(√
y 0

0 1/
√
y

)
: y ∈ R>0

}
,

K =
{
k(θ) =

(
cosθ −sinθ
sinθ cosθ

)
: θ ∈ R

}
.

This is called the Iwasawa decomposition and it is unique, as can be checked by consid-
ering the action on H again. Note that G also acts on the boundary ∂H = R∪ {∞} and
the stabiliser of∞ is N .

1Lang also follows Godement, which is singular in the bibliography of this essay because he investigates
the left rather than the right regular representation. We adopted the more common ”left winger” approach
that Lang advocates for in [Lan75, Notation]), letting SL2(Z) act on SL2(R) on the left.
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Figure 1: A fundamental domain for SL2(Z)\H

Since SL2(R) is a Lie group, it is naturally endowed with a (left) Haar measure, i.e.
a non-trivial measure on G that is invariant under left translation. Using the Iwasawa
decomposition, it is given by

dg =
1
y2dx · dy · dθ,

and we will at times denote it by µ. In fact, the group G is unimodular, i.e., the Haar
measure above is right-invariant as well, since it is a semisimple Lie group (or simply
by checking).

When defining the principal series in section 2.3, we shall consider the induced
Haar measure on the subgroup P :=NA. We denote the measure simply by dp, but note
that this is not right-invariant. Indeed, the modular function of P is ∆P (n(x)a(y)) = y−1

(cf. [Rob83, p. 173]).
We now fix a discrete subgroup Γ of G. For simplicity, we shall always assume

Γ = SL2(Z), although much of the material in this essay can be generalised to other
subgroups (e.g. congruence subgroups) as well. See the concluding remarks for a brief
discussion on this topic. Since the Haar measure on G is invariant (in particular under
Γ ), it descends to the quotient2 Γ \G. It is important to note that µ(Γ \G) is finite. Indeed,
it is a standard fact (see any book on elliptic functions) that a fundamental domain for
the action of Γ on G is {

n(x)a(y) | x ∈ [−1/2,1/2], y ≥
√

1− x2
}
·K,

as depicted in Figure 1. Computing the measure using the formula above gives

µ(Γ \G) =
π
3
.

We denote by Γ∞ the stabiliser of the point at infinity in the action of Γ on the upper
half plane, i.e. Γ∞ =N ∩ Γ .

2This quotient is not a group, but merely the set of cosets.
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Another useful type of decomposition is a kind of Bruhat decomposition of the group
Γ (see [Kub73, p. 15]). We consider the double-cosets Γ∞\Γ /Γ∞.

Lemma 2.1. We have the disjoint union decomposition

Γ = ±Γ∞ ∪
⋃

c∈Z\{0}

⋃
d(mod c)
(c,d)=1

Γ∞

(
∗ ∗
c d

)
Γ∞.

Proof. Note the identity(
1 k1
0 1

)(
a b
c d

)(
1 k2
0 1

)
=

(
a+ ck1 ∗
c d + ck2

)
.

Hence, when determining a coset, we can choose c freely and d modulo c. These choices
completely determine the coset. Indeed, if c and d are fixed as above, the upper left
entry must only be chosen modulo c, but the additional condition ad ≡ 1 (mod c) de-
termines it automatically. Finally, the upper right entry ∗ is fixed by the other entries
and the determinant condition.

2.2 Automorphic functions

An automorphic function is a map from the quotient Γ \G into the complex numbers. We
may think of automorphic functions as functions on G that are invariant under Γ . We
can define an inner product for two automorphic functions f1 and f2 by

(f1, f2) =
∫
Γ \G

f1(g)f2(g)dg.

We denote by H = L2(Γ \G) the space of square integrable automorphic functions. The
group G acts on this Hilbert space by the right regular representation

ρ : G −→ B(H), ρgf (x) = f (xg).

This is a unitary representation, as is seen by a simple change of coordinates, recalling
that G is unimodular.

The point ∞ is called a cusp, and it is the only cusp (up to equivalence) for the
group SL2(Z) (see [Kub73, p. 3] for definitions). Its stabiliser is Γ∞, by definition. Recall
that classical modular forms have Fourier expansions at cusps, and we can similarly
define Fourier coefficients for automorphic functions (although a series expansion is
in general not feasible, since we have no analytic requirements for our functions). For
g ∈ G, we can induce a function on H by x+ iy 7→ f (n(x)a(y)g), which is invariant under
x 7→ x+ 1 by Γ∞-invariance. The usual definitions for Fourier coefficients now apply. In
particular, the zero-th Fourier coefficient is defined by

f 0(g) =
∫ 1

0
f (n(x)g)dx.
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Note that f 0 is leftN -invariant (we are essentially integrating over the circle and a shift
does not change the integral).

We call an automorphic function f a cusp form if f 0 ≡ 0. Note that the right regular
representation ρ preserves the space of cusp forms.

2.3 The principal series

The main goal of this essay is to understand the right-regular representation ρ of G on
its quotient Γ \G. This representation is partly made up of a collection of irreducible
representations called the principal series. This section provides an explicit construc-
tion of these representations, following [Kub73, §7.1] in definitions and [Rob83, §18]
in proofs.

Fix a complex number s. Let us consider even functions η : C× −→ C such that
η(reiθ) = r2s−2η(eiθ), for any r > 0. For two such functions, η1 and η2, we define the
inner product

〈η1,η2〉 =
∫ 2π

0
η1(eiθ)η2(eiθ)dθ.

The Hilbert space of functions η as above that have finite norm with respect to this
inner product is denoted P(s).

We now want to view these functions as functions of g = n(x)a(y)k(θ) ∈ G. For this,
note that N\G � C× by the map n(x)a(y)k(θ) 7→ y−1/2eiθ, by considering the second row
of the matrix a(y)k(θ). Then η must satisfy

η(g) = y1−sη(k(θ)), η(−g) = η(g). (2.1)

The first condition is equivalent to η(n(x)a(y)g) = y1−sη(g).
We will prove that if Res = 1/2, then ρ is a unitary representation of G on the space

P(s). It suffices to show that
∥∥∥ρh(η)

∥∥∥ =
∥∥∥η∥∥∥, for all h ∈ SL2(R).

Using the Iwasawa decomposition we write

k(θ)h = h(θ)k′(θ),

where h(θ) = n(xθ)a(yθ) ∈ P and k′(θ) ∈ K . Since η is N -invariant from the left and
|η(a(y)k(θ))|2 = y2−2Res|η(θ)|2, we have that∫ 2π

0
|η(k(θ)h)|2dθ =

∫ 2π

0
yθ |η(k′(θ))|2dθ

for Res = 1/2. We thus want to show
∫
yθ |η(k′(θ)|2dθ =

∫
|η(k(θ)|2dθ. For this, we

extend the function to the whole group G and then use its unimodularity property. Let
f (pk) = ξ(p)|η(k)|2 be a function on G, where ξ is a function on P = NA with compact
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support and normalised so that
∫
P
ξ(p)dp = 1. Thus,∫ 2π

0
|η(k(θ))|2dθ =

∫
G
f (g)dg =

∫
G
f (gh)dg

=
∫
P

∫ 2π

0
f (pk(θ)h)dθdp

=
∫
P

∫ 2π

0
f (ph(θ)k′(θ)dθdp

=
∫ 2π

0

∫
P
f (ph(θ)k′(θ))dpdθ

=
∫ 2π

0

∫
P
yθf (pk′(θ))dpdθ

=
∫ 2π

0
yθ |η(k′(θ))|2dθ,

since the modular function of P is given by ∆P (n(x)a(y)) = y−1.
This collection of unitary representations parametrised by complex numbers s with

Res = 1/2 is called the principal series. They are irreducible for s , 1/2, as shown in
[Rob83, Theorem 18.4].

3 The continuous part

We have defined the Hilbert space H of automorphic functions in the last section, yet
we have not introduced any explicit example of such a function. We start this section
by defining incomplete theta series, thus generating a subspace of H that provides
the so-called continuous part in the decomposition of the regular representation. This
will be made explicit by mapping this subspace into the principal series and proving a
Plancherel theorem for this map, effectively viewing the principal series as part of the
regular representation.

3.1 Incomplete theta series

As usual, the most natural way of obtaining a function on the quotient Γ \G is by averag-
ing over Γ . As in the case of classical Eisenstein series, to ensure convergence we pick a
function that is already invariant under the infinite subgroup Γ∞ and then average only
over the cosets Γ∞\Γ .

Definition 3.1. Let ψ be an even function on N\G. The incomplete theta series3 is de-

3These are sometimes called pseudo-Eisenstein series (see [Gar18]) or theta transforms in [Lan75]. The
name incomplete theta series is used here because we follow [God66] and [Kub73], but pseudo-Eisenstein
series seems to be the more modern choice.
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fined as
θψ(g) =

1
2

∑
γ∈Γ∞\Γ

ψ(γg),

for g ∈ G.

Note that any functionψ onN\G can be decomposed into the sum of an even and an
odd function. The incomplete theta series of an odd function would vanish, since the
term corresponding to γ ∈ Γ∞\Γ would cancel with the term coming from −γ . There-
fore, we only need to consider even functions. The 1/2 factor now simply balances off
the ±γ terms and is sometimes left out in the literature (e.g [Lan75]).

We view N\G as R2 \ {0} by letting G operate on row vectors as right matrix mul-
tiplication and noting that N is the stabiliser of the unit vector (0,1).4 We denote by
S(N\G) the space of functions onN\G that are restrictions of functions in the Schwartz
space of R2.

When working with incomplete theta series, it suffices to consider functions onN\G
with compact support and some analytic condition, e.g. smoothness, since these are
dense in L2(R2). Nevertheless, the Fourier transform of these functions will enter the
stage later, and these do not in general have compact support, but lie in the previously
defined Schwartz space S(N\G).

Lemma 3.2. Ifψ ∈ C∞c (N\G), i.e. ψ is smooth and has compact support, then the incomplete
theta series θψ is locally finite and defines a smooth and compactly supported function on
Γ \G.

Proof. Let C be a compact set in G, such that N ·C contains the support of ψ. We now
restrict the variable g to a fixed compact subset C0. If a summand ψ(γg) in the series is
non-zero, then γg ∈NC, that is,

γ ∈ Γ ∩N ·C ·C−1
0 ,

given that g ∈ C0. Thus, as cosets,

Γ∞γ ∈ (Γ∞\Γ )∩ (Γ∞\NCC−1
0 ).

Now Γ∞\Γ is discrete, and Γ∞\NCC−1
0 is compact by our assumptions and the fact that

Γ∞\N is compact (isomorphic to the circle). Thus, the intersection contains only finitely
many cosets, proving that the series θψ is locally finite and therefore converging to a
smooth function.

For proving that θψ has compact support, observe again that ψ(γg) is non-zero only
if g ∈ Γ ·C. In terms of cosets, Γ g ⊂ Γ \(Γ ·C), and the right hand side is the image of the
compact set C ⊂ G under the continuous map G −→ Γ \G.

The previous lemma immediately implies that θψ is square-integrable, i.e. θψ ∈H
if ψ ∈ C∞c (N\G). We denote the closed subspace spanned by all such incomplete theta

4This is similar to the identification in section 2.3, but differs by a rotation.
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series by Θ ⊂ H. This space is invariant under the regular representation, as well as
its decomposition into the constant functions and their orthogonal complement, as we
prove in section 4.1. This orthogonal complement is spanned by incomplete theta series
for functions ψ with their Fourier transform ψ̂ vanishing at 0, which is what will be
assumed in some of the following results.

Since θψ is an automorphic function, we can define its zero-th Fourier coefficient
θ0
ψ, which will play an important role in the next sections. Therefore, it will be useful

to have a more explicit formula for θ0
ψ.

Lemma 3.3. For ψ an even function on N\G and w =
(

0 1
−1 0

)
, we have

θ0
ψ(g) = ψ(g) +

∑
(c,d)=1
c>0

1
c2

∫
N
ψ(wn(x)a(c2)g)dx,

where the sum ranges over positive integers c and invertible residue classes modulo c, repre-
sented by d.

Proof. This is a reflection of the Bruhat decomposition. Indeed, recalling Lemma 2.1,

θ0
ψ(g) =

∫ 1

0
ψ(n(x)g)dx =

∫
Γ∞\N

1
2

∑
γ∈Γ∞\Γ

ψ(γn(x)g)

=
∫
N
ψ(n(x)g)dx+

∑
γ∈Γ∞\Γ
γ,±Γ∞

∫
Γ∞\N

ψ(γn(x)g)dx

= ψ(g) +
∑

γ∈Γ∞\Γ /Γ∞
nontriv.

∫
N
ψ(γn(x)g)dx,

keeping in mind that ψ is even and N -invariant. Now if the lower left entry c of γ is
positive, then NγN = −Nwa(c2)N , since(

1 −ac
0 1

)(
a b
c d

)(
1 −dc
0 1

)
=

(
0 −c−1

c 0

)
.

Then, interchanging matrices (see Remark 3.7),∫
N
ψ(γn(x)g)dx =

∫
N
ψ(wa(c2)n(x)g)dx

=
∫
N
ψ(wn(xc2)a(c2)g)dx =

1
c2

∫
N
ψ(wn(x)a(c2)g)dx.

Using again the parity ofψ and the Bruhat decomposition, Lemma 2.1, gives the desired
formula.
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3.2 The Mellin transform

As already noted at the beginning of the previous section, we shall construct a map
from the space of incomplete theta series into the principal series. This is given by the
Mellin transform of the zero-th Fourier coefficient.

Definition 3.4. For a function f on N\G, define the Mellin transform of f by

Lf (g,s) =
∫ ∞

0
f (a(y)g)y−s

dy

y
,

where g ∈ G and s ∈ C such that the integral converges. Similarly, if f is merely a
function on R>0, we define5

Lf (s) =
∫ ∞

0
f (y)y−s

dy

y
.

The (slightly modified) Mellin transform6 θ̂ψ of the constant term θ0
ψ is defined by

θ̂ψ(g,s) =
∫ ∞

0
θ0
ψ(a(y)g)ys−1dy

y
,

for g ∈ G.

We shall first look at the Mellin transform Lf (g,s) and prove some important ana-
lytic results. We can easily see that the integral in the definition of the Mellin transform
converges absolutely for any s ∈C if the corresponding function f has compact support.
In other words, if ψ ∈ C∞0 (N\G), then Lψ(g,s) is entire. Nevertheless, as already men-
tioned, the Fourier transform of ψ need not have compact support and merely lies in
the Schwartz space. To treat this case we make the following reduction to Mellin trans-
forms of functions on R. If ψ ∈ S(N\G) and g ∈ G, then we may define f (y) = ψ(a(y)g)
so that Lψ(g,s) = Lf (s) and f ∈ S(R).

Lemma 3.5. If f ∈ S(R), then Lf (s) is a meromorphic function on C with possible simple
poles at most at s ∈ {0,1,2,3,&c.}. If f (0) = 0, then Lf (s) is holomorphic at 0.

Proof. First note that the integral ∫ ∞
1
f (y)y−s−1dy

converges absolutely for any s ∈C, since f decays faster than any polynomial at infinity,
thus defining a holomorphic function. For the rest of the integral, we integrate by parts
to obtain ∫ 1

0
f (y)y−s−1dy =

f (y)y−s

−s

∣∣∣∣1
0

+
1
s

∫ 1

0
f ′(y)y−sdy.

5Changing the variable s to −s would give the standard definition of the Mellin transform.
6This is called the zeta transform in [Lan75, p. 243] and the Laplace transform in [God66].
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Since f is bounded, the integral on the right converges absolutely for Res < 1, whereas
the integral on the left converges absolutely only for Res < 0. We therefore enlarged
the domain of definition, and applying partial integration as above inductively, we
continue Lf (s) meromorphically to all s ∈C, with possible poles at 0, 1, 2, and so on.

Assuming that f (0) = 0, observe that∫ 1

0
f (y)y−1dy = f (y) log(y)

∣∣∣∣1
0

= lim
y→0

f (y) log(y) = lim
y→0

f (y)
y
· y log(y) = f ′(0).

Therefore, Lf has a removable singularity at s = 0.

Thus, there is a correspondence between asymptotics of f and the holomorphy of
Lf . In a similar manner, smoothness translates by the Mellin transform into rapid decay
on vertical strips. More precisely, we say that a function g defined on a vertical strip
σ0 < Res < σ1 decreases rapidly on every vertical line, uniformly in the strip, if for every
positive integer n, there exists a positive constant Cn such that

|g(σ + it)| ≤ Cn
1 + t2n

,

for each σ +it in the given strip. If there are finitely many poles of g in the strip and the
estimate holds outside open neighbourhoods of the poles, then the same terminology
applies.

Lemma 3.6. Let f ∈ S(R) and assume f (0) = 0. Then Lf decreases rapidly on every vertical
line, uniformly in each strip of finite width, outside a neighbourhood of poles.

Proof. Assume first that Res < 0. We have by partial integration

Lf (s) =
f (y)y−s

−s

∣∣∣∣∞
0

+
1
s

∫ ∞
0
f ′(y)y−sdy =

1
s
Lf ′ (s − 1),

by our assumptions on the decay of f . Continuing similarly and noting that all deriva-
tives of f lie in the Schwartz space, we obtain

Lf (s) =
(−1)n

s(s − 1) . . . (s −n)
Lf (n+1)(s − (n+ 1)).

If we fix the real part of s, the first factor, i.e. the fraction, behaves like 1/ | Ims|n+1 in
absolute value, as Ims→∞. The second factor is bounded on finite strips, since

|Lf (n+1)(s −n− 1)| ≤
∫ ∞

0
|f (n+1)(y)y−s+n+1−1|dy =

∫ ∞
0
|f (n+1)(y)|y−Res+ndy,

which converges (since Res < 0) and depends only on the real part of s.
To treat the case Res > 0, note that, by the meromorphic continuation, the identity

above holds for all s. The bound is recovered for Res > 0 by choosing n large enough,
so that the given strip shifted by −(n+ 1) is contained in Res < 0 and the bound above
can be used.
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We can derive more properties of the Mellin transform by noting it is simply the
Fourier transform on the multiplicative group R>0. This can be easily seen by changing
the variable y = ex, so that

Lf (σ + it) =
∫ ∞

0
f (y)y−(σ+it)dy

y
=

∫ ∞
−∞
f (ex)e−σxe−itxdx,

which is the Fourier transform of the function f (ex)e−σx. The Plancherel formula for
the Fourier transform produces

1
2π

∫ ∞
−∞
Lf1(σ1 + it)Lf2(σ2 + it)dt =

∫ ∞
0
f1(y)y−σ1f2(y)y−σ2

dy

y
. (3.1)

Remark 3.7. When working with the Mellin transform on the group, note that Lf (nak,s) =
Lf (ak,s), since (√

y
1/
√
y

)(
1 x

1

)
=

(
1 xy

1

)(√
y

1/
√
y

)
,

and f is assumed to be (left) N -invariant. Noting the N -invariance of the zero-th
Fourier coefficient, this argument is valid for the Mellin transform of an incomplete
theta series, as well.

We shall now make explicit the connection between the incomplete theta series and
the principal series through the Mellin transform.

Lemma 3.8. If ψ ∈ C∞c (N\G), then the Mellin transform θ̂ψ converges absolutely in the
region Res > 1. Whenever it is defined, θ̂ψ(s) lies in the space P(s).

Proof. By Lemma 3.2, the incomplete theta series θψ has compact support. Since n(x)a(y)
escapes any compactum as y tends to infinity, it follows by definition that θ0

ψ(a(y)g)
vanishes as y→∞, say for y > B > 0. Then

θ̂ψ(g,s) =
∫ B

0
θ0
ψ(a(y)g)ys−1dy

y
≤

∥∥∥∥θ0
ψ(a(y)g)

∥∥∥∥∞
∫ B

0
ys−2dy,

which is finite for Res > 1. Remark 3.7 and a simple change of variables, i.e. y 7→ yy′,
shows that θ̂ψ(a(y′)g,s) = y′1−sθ̂ψ(g,s), and the parity of θ̂ψ follows from that of ψ.

Thus, θ̂ψ lies in P(s).

3.3 Inner product formulae

In the last subsection we obtained a map from the incomplete theta series to the prin-
cipal series given by the Mellin transform. The goal now is to prove the Plancherel
theorem for this decomposition. In other words, we will prove for incomplete theta
series satisfying a certain condition the formula∥∥∥θψ∥∥∥2

Γ \G =
1

4πi

∫ ∞
0

∥∥∥θ̂ψ(∗,1/2 + it)
∥∥∥2

P(1/2+it)
dt. (3.2)
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To obtain this result, we will need formulae for different inner products and we will
need to analytically continue the Mellin transform θ̂ψ, which is a priori defined for
Res > 1, to the domain Res ≥ 1

2 .
First, we need to introduce the method of unfolding (or unwinding). This is a basic

and essential tool in the analytic theory of automorphic forms. Let f and g be com-
pactly supported functions7 on Γ \G. Then, Fubini’s theorem implies that∫

Γ \G
f (h)

∑
γ∈Γ∞\Γ

g(γh)dh =
∑

γ∈Γ∞\Γ

∫
Γ \G

f (h)g(γh)dh.

We may think of integrating over Γ \G as integrating over a fundamental domain F in
G. Using the invariance of the measure and the automorphy of f , we obtain∑

γ∈Γ∞\Γ

∫
F
f (h)g(γh)dh =

∑
γ∈Γ∞\Γ

∫
γ−1F

f (h)g(h)dh =
∫
Γ∞\G

f (h)g(h)dh,

since piecing together the translates γ−1F over γ ∈ Γ∞\Γ gives a fundamental domain
for Γ∞\G.

Theorem 3.9. Let ψ and ψ′ be two functions on N\G with θψ and θψ′ their associated
incomplete theta series, respectively. Then

(θψ ,θψ′ ) =
1

4πi

∫
K

∫
Res=σ

θ̂ψ(k,s)Lψ′ (k,s)dsdθ,

for some σ > 1.

Proof. Starting with the definition and unfolding, we have

(θψ ,θψ′ ) =
∫
Γ \G

θψ(g)θψ′ (g)dg =
1
2

∫
Γ∞\G

θψ(g)ψ′(g)dg

=
1
2

∫
K

∫
A

∫
Γ∞\N

θψ(nak)ψ′(nak)
dxdydθ

y2 =
1
2

∫
K

∫
A
θ0
ψ(ak)ψ′(ak)

dydθ

y2

=
1
2

∫
K

∫
A
θ0
ψ(ak)yσ−1 ·ψ′(ak)y−σ

dy

y
dθ.

Using the Mellin transform Plancherel formula (3.1), and taking into consideration the
slight modification of the Mellin transform of θψ, we obtain

(θψ ,θψ′ ) =
1

4πi

∫
K

∫ ∞
−∞
θ̂ψ(k,s)Lψ′ (k,s)dtdθ,

where t = Ims.

In the former theorem, let us now switch the integrals and notice that the K-integral
is now essentially the inner product of θ̂ψ and Lψ′ in the sense of the principal series.
In view of proving the Plancherel formula (3.2), we need to shift the contour of the
s-integral to Res = 1

2 and then relate the Mellin transform of ψ′ to θ̂ψ′ .

7We can ask for weaker conditions, as long as the application of Fubini’s theorem is valid.
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3.4 Eisenstein series

We now start start our investigation of the relation between the Mellin transforms Lψ
and θ̂ψ. The binding link is the Eisenstein series Eψ, which comes up naturally when
considering the K-integral in Theorem 3.9. Note first that Lψ′ (a(t)k,s) = tsLψ′ (k,s) =
tsLψ′ (k,s). We have∫

K
θ̂ψ(k,s)Lψ′ (k,s)dθ =

∫
K

∫
A
θ0
ψ(ak)ys−1dy

y
Lψ′ (k,s)dθ

=
∫
K

∫
A
θ0
ψ(ak)Lψ′ (ak,s)

dydθ

y2

=
∫
K

∫
A

∫
Γ∞\N

θψ(nak)Lψ′ (nak,s)
dxdydθ

y2

=
∫
Γ∞\G

θψ(g)Lψ′ (g,s)dg

=
∫
Γ \G

θψ(g)
∑

γ∈Γ∞\Γ
Lψ′ (γg,s)dg =

θψ ,∑
Γ∞\Γ

Lψ′ (γg,s)

 ,
by unfolding.

Definition 3.10. For a function ψ on N\G, we define the Eisenstein series Eψ(g,s) by

Eψ(g,s) =
∑

γ∈Γ∞\Γ
Lψ(γg,s).

The computation at the beginning of this section proves the following.

Lemma 3.11. We have ∫
K
θ̂ψ(k,s)Lψ′ (k,s)dθ = (θψ ,Eψ(s)),

wherever the expressions exist.

Another motivation for defining the Eisenstein series is that we can apply Mellin
inversion to ψ, so that, by interchanging sum and integral, the incomplete theta series
is equal to an integral over the Eisenstein series (see [God66, Section 4]). Thus, it is
clear that a good understanding of Eisenstein series would give us more information
about the incomplete theta series. This is precisely our strategy in the next sections.

For proving convergence of the Eisenstein series we need to note that the cosets
Γ∞\Γ are parametrised by the lower row. Indeed, fixing c and d, the integer solutions
to the equation ad − bc = 1 are {(a + kx,b + kd) | k ∈ Z}, for any given solution (a,b).
Accordingly, (

1 k
0 1

)(
a b
c d

)
=

(
a+ kc b+ kd
c d

)
.
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Notation 3.12. For functions ψ defined on N\G, we use square brackets to indicate that
we view ψ as a function on R2. That is, for g ∈ G,

ψ(g) = ψ[(0,1) · g].

Lemma 3.13. If ψ ∈ S(N\G), then the Eisenstein series Eψ(g,s) converges for Res > 1.

Proof. Shifting ψ by g, we may assume that g = e, i.e. the identity matrix. If we let
γ = ( ∗ ∗c d ), then

Lψ(γ,s) =
∫ ∞

0
ψ[(0,1)a(y)γ]y−s

dy

y

=
∫ ∞

0
ψ[c/
√
y,d/
√
y]y−s

dy

y

=
∫ ∞

0
ψ[c
√
y,d
√
y]ys

dy

y
.

We now need to sum over all (primitive) pairs (c,d) of integers. To control this sum,
we partition these pairs into annuli of integer radius and width 1, with respect to the
supremum norm on R2.

If Res =: σ , then8 ψ[ξ]� 1/‖ξ‖2(σ+ε)
∞ , for any ε > 0, since ψ is in the Schwartz space.

Let now m ∈ Z2 be in the annulus of radius n and width 1, i.e. n ≤ ‖m‖∞ < n + 1. We
split our integral Lψ(γ,s) into the sum∫ 1/n2

0
+
∫ ∞

1/n2
.

The first integral can be bounded by∫ 1/n2

0
|ψ[
√
ym]|yσ

dy

y
�
yσ

σ

∣∣∣∣1/n2

0
� 1
n2σ .

The second integral has the bound∫ ∞
1/n2
|ψ[
√
ym]|yσ

dy

y
�

∫ ∞
1/n2

yσ−1

yσ+ε‖m‖2σ+2ε dy�
1
n2σ .

There are � n such integer points m in the annulus. Thus, their contribution to the
Eisenstein series can be bounded by n1−2σ . Summing over all positive integers n proves
convergence in the given range.

8The following notation will be used throughout this essay. For two functions f and g we have f � g
if there is a constant C > 0 such that |f | ≤ C · g.
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3.5 The analytic continuation and functional equation

The most important aspect of Eisenstein series is their analytic continuation and their
functional equation. In our simplified case, i.e. for Γ = SL2(Z), these follow essentially
from an application of Poisson summation, similar to the Riemann zeta function. For
this, we need to look at the Fourier transform of ψ.

Viewing ψ as a function on R2, we have the usual Fourier transform

ψ̂(z) =
∫
R2
ψ[ξ]e−2πiz·ξdξ.

In our computations we will consider the function ξ 7→ ψ[ξyg]. By a change of vari-
ables, its Fourier transform is equal to the function z 7→ ψ̂[zy−1g−t] · y−2, where g−t is
the transpose of the inverse of g. Now the Poisson summation formula implies that∑

m∈Z2

ψ[myg] = y−2
∑
m∈Z2

ψ̂[my−1g−t].

We prove the analytic continuation of the Eisenstein series under the extra condition
that ψ̂[0] = 0. This restriction has an important meaning, namely that the incomplete
theta series θψ is orthogonal to the constant functions in H, as explained in section 4.1.

Theorem 3.14. Let ψ ∈ S(N\G) be an even function, such that ψ[0] = 0 and ψ̂[0] = 0.
Define

E∗ψ(g,s) = ζ(2s)Eψ(g,s),

where ζ is the meromorphic Riemann zeta function. Then E∗ is an entire function in s,
satisfying the functional equation

E∗ψ(g,s) = E∗
ψ̂

(g−t ,1− s).

Proof. As explained in the proof of Lemma 3.13, we have

Lψ(γg,s) =
∫ ∞

0
ψ[(
√
yc,
√
yd)g]ys

dy

y
,

for γ = ( ∗ ∗c d ) ∈ Γ , and

Eψ(g,s) =
∑

m∈Z2 prim

∫ ∞
0
ψ[m
√
yg]ys

dy

y
,

where the sum ranges over primitive lattice points. In the domain of absolute conver-
gence, we multiply Eψ by ζ(2s) =

∑
nn
−2s to obtain

ζ(2s)Eψ(g,s) =
∞∑
n=1

∑
m prim

∫ ∞
0
ψ[m
√
yg]

( y
n2

)s dy
y

=
∫ ∞

0

∑
m∈Z2

ψ[m
√
yg]ys

dy

y
,
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since any lattice point is a multiple of a primitive point. We now split the integral and
apply Poisson summation to get

ζ(2s)Eψ(g,s) =
∫ 1

0

∑
m∈Z2

ψ[m
√
yg]ys

dy

y
+
∫ ∞

1

∑
m∈Z2

ψ[m
√
yg]ys

dy

y

=
∫ 1

0

∑
m

ψ[m
√
y−1g−t]ys−1dy

y
+
∫ ∞

1

∑
m

ψ[m
√
yg]ys

dy

y

=
∫ ∞

1

∑
m

ψ[m
√
yg−t]y1−s dy

y
+
∫ ∞

1

∑
m

ψ[m
√
yg]ys

dy

y
.

Taking the transpose of the inverse is an involution, and ˆ̂ψ = ψ, since ψ is an even
function. Thus, the sum of integrals above is invariant under the change (ψ,g,s) 7→
(ψ̂,g−t ,1 − s). By our assumptions, the series in both integrals have vanishing terms
at m = 0. Since both functions ψ and ψ̂ are Schwartz functions, ψ[myg] � (‖m‖y)−k

for any k ∈ N, so that the series
∑
m,0ψ[myg] decays rapidly as a function of y, and

similarly for ψ̂. Therefore, both integrals converge absolutely for any s and define entire
functions.

We would like a more elegant and symmetric notation. Letting

w =
(

0 1
−1 0

)
,

we have g−t = wgw−1. Define ψ̌(g) = ψ̌[(0,1)g] = ψ̂[(0,1)gw]. Then,∑
m∈Z2

ψ̂[myg−t] =
∑
m∈Z2

ψ̂[mwg−tw−1yw] =
∑
m∈Z2

ψ̌[mgy],

where in the second step we make the variable change m 7→ mw, which merely per-
mutes Z2. Therefore, we may write the functional equation in Theorem 3.14 as

E∗ψ(g,s) = E∗
ψ̌

(g,1− s).

On the symmetry line Res = 1
2 , we can rewrite this as

ζ(2s)Eψ(g,s) = ζ(2s)Eψ̌(g,s). (3.3)

We shall now make use of these properties of Eisenstein series to prove the analytic
continuation of the Mellin transform θ̂ψ.

Theorem 3.15. Let ψ ∈ C∞c (N\G) be an even function, such that ψ̂[0] = 0. Then

θ̂ψ(g,s) = Lψ(g,1− s) +
ζ(2− 2s)
ζ(2s)

Lψ̌(g,1− s).

The right hand side of the identity is meromorphic on C and holomorphic in the region
Res ≥ 1/2, providing an analytic continuation for θ̂ψ.
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Proof. We prove this theorem in several steps. First, using the explicit formula in 3.3,
we find

θ̂ψ(g,s) =
∫ ∞

0
ψ(a(y)g)ys−1dy

y
+

∑
(c,d)=1
c>0

1
c2

∫ ∞
0

∫
N
ψ(wn(x)a(c2)a(y)g)dx · ys−1dy

y

= Lψ(g,1− s) +
∑

(c,d)=1
c>0

1
c2s

∫ ∫
ψ(wn(x)a(y)g)ys−1dx

dy

y
,

after a change of variables. Recall that the (c,d) sum ranges over positive integers c and
d modulo c, coprime to c. Therefore,∑

(c,d)=1
c>0

1
c2s =

∞∑
n=1

ϕ(n)
n2s =

ζ(2s − 1)
ζ(2s)

,

by the theory of arithmetic functions (here ϕ is Euler’s totient function) and L-series.
We further compute, by switching matrices and changing variables,∫

R

∫ ∞
0
ψ(wn(x)a(y)g)ys−1dy

y
dx =

∫
R

∫ ∞
0
ψ(wa(y)n(x)g)ys

dy

y
dx

=
∫
R

∫ ∞
0
ψ(a(y)wn(x)g)y−s

dy

y
dx =

∫
R
Lψ(wn(x)g,s)dx.

Therefore, for Res > 1 (where all the manipulations above make sense),

θ̂ψ(g,s) = Lψ(g,1− s) +
ζ(2s − 1)
ζ(2s)

∫
R
Lψ(wn(x)g)dx. (3.4)

We now need to obtain a different expression for the last term in the previous identity.
We consider the zero-th Fourier coefficient of the Eisenstein series

E0
ψ(g,s) =

∫
Γ∞\N

∑
γ∈Γ∞\Γ

Lψ(γn(x)g,s)dx,

and use essentially the same computations as in the proof of Lemma 3.3 to obtain

1
2
E0
ψ(g,s) = Lψ(g,s) +

∑
(c,d)=1
c>0

∫
N
Lψ(wa(c2)n(x)g,s)dx

= Lψ(g,s) +
∑

(c,d)=1
c>0

∫
N
Lψ(a(c−2)wn(x)g,s)dx

= Lψ(g,s) +
∑

(c,d)=1
c>0

1
c2s

∫
N
Lψ(wn(x)g,s)dx

= Lψ(g,s) +
ζ(2s − 1)
ζ(2s)

∫
N
Lψ(wn(x)g,s)dx.
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We may multiply the last identity by ζ(2s) and Theorem 3.14 implies that

1
2
ζ(2−2s)E0

ψ̌
(g,1−s) =

1
2
ζ(2s)E0

ψ(g,s) = ζ(2s)Lψ(g,s)+ζ(2s−1)
∫
R
Lψ(wn(x)g,s)dx (3.5)

is an entire function. On the other hand, the same computations as above show that

1
2
ζ(2− 2s)E0

ψ̌
(g,1− s) = ζ(2− 2s)Lψ̌(g,1− s) + ζ(1− 2s)

∫
N
Lψ̌(g,wn(x)g,1− s)dx.

We now distinguish functions on N\G by type, as in [Lan75]. A function f on
N\G has type s if the equation f (a(y)k(θ)) = ysf (k(θ)) holds for all arguments. Lemma
3.8 implies that θ̂ψ has type 1 − s and, by similar methods (essentially a change of
variables), one can see that Lψ(g,s) has type s. Therefore, equation (3.4) implies that
ζ(2s − 1)

∫
RLψ(wn(x)g)dx has type 1− s.

The basic observation that we will use here is that a decomposition into a sum of
functions with different types is unique. More precisely, if f1 and f2 have type s and
g1, g2 have type s′, then f1 +g1 = f2 +g2 implies that f1 = f2 and g1 = g2. This can readily
be seen since the equality of the two sums implies that ys(f1 − f2) = ys

′
(g2 − g1), and this

holds for any y.
Putting together equations (3.5) and (3.5) gives us such a decomposition into a sum

of functions with type 1 − s and s. Taking the last two paragraphs into consideration,
we can deduce that

ζ(2− 2s)Lψ̌(g,1− s) = ζ(2s − 1)
∫
R
Lψ(wn(x)g,s)dx,

which together with (3.4) proves the formula announced in the theorem.
Regarding the analytic continuation, note that Lemma 3.5 implies that the first term

in the formula, Lψ(g,1− s), is meromorphic on C and holomorphic on Res ≥ 0 (in fact,
it is holomorphic everywhere, since ψ has compact support). In the second term, the
Mellin transform Lψ̌(g,1 − s) is also meromorphic and holomorphic on Res ≥ 0. The

(simple) pole of ζ(2 − 2s) at s = 1
2 is killed by the pole of ζ(2s), so that the fraction

ζ(2 − 2s)/ζ(2s) is holomorphic for Res ≥ 1
2 , except at possible zeros of ζ(2s). It is a

classical result (i.e. the prime number theorem) that ζ(2s) has no zeros on the line
Res = 1

2 , which implies the desired holomorphy of θ̂ψ.

Recall our desire to prove the Plancherel formula (3.2) by shifting the contour in
Theorem 3.9. Having obtained the analytic continuation of θ̂ψ, we only need to prove
rapid decay on vertical strips. By Lemma 3.6, the Mellin transforms Lψ and Lψ̌ have
this property, and since

1
ζ(2s)

� log7 |t|,

for s = σ + it,σ ≥ 1
2 , we easily obtain the following corollary.

Corollary 3.16. If ψ ∈ C∞c (N\G) is an even function, then θ̂ψ is rapidly decreasing on any
vertical line, uniformly on finite strips, in the region Res ≥ 1

2 .
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3.6 The decomposition

We are now ready to prove the Plancherel formula (3.2).

Theorem 3.17. Let θψ be the incomplete theta series of an even function ψ ∈ C∞c (N\G) with
ψ̂[0] = 0. We have ∥∥∥θψ∥∥∥2

Γ \G =
1

4πi

∫
Res= 1

2
Ims>0

∥∥∥θ̂ψ(s)
∥∥∥2

K
ds.

Proof. We start with Theorem 3.9, i.e.∥∥∥θψ∥∥∥2
=

1
4πi

∫
K

∫
Res=σ

θ̂ψ(k,s)Lψ(k,s)dsdθ,

for some σ > 1. By the meromorphic continuation of the Mellin transform and its
properties, Theorem 3.15, Corollary 3.16, and Lemma 3.6, we may shift the contour of
integration to σ = 1

2 . Since the integrands are rapidly decreasing, we can interchange
integrals, and by Lemma 3.11 we obtain

4πi
∥∥∥θψ∥∥∥2

=
∫

Res= 1
2

∫
K
θ̂ψ(k,s)Lψ(k,s)dθds

=
∫

Ims>0
(θψ ,Eψ(s)) +

∫
Ims<0

(θψ ,Eψ(s))

=
∫

Ims>0
(θψ ,Eψ(s)) +

∫
Ims>0

(
θψ ,Eψ̌(s)ζ(2s)/ζ(2s)

)
=

∫
Ims>0

(
θψ ,Eψ(s) +Eψ̌(s)ζ(2s)/ζ(2s)

)
.

Reading the computations that lead up to Lemma 3.11, i.e. folding the integral, and
using the formula in Theorem 3.15, we get

4πi
∥∥∥θψ∥∥∥2

=
∫

Ims>0

∫
K
θ̂ψ(k,s)conj

(
Lψ(s) +

ζ(2s)
ζ(2s)

Lψ̌(s)
)
dθds

=
∫

Ims>0

∫
K
θ̂ψ(k,s)θ̂ψ(k,s)dθds =

∫
Ims>0

∥∥∥θ̂ψ(s)
∥∥∥2
,

keeping in mind that integration occurs on the line Res = 1
2 , where 1− s = s.

Returning to the right regular representation, we see that projecting the incomplete
theta series to its principal series components commutes with the representation. In-
deed,

ρ̂hθψ(g,s) =
∫ ∞

0
ρhθψ(a(y)g)ys−1dy

y
=

∫ ∞
0
θψ(a(y)gh)ys−1dy

y
= ρhθ̂ψ(g,s).

Denote by Θ0 the closed subspace of Θ generated by the incomplete theta series satis-
fying the conditions in Theorem 3.17. We may interpret Theorem 3.17 as decomposing
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the right regular representation on Θ0 as a ”continuous” sum of irreducible (unitary)
representations in the principal series.

Finally, we make note of an inversion formula for this decomposition. Unfortu-
nately, it only applies for incomplete theta series, not for all functions in Θ0. Recalling
the remark before equation (3.1) that the Mellin transform is the Fourier transform for
the multiplicative group R>0, we derived the Plancherel formula in this section by ma-
nipulating the Plancherel formula of the Mellin transform. There is a corresponding
inversion formula, as well, namely

ψ(a(y)g) =
1

2πi

∫
Res=σ

Lψ(g,s)ysds,

where Lψ converges on the line Res = σ . Applying this formula to the definition of
incomplete theta series and using the unfolding method we obtain

θψ(g) =
1

2πi

∑
γ∈Γ∞\Γ

∫
Res=σ

Lψ(g,s)ds =
1

2πi

∫
Res=σ

Eψ(g,s)ds, (3.6)

where σ > 1 for the convergence of the Eisenstein series.
As in [God66, §8], one can show that Eψ is rapidly decreasing on vertical strips for

Res ≥ 1/2 (using the representation of ζ(2s)Eψ as a Mellin transform in the proof of
Theorem 3.14). In this range Eψ has no poles by Theorem 3.14 (note that the pole of
ζ(2s) at s = 1/2 is cancelled, as in formula (3.3)). Thus, we can shift the integration
domain to Res = 1/2 and obtain an integral representation that can be interpreted as
an inversion formula. We thus have

θψ(g) =
1

2πi

∫
Res= 1

2

Eψ(g,s)ds =
1

4πi

∫
Res= 1

2

Eψ(g,s) +Eψ(g,1− s)ds

=
1

4πi

∫
Res= 1

2

Eψ(g,s) +Eψ(g,1− s) =
1

4πi

∫
Res= 1

2

∑
γ∈Γ∞\Γ

θ̂ψ(γg,s)ds.

The last step was obtained by summing the formula in Theorem 3.15 over the cosets
Γ∞\Γ and using the functional equation of the Eisenstein series.

4 The discrete part

We have dealt with the continuous part of the regular representation in the previous
section. The rest of the decomposition consists of a discrete direct sum. We have to un-
derstand the orthogonal complement of the space of incomplete theta seriesΘ, but also
what the complement of the subspace Θ0 is within Θ. An elegant way of investigating
this is to view some of our theory through the prism of operators, as in [Lan75].
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4.1 Some adjoint operators

We can view the incomplete theta series θψ as the image of the function ψ under the
operator θ. Similarly, denote T 0f = f 0 for an automorphic function f , so that T 0 is an
operator on H. These two operators are adjoint in the following sense.

Lemma 4.1. Let ψ be a smooth function on N\G with compact support and f ∈ H an
automorphic function. Then

(θψ , f )Γ \G =
1
2

(ψ,f 0)N\G.

In particular, if f is orthogonal to the space Θ, then f is a cusp form. Moreover, ψ̂[0] = 0 if
and only if θψ is orthogonal to the constant 1 function.

Proof. This is an application of the unfolding method, which is valid under our analytic
conditions. We have

(θψ , f )Γ \G =
∫
Γ \G

f (g)
∑

γ∈Γ∞\Γ
ψ(γg)dg

=
∫
Γ∞\G

ψ(g)f (g)dg

=
∫
N\G

∫
Γ∞\G

ψ(ng)f (ng)dndg

=
∫
N\G

ψ(g)f 0(g)dg = (ψ,f 0)N\G.

If (θψ , f ) = 0 for all ψ ∈ C∞c (N\G), then f 0 = 0, since we have (ψ,f 0) = 0 and C∞c (N\G)
is a dense subspace.

Finally, note that the invariant measure on N\G is the Lebesgue measure on R2, i.e.
dxdy in Iwasawa coordinates. Therefore,

ψ̂[0] =
∫
N\G

ψ(g)dg = (ψ,1)N\G = (ψ,T 0(1)) = (θψ ,1).

The desired orthogonality relation follows.

Denote the closed subspace of cusp forms by H0. We have just proved the orthogo-
nal decomposition

H = H0 ⊕ 〈1〉 ⊕Θ0.

Each subspace is invariant under the right regular representation. Indeed, it is readily
seen that the constant functions and H0 are invariant, respectively, directly from the
definitions. The space Θ0 is invariant, since the right regular representation is unitary
and the decomposition above is orthogonal.
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The space that still needs investigation is the subspace of cusp forms H0. Unfor-
tunately, we do not have a very explicit description of this space, but we can under-
stand something important about the regular representation on it. Namely, the regular
representation is completely reducible, i.e., it is the direct (orthogonal) sum of irre-
ducible representations. Put another way, the space H0 is the direct sum of irreducible
G-invariant subspaces9. To prove this, we introduce a related representation of the
space L1(G) on H0, for which we prove that it acts by compact operators. Using Dirac
sequences, we recover from this the desired decomposition for the regular representa-
tion.

4.2 Integrating representations and Dirac sequences

Given a unitary representation π of G on a Hilbert space H , we can produce a repre-
sentation of the space L1(G) by an integration process. In many applications, gaining
information about one of these representations leads to more insight into the other one.

For any φ ∈ Cc(G) and v ∈H define

π1(φ)v =
∫
G
φ(g)π(g)vdg.

This is a H-valued integral, which is defined just as in real or complex integration
theory (we use here the completeness of Hilbert spaces; see a discussion in [Rob83, pp.
54]). The integral exists given the continuity and compact support of φ. If we equip
Cc(G) with the convolution product, i.e.,

φ1 ∗φ2(g) =
∫
G
φ1(gh−1)φ2(h)dh,

then ρ̃ is an algebra homomorphismCc(G) −→ End(H). One can compute that
∥∥∥π1(φ)

∥∥∥ ≤∥∥∥φ∥∥∥
1
, so that the linear map π1(φ) is a bounded operator. The homomorphism π1 ex-

tends to a (continuous) representation L1(G) −→ B(H), where B(H) denotes the bounded
endomorphisms of H. Since π is unitary, one can compute that

π1(φ)∗ = π1(φ∗),

where φ∗(g) = φ(g−1).
Recall that our goal is to decompose H0 into G-invariant irreducible subspaces.

For making use of the integrated regular representation ρ1 to this end, note that a G-
invariant subspace is also L1(G)-invariant. Indeed, in general, the image of a vector
v under the integrated representation π1 is the limit of sums of images π(g)v with
certain coefficients. This limit lies in anyG-invariant subspace containing v, since these
subspaces are (by our convention) closed.

We postpone the investigation of the integrated regular representation ρ1 for the
next section. For proving the complete reducibility of H0 from properties of ρ1, we
need Dirac sequences.

9In this essay, a subspace of a Hilbert space is always meant to be closed.
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Definition 4.2. A Dirac sequence is a sequence of real-valued functions (ηn)n∈N ⊂ Cc(G),
such that all ηn are non-negative, ∫

G
ηn(g)dg = 1,

for all n, and for any neighbourhood U of the identity in G, the support of ηn is con-
tained in U for all n large enough.

The existence of Dirac sequences on G may be seen for instance using the local
Euclidean structure. Note as well that we can produce self-adjoint Dirac sequences, by
taking the sequence 1

2 (ηn+η∗n) for any given Dirac sequence ηn. Using Dirac sequences,
we can approximate the identity operator.

Lemma 4.3. If (ηn) is a Dirac sequence, then for each function f ∈H, the sequence ρ1(ηn)f
converges to f .

Proof. We have

ρ1(ηn)f − f =
∫
G
ηn(g)ρ(g)f − ηn(g)f dg

for any n. Given ε > 0, we can find a neighbourhood U of the identity in G, such that∥∥∥ρ(g)f − f
∥∥∥ < ε for all g ∈ U . By definition, for all n large enough, the support of ηn is

contained in U . For these n we have∥∥∥ρ1(ηn)f − f
∥∥∥ ≤ ∫

U
ηn(g)

∥∥∥ρ(g)f − f
∥∥∥dg ≤ ε∫

U
ηn(g) = ε.

This shows the desired convergence.

For the next theorem we need to recall some properties of compact operators. An
operator T : H −→ H on a Hilbert space H is called compact if the image of the unit
ball has compact closure. The operator T is called hermitian if it equals its adjoint T ∗.
The spectral theorem for compact operators (see [Lan75, I, §2]) states that the space H
decomposes as the orthogonal sum of the eigenspaces of a compact self-adjoint oper-
ator T over all its eigenvalues. Moreover the eigenvalues of T are discrete, except for
possible accumulation at 0, and the eigenspaces are finite dimensional.

Lemma 4.4. Let π be a unitary representation of G on a Hilbert space H . Assume that there
is a Dirac sequence (ηn) such that π1(ηn) is a self-adjoint compact operator for all n. Then H
is the direct sum of irreducible G-invariant subspaces.

Proof. We use the proof in [Bor08, Lemma 16.1]. We prove first that any G-invariant
subspace W , 0 contains an irreducible invariant subspace. For this we use our Dirac
sequence. Since π1(ηn) approximates the identity, there exists j such that π1(ηj ) is
nonzero on W . By the spectral theorem, we can find an eigenspace M , 0 of π1(ηj )
in W . Since M is finite dimensional, we can find a minimal subspace N among the
nonzero intersections ofM with G-invariant subspaces ofW . Let v ∈N be nonzero and
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let P be the smallest G-invariant subspace containing v. By the minimality properties,
it follows that N = P ∩M.

We now show that P is irreducible under the G-action. Let Q ⊂ P be a G-invariant
subspace and R the orthogonal complement of Q inside P . Then R is G-invariant as
well, since π1(ηj ) is self-adjoint. Thus, P ,Q,R are π1(ηj ) invariant (as in the discussion
at the beginning of the section). We have N = (Q∩M)⊕ (R∩M) and by minimality we
must have R = 0 or Q = 0. This implies the irreducibility of P .

We must now show that the entire space H decomposes into irreducible subspaces.
The set of subspaces that are decomposable into direct sums of irreducible subspaces
is non-empty by the preceding paragraphs and it is partially ordered by inclusion. By
Zorn’s lemma, we find a maximal such subspace V . If V ,H , let V ⊥ , 0 be the orthogo-
nal complement of V in H , which is also G-invariant, since π(g)∗ = π(g−1) by unitarity.
The argument above allows us to find an irreducible non-zero subspace P ⊂ V ⊥, which
could be added to V , producing a larger direct sum of irreducible subspaces — contra-
diction.

Finally, we prove that the multiplicities are finite. Let (σ,F) be an irreducible uni-
tary representation occurring in H with multiplicity nσ . We can find j such that σ1(ηj )
is nonzero on F. By compactness, let λ be a nonzero eigenvalue of σ1(ηj ) andm its mul-
tiplicity in F. For any representation σ̃ isomorphic to σ , λ is also an eigenvalue of σ̃1(ηj )
with multiplicity m. By construction, π1(ηj ) restricts to σ1(ηj ) and to the other isomor-
phic representations. Compactness implies that the dimension of the λ-eigenspace of
π1(ηj ) is finite, but also at least nσ ·m, by the above. Therefore, the multiplicity nσ is
finite.

To apply this lemma to our situation, we need to prove that the integrated regular
representation on the space of cusp forms H0 acts by compact operators.

4.3 A criterion for compactness

We prove that the operators ρ1(φ) are compact by showing they are integral operators
with square-integrable kernels. An integral operator T is given by an expression of the
form T f (g) =

∫
K(g,h)f (h)dh, where K is a measurable function in two variables and is

called the kernel. If K is square-integrable, then the operator T is compact (see [Lan75,
I, §3]). The criterion that we shall use is given in the following lemma.10

Lemma 4.5. Let X be a locally compact space with positive finite measure µ, such that the
σ -algebra of measurable sets is generated by a countable subalgebra. Let H be a subspace of
L2(X), and T a linear map from H into the space of bounded continuous functions on X.
Assume that there exists C > 0 such that

‖T f ‖∞ ≤ C‖f ‖2,
10This is proven here in a more general setting. The use of variables x,y should not remind the reader

of the Iwasawa decomposition.
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for all f ∈ H . Then T : H −→ L2(X) is an integral operator with square-integrable kernel
and thus compact.

Proof. Since T is continuous for the supremum norm on the bounded functions on X,
it follows that the evaluation map f 7→ T f (x) is continuous for all x ∈ X. By the Riesz
representation theorem, there exists a function kx ∈H such that for all f ∈H we have

T f (x) = (f ,kx) =
∫
f (y)kx(y)dy.

Since T f is continuous, it follows that x 7→ kx is weakly continuous as a map X −→H ⊂
L2(X), and thus weakly measurable. Each kx is square-integrable by construction.

We now prove that there exists K ∈ L2(X ×X) such that for almost all x ∈ X we have

kx(y) =K(x,y),

for all y outside a set of measure zero, depending on x. This will then prove the lemma.
We first show that the map x 7→ (kx, kx) is measurable. To see this, note that, under

our conditions on the measure, the space L2(X) is separable. Given a basis (uj ) of L2(X),
we have the Fourier expansion kx =

∑
aj(x)uj . Since kx is weakly measurable, it follows

that aj(x) is measurable for all j. Therefore,

(kx, kx) =
∑
|aj(x)|2

is a limit of measurable functions, whence measurable.
We have noted above that x 7→ (kx, kx) is also bounded and thus lies in L1(X). A

similar proof to that of the Cauchy-Schwarz inequality shows that∣∣∣∣∫ ∫
g(x,y)kx(y)dydx

∣∣∣∣2 ≤ ‖g‖22 ∫ ∫
|kx(y)|2dydx,

for any step function g on X×X with respect to products of measurable sets. Therefore,
the map

g 7→
∫ ∫

g(x,y)kx(y)dydx

is L2-continuous. The Riesz representation theorem implies that there exists a map
K ∈ L2(X ×X) such that for all characteristic functions ψ and ψ of measurable sets on X
we have ∫

φ(x)
∫
ψ(y)kx(y)dydx =

∫
φ(x)

∫
ψ(y)K(x,y)dydx,

by taking above g = φ⊗ψ.
Therefore, for each ψ there exists a measure-zero set Zψ such that if x < Zψ, then∫

ψ(y)kx(y)dy =
∫
ψ(y)K(x,y)dy.
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This relation holds for countably many ψ, for all x outside a set Z of measure zero. This
implies that, for x < Z,

kx(y) =K(x,y)

for all y outside a set of measure zero, depending on x. This finally proves the lemma.

4.4 Proof of compactness and of complete reducibility

We now prove that ρ1(φ), which we denote by ρ(φ) in this section for simplicity, is a
compact operator on H0 using the criterion in the previous section. Lemma 4.4 then
implies the complete reducibility of the space of cusp forms.

Theorem 4.6. If φ ∈ C∞c (G), then there exists Cφ > 0 such that for all cusp forms f ∈ H0

we have ∥∥∥ρ(φ)f
∥∥∥∞ ≤ Cφ‖f ‖2.

Proof. By a change of variables and the unfolding method, we have

ρ(φ)f (g) =
∫
G
φ(g−1h)f (h)dh

=
∫
Γ∞\G

∑
γ∈Γ∞

φ(g−1γh)f (γh)dh

=
∫
Γ∞\G
Kφ(g,h)f (h)dh,

where
Kφ(g,h) =

∑
m∈Z

φ
(
g−1

(
1 m

1

)
h
)
.

The function φg,h(t) = φ
(
g−1

(
1 t

1

)
h
)

is a smooth and compactly supported function on
R. We apply the Poisson summation formula to find that

Kφ(g,h) =
∑
m∈Z

φ̂g,h(m),

where φ̂g,h is the Fourier transform of φg,h. This is the expression that we shall bound
to prove the theorem.

To distinguish Iwasawa decompositions, we write g = ngagkg and h = nhahkh. If
ag = a(y), then we can compute (see Remark 3.7) that a−1

g n(t)ag = n(ty−1). Making a
variable change, this implies that

φ̂g,h(t) =
∫
R
φ(g−1n(t)h)e−2πiλtdt

=
∫
R
φ(g−1aga

−1
g n(t)aga

−1
g h)e−2πiλtdt

=
∫
R
φ(g−1agn(u)a−1

g h)e−2πiλyuydu.
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If we set ωg = g−1ag , ωg,h = a−1
g h and φω,g,h(t) = φ

(
ωgn(t)ωg,h

)
, then we have found that

φ̂g,h(λ) = yφ̂ω,g,h(λy).

We shall prove that the function φ̂g,h is smooth and compactly supported for the
parameters that are relevant for the bounding problem. First we reduce the domain of
the variable g to one that is more convenient technically. Let S be a so-called Siegel set
consisting of all g = n(x)a(y)k(θ) ∈ G such that n(x) lies in a compact set ΩN ⊂ N , e.g.
x ∈ [−1/2,1/2], and y ≥ c for some c > 0. Choosing c small enough, e.g. c = 1/2 in our
case, and considering that the image of S in the quotientG/K �H covers a fundamental
domain for Γ acting on H (recall Figure 1), we see that

Γ ·S = G.

For estimating ρ(φ)f (g) we may assume that g ∈ S, since f and thus ρ(φ)f is left Γ -
invariant.

We can assume without loss of generality that ωg = g−1ag lies in a compact set.
As Garrett puts it in [Gar], a point g in a Siegel set is well approximated by its A-
coordinate a(y) = ag . More precisely, if g ∈ S, then g ∈ agΩG for some compact set ΩG

of G, depending only on S. Indeed, the commutation relation in Remark 3.7 states that
n(x)a(y)K = a(y)n(xy−1)K . If n(x)a(y)k(θ) ∈ S, then x lies in a compact set and y ≥ c,
so that xy−1 also lies in a compact set that depends only on c, i.e., n(xy−1) lies in some
compactum Ω′N . Letting ΩG =Ω′NK proves the claim.

Similarly, without loss of generality, we can assume that ωg,h = a−1
g h lies in a com-

pact set. Indeed, for bounding the kernel K, we can assume that φ(g−1γh) , 0 for some
γ ∈ Γ∞. Shifting γ if necessary, we can assume that there is a compact domain ΩN ⊂ N
such that h ∈ΩNAK . Now if C is the compact support of φ, then

g−1γh = g−1aga
−1
g γnhaga

−1
g ahkh ∈ C.

As above we may assume that g−1ag lies in a compactum. Therefore,

a−1
g γnhag︸     ︷︷     ︸
∈N

·a−1
g ah︸︷︷︸
∈A

·kh

lies in some compact set, only depending on φ and S. Using the Iwasawa decomposi-
tion, we find that there is some compact ΩA such that ah ∈ ag ∈ΩA. Therefore

h ∈ΩNagΩAK = agΩ
′
NΩAK = agΩ

′
G,

where Ω′G is compact, again using that g ∈ S, and only depending on S and φ.
Returning to our bounding problem, sinceωg andωg,h lie in compact sets and φ has

a compact support, it follows that φω,g,h also has a compact support, and we easily see
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that it is a smooth function. Therefore, its Fourier transform φ̂ω,g,h is in the Schwartz
class, and for any positive integer k there is a constant C(φ,S, k) > 0 such that

|φ̂ω,g,h(λ)| ≤ C(φ,S, k)|λ|−k .

This inequality can be deduced explicitly, too, by using partial integration k times. We
now find the desired estimate

|φ̂g,h(λ)| = |yφ̂ω,g,h(λy)| ≤ C(φ,S, k)|λ|−ky1−k . (4.1)

To obtain a bound for

ρ(φ)f (g) =
∫
Γ∞\G

∑
m∈Z

φ̂g,h(m)f (h)dh,

we now finally use the cusp condition

f 0(h) =
∫
Γ∞\N

f (nh)dn = 0,

for all h, i.e. f ∈H0. This condition implies that the m = 0 term in ρ(φ)f (g) vanishes.
Indeed, unfolding the first integral, the m = 0 term is equal to∫

Γ∞\G

∫
N
φ(g−1nh)f (h)dndh =

∫
N\G

∫
Γ∞\N

∫
N
φ(g−1nn′h)f (n′h)dndn′dh.

Making the variable change nn′ 7→ n, under which dn is invariant, this expression is
equal to ∫

N\G

(∫
Γ∞\N

f (n′h)dn′
)
·
(∫

N
φ(g−1nh)dn

)
dh = 0,

by the cusp condition.
For the terms where m , 0, we use the bound in (4.1). Recall that for ag = a(y) and

g in a fixed Siegel set S, if φ(g−1Γ∞h) is nonzero, then h ∈ agΩG for some compact ΩG

depending on φ and S. We can rewrite this as h ∈ ΩNagΩAK by the same techniques
above, where ΩN ⊂N and ΩA ⊂ A are compact. For any positive k we have

ρ(φ)f (g)�
∑
m,0

∫
Γ∞\ΩN agΩAK

y1−k
∑
m,0

|m|−k |f (h)|dh

� y1−k
∫
Γ∞\ΩN agΩAK

|f (h)|dh

� y1−kµ(Γ \G)1/2‖f ‖2,

where the last inequality employed Cauchy-Schwarz. For the change of integration
domain, note that µ(ΩNagΩAK) is finite, since y is bounded from below (in the Siegel
set). Thus, this domain is covered by a finite number of shifted copies of a fundamental
domain for Γ \G. Therefore, we can bound the original integral by a constant times the
integral over Γ \G.

The last computation proves the desired bound, since µ(Γ \G) is finite and y is
bounded from below in the Siegel set.
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5 Concluding remarks

5.1 Relation to the hyperbolic Laplacian

The representation theoretic approach that was taken in this essay is very much related
to the spectral theory of the hyperbolic Laplacian. We can restrict the space L2(Γ \G)
to functions invariant under K from the right. These functions then descend to the
the space L2(Γ \G/K). Since G/K � H, these are functions on the quotient Γ \H. On the
upper half plane, the hyperbolic Laplacian is the differential operator

∆ = −y2
(
∂2

∂x2 +
∂2

∂y2

)
.

It is invariant under the Möbius transformations of SL2(R) and descends to the quotient
Γ \H. The Laplacian is a priori defined on a dense subspace of L2(Γ \H), but it has a
Friedrichs extension to the whole Hilbert space. It can be shown that ∆ commutes with
the right regular representation of G, and thus, by Schur’s lemma, the Laplacian acts
by scalars on irreducible G-invariant subspaces.

We can define a similar operator for the space L2(Γ \G), called the Casimir operator.
In Iwasawa coordinates it takes the form

C = −y2
(
∂2

∂x2 +
∂2

∂y2

)
− y ∂2

∂x∂θ
.

It also extends to the whole of L2(Γ \G), acting as scalars on irreducible G-invariant
subspaces. In fact, there is an isomorphism between eigenfunctions of ∆ and eigen-
functions of C, as explained in [Gel75, Example 2.3].

The spectral decomposition of the Laplacian or of the Casimir operator is analogous
to the decomposition of the regular representation. This is essentially because K is
compact and, thus, the regular representation restricted to K is completely reducible
by Peter-Weyl (see a more in-depth discussion in [Gel75, §2]). In the discrete part of the
decomposition for the Laplacian, there are the constant functions and the space of cusp
forms, which has an orthonormal basis {ei | i ∈ N} of eigenfunctions. The continuous
part is described by Eisenstein series

Es(z) =
∑

γ∈Γ∞\Γ
Im(γz)s,

which are eigenfunctions of ∆, but not square-integrable. A function f ∈ L2(Γ \H) can
be decomposed as

f =
∑
i∈N

(f , ei)ei + (f ,
√

3/π)
√

3/π+
1

4πi

∫
Res= 1

2

(f ,Es)Esds,

as in [Gol15, Thm. 3.16.1]. Note here that
√

3/π is there to normalise the constant
function, since the volume of SL2(Z)\H is π/3.
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It is worth stating an important conjecture of Selberg regarding the eigenvalues of
the Laplacian on Γ \H, now for any congruence subgroup Γ ⊂ SL2(Z). Selberg proposed
that all eigenvalues (which are real because ∆ is self-adjoint) are greater or equal to
1/4. This has not yet been proven in general, but for Γ = SL2(Z) we have stronger lower
bounds, such as 3π2/2 (see [Gol15, Thm. 3.7.2]). For applications and more details in
the general case, see [LRS95].

5.2 Other subgroups

The spectral decomposition presented in this essay can be done analogously for other
similar subgroups (such as congruence subgroups), as in [Kub73] for instance. We shall
only describe here the essential differences.

As in [Kub73], we assume Γ ⊂ SL2(R) is a discrete group, such that the stabiliser of
∞ in the action on H is Γ∞ = SL2(Z) ∩N , as defined above (such a group is called by
Kubota reduced at infinity). The group Γ may have several inequivalent cusps, that is,
Γ -orbits of points in R∪ {∞} with infinite cyclic stabiliser in Γ .

Let κ1, . . .κn be a complete set of inequivalent cusps for Γ . Note that we assume
finiteness of this set, i.e. n ∈ N, which is true for congruence subgroups. Since we as-
sume infinity is a cusp, let κ1 correspond to∞. For each cusp, we associate a stabiliser
of the cusp Γi = γiΓ∞γ

−1
i . For each cusp we can then define Eisenstein series and incom-

plete theta series by swapping Γ∞ in the original definition for Γi . For example, at the
cusp κi , we have

Ei,ψ(g,s) =
∑
γ∈Γi

Lψ(γ−1
i γg),

and similarly for θi,ψ. At each cusp, we have a Fourier expansion (as in the classical
theory), and the zero-th coefficient of an incomplete theta series at κj is given by

θ0
ij,ψ(g) =

∫ 1

0
θi,ψ(γjn(x)g)dx.

Accordingly we define the Mellin transforms �θij,ψ of the zero-th Fourier coefficients.
The functional equation of the Eisenstein series changes to one relating the entire

vector (E1,ψ , . . . ,En,ψ) to the vector (E1,ψ̂ , . . . ,En,ψ̂) by a matrix depending on s, as in
[Kub73, p. 74]. The Plancherel formula, giving the continuous spectrum, changes as
well to ∥∥∥θi,ψ∥∥∥2

Γ \G =
1

4πi

n∑
j=1

∫
Res= 1

2
Ims>0

∥∥∥∥�θij,ψ(s)
∥∥∥∥2

K
ds.

More details are provided in [Kub73, pp. 84].
As in the case of Γ = SL2(Z), the Plancherel formula only holds for certain functions

ψ. The space of incomplete theta series decomposes into the subspace Θ0 where the
formula holds and an orthogonal complement, Θ̂, which is equal to the constant func-
tions when Γ = SL2(Z). More generally, this complement is generated by the residues
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of Eisenstein series. Without expanding on technical details, we can at least make an
argument for the plausibility of the last statement using the formula (3.6), that is

θψ(g) =
1

2πi

∫
Res=σ

Eψ(g,s)ds.

Intuitively speaking, to obtain the Plancherel or inversion formula for the continuous
part, we need to shift the contour of integration to Res = 1/2. Without any conditions
on ψ, the Eisenstein series Eψ may have poles in 1/2 ≤ Res ≤ 1, which we pick up as
residues when shifting the contour. For examples, if Γ = SL2(Z), then the Eisenstein
series may have a pole at s = 1, with residue a constant function. The technical details
are sketched out in [Kub73, pp. 92].

The main theorem regarding this decomposition is [Kub73, Theorem 7.5.7], which
states that the space Θ̂ is a finite sum of irreducible subspaces for the regular repre-
sentation. As with the decomposition for SL2(Z), in the more general case, the residues
of the Eisenstein series play an analogous role in the spectral decomposition of the
hyperbolic Laplacian (see [Gar18, Corollary 1.14.1]).

References

[Bor08] Armand Borel. Automorphic forms on SL2 (R). Cambridge University Press,
2008.

[Gar] Paul Garrett. Decomposition and estimates for cuspforms. url: http://www-
users.math.umn.edu/˜garrett/m/v/cfms_decompn.pdf.

[Gar18] Paul Garrett. Modern Analysis of Automorphic Forms By Example. Vol. 1. Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, 2018.
doi: 10.1017/9781316650332.

[Gel75] Stephen Gelbart. Automorphic Forms on Adele Groups. (AM-83). Princeton
University Press, 1975. isbn: 9780691081564. url: http://www.jstor.org/
stable/j.ctt1b7x82z.

[God66] R. Godement. “The decomposition of L2(G/Γ ) for Γ = SL(2,Z)”. In: Proceed-
ings of Symposia in Pure Mathematics 9 (1966), 211––224. doi: 10 . 1090 /
pspum/009/0210827.

[Gol15] Dorian M. Goldfeld. Automorphic forms and L-functions for the group GL(n,
R). Cambridge University Press, 2015.

[Iwa02] Henryk Iwaniec. Spectral methods of automorphic forms. 2nd ed. American
Mathematical Society, 2002.

[Kub73] Tomio Kubota. Elementary theory of Eisenstein series. Kodansha, 1973.

[Lan75] Serge Lang. SL2(R). Addison-Wesley, 1975.

[LRS95] W. Luo, Z. Rudnik, and P. Sarnak. “On Selberg’s eigenvalue conjecture”. In:
Geometric and Functional Analysis 5 (1995), pp. 387–401. doi: 10 . 1007 /
BF01895672.

32

http://www-users.math.umn.edu/~garrett/m/v/cfms_decompn.pdf
http://www-users.math.umn.edu/~garrett/m/v/cfms_decompn.pdf
https://doi.org/10.1017/9781316650332
http://www.jstor.org/stable/j.ctt1b7x82z
http://www.jstor.org/stable/j.ctt1b7x82z
https://doi.org/10.1090/pspum/009/0210827
https://doi.org/10.1090/pspum/009/0210827
https://doi.org/10.1007/BF01895672
https://doi.org/10.1007/BF01895672


[Rob83] Alain Robert. Introduction to the Representation Theory of Compact and Locally
Compact Groups. London Mathematical Society Lecture Note Series. Cam-
bridge University Press, 1983. doi: 10.1017/CBO9780511661891.

33

https://doi.org/10.1017/CBO9780511661891

	Introduction
	The basics of the group G and some representations
	The action on the upper half plane and group decompositions
	Automorphic functions
	The principal series

	The continuous part
	Incomplete theta series
	The Mellin transform
	Inner product formulae
	Eisenstein series
	The analytic continuation and functional equation
	The decomposition

	The discrete part
	Some adjoint operators
	Integrating representations and Dirac sequences
	A criterion for compactness
	Proof of compactness and of complete reducibility

	Concluding remarks
	Relation to the hyperbolic Laplacian
	Other subgroups


