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1 Introduction

One of the most famous results in elementary number theory is Fermat’s theorem on
sums of two squares. It states that an odd prime is the sum of two squares if and only
if it is congruent to 1 modulo 4. This is one of the earliest examples of the study of
integral binary quadratic forms, i.e. quadratic polynomials in two variables of the shape

f(x, y) = ax2 + bxy + cy2

with integer coefficients. Some of the brightest mathematicians have contributed to this
theory since then, including Euler, Lagrange, Gauß, and many others.

The systematic approach began with Lagrange, who introduced many of the con-
cepts presented in the second chapter of this thesis. The elementary theory of binary
quadratic forms then culminated with Gauß’ great insights published in his monumental
book, Disquisitiones Arithmeticae. Subsequently, it was discovered that this theory is
intimately connected to the arithmetic of ideals in quadratic number fields. This abun-
dance of structure is what allowed mathematicians to prove very satisfying and, indeed,
beautiful results about binary quadratic forms.

Although this theory is already very rich and mature, there is still progress being
made currently. Many applications have been found, one of the more recent and im-
portant ones being cryptography. Some of these new results and applications concern a
simple question: How many integers can be written as ax2 + bxy+ cy2 for some integers
x and y? This is the main topic of this thesis.

To answer the question, we will first need an overview of the theory of integral
binary quadratic forms and the arithmetic of ideals in quadratic orders, which is given
in chapters 2 and 3, respectively. The tools that we need for our purposes can be
understood with very few prerequisites. The lure of a self-contained and complete thesis
ultimately led to a lengthier treatment of the theory due to giving almost all proofs
fully. A reader inexperienced in algebraic number theory will thus be provided with a
thorough but relatively concise (in comparison to most books on the topic) introduction
necessary for the rest of this thesis. The already knowledgeable reader might enjoy the
simplified exposition of more general concepts and theorems applied to the imaginary
quadratic case.

The fourth chapter is dedicated to the main theorem of this thesis. It is a gen-
eralization of Theorem 2 from Valentin Blomer and Andrew Granville’s paper [BG06]
on representation numbers of quadratic forms. Let R(g, n) be the number of integer
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solutions to the equation
n = g(x, y),

where g(x, y) = ax2 + bxy + cy2 is an integral binary quadratic form. Suppose the
discriminant of g, defined as

D := b2 − 4ac,

is negative and that a is positive. For a non-negative exponent β, the main theorem
asserts the following asymptotic:

∑
1≤n≤x
n∈N

R(g, n)β ∼ Cg,β
x√
|D|

,

where Cg,β is a positive constant depending on g and β.
This has been proved by Blomer and Granville when D is essentially square-free, i.e.

a so-called fundamental discriminant, and generalized to arbitrary negative discriminants
in this thesis. The result should be appreciated with care, since it only holds if x is not
too big in relation to |D|. Indeed, the behaviour changes in different ranges of x, as it
is described in [BG06].

Chapter 4 analyses in its first section some of these limitations and shortcomings of
the main theorem. Although further study is needed, the result is strong enough to be
applied successfully in a counting problem involving integral Apollonian circle packings.
These are fractal-like configurations of circles, all of which have integer curvatures. The
question is whether the set of all curvatures found in a given circle packing has positive
density inside the natural numbers. Jean Bourgain and Elena Fuchs showed in [BF11]
that the answer is affirmative.

Indeed, one can show that the set of curvatures in an integral circle packing contains
the set of numbers properly represented by some shifted binary quadratic forms. A
quadratic form g represents an integer n properly if there exist integers x and y, such
that g(x, y) = n, with the extra condition that x and y are coprime. This suggests
that we would need a analogue of the main theorem for proper representations. The
difficulties of producing such a result are discussed in the second section of chapter 4.
Nevertheless, we will gather enough estimates to prove the positive density theorem of
Bourgain and Fuchs in the last section of this thesis.
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2 Binary quadratic forms

This section presents the basic theory of binary quadratic forms. The exposition is
mainly distilled from the books [Cox13] and [Zag81].

2.1 Equivalence of forms and reduction

Definition 2.1. An (integral binary quadratic) form is a homogeneous quadratic poly-
nomial in two variables

f(x, y) = ax2 + bxy + cy2

with integer coefficients. We call D = Df = b2 − 4ac ∈ Z the discriminant of f and we
say that f is a primitive form if gcd(a, b, c) = 1.

From this definition we infer directly that the discriminant of a form can only be
congruent to 0 or 1 modulo 4. Moreover, an arbitrary form is obviously equal to a
multiple of a primitive form.

Definition 2.2. A numberD ∈ Z is called a fundamental discriminant ifD ≡ 1 (mod 4)
and D is squarefree or if D ≡ 0 (mod 4), D/4 is squarefree and D/4 ≡ 2 or 3 (mod 4).
In general, an integer D 6= 0 is called a (quadratic) discriminant if D ≡ 0, 1 (mod 4).
Any discriminant is the unique product of a fundamental discriminant and a square: if
we write D = D0f

2
D with D0 a fundamental discriminant and fD ∈ Z, then we call fD

the conductor of D.

The implicit assertion in this definition is seen directly by simple manipulations for
which we refer to [HK13, Theorem 1.1.6].

Remark 2.3. Calling each integer D ≡ 0, 1 (mod 4) a discriminant is reasonable, since
there are always forms such that D is their discriminant. Indeed, in each case we have
the form

f(x, y) =


x2 − D

4 y
2, D ≡ 0 (mod 4),

x2 − xy + 1−D
4 y2, D ≡ 1 (mod 4),

which is called the principal form of discriminant D.

In his famous book, Disquisitiones arithmeticae [Gau01], Gauß introduces an equiva-
lence relation on the set of quadratic forms1, which lies at the foundation of this theory.

1To be precise, Gauß only considered forms with an even middle coefficient. Nevertheless, he was
the first to understand the importance of proper equivalence. Before him, Lagrange had used a weaker
notion of equivalence, where ps − qr in Definition 2.4 was allowed to be −1 as well. Gauß makes this
distinction in [Gau01, §157, §158] and assures us that its usefulness will soon reveal itself.
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Definition 2.4. We say that two forms f and g are (properly) equivalent if there exist
integers p, q, r and s such that

f(x, y) = g(px+ qy, rx+ sy) and ps− qr = 1.

We may rephrase this last definition by noting that two forms are equivalent if and
only if they lie in the same orbit with respect to the action of the group SL2(Z) defined
by (

p q

r s

)
f(x, y) = f(px+ qy, rx+ sy). (2.1)

One can easily check that this is indeed a group action and, thus, equivalence of forms
is an equivalence relation. Simple computations show that the discriminant is invariant
under this action and that forms equivalent to a primitive form are primitive as well.

Lemma 2.5. Let f(x, y) = ax2 + bxy+ cy2 be a form with discriminant D < 0 and first
coefficient a > 0. Then f(x, y) > 0 for all pairs of integers (x, y) 6= (0, 0). Moreover, if
g(x, y) = a′x2 + b′xy + c′y2 is equivalent to f , then a′ > 0.

Proof. The first claim follows from the identity

4af(x, y) = (2ax+ by)2 −Dy2. (2.2)

For the second assertion notice that if(
p q

r s

)
f(x, y) = a′x2 + b′xy + c′y2,

(
p q

r s

)
∈ SL2(Z),

then a′ = f(p, r). Since ps−qr = 1, it follows that (p, r) 6= (0, 0) and therefore a′ > 0.

Thus, the action of SL2(Z) is well-defined if we restrict to primitive forms with
negative discriminant and positive first coefficient.

Definition 2.6. A form f = ax2 + bxy + cy2 with discriminant D < 0 is called positive
definite if a > 0 and negative definite if a < 0. We denote the set of equivalence classes
of primitive positive definite forms with fixed discriminant D by FD and denote the class
of f by [f ] = [a, b, c]. We call FD the form class group.

Remark 2.7. We have not yet shown that the form class group has indeed a suitable group
structure. One can introduce the so-called Dirichlet composition of forms explicitly (see
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[Cox13, Chapter 3]), but we shall take a more abstract route and transfer the group
structure from the ideal class group to FD in section 3.4.

Clearly, a form f is positive definite if and only if the form −f is negative definite.
Thus, without loss of generality, we may from now on restrict our considerations to
primitive positive definite forms, which have more robust properties. The theory of
forms with positive discriminant, called indefinite forms, can also be developed in an
analogous way, but there are fundamental dissimilarities, the treatment of which would
exceed the scope of this thesis.

The following definition and theorem give a set of representatives for FD.

Definition 2.8. A positive definite form f = ax2 + bxy + c2 of discriminant D < 0 is
called reduced if either −a < b ≤ a < c or 0 ≤ b ≤ a = c.

Theorem 2.9. Let D < 0 be a quadratic discriminant. Every class F ∈ FD contains
exactly one reduced form.

Proof. We only show here that every given primitive positive definite form is equivalent
to one satisfying |b| ≤ a ≤ c. From the equivalence class of the given form, choose
f(x, y) = ax2 + bxy + cy2 such that |b| is minimal. For any integer m, the form

g(x, y) = f(x+my, y) = ax2 + (2am+ b)xy + c′y2

is equivalent to f . If a < |b|, then we can choose m such that |2am + b| < |b|, which
contradicts the choice of b. Thus |b| ≤ a and |b| ≤ c follows analogously. If a > c, we
interchange the outer coefficients by the transformation (x, y) 7→ (−y, x).

This first step is enough to prove Corollary 2.11. For the rest of the proof, including
uniqueness, we refer to Theorem 2.8 in [Cox13].

Remark 2.10. If f(x, y) = ax2 + bxy + cy2 is a reduced positive definite form, then
a = minx,y∈Z f(x, y). Indeed, this follows from the inequality

ax2 + bxy + cy2 ≥ a(x2 + y2) + bxy ≥ a · 2|xy| − |bxy| ≥ a|xy|.

Corollary 2.11. Let D < 0 be a quadratic discriminant. The number of classes of
positive definite primitive forms, i.e. the cardinality of FD, is finite.

Proof. The claim follows from Theorem 2.9 by proving there are only finitely many
reduced forms. Indeed, for f = ax2 + bxy + cy2 reduced we have

|D| = −D = 4ac− b2 ≥ 4a2 − a2 = 3a2. (2.3)
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Thus, there are only finitely many possible values for a. Since |b| ≤ a and c is determined
by a and b, the claim follows.

The equivalence notion thus reduces the infinite number of forms having a given
discriminant to a finite set, which, although still difficult to understand, is much more
approachable. The usefulness of the equivalence of forms will become even more apparent
as the theory develops.

2.2 Representation of integers

Definition 2.12. If f is a form and n an integer, we say that f represents n if there
exist x, y ∈ Z such that f(x, y) = n. If, in addition, x and y are coprime, then we say
that f properly represents n.

Remark 2.13. A key observation is that, for an integer n and a matrix γ = ( p qr s ) ∈ SL2(Z),
the map (

x

y

)
7→ γ ·

(
x

y

)
=
(
xp+ yq

xr + ys

)

restricts to a bijection from the set of representations {(x, y) ∈ Z2 | (γf)(x, y) = n} onto
the set of representations {(x′, y′) ∈ Z2 | f(x′, y′) = n}. This follows from (2.1) and the
fact that SL2(Z) matrices are invertible. We can see easily that this bijection restricts
to proper representations. Thus, all forms in a particular class (properly) represent the
same integers.

In general, an arbitrary integer could be represented by a form in more than one
way, that is, with different pairs (x, y). How many such pairs is a central and very old
question in the theory of quadratic forms.

Definition 2.14. For n ∈ N and f a binary quadratic form we define the number of
representations as

R(f, n) = #{(x, y) ∈ Z2 : f(x, y) = n}.

For a class C ∈ FD, we set R(C, n) = R(f, n) for some f ∈ C. By Remark 2.13, this is
well-defined. Similarly, we define

R∗(f, n) = #{(x, y) ∈ Z2 : f(x, y) = n, gcd(x, y) = 1}

to be the number of proper representations.

The following results about the representation of integers will be used later on.
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Lemma 2.15. A form f properly represents an integer m if and only if f is equivalent
to the form mx2 + b′xy + c′y2 for some b′, c′ ∈ Z.

Proof. Suppose that f(p, r) = m for coprime integers p and r. By Bézout’s lemma we
find q, s ∈ Z such that pq − rs = 1. If f(x, y) = ax2 + bxy + cy2, then

f(px+ qy, rx+ sy) = f(p, r)x2 +Bxy + Cxy,

for some B,C ∈ Z. Conversely, the form mx2 + Bxy + Cy2 properly represents m by
(x, y) = (1, 0) and the claim follows by Remark 2.13.

Lemma 2.16. For an integer m, a primitive form f properly represents at least one
integer coprime to m.

Proof. If f(x, y) = ax2+bxy+cy2 with gcd(a, b, c) = 1 and p is a prime, then at least one
of the values f(1, 0), f(0, 1) and f(1, 1) is coprime to p. Thus, for each prime dividing m
we have congruence conditions on x and y such that p does not divide f(x, y). The claim
now follows by combining these conditions using Chinese Remainder Theorem.
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3 Orders in quadratic fields

Binary quadratic forms are intimately connected to quadratic number fields, i.e. quadratic
extensions of the field of rational numbers. We will first look at particular subrings called
orders and study the arithmetic of their ideals. Section 3.4 is the highlight of this chap-
ter, showing the correspondence between forms and ideals of orders. We will later make
use of this connection and apply the tools and notions presented below to obtain more
insight into forms and the representation of integers.

The theory developed here is mostly self-contained, in the sense that knowledge of
algebraic number theory is not necessary. Nevertheless, I do assume some acquaintance
with linear algebra over modules, for which some references from Serge Lang’s standard
textbook [Lan02] are given. The exposition is inspired by the books [Cox13], [BS66],
[HK13], and the online notes of Keith Conrad. Most of the proofs in this section are
adapted versions or a combination of the ones found in the references.

3.1 Basic definitions

Remark 3.1. A quadratic number field can be written uniquely as Q(
√
D0) with D0 a

fundamental discriminant (see [HK13, Theorem 1.1.9]). For any D = D0f
2 we have

Q(
√
D) = Q(

√
D0).

Definition 3.2. A lattice in a quadratic number field K is a subset L ⊂ K that is a
free Z-module of rank 2. Equivalently, a lattice L ⊂ K is a finitely generated Z-module
that contains a Q-basis of K. An order O of K is a lattice that is also a subring of K
containing 1.

Remark 3.3. The equivalence of the definitions is shown in [HK13, p. 115]. For a lattice
L we shall write

L = [ω1, ω2] = Zω1 ⊕ Zω2,

where (ω1, ω2) is a basis of L.

Definition 3.4. Let D be a quadratic discriminant, K = Q(
√
D) and D0 the funda-

mental discriminant associated to D. Define

ωD = σD +
√
D

2 , where σD =

0, D ≡ 0 (mod 4),

1, D ≡ 1 (mod 4).

Then we call OD = [1, ωD] the quadratic order of discriminant D and we call OK = OD0

the maximal order or the ring of integers of K.
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One sees quickly that OD is indeed an order in K and the following theorems justify
the terminology introduced above and the usage of definite articles.

Theorem 3.5. Let D be a quadratic discriminant and K = Q(
√
D). Then the following

assertions hold.

1. If f ∈ N, then ODf2 = [1, fωD] = Z + fOD ⊂ OD and [OD : ODf2 ] = f . In
particular, OD ⊂ OK and [OK : OD] = fD is the conductor of D.

2. Let D′ be a quadratic discriminant. Then OD′ is a subset of OD if and only if
D′ = Df2 for some f ∈ N. In particular, OD = OD′ if and only if D = D′.

Proof. 1. Let f ∈ N. The identities

ωDf2 =



√
Df2

2 = fωD, D ≡ 0 (mod 4),√
Df2

2 = −f2 + fωD, D ≡ 1 (mod 4), f ≡ 0 (mod 2),

1 +
√
Df2

2 = 1− f
2 + fωD, D ≡ 1 (mod 4), f ≡ 1 (mod 2),

show that ODf2 = [1, ωDf2 ] = [1, fωD] ⊂ OD. The rest of the assertions now follows
easily.

2. If D′ = Df2, then OD′ ⊂ OD by 1. Conversely, if OD′ ⊂ OD and f = [OD : OD′ ],
then OD′ is an order in K and, by 1, we see that fD′ = [OK : OD′ ] = [OK : OD]f = fDf .
Hence, we obtain D′ = D0f

2
D′ = D0f

2
Df

2 = Df2.

Definition 3.6. Let K = Q(
√
D) be a quadratic number field.

1. An element ξ ∈ K is called an algebraic integer if the minimal polynomial of ξ over
Q, i.e. the monic polynomial of least degree with rational coefficients for which ξ

is a root, has integer coefficients. In this context, we shall refer to numbers in Z
as rational integers.

2. Let α 7→ α′ be the nontrivial automorphism of K, that is, a + b
√
D 7→ a − b

√
D.

We define the norm of α ∈ K as N(α) = αα′ and its trace as T (α) = α+ α′.

Theorem 3.7. Let K be a quadratic field. Then ξ ∈ K is an algebraic integer if and
only if ξ ∈ OK .

Proof. Let K = Q(D) with D a fundamental discriminant. Let ξ = a+ b
√
D ∈ K with

a, b ∈ Q. If b = 0, then ξ is the root of the irreducible polynomial X − a and ξ is an
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algebraic integer if and only if ξ ∈ Z ⊂ OK . If b 6= 0, then ξ is the root of the irreducible
polynomial X2− 2aX + a2−Db2 = X2−T (ξ)X +N(ξ). Thus, ξ is an algebraic integer
if and only if 2a ∈ Z and a2 −Db2 ∈ Z. Using that D is of the form 2rN with r = 2 or
3 and N squarefree, we see that this last condition is equivalent to ξ ∈ OK .

Theorem 3.8. If O is an order of the quadratic number field K, then there exists a
quadratic discriminant D, such that O = OD.

Proof. The quotient of free Z-modules of equal rank is finite (see [BS66, Lemma 1,
Chap. 2, Sec. 6]; this also follows, for instance, from the elementary divisor theorem
in [Lan02, Chap. III, Theorem 7.8]). Thus, [OK : O] = f ∈ N and then fOK ⊂ O.
It follows that Z + fOK ⊂ O and by Theorem 3.5 we obtain that O = OD0f2 , where
OD0 = OK , since OD0f2 ⊂ O and [OK : O] = f = [OK : OD0f2 ].

Definition 3.9. If the quadratic number field K is fixed and D0 is the fundamental
discriminant associated to K, then the conductor of an order O is the conductor of D
when we write O = OD = OD0f2 using the previous theorem.

From now on we shall only develop the theory for imaginary quadratic orders, i.e.
orders OD with D < 0, analogously to our treatment of binary quadratic forms. In
this case, the nontrivial automorphism is given by complex conjugation and the norm
of an element is the square of its absolute value. Thus, the norm is multiplicative and
non-negative. This gives us strong restrictions on the group of units.

Theorem 3.10. Let D < 0 be a quadratic discriminant. Then the group of units O∗D of
OD is a finite group given by

O∗D = {ξ ∈ OD | N(ξ) = 1} =


〈e2πi/6〉, D = −3,

〈i〉, D = −4,

〈−1〉, D < −4,

and |O∗D| =


6, D = −3,

4, D = −4,

2, D < −4,

Proof. If ξ ∈ OD is a unit, then ξ is an algebraic integer and its norm N(ξ) is an integer
(as in the proof of Theorem 3.7). By multiplicativity of the norm we must have N(ξ) | 1
and it follows that N(ξ) = 1. We can find a, b ∈ Z such that ξ = a+b

√
D

2 , so ξ is a unit
if and only if

a2 −Db2 = 4 (3.1)

The rest follows by simple computations, using that D is negative.

We shall later denote the number of units in the order OD by wD.
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3.2 Ideals of quadratic orders

Next, we study the arithmetic of ideals in quadratic orders.

Remark 3.11. Since orders are free Z-modules of rank 2 and ideals are submodules, one
can show that ideals must also be lattices (see [Lan02, Theorem 7.1]).

Lemma 3.12. Let O be a quadratic order and a ⊂ O a nonzero ideal. Then O/a is
finite.

Proof. We first show that a contains a nonzero integer. Indeed, notice that if O = OD,
then any α ∈ O is of the form α = (a+ b

√
D)/2 with a, b ∈ Z, implying that α ∈ O. If

0 6= α ∈ a, then N(α) = αα ∈ a ∩ Z, since α is an algebraic integer.
Now let 0 6= m ∈ a ∩ Z. Since O is a free Z-module of rank 2, it follows that

O/mO ∼= Z/mZ ⊕ Z/mZ is finite. The canonical map O/mOD � OD/a is surjective
and therefore OD/a is finite as well.

Definition 3.13. The norm of a nonzero ideal a in a quadratic order OD is defined as
N(a) = |OD/a|.

We would like the ideals of a given order to behave like numbers. For instance,
they should be invertible (the definition will be given below) and their norms should be
multiplicative. In general, some of these ideals are in fact ideals of bigger orders as well.
Colloquially speaking, they do not really belong to the given order and this ruins the
afore mentioned properties we wish to have. Therefore we need to restrict the definition
of ideals to the ones which properly belong to an order.

Definition 3.14. Let O be an order in the quadratic number field K. A fractional
O-ideal is a set of the form αa for α ∈ K∗ and a a nonzero ideal of O. A fractional
O-ideal b is called proper if {β ∈ K|βb ⊂ b} = O and we call b invertible if there exists
another fractional O-ideal c such that bc = O.

For example, all principal ideals ξO, ξ ∈ O, are proper and invertible as well. More
generally, we have the following equivalence.

Theorem 3.15. Let O be an order in a quadratic field K and let a be a fractional
O-ideal. Then a is proper if and only if a is invertible.

Proof. If a is invertible, then there exists a fractional O-ideal b such that ab = O. By
our definition of ideals, we have the inclusion O ⊂ {β ∈ K|βa ⊂ a}. Conversely, if β ∈ K
satisfies βa ⊂ a, then βO = β(ab) = (βa)b ⊂ ab = O and thus β ∈ O since 1 ∈ O.
Therefore a is proper. For the other direction we first prove a lemma, following [Cox13].
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Lemma 3.16. Let K = Q(τ) be a quadratic number field and let ax2 + bx + c be the
minimal polynomial of τ , where a, b and c are relatively prime integers. Then [1, τ ] is a
proper fractional ideal for the order [1, aτ ] of K.

Proof. Computing the minimal polynomial of aτ shows that aτ is an algebraic integer,
which implies that [1, aτ ] is an order. Then [1, τ ] = 1

a [a, aτ ] is a fractional ideal of [1, aτ ].
For β ∈ K note that β[1, τ ] ⊂ [1, τ ] is equivalent to β ∈ [1, τ ] and βτ ∈ [1, τ ]. The first
condition says that β = m+ nτ for m,n ∈ Z. It now follows that

βτ = mτ + nτ2 = mτ + n

a
(−bτ − c) = −cn

a
+
(−bn

a
+m

)
τ.

Since gcd(a, b, c) = 1, we see that βτ ∈ [1, τ ] if and only if a divides n. It follows that
{β ∈ K | β[1, τ ] ⊂ [1, τ ]} = [1, aτ ].

Now let a be a proper ideal of O. Write a = [α, β] for α, β ∈ K (see Remark 3.11).
Then a = α[1, τ ] with τ = β/α. Let ax2 + bx + c be the minimal polynomial of τ
with a, b, c coprime integers (we find this since τ lies in the quadratic number field K).
Lemma 3.16 implies that O = [1, aτ ]. Since τ is the other root of this polynomial, it
follows again by Lemma 3.16 that a = α[1, τ ] is a fractional ideal of O = [1, aτ ] = [1, aτ ],
since O = O by Theorem 3.8. We now prove that

aa = N(α)
a
O, (3.2)

from which it follows that a is invertible. Note that

aaa = aαα[1, τ ][1, τ ] = N(α)[a, aτ, aτ , aττ ].

Since by Vieta τ + τ = −b/a and ττ = c/a, this becomes

aaa = N(α)[a, aτ,−b, c] = N(α)[1, aτ ] = N(α)O,

since a, b, c are coprime.

The following lemma reaffirms that the notion of properness is well-chosen, since
norms of proper ideals behave just like norms of numbers.

Lemma 3.17. Let O be an order in an imaginary quadratic field and let a, b ⊂ O be
proper ideals. Then:

1. N(αO) = N(α) for α ∈ O, α 6= 0;
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2. N(ab) = N(a)N(b);

3. aa = N(a)O.

Proof. Let the given order have the form O = [1, u]. For α ∈ O we find a, b, c, d ∈ Z
such that α = a+ bu and uα = c+ du. Then uα = au+ b|u|2 and α = uc/|u|2 + d and
thus

N(α) = αα = (a+ bu)α = (ac/|u|2 + ba)u+ ad+ b2|u|2.

Since N(α) ∈ Z, this implies that ac/|u|2 = −ba and then N(α) = ad− bc easily follows.
Now from linear algebra (see [BS66, Lemma 1, Chap. 2, Sec. 6]) we know that the
index [O : αO] is equal to the absolute value of the determinant of any transition matrix
from a basis of O to a basis of αO. Since a basis of αO is [α, αu], it follows that
N(αO) = [O : αO] = ad− bc = N(α).

Next, we generalize the result above and prove that N(αa) = N(α)N(a) for an
O-ideal a. The inclusions αa ⊂ αO ⊂ O imply that [O : αa] = [O : αO][αO : αa].
Since multiplication by α induces an isomorphism O/a ∼= αO/αa, we get N(αa) =
N(αO)N(a), and our claim now follows from 1.

We may write a = α[1, τ ] as in the proof of Theorem 3.15 and then Lemma 3.16
tells us that O = [1, aτ ], where we can choose a to be positive without loss of generality.
Since obviously [a, aτ ] has index a in [1, aτ ], we obtain that N(a[1, τ ]) = a. Applying
norms to the equality aa = αa[1, τ ], we infer by the above that

N(a) = N(α)/a. (3.3)

Assertion 3. now follows by recalling the identity (3.2), that is, aa = (N(α)/a)O.
Since by 3. we have N(ab)O = ab · ab = aa · bb = N(a)N(b)O, claim 2. now

follows.

3.3 Prime ideals and unique factorization

In this section we will study the factorization of ideals into prime ideals. For non-
maximal orders, not all proper ideals factorize uniquely, which is one of the difficulties
of this theory (for counterexamples see [Conb, Section 8]). Nevertheless, a big enough
collection of ideals does have unique factorization. These are the ideals coprime to the
conductor f of the order O, i.e. ideals a ⊂ O such that a + fO = O.

Lemma 3.18. Let O be an order of conductor f .

1. A nonzero O-ideal a is coprime to f if and only if its norm N(a) is coprime to f .
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2. Every O-ideal coprime to f is proper.

Proof. To prove 1, let mf : O/a −→ O/a be the multiplication by f homomorphism.
Then we easily see the equivalences

a + fO = O ⇐⇒ mf is surjective ⇐⇒ mf is an isomorphism,

where the last equivalence follows from the finiteness of O/a. By the structure theorem
for finite Abelian groups (see [Lan02, Theorems 8.1 and 8.2]), mf is an isomorphism if
and only if f is coprime to the order N(a) of O/a.

To show 2, let β ∈ K satisfy βa ⊂ a. If a = [ω1, ω2], then we see that multiplication
by β corresponds to an integral matrix, i.e.

β

(
ω1

ω2

)
= A

(
ω1

ω2

)
, A ∈M2(Z).

Then β is a root of the characteristic polynomial of A, which is a monic polynomial with
integral coefficients, and thus β ∈ OK . We now have

βO = β(a + fO) = βa + βfO ⊂ a + fOK .

Since fOK ⊂ O by Theorem 3.5, this implies that βO ⊂ O and thus β ∈ O, since 1 ∈ O.
We have now proven that {β ∈ K | βa ⊂ a} ⊂ O and the other inclusion is obvious,
because a is an ideal of O.

Remark 3.19. Using the same proof, we can generalize the first statement of Lemma
3.18: for any m ∈ Z \ {0}, a nonzero O-ideal a is coprime to m if and only if its norm
N(a) is coprime to m. (This is stated in Lemma 5.9.1 in [HK13].)

The former lemma shows in particular that all ideals of the maximal order are proper.
The arithmetic of ideals in the ring of integers is indeed easier to describe and handle.
We will now show how to relate smaller orders to the maximal one, so that we may
translate back some of the properties that we later compute for the ring of integers.

Theorem 3.20. Let O be the order of conductor f in an imaginary field K.

1. If a is an OK-ideal coprime to f , then a ∩ O is an O-ideal coprime to f of the
same norm. If a is prime, then so is a ∩ O.

2. If a is an O-ideal coprime to f , then aOK is an OK-ideal coprime to f of the same
norm.
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3. The map a 7→ a ∩O from the monoid of OK-ideals coprime to f to the monoid of
O-ideals coprime to f is an isomorphism and its inverse is given by a 7→ aOK .

Proof. For the first claim, let a be an OK ideal coprime to f . Consider the injection
O/(a ∩ O) ↪→ OK/a given by the inclusion O ⊂ OK . Multiplication by f induces an
isomorphism of OK/a because a is coprime to f . Since fOK ⊂ O, the injection above is
also a surjection and, thus, an isomorphism. This shows that the norms of a and a ∩ O
are equal. By Lemma 3.18, a ∩ O is coprime to f . The isomorphism above also shows
that, if a is prime, then OK/a ∼= O/(a ∩ O) is an integral domain. Therefore a ∩ O is
prime as well.

To prove 2, let a be an O-ideal coprime to f . Since

aOK + fOK = (a + fO)OK = OOK = OK ,

we see that aOK is also coprime to f . The statement about the norms follows from 3,
which we prove in the next paragraphs.

We first show that aOK∩O = a for a an O-ideal coprime to f . We have the inclusion

aOK ∩ O = (aOK ∩ O)O

= (aOK ∩ O)(a + fO)

⊂ a + f(aOK ∩ O) ⊂ a + a · fOK ⊂ a,

since fOK ⊂ O. The other inclusion is obvious.
Next we show that (a ∩ O)OK = a for a an OK-ideal coprime to f . Note that

a = aO = a(a ∩ O + fO) ⊂ (a ∩ O)OK + fa.

Since fa ⊂ fOK ⊂ O, we have the inclusion fa ⊂ a ∩ O ⊂ (a ∩ O)OK , which implies
a ⊂ (a ∩ O)OK . The other inclusion is obvious. Thus the two maps in 1. and 2. are
inverses of each other.

Now to show that the maps preserve the multiplicative structures, it is enough to
prove that one of them is a homomorphism, since they are inverses of each other. This
is obvious for a 7→ aOK :

(ab)OK = aOK · bOK .

Finally, 1. and 3. imply the norm statement of 2.

We will now look at the multiplicative structure of ideals in more detail.
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Lemma 3.21. Let O be a quadratic order. If a and b are nonzero proper O-ideals, then
a ⊂ b if and only if a = bc for some proper O-ideal c.

Proof. If a = bc, then a ⊂ b follows since b is an O-ideal and c ⊂ O.
If a ⊂ b, then let c = b−1a ⊂ b−1b ⊂ O. Thus c is an O-ideal and a = cb. Since a is

invertible, the last equality shows that c is invertible and, equivalently, proper.

Theorem 3.22. Let O be an imaginary quadratic order with conductor f .

1. If p is an nonzero prime ideal of O, then p is a maximal ideal, p∩Z = pZ for some
(rational) prime p that is the only prime lying in p.

2. Every ideal is contained in some prime ideal.

3. Let a, b be ideals of an order O and p ⊂ O be a prime ideal. If ab ⊂ p, then a ⊂ p

or b ⊂ p.

4. Let a be a nonzero ideal of O such that (N(a), f) = 1 Then a is a product of prime
ideals in a unique way up to the order of factors. In particular, if O is the maximal
order OK , then every nonzero ideal is a product of prime ideals in an essentially
unique way.

Proof. 1. Let p be a nonzero prime ideal of O. Then O/p is a finite integral domain by
Lemma 3.12, hence a field, and thus p is maximal. Since p ∩ Z is a nonzero prime ideal
of Z, we have p ∩ Z = pZ for some prime p, which is therefore the only rational prime
inside p.

2. This follows by an easy induction on the norm. Alternatively, this is traditionally
shown for arbitrary rings by Zorn’s Lemma.

3. Let ab ⊂ p. Suppose that a is not a subset of p. Then p ( p + a and therefore
p + a = O follows by maximality of p. Thus b = b · O = b(p + a) = bp + ba ⊂ p.

4. By Lemma 3.18, a is a proper ideal and every ideal containing a is proper, since
if a ⊂ b, then N(b) | N(a) (by the third isomorphism theorem). Now we show the claim
by induction on the norm.

Assume that a ( O. Then by 2, there exists a prime ideal p containing a. Since p is
proper, we find an O-ideal b such that a = pb. Since p 6= O by definition of prime ideals,
we infer that a ( b. Hence N(b) < N(a) and, by induction, we find a factorization into
prime ideals b = p1 . . . pn, so that a = pp1 . . . pn.

To prove uniqueness, assume that a = p1 . . . pn = p′1 . . . p
′
m with n,m ∈ N and prime

O-ideals p1, . . . , pn, p
′
1, . . . , p

′
m. We proceed by induction on n and note that n = 1 if
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and only if m = 1, and in this case the claim is obvious. Now suppose that n ≥ 2. Since
p′1 . . . p

′
m ⊂ p1, by renumbering if necessary, we may deduce from 3. that p′1 ⊂ p1. By 1.

we find that p1 = p′1 and, since these are invertible ideals, we obtain p2 . . . pn = p′2 . . . p
′
m.

By induction we find that n = m and pj = p′j for all j = 2, . . . , n.

Now we would like to study the prime ideals of the maximal order. We have a
complete classification given by the relation between the discriminant and the rational
primes inside the prime ideals.

Definition 3.23. Let n be a positive integer and p a prime. For p odd, we call a a
quadratic residue modulo p if there exists b ∈ Z such that b2 ≡ a (mod p). We call a a
quadratic nonresidue otherwise. The Kronecker symbol is defined as

(
a

p

)
=


0, p | a,

1, p - a and a is a quadratic residue modulo p,

−1, p - a and a is quadratic nonresidue modulo p,

where a is a square modulo p if there exist b ∈ Z such that b2 ≡ a (mod p). For p = 2,
we define (

a

2

)
=


0, 2 | a,

1, a ≡ ±1 (mod 8),

−1, a ≡ ±3 (mod 8).

Theorem 3.24. Let K = Q(D) be an imaginary quadratic field with D a fundamental
discriminant. Let p be a prime in Z.

1. If
(
D
p

)
= 0, i.e. p | D, then pOK = p2 for a prime ideal p of OK with p = p. The

prime p is called ramified.

2. If
(
D
p

)
= 1, then pOK = pp, where p 6= p are prime ideals in OK . The prime p is

called split.

3. If
(
D
p

)
= −1, then pOK is a prime ideal in OK . The prime p is called inert.

Proof. We prove this theorem by explicitly constructing the prime ideals.
1. Let p be an odd prime dividing D and define p = pOK +

√
DOK ⊂ OK . Then p

is an ideal and by squaring we obtain

p2 = p2OK + p
√
DOK +DOK .
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By definition of a fundamental discriminant, p2 - D since p is odd, so that (p2, D) = p.
Thus it follows from the above that p2 = (p2OK +DOK) + p

√
DOK = pOK . Applying

norms we obtain that N(p) = p. If p = ab, then p = N(a)N(b), so that a = OK or
b = OK . Thus, by the unique factorization into prime ideals we find that p is prime.
By the norm formula in Lemma 3.17 and invertibility, we have p2 = pp, which implies
p = p.

If p = 2, write D = 4N and set

p =

2OK + (1 +
√
N)OK , N odd,

2OK +
√
NOK , N even.

Now the computations are analogous to the ones done in the paragraph above.
2. If

(
D
p

)
= 1, then p - D and, since D ≡ 0, 1 (mod 4), we may find an integer b

such that D ≡ b2 (mod 4p), where we use the Chinese Remainder Theorem if p is odd.
Hence

D ≡ b (mod 2), 4p | b2 −D, p - b and b 6≡ −b (mod 2p).

By the above, straight forward computations show that

p =
[
p,
b+
√
D

2

]
and p =

[
p,
b−
√
D

2

]

are OK-ideals.
Suppose now that (b−

√
D)/2 ∈ p. Then there are x, y ∈ Z such that (b−

√
D)/2 =

xp + y(b +
√
D)/2. It follows that y = −1 and then we must have b = xp, which is

a contradiction. Thus p 6= p. Moreover, again since p and b are coprime and writing
b2 −D = 4px, we compute

pp =
[
p,
b+
√
D

2

] [
p,
b−
√
D

2

]
=
[
p2, p

b+
√
D

2 , p
b−
√
D

2 ,
b2 −D

4

]

= p

[
p, b,

b+
√
D

2 , x

]
= p

[
1, b+

√
D

2

]
= p [1, ωD] = pOK .

Therefore N(p) = N(p) = p and using unique prime factorization and the multiplicativ-
ity of the norm we deduce that p and p are prime ideals.

3. Let
(
D
p

)
= −1. For proving that pO is a prime ideal, let x, y ∈ OK such that

xy ∈ p OK , i.e. xy = pα for some α ∈ OK . It follows that N(x)N(y) = N(p)N(α) =
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p2N(α). We may assume that N(p) | N(x). Write

x = u+ v
√
D

2 and thus N(x) = u2 − v2D

4 ,

where u, v ∈ Z and u ≡ vD (mod 2), by our description of OK . Hence 4p divides
u2 − v2D. If p 6= 2, then D is a quadratic non-residue modulo p, which implies that
u ≡ v ≡ 0 (mod p), hence x ∈ pOK . If p = 2, then D ≡ 5 (mod 8) and u2 − v2D ≡
u2 − 5v2 ≡ 0 (mod 8). Considering all cases shows that either u ≡ v ≡ 0 (mod 4) or
u ≡ v ≡ 2 (mod 4). It follows that x ∈ 2OK .

Remark 3.25. By Theorem 3.22, every primeOK-ideal contains a rational prime and thus
the prime ideal appears in the unique factorization of the principal ideal generated by
that rational prime. Therefore, the theorem above indeed classifies all prime OK-ideals
by the rational primes they contain.

Corollary 3.26. Let O be the order with conductor f in the quadratic field K = Q(D0)
with D0 a fundamental discriminant. Suppose a ⊂ O is an ideal with (N(a), f) = 1 and

N(a) =
np∏
i=1

pi

nq∏
j=1

qj

nr∏
k=1

rk,

where pi ∈ {p prime | (D0
p ) = 0}, qj ∈ {p prime | (D0

p ) = 1} and rk ∈ {p prime |
(D0
p ) = − 1 }. Then we have the factorization

a =
np∏
i=1

pi

nq∏
j=1

qj

nr∏
k=1

(rk),

where pi is a prime O-ideal such that pi = pi, N(pi) = pi and qj is a prime O-ideal such
that qj 6= qj , N(qj) = qj. The principal ideals (rk) are prime O-ideals as well.

Proof. By Theorem 3.20 and Theorem 3.22, the OK-ideal aOK has norm N(a) and a
unique factorization into prime ideals. Theorem 3.24 and Lemma 3.17 together imply
that each prime OK-ideal has prime norm. Applying the norm on the factorization of
aOK shows that each prime ideal corresponds bijectively to a prime in the factorization
of N(a). The claim now follows by Theorem 3.20, applying the isomorphism I 7→ I ∩O,
which commutes with complex conjugation and preserves norms and principal ideals
generated by rational integers, since Z ⊂ O ⊂ OK , so that (rOK) ∩ O = rO.
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3.4 Orders and quadratic forms

Remark 3.27. By our definition, we easily see that the product of two fractional O-ideals
is again a fractional O-ideal. Thus, the set of invertible ideals forms a group, inside which
we find the subgroup of principal fractional ideals.

Definition 3.28. The ideal class group C(OD) = C(D) of the imaginary quadratic
order OD is defined as the quotient of the group of proper fractional OD-ideals and the
subgroup of principal fractional OD-ideals.

In the following let H = {z ∈ C | =z > 0} denote the upper half plane. We now
finally exhibit the previously advertised correspondence between forms and ideals.

Theorem 3.29. Let O = OD be the order of discriminant D < 0 in the imaginary
quadratic field K. Then the map sending a proper ideal a = [α, β] with β/α ∈ H to the
quadratic form f(x, y) = N(xα+ yβ)/N(a) induces a bijection Ψ : C(D) −→ FD.

Proof. We first show that the map is well-defined. Let a be a proper O-ideal and choose
a basis a = [α, β] such that τ = β/α ∈ H, switching α and β if necessary. Let ax2 +bx+c
be the minimal polynomial of τ with a, b, c coprime integers and we may assume a > 0,
so that τ = (−b+

√
b2 − 4ac)/2a. If we define

f(x, y) = N(xα+ yβ)/N(a) = (xα+ yβ)(xα+ yβ)
N(a)

= αα

N(a)x
2 + αβ + αβ

N(a) xy + ββ

N(a)y
2,

then f(τ, 1) = 0. Note that the coefficient of x2 in f(x, 1) is αα/N(a) = N(α)/N(a) = a,
by the formula (3.3). It follows that f(x, 1) = ax2 + bx + c and thus f is a primitive
integral form.

To show that f has discriminant D, note first that Lemma 3.16 implies the equality
O = [1, ωD] = [1, aτ ]. Since ωD ∈ [1, aτ ], there exist x, y ∈ Z such that

ωD = σD +
√
D

2 = x+ y
−b+

√
b2 − 4ac
2

and it follows that
√
D = y

√
b2 − 4ac. Since aτ ∈ [1, ωD], we find analogously that

aτ = y′
√
D for some y′ ∈ Z. We deduce that D = b2 − 4ac, so that f is a primitive

positive definite form of discriminant D.
We have established that our map has indeed a well-defined codomain. We now need

to show that Ψ depends neither on the particular representative of an ideal class, nor on
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the basis of the representative. For the latter we need the following:

Lemma 3.30. If a lattice has two bases (α, β) and (α′, β′) with β/α, β′/α′ ∈ H, then
there exists a matrix ( p qr s ) ∈ SL2(Z) such that

(
p q

r s

)(
α

β

)
=
(
α′

β′

)

Proof. Since [α′, β′] ⊂ [α, β], the exist integers p, q, r, s such that α′ = pα + qβ and
β′ = rα+ sβ. Conversely, since [α, β] ⊂ [α′, β′], we deduce that the matrix ( p qr s ) has an
inverse with integer entries, so that ( p qr s ) ∈ GL(2,Z), implying that ps − rq = ±1. We
may also infer that

pβα + q

r βα + s
= β′

α′

and one can easily compute that

=
(
pβα + q

r βα + s

)
= det

(
p q

r s

) =
(
β
α

)
|r βα + s|2

Since both β/α and β′/α′ lie in the upper half plane, it follows that det( p qr s ) = 1.

By the lemma above, if we choose another basis of a we find ( p qr s ) ∈ SL2(Z) such that
this basis has the form (pα + qβ, rα + sβ). This maps to the form f(px+ qy, rx+ sy),
which is equivalent to f . Thus Ψ does not depend on the choice of basis for the ideal.
To show that it only depends on the class of the ideal, let λ ∈ K. Then the function

(x, y) 7→ N(xλα+ yλβ)
N(λa) = N(λ)N(xα+ yβ)

N(λ)N(a) = N(xα+ yβ)
N(a)

is identical to f . This proves that Ψ is well-defined.
To show that it is surjective, let f(x, y) = ax2 + bxy + cy2 be a primitive positive

definite form of discriminant D < 0. Let τ = −b+
√
D

2a ∈ H be the root of f(x, 1) that
lies in the upper half plane. If a = [1, τ ], then a is a proper fractional ideal of the order
[1, aτ ], by Lemma 3.16. Since D = b2 − 4ac, we have the congruence D ≡ b (mod 2).
Now it follows easily that [1, aτ ] = [1, −b+

√
D

2 ] = [1, ωD] = OD, so that aa = [a, aτ ] is a
proper OD-ideal. By (3.3), we have N(aa) = a and thus the class of a is mapped to the
form

(x, y) 7→ N(xa+ yaτ)
N(aa) = a2

a
·
(
x2 + b

a
xy + c

a
y2
)

= f(x, y),
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using the Vieta formulas τ + τ = b/a and ττ = c/a. Hence our map is surjective.
For injectivity, let a = [α, β] be an O-ideal with β/α ∈ H. If a maps to the form

f(x, y) = ax2 + bxy+ cy2 and [a, aτ ] is the preimage of f found in the paragraph above,
then τ = β/α since both are roots of f(x, 1) in the upper half plane and such roots are
unique. Thus [a, aτ ] = [a, aβ/α] = aα−1a, so that [a, aτ ] is equivalent to a.

Remark 3.31. Using the bijection in the theorem above, we may transfer the group
structure of C(D) to the form class group FD, which now justifies the terminology. The
identity element in FD, i.e. the image Ψ([1, ωD]) = Ψ(OD), is given by the principal
form (recall Remark 2.3). Using Corollary 2.11 we deduce the following highly non-trivial
result.

Corollary 3.32. The ideal class group C(D) is finite.

For a primitive positive definite form f(x, y) = ax2 + bxy + cy2, we have seen that
a representative of the preimage Ψ−1(f) is the proper ideal a = [a, aτ ] for τ = (−b +√
D)/2a. Recall from ring theory that we call two elements ξ, ξ′ ∈ OD associated if there

is a unit u ∈ OD such that ξ′ = uξ. We can map pairs of integers (x, y) ∈ Z2 to elements
xa + yaτ ∈ a and we call two pairs equivalent if the corresponding elements in a are
associated2. The usefulness of this map becomes obvious in the proof of the following
theorem.

Theorem 3.33. Let f(x, y) = ax2 + bxy + cy2 be a primitive positive definite form of
discriminant D < 0. There is a bijection between inequivalent solutions of f(x, y) =
n > 0 and proper ideals of norm n in the class (Ψ−1(f))−1 =: Cf .

Proof. Let τ = (−b +
√
D)/2a and a = [a, aτ ] ∈ Ψ−1(f). The proof of Theorem 3.29

shows that
f(x, y) = N(xa+ yaτ)

N(a) .

The map (x, y) 7→ xa + yaτ gives a bijection between the solutions of f(x, y) = n and
elements ξ ∈ a with N(ξ) = nN(a). It suffices to show that the map ξ 7→ ξa−1 induces
a bijection between non-associated elements ξ ∈ a with N(ξ) = nN(a) and proper
OD-ideals in Cf with norm n.

2This is the definition given in [BS66, p. 143, Sec. 7.6]. In [Zag81, p. 58] we find another definition
that is perhaps more enlightening, which can be seen with some extra work to be equivalent to ours.
Namely, two solutions (x1, y1), (x2, y2) are equivalent if they can be transformed into one another as
in Remark 2.13 by SL2(Z) matrices which leave the form invariant, that is, if γ( x1

y1 ) = ( x2
y2 ) for some

γ ∈ SL2(Z) such that γf = f . This definition also shows that the equivalence relation can be restricted
to the set of proper representations.
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Let ξ ∈ a have norm nN(a). Then the fractional ideal I = ξa−1 lies in OD since
Ia = ξa−1a = ξOD ⊂ a and a is proper. Furthermore, I is in the class Cf , because
obviously a−1 ∈ (Ψ−1(f))−1, and the norm of I is N(ξ)N(a)−1 = n.

Conversely, let I ∈ Cf be an OD-ideal with norm n. Since a ∈ C−1
f , there is an

element ξ ∈ OD, unique up to association, such that Ia = ξOD. It follows that I = ξa−1,
for ξ ∈ a (because a is an ideal), and N(ξ) = nN(a).

Definition 3.34. For a primitive positive definite form f we denote the number of in-
equivalent solutions of the equation f(x, y) = n by rf (n) and the number of inequivalent
proper representations by r∗f (n).

Remark 3.35. Note that equivalence of representations stems from the action of the
group of units in OD. If wD denotes the number of units in OD, then we have rf (n) =
R(f, n)/wD and r∗f (n) = R∗(f, n)/wD.

3.5 Ambiguous classes

The last section of this chapter presents results about particular classes of ideals, called
ambiguous, which are in general easier to handle. By Theorem 3.33 we may speak of
ideals and forms concomitantly.

Definition 3.36. A class of ideals (or of forms) is called ambiguous if it has order 1 or
2 in the ideal (or form) class group. We denote the subgroup of ambiguous classes by
G(D) ⊂ C(D).

Remark 3.37. We will also view G(D) as a subgroup of FD in virtue of Theorem 3.33.
There will be in the rest of this thesis no cause for confusion in doing so.

We have seen that the inverse of the class of a ⊂ O is the class of a, since aa = N(a)O.
Using the bijection of Theorem 3.33, we can compute that the inverse class of a form
f(x, y) = ax2 + bxy+ cy2 is the class of the so-called opposite form f(x, y) = ax2− bxy+
cy2. Indeed, [1, (−b +

√
D)/2] ∈ Ψ−1(f) and [1, (−b+

√
D)/2] = [1, (−b −

√
D)/2] =

[1, (b+
√
D)/2], which is mapped to f by Ψ. Now this allows us to describe ambiguous

form classes explicitly using the special representatives we discovered in Theorem 2.9.

Lemma 3.38. The class of a reduced form f(x, y) = ax2 + bxy + cy2 of discriminant
D < 0 is ambiguous if and only if b = 0, a = b or a = c.

Proof. The class of f is ambiguous if and only if the forms f and f are equivalent. If
|b| < a < c, then f is also reduced, so that, by Theorem 2.9, f and f are equivalent if
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and only if b = 0. In the case that a = b we easily see the equivalence f =
( 1 −1

0 1
)
f as in

the proof of Theorem 2.9. Finally, if a = c, then f =
( 0 −1

1 0
)
f .

We will later also need to know what the number of ambiguous classes is.

Theorem 3.39. Let D < 0 be a quadratic discriminant and let r be the number of odd
primes dividing D. Define µ as follows: if D ≡ 1 (mod 4), then µ = r, and if D ≡ 0
(mod 4) and D = −4n with n > 0, then

µ =


r, n ≡ 3 (mod 4),

r + 1, n ≡ 1, 2 (mod 4) or n ≡ 4 (mod 8),

r + 2, n ≡ 0 (mod 8).

The class group FD has exactly 2µ−1 ambiguous classes, that is, |G(D)| = 2µ−1.

Proof. By Theorem 2.9, we only need to count the reduced forms with the special prop-
erties from Lemma 3.38. Some of the computations and case-work can be seen in [Cox13,
Prop. 3.11].
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4 The main theorem

We now turn our attention to the task of estimating the number of representations and
state the central result of this thesis. For convenience, we make the following convention
that in all sums of the form

∑
k≤x the variable k ranges over the subset of the natural

numbers {k ∈ N | k ≤ x}. Moreover, raising to the power 0 is defined as

k0 =

0, if k = 0;

1, otherwise.

Theorem 4.1 (Main theorem). Let g be a binary quadratic form of discriminant D =
D0f

2 < 0 with conductor f . For each divisor d of f , let aθd(g) be the smallest positive
integer represented by θd(g) and let uθd(g) be the smallest positive integer coprime to f/d
that can be represented by some form in the coset θd(g)G(D/d2). For any β ≥ 0 we
have:

∑
n≤x

rg(n)β = 2
wD
· πx√

D

1 + (2β−1 − 1)
∑
d|f

ϕ(f/d)
fuθd(g)

+ Eβ(x,D),

where

Eβ(x,D)�



∑
d|f

2ω(f/d)

d

√
x

aθd(g)
+ τ(f2) + τ(D)

(
x log x
D

+ x

D3/4

)
, 0 ≤ β ≤ 2,

∑
d|f

2ω(f/d)

d

√
x

aθd(g)
+ τ(f2) + τ(D)x(log x)(2/q)(2(β−2)q+1−1)+1

D(3/4)(1−1/q) , β > 2,

for any real q > 1, where τ(D) denotes the number of divisors of D. The implied
constants depend at most on β and q.

The next sections present various results about representation numbers. Although
most are interesting in their own right, we will ultimately use them all for proving the
main theorem.

4.1 A reduction theorem for the number of representations

The correspondence between representations and ideals, i.e. Theorem 3.33, and factor-
ization into prime ideals, i.e. Corollary 3.26, give us a tool for handling representations
of numbers coprime to the conductor. In order to gain some control in the case of other
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numbers as well, this section shows how to reduce the general problem to the coprime
case. The following results have been stated by Sun and Williams in [SW06].

Lemma 4.2. Let D be a discriminant with conductor f , m ∈ N and C ∈ C(D).

1. There exist integers a, b, c such that C = [a, b, c] with (a,m) = 1.

2. If m | f , then there exist integers a, b and c such that C = [a, bm, cm2], a is coprime
to m, and b ≡ D (mod 2).

Proof. 1. This follows from Lemma 2.16 and Lemma 2.15 together.
2. By Lemma 2.15, choose integers a, b1, c1 such that C = [a, b1, c1] and (a,m) = 1.

Setting ∆ = D/m2 ∈ Z, we have b2
1 − 4ac1 = ∆m2 and thus b1 ≡ ∆m (mod 2). Let u

and v be integers such that b1 = ∆m + 2u and va ≡ −u (mod m), where we use that
(a,m) = 1. Then b1 + 2va ≡ b1 − 2u = ∆m (mod 2m) and, in particular, m | b1 + 2va.
Choosing b ∈ Z such that b1 + 2va = bm, we have the congruence bm ≡ ∆m (mod 2m),
hence b ≡ ∆ (mod 2), and

(
1 v

0 1

)
(ax2 + b1xy + c1y

2) = ax2 + (b1 + 2av)xy + c2y
2 = ax2 + bmxy + c2y

2,

with c2 ∈ Z and 4ac2 = (b2 − ∆)m2. Since 4 | b2 − ∆ and (a,m) = 1, it follows that
m2 | c2. Writing c2 = cm2 we obtain the claim.

Lemma 4.3. Let a, b, c ∈ Z and m,n ∈ N with (a,m) = 1 and m2 | n. If n =
ax2 + bmxy + cm2y2 for x, y ∈ Z, then m | x.

Proof. By (2.2) we have (2ax + bmy)2 = 4an + (b2 − 4ac)m2y2 and, since m2 | n, this
implies that m | 2ax, so that m

(2,m) | x. Hence ax2 = n− bmxy−xm2y2 ≡ 0 (mod m2

(2,m))
and thus m | x.

Lemma 4.4. Let D be a discriminant with conductor f and let m ∈ N such that m|f .
The map θm : C(D) −→ C(D/m2), [a, bm, cm2] 7→ [a, b, c] is well-defined.

Proof. For an arbitrary class C ∈ C(D), Lemma 4.2 gives us a, b, c ∈ Z with (a,m) = 1
such that f(x, y) = ax2 + bmxy+ cm2y2 is a form in the class C. Then it is obvious that
ax2 + bxy + cy2 is a primitive positive definite form of discriminant b2 − 4ac = D/m2.

Now let g(x′, y′) = a′x2 + b′mxy + c′m2y2 be in the class C as well, so that there
exists ( p qr s ) ∈ SL2(Z) with g = ( p qr s )f . As one can easily compute (see [Zag81, p. 58]),
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it follows that m2c′ = f(q, s) and by Lemma 4.3 we have m | q. Finally, one can check
that

a′x2 + b′xy + c′y2 =
(
p q

m

rm s

)
(ax2 + bxy + xy2),

proving that the map is well-defined.

We may now state and prove Theorem 3.2 from [SW06], which will be an important
tool in the proof of the main theorem.

Theorem 4.5 (Reduction Theorem). Let D = f2D0 be a quadratic discriminant with
conductor f . Let n ∈ N and C ∈ C(D). Then

R(C, n) =
{

0 if (n, f2) is not a square;
R(θm(C), n/m2) if (n, f2) = m2 for m ∈ N.

Proof. By Lemma 4.2 we may assume that C = [a, b, c] with (a, f) = 1. Suppose
R(C, n) > 0, so that n = ax2 + bxy + cy2 for some x, y ∈ Z. We can reformulate this
to 4an = (2ax + by)2 − Dy2. Since (a, f) = 1 and f2 | D, it follows that (4n, f2) =
(4an, f2) = ((2ax + by)2, f2) = u2 for some u ∈ Z. Hence (n, f2) is a square if ν2(n) 6=
ν2(f2) − 1, where ν2(n) is the exponent of 2 in the factorization of n. Now assume
ν2(n) = ν2(f2) − 1, which implies that 2 | f and 2 - a. Let n = 2ν2(n)n0, f = 2ν2(f)f0

with 2 - n0, 2 - f0. Then dividing by 2ν2(f2) = 22ν2(f) yields

2an0 = ((2ax+ by)/2ν2(f))2 − f2
0D0y

2.

Since D0 ≡ 0, 1 (mod 4), we see that the right hand side cannot be congruent to 2
modulo 4. However, 2an0 ≡ 2 (mod 4), so this is a contradiction. Thus, (n, f2) is
always a square if n is representable.

Now suppose (n, f2) = m2 for some m ∈ N. Since m | f , we may assume that
C = [a,mb,m2c] with (a,m) = 1. If n = ax2 + bmxy + cm2y2 for some (x, y) ∈ Z,
then m | x by Lemma 4.3. Thus n/m2 = aX2 + bXy + cy2 for X = x/m ∈ Z.
Conversely, if n/m2 = aX2 + bXy + cy2 for some X, y ∈ Z, then (mX, y) is a solution
to n = ax2 + bmxy + cm2y2.

Remark 4.6. If (n, f2) = m2, then n/m2 is coprime to f/m, that is, to the conductor of
D/m2. Thus we reduced the general case to the coprime case.

28



4.2 Preliminary estimates

Finding the exact number of representations for arbitrary numbers and forms is difficult.
Precise formulas have been found for special cases (see for instance [SW06]), but in this
thesis we are concerned only with giving good estimates and asymptotics. This section
gathers some weaker results that we will use in the proof of the main theorem. Recall
the notation rg(n) for the number of inequivalent representations from Definition 3.34.

Lemma 4.7. For a primitive positive definite form g of discriminant D = f2
DD0 and

an integer n ∈ Z coprime to the conductor fD, we have

rg(n) ≤ τ(n),

where τ(n) is the number of divisors of n.

Proof. By the correspondence between representations and ideals, i.e. Theorem 3.33,
the number of inequivalent representations of n is certainly bounded by the number of
all OD-ideals having norm n. We can factorize these ideals uniquely into primes. More
precisely, if n =

∏
pi
∏
qj
∏
rk as in the statement of Corollary 3.22, then the ideals

corresponding to representations of n have the form a =
∏

pi
∏

qj
∏

(rk), where p = p

and q 6= q. We see that the products
∏

p and
∏

(rk) are unique. Each different prime
q dividing n, such that (D0

q ) = 1, contributes to the product
∏

qj by a factor of the
form qα · qβ, where α + β equals the maximal exponent of q in the factorization of n,
i.e., α+ β = νq(n). There are thus νq(n) + 1 = τ(qνq(n)) such different possible factors.
Considering all such primes q and the fact that the divisor function τ is multiplicative,
we find that there are at most τ(

∏
qνq(n)) ≤ τ(n) different ideals with norm n.

We will later use the inequality provided by the former lemma, but embellished with
a positive exponent. Since we want to sum over all positive integers up to some x, we
will also need the following estimate.

Lemma 4.8. Let α > 0. Then

∑
k≤x

τ(k)α � x(log x)2α−1.

Proof. The statement was proved in [Del71] with elementary methods inspired by Paul
Erdős. A stronger asymptotic result can be proved using powers of the Riemann zeta
function as in the Selberg-Delange method, explained in [Ten95, Chapter II.5].
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The following lemmata culminate with an asymptotic for the sum of representation
numbers for the integers smaller than a given x and coprime to the conductor.

Lemma 4.9. For f ∈ N we have the identities

∑
d|f

µ(d)
d

= ϕ(f)
f

,
∑
d|f

ϕ(d)
f

= 1, and
∑
d|f

2ω(d) = f2,

where µ is the Möbius function, ϕ is Euler’s totient function and ω(a) the number of
prime divisors of a ∈ Z.

Proof. The first two formulas follow directly or by Möbius transformation from the
well-known convolution identity

∑
d|f ϕ(d) = f . For the last one, note that 2ω is a

multiplicative function, i.e., 2ω(nm) = 2ω(n)+ω(m) = 2ω(n)2ω(m) whenever (n,m) = 1.
Therefore, we may check the convolution identity

∑
d|f 2ω(d) = f2 on prime powers.

Indeed, for a prime p and α ∈ N0 we have

∑
d|pα

2ω(d) =
α∑
k=0

2ω(pk) = 1 + 2α = τ(p2α).

Lemma 4.10. For a ∈ N and x > 0 we have the estimate

∑
1≤n≤x
(n,a)=1

1 = ϕ(a)
a

x+O
(
2ω(a)

)
.

Proof. By Lemma 4.9 and Möbius inversion we have

∑
1≤n≤x
(n,a)=1

1 =
∑
n≤x

∑
d|(n,a)

µ(d)

=
∑
d|a

µ(d)
[
x

d

]
=
∑
d|a

µ(d)x
d

+O
(
2ω(a)

)
= ϕ(a)

a
x+O

(
2ω(a)

)
,

since there are 2ω(a) square-free divisors of a.

Lemma 4.11. If g is a positive definite primitive quadratic form of discriminant −D < 0
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with conductor f and a is the smallest integer represented by g, then

#{(m,n) ∈ Z2 | g(m,n) ≤ x, (g(m,n), f) = 1} = ϕ(f)
f
· 2πx√

D
+O

(
2ω(f)

(
1 +

√
x

a

))
.

The implied constant is absolute.

Proof. First, we need to characterize representations of numbers coprime to the conduc-
tor. Since the number of representations depends only on the class of a form, we may
assume that g(x1, x2) = ax2

1 +b′x1x2 +c′x2
2 is reduced. In particular, a is the smallest in-

teger represented by g and it will be useful to note that a�
√
D as in (2.3). Moreover, if

f = faf̃ is a decomposition of the conductor such that (a, f̃) = 1 and all primes dividing
fa divide a as well, then assume by Lemma 4.2 that g(x1, x2) = ax2

1 + bf̃x1x2 + cf̃2x2
2.

By Theorem 4.5, since a is represented by g, we have (a, f2) = (a, f2
a ) = k2 for some

k ∈ Z. By our construction of fa we find that all primes p dividing fa must satisfy p2 | a
and, since D = b2 − 4ac and g is primitive, p also divides b and does not divide c. Now
let g(x1, x2) = n for some n ∈ N and suppose p is a prime such that p | (n, f). If p | fa,
then (cf̃2, p) = 1, p | b and p2 | a, so that from Lemma 4.3 it follows that p | x2. If
p | f̃ , then p | x1, again by Lemma 4.3. It follows that (g(x1, x2), f) = 1 if and only if
(x1, f̃) = 1 and (x2, fa) = 1.

Consequently, using (2.2), we need to count the number of integer solutions to (2am+
bn)2 + Dn2 ≤ 4ax, where m is coprime to f̃ and n is coprime to fa. The inequality is
equivalent to the two conditions |n| ≤

√
4ax/D and

−
√

4ax−Dn2 − bn
2a ≤ m ≤

√
4ax−Dn2 − bn

2a .

By Lemma 4.10, there are

ϕ(f̃)
f̃
·
√

4ax−Dn2

a
+O

(
2ω(f̃)

)
(4.1)

integers m coprime to f̃ in this range. There are 2φ(fa)
fa

√
4ax/D + O(2ω(fa)) possible

values for n; summing the expression (4.1) over these, the O(2ω(f̃)) errors add up to
O(2ω(f̃)√ax/D + 2ω(fa)2ω(f̃)) = O(2ω(f̃)√x/a + 2ω(f)), since a �

√
D and 2ω is multi-

31



plicative. Next we compute the sum

∑
|n|≤
√

4ax/D
(n,fa)=1

√
4ax−Dn2

a
=

∑
|n|≤
√

4ax/D

√
4ax−Dn2

a

∑
d|(n,fa)

µ(d)

=
∑
d|fa

µ(d)
∑

|k|≤
√

4ax/D/d

√
4ax−Dd2k2

a
.

We approximate the inner sum by the corresponding integral:

∫ √4ax/D/d

−
√

4ax/D/d

√
4ax−Dd2t2

a
dt.

Since the integrand is decreasing from zero to either endpoint, the error made in the
approximation is at most twice the value at zero, i.e. O(

√
x/a). To evaluate the integral,

we make the change of variable v = t
√

4ax/D/d, obtaining

(4x)
d
√
D

∫ 1

−1

√
1− v2dv = 2πx

d
√
D
.

Therefore we have

ϕ(f̃)
f̃
·

∑
|n|≤
√

4ax/D
(n,fa)=1

√
4ax−Dn2

a
= ϕ(f̃)

f̃
·
∑
d|fa

µ(d)
( 2πx
d
√
D

+O

(
x

a

))
,

where we note that ϕ(f̃)/f̃ ≤ 1. We use Lemma 4.9 to compute
∑
d|fa µ(d)/d = φ(fa)/fa.

Noting that ϕ(f̃)
f̃
· ϕ(fa)

fa
= ϕ(f)

f , by multiplicativity of ϕ, yields the claimed main term.
Gathering the error terms gives an error of

O
(
2ω(f̃)

√
x/a+ 2ω(f) + 2ω(fa)

√
x/a

)
= O

(
2ω(f)

(
1 +

√
x/a

))
,

using that
∑
d|fa µ(d) ≤ 2ω(fa).

Remark 4.12. In the special case when f = 1 we can improve the error term to O(
√
x/a),

since now the possible values of n are bounded by a multiple of
√
ax/D. Consequently,

when we add the O(2ω(1)) = O(1) errors in equation (4.1) together, we obtain the claimed
bound for the error. We refer to Lemma 3.1 in [BG06] for the simplified proof in this
special case.
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4.3 Proof of the main theorem

The strategy in the proof of the main theorem is to first prove a special result, counting
the representations of numbers coprime to the conductor. Afterwards we will use the
reduction theorem from section 4.1 to extend this count to all positive integers.

Theorem 4.13. For a binary quadratic form g having discriminant −D = D0f
2
D < 0

with conductor fD, let ag be the smallest positive integer that is represented by g, and let
ug be the smallest positive integer coprime to fD that can be represented by some form
in the coset gG(D). For any β ≥ 0 we have:

∑
n≤x

(n,fD)=1

rg(n)β = ϕ(fD)
fD

· 2
wD

(
1 + 2β−1 − 1

ug

)
πx√
D

+ Eβ(x,D),

where

Eβ(x,D)�


2ω(f)

(
1 +

√
x

ag

)
+ 2ω(D)

(
x log x
D

+ x

D3/4

)
, 0 ≤ β ≤ 2,

2ω(f)
(

1 +
√
x

ag

)
+ 2ω(D)x(log x)(2/q)(2(β−2)q+1−1)+1

D(3/4)(1−1/q) , β > 2,

for any real q > 1, where ω(D) denotes the number of prime divisors of D. The implied
constants depend at most on β and q.

Proof. The proof is an adapted version of the one given in [BG06]. The outline is as
follows: we translate representations of integers coprime to the conductor to ideals in the
order OD. We use special factorizations of these ideals into pairs of simpler factors and
then estimate the possibilities for each factor. Afterwards we define a counting function
that is close to the count we are interested in but easier to compute and then bound the
difference, in each range of β, by the estimates achieved above.

First we introduce the useful notion of primitive ideals.

Definition 4.14. An ideal a ⊂ OD is called primitive if it is not divisible by any rational
integer other than 1 or, equivalently, if e−1a * OD for any e ∈ Z, |e| > 1.

Now let G(D) ⊂ C(D) be the set of ambiguous classes in the order OD, let A be the
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set of primitive ideals coprime to D3, and let

XG = {c ∈ G | c ⊂ OD, c 6= c}

for G ∈ G(D). First we gather some basic properties of ideals in A.

Lemma 4.15. If a ∈ A, then a2 ∈ A. For a1, a2 ∈ A in the same class, the principal
ideal a1a2 is generated by a rational integer if and only if a1 = a2.

Proof. We prove both assertions by contradiction. For the first claim suppose that a2 =
kb for some k ∈ Z and an OD-ideal b. Assume without loss of generality that k is prime.
Then k is coprime to the discriminant D since N(a)2 = k2N(b) and (N(a), D) = 1. By
Corollary 3.26 we have the prime ideal decomposition kOD = p1p2 or kOD = p. Then
a2 = kb implies that k | a, which is a contradiction to the assumption a ∈ A.

For the second claim, suppose a1a2 = kOD for k ∈ Z. As above, k is coprime to D
and has a prime ideal factorization. If an inert prime p divides k, then p | a1 or p | a2,
which leads to a contradiction. If pOD = pp is a split prime dividing k, then either p or
p divides a1 and then p or p divides a2, respectively. Doing this recursively for all primes
dividing k, it follows that a1 = a2.

Next we recall that, by Theorem 3.33, a pair (x1,x2) ∈ Z2 × Z2 of inequivalent
solutions to g(x1) = g(x2) = n ∈ N corresponds to a pair of different ideals in the class
Cg having norm n. For (n, f) = 1, these are exactly the pairs of ideals (bc, bc) with
N(bc) = n, where c ∈ XG for some G ∈ G and b ∈ A is in the class CgG.

Proof. Indeed, we can construct b and c using the prime ideal factorization as in Corol-
lary 3.26. Two ideals a1, a2 ∈ Cg with norm n have the form a1 =

∏
pi
∏

qj
∏

(rk) and
a2 =

∏
pi
∏

sj
∏

(rk), where {pi}i correspond to the ramified primes, {qj , sj}j to the
split primes, and {rk}k are the inert primes. Thus, the two outer products

∏
pi and∏

(rk) are identical in both factorizations, respectively, since N(a1) = N(a2). We want
b to be primitive and coprime to D, so that

∏
pi
∏

(rk) needs to divide c.
For the rest, let Q = {q prime : q | n, (D0

q ) = 1} and for each q ∈ Q choose a prime
ideal denoted by q that contains q. Then the middle products are of the form

∏
qj =

∏
q∈Q

qiqqjq ,
∏

sj =
∏
q∈Q

qkqqlq , (4.2)

3By definition, an ideal a is coprime to D if a+DOD = OD. This is equivalent to gcd(N(a), D) = 1,
as in Remark 3.19.
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where iq + jq = kq + lq for all q ∈ Q. To see how to construct b and c, let us assume
without loss of generality that iq = min(iq, jq, kq, lq) for a prime q ∈ Q. Then the factor
in (4.2) corresponding to q is of the form

qiqqjq = (qiq)qjq−iq , qkqqlq = (qiq)qkq−iqqlq−iq ,

using that qq = q. Since we want b ∈ A, the principal ideal (qiq) should divide c.
Denoting bq = qlq−iq ⊂ OD and cq = (qiq)qm ⊂ OD where m = jq − iq − (lq − iq) =
kq − iq ∈ N0, we have

qiqqjq = bqcq, qkqqlq = bqcq.

Defining bq and cq analogously for all q ∈ Q and denoting

b =
∏
q∈Q

bq, c =
∏
i

pi
∏
q∈Q

cq
∏
k

(rk),

we find that a1 = bc and a2 = bc. Lemma 4.15 shows that b ∈ A, since each bq is primitive
by Theorem 3.24. Moreover, a1 6= a2 implies that a1b

−1 = c 6= c = a2b
−1. Since a1 and

a2 are in the same class, there exists ξ ∈ OD such that ξOD = a1a2 = N(b)c2, and
it follows that c is in an ambiguous class. Finally, the considerations that lead to the
explicit construction make clear that b and c are unique (here we make implicit use of
the uniqueness of prime factorization).

Let u be the ideal in some class CgG0 of the coset CgG having smallest possible norm
Nu =: ug coprime to the conductor f . Then u ∈ A since we may divide out from u any
rational integer and any ideal dividing (D) and still obtain an ideal in a class CgG with
even smaller norm (notice that ideals dividing (D0) are contained in ambiguous classes).
For n ∈ N, G ∈ G, and x ∈ R define

ρ1(n,G) := #{a ∈ XG | Na = n}, R1(x,G) :=
∑
n≤x

(n,f)=1

ρ1(n,G),

ρ2(n,G) := #{a ∈ CgG ∩ A | Na = n}, R2(x,G) :=
∑
n≤x

(n,f)=1

ρ2(n,G).

Since the number of pairs of different ideals in Cg having norm n is equal to

∑
m|n

∑
G∈G

ρ1(G,m)ρ2(G,n/m),
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the following estimates will become very useful later, when we will essentially multiply
them together.

Lemma 4.16. For all G ∈ G, we have

R1(x,G) ≤ 16x√
D
, R2(x,G)


� xD−1/2 +

√
x for all x,

≤ 1 for x <
√
D/4,

= 0 for x < (D/4)1/4,

with absolute implied constants.

Proof. First, we note that if the vector x ∈ Z2 corresponds to the ideal a as in Theorem
3.33, then for r ∈ Z the vector rx corresponds to (r)a. By Lemma 3.38, each ambiguous
class G ∈ G contains a form of the shape

hG(x1, x2) = ax2
1 + cx2

2, 4ac = D,

hG(x1, x2) = ax2
1 + ax1x2 + cx2

2 = a

(
x1 + 1

2x2

)2
+
(
c− 1

4a
)
x2

2, a(4c− a) = D

or

hG(x1, x2) = ax2
1 + bx1x2 + ax2

2 =
(
a

2 + b

4

)
(x1 + x2)2 +

(
a

2 −
b

4

)
(x1 − x2)2,

4a2 − b2 = D,

with positive integers b < a ≤ c.
In the first case, the vectors (0, k), (k, 0) correspond to ideals (k)a with N(a) | D,

which are either not coprime to the conductor or are equal to their conjugate, by Corol-
lary 3.22; so they are not in XG. Therefore,

R1(x,G) ≤ #
{

(x1, x2) ∈ Z2 | x1x2 6= 0, |x1| ≤
√
x

a
, |x2| ≤

√
x

c

}
≤ 8x√

D
.

In the second case, the vectors (x1, 0) and (x1,−2x1) correspond to ideals that are
equal to their conjugate, using similar arguments as above. Consequently,
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R1(x,G) ≤ #
{

(y1, y2) ∈ Z2 | y1y2 6= 0, |y1| ≤
√
x

a
, |y2| ≤

√
x

(
c− 1

4a
)− 1

2
}

≤ 8x√
D

In the third case, the vectors (x1,±x1) correspond to ideals that are equal to their
conjugate. Thus,

R1(x,G) ≤ #
{

(y1, y2) ∈ Z2 | y1y2 6= 0, |y1| ≤
√
x

(
a

2 + b

4

)− 1
2
, |y2| ≤

√
x

(
a

2 −
b

4

)− 1
2
}

≤ 16x√
D
.

This proves the first part of the lemma.
For the second assertion, we first have the estimate R2(x,G) � xD−1/2 +

√
x from

Lemma 4.11, which considers all representations and, equivalently, all ideals. Next note
that, if a is a principal ideal with N(a) < D/4, then a is generated by a rational integer,
since any element in OD is of the form (x+ y

√
D)/2, so that N((x+ y

√
D)/2) = (x2 +

y2D)/4. Therefore an ideal v ∈ CfG∩A with N(v) < (D/4)1/4 would produce a principal
ideal u2v2 with norm smaller than D/4, since N(u) ≤ N(v) by minimality. Thus u2v2

would be generated by a rational integer, but if u 6= v, then this is impossible by Lemma
4.15. Similarly, two different ideals v1, v2 ∈ CfG∩A withN(v1), N(v2) < (D/4)1/2 would
produce a principal ideal v1v2 with norm smaller than D/4, which is thus generated by
a rational integer. This is impossible by the same argument.

Define A1(n) := #{a ∈ Cg | N(a) = n, a /∈ uXG0} and A2(n) := #{a ∈ Cg |
N(a) = n, a ∈ uXG0}. By our definition of XG0 we see that A2 = 0 or A2 ≥ 2. Now
define B := {c ∈ G0 | c = c, N(c) ≤ x/ug, (N(c), f) = 1}. Using the unique prime
ideal factorization, we notice that all ideals in B are of the form c = ξp1 . . . pk, where
k ∈ N0, ξ ∈ Z and p1, . . . pk are distinct ramified primes. We see that there are at
most two primitive ideals in G0 dividing D0. Indeed, if c1, c2, and c3 were three such
distinct ideals, then their pairwise products are principal ideals. Since these products
are distinct, we can find one, say c2c3, of the form (ξ)p1 . . . pk, where ξ ∈ Z and p1, . . . pk

are distinct ramified primes with N(p1 . . . pk) < D/4. It follows that c2c3 is the principal
ideal generated by a rational prime and this implies that c2 and c3 are equal by the
uniqueness of prime ideal factorization.
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If c1 and c2 are two (possibly equal) primitive ideals in G0 dividing D0, then the
above arguments show that all elements of B are integers times c1 or times c2. If we
assume (without loss of generality) that N(c1) ≤ N(c2), then |B| �

√
x/(ugN(c1)).

Since uc1 ∈ Cg and (N(u)N(c1), f) = 1, we have ugN(c1) ≥ ag by minimality of ag, so
that |B| = O(

√
x/ag).

If we define r∗g(n, β) = A1(n) + 2β−1A2(n), then by Lemma 4.11 and the correspon-
dence between representations and ideals we have

∑
n≤x

(n,f)=1

r∗g(n, β) =
∑
n≤x

(n,f)=1

(A1(n) +A2(n)) + (2β−1 − 1)
(
|B|+

∑
n≤x

(n,f)=1

A2(n)
)

+Oβ(|B|)

= |{a ∈ Cg | Na ≤ x, (Na, f) = 1}|+

+ (2β−1 − 1) · |{c ∈ G0 | Nc ≤ x/ug, (Nc, f) = 1}|+O

(√
x

ag

)

= ϕ(f)
f
· 2
wD

(
1 + 2β−1 − 1

ug

)
πx√
D

+O

(
2ω(f)

(
1 +

√
x

ag

))
(4.3)

Let us now assume β ≤ 2. A short computation using the first derivative yields
that ξ(β) := (A1 + A2)β − (A1 + 2β−1A2) satisfies |ξ(β)| ≤ ξ(2) for 0 ≤ β ≤ 2 and
A1 ∈ N0, A2 ∈ N0 \ {1} as above. By Lemma 4.16 and the fact that A2(n) ∈ N0 \ {1}
for all n ∈ N, as noted above, we have

∑
n≤x

(n,f)=1

|rg(n)β − r∗g(n, β)| ≤
∑
n≤x

(n,f)=1

rg(n)2 − r∗g(n, 2)

=
∑

G∈G(D)
#{(bc, bc) | c ∈ XG, b ∈ CgG ∩ A \ {u}, Nbc ≤ x, (Nbc, f) = 1)}

=
∑

G∈G(D)

∑
k≤x

(k,f)=1

ρ1(k,G)
∑
l≤x/k

(l,f)=1

ρ2(l, G)

�
∑

G∈G(D)

( ∑
k�xD−1/4

(k,f)=1

ρ1(k,G) +
∑

k≤xD−1/2

(k,f)=1

ρ1(k,G)
(

x

k
√
D

+
√
x

k

))

Using partial summation (for the statement of the formula see for instance [Ten95,
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Thm. 1, Chap I.0]), we can estimate

∑
k≤xD−1/2

(k,f)=1

ρ1(k,G)
(

x

k
√
D

+
√
x

k

)

=
∑

k≤xD−1/2

(k,f)=1

ρ1(k,G)(1 +D1/4) +
x/
√
D∫

1

R1(t, G)
(

x

t2
√
D

+
√
x

2t3/2

)
dt

� x

D3/4 +
x/
√
D∫

1

t√
D
· 1
t

(
x

t
√
D

+
√
x

2t1/2

)
dt

= x

D3/4 +
(
x

D
log t+

√
x

D

√
t

) ∣∣∣∣x/
√
D

1
� x

D3/4 + x log x
D

.

Summing over the ambiguous classes and using that |G(D)| � 2ω(D) as in Theorem 3.39,
we arrive together with (4.3) at the theorem in the case β ≤ 2.

If β > 2, then 0 ≤ rg(n)β − r∗g(n, β) ≤ 3rg(n)β−2(rg(n)2 − r∗g(n, 2)), that is, (A1 +
A2)β− (A1 +2β−1A2) ≤ 3(A1 +A2)β−2((A1 +A2)2− (A1 +2A2)). Indeed if A1 +A2 ≥ 3,
then (A1 +A2)2 ≥ 3(A1 +A2) ≥ (3/2)(A1 + 2A2) and the claim follows. If A1 +A2 ≤ 2
with A2 6= 1, then both sides of the inequality are zero. Therefore, by Lemma 4.7:

∑
n≤x

(n,f)=1

|rg(n)β − r∗g(n, β)| ≤ 3
∑
n≤x

(n,f)=1

τ(n)β−2(rg(n)2 − r∗g(n, 2))

≤ 3
∑

G∈G(D)

∑
k≤x

(k,f)=1

τ(k)β−2ρ1(k,G)
∑
l≤x/k

(l,f)=1

τ(l)β−2ρ2(l, G).

For q > 1 choose p > 1 such that 1/q+ 1/p = 1. By Hölder’s inequality and Lemma 4.8
we get

∑
k≤x

(k,f)=1

τ(k)β−2ρ1(k,G) ≤
( ∑

k≤x
(k,f)=1

ρ1(k,G)
)1/p(∑

k≤x
τ(k)((p−1)/p+β−2)q

)1/q

� x1/p

D1/2p · x
1/q ·

(
(log x)2((p−1)/p+β−2)q+1

)1/q

� x

D(1/2)(1−1/q) (log x)(1/q)(2(β−2)q+1−1),
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and similarly,

∑
l≤x

τ(l)β−2ρ2(l, G)� x

D(1/4)(1−1/q) (log x)(1/q)(2(β−2)q+1−1),

where we use the bound
∑
n≤x ρ2(n,G) � xD−1/4 given by Lemma 4.16. Collecting

these estimates, we find by partial summation that

∑
n≤x

(n,f)=1

rg(n)β − r∗g(n, β)� 2ω(D)x(log x)(2/q)(2(β−2)q+1−1)

D(3/4)(1−1/q)

for any q > 1.

Remark 4.17. In the special case when f = 1, we obtain Theorem 2 in [BG06] by using
the improved error term mentioned in Remark 4.12.

Theorem 4.18 (Blomer-Granville). For a given binary quadratic form g with fundamental
discriminant −D = D0 < 0, let ag be the smallest positive integer that is represented by
g, and let ug be the smallest positive integer that can be represented by some form in the
coset gG(D). For any β ≥ 0 we have:

∑
n≤x

rg(n)β =
(

1 + 2β−1 − 1
ug

)
πx√
D

+ Eβ(x,D),

where

Eβ(x,D)�



√
x

ag
+ 2ω(D)

(
x log x
D

+ x

D3/4

)
, 0 ≤ β ≤ 2,

√
x

ag
+ 2ω(D)x(log x)(2/q)(2(β−2)q+1−1)+1

D(3/4)(1−1/q) , β > 2,

for any real q > 1. The implied constants depend at most on β and q.

Notice also that Blomer and Granville tacitely assume the discriminant to be −D <

−4, so that wD = 2, since for very small D the main term in the theorem is smaller than
the error term.

Remark 4.19 (Pedantic remark). It is useful for the next proof to notice that the log x
terms in the error do not appear if x < 1. This is trivial in itself, since the left hand side in
the theorem is zero automatically if x < 1, but in the following we shall apply Theorem
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4.13 to quotients of x by divisors of the conductor, which may make the logarithm
negative and we wish to avoid such formal errors and confusions they may bring about.

Proof of the Main Theorem 4.1. We reduce the case of arbitrary numbers that may not
be coprime to the conductor by the Reduction Theorem 4.5 and then we apply Theorem
4.13. We have

∑
n≤x

rg(n) =
∑
n≤x

1
wD

R(g, n) =
∑
d|f

∑
n≤x

(n,f2)=d2

1
wD

R(g, n)

=
∑
d|f

wD/d2

wD

∑
k≤x/d2

(k,(f/d)2)=1

rθd(g)(k).

Applying Theorem 4.13, we first compute the main term:

∑
d|f

wD/d2

wD
·
ϕ(fD/d2)
fD/d2

· 2
wD/d2

(
1 + 2β−1 − 1

uθd(g)

)
πx/d2√
D/d2

= 2
wD
· πx√

D

∑
d|f

ϕ(f/d)
f

(
1 + 2β−1 − 1

uθd(g)

)

= 2
wD
· πx√

D

(
1 + (2β−1 − 1)

∑
d|f

ϕ(f/d)
fuθd(g)

)
.

Now for the error term, we first recall the convolution identities of Lemma 4.9 and
obtain ∑

d|f
2ω(f/d)

(
1 +

√
x

d2aθd(g)

)
= τ(f2) +

∑
d|f

2ω(f/d)

d

√
x

aθd(g)
.

Next we show that
∑
d|f 2ω(D/d2) ≤ τ(D). For simplicity we assume that 2 does not

divide the fundamental discriminant D0. Then the discriminant has the following prime
factor decomposition:

D = f2D0 =
∏
p∈P

p2αp
∏
q∈Q

q2αq+1 ∏
r∈R

r,

where P,Q and R are disjoint sets of primes and

f =
∏
p∈P

pαp
∏
q∈Q

qαq and D0 =
∏
q∈Q

q
∏
r∈R

r.
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It follows, again by Lemma 4.9, that

∑
d|f

2ω(D/d2) =
∑

d|
∏
pαp

∑
e|
∏
qαq

2
ω

(∏
p2αp

d2 ·
∏

q2αq+1

e2
∏
r

)

=
∑

e|
∏
qαq

∑
d|
∏
pαp

2
ω

(∏
p2αp

d2

)
· 2|Q|+|R|

= τ
(∏

qαq
)
τ
(∏

p2αp
)
· 2|Q|+|R|

=
∏
q

2(αq + 1) ·
∏
p

(2αp + 1) · 2|R| = τ(D).

If 2 | D0, then one can easily adapt the computations above to check that

∑
d|f

2ω(D/d2) ≤ τ(D).

Finally we bound log
(
x/d2) by log x and recall Remark 4.19. Moreover, we have

x/d2

(D/d2)α ≤
x

D

for any α ≤ 1. Therefore,

∑
d|f

2ω(D/d2)
(

(x/d2) log
(
x/d2)

D/d2 + x/d2

(D/d2)3/4

)
� τ(D)

(
x log x
D

+ x

D3/4

)
,

which gives the error term in the case 0 ≤ β ≤ 2. The estimate for β > 2 is analogous.
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5 Considerations, variations and applications

5.1 A brief critical analysis of the result

We have seen that the main term in Theorem 4.1 includes a sum over divisors of the
conductor. We would like to simplify this sum, since computing all of the numbers uθd(g)

is far from trivial and can be indeed very expensive. We are able to do so satisfyingly if
the form is in an ambiguous class, but in the general case it seems that the value of the
sum is not very easy to describe.

If g is in an ambiguous class, then ug = 1, since the coset gG(D) includes the class
of the principal form, i.e. the neutral element in the group, which obviously represents 1
(recall Remark 3.31). Analogously, for all divisors d of the conductor we have uθd(g) = 1,
since the images of g under the maps θd are ambiguous classes. Indeed, Theorem 2.1 in
[SW06] states that θd is in fact a surjective homomorphism4, so that images of elements
with order 1 or 2, i.e. the ambiguous classes, have order 1 or 2 as well. Therefore, the
sum simplifies to ∑

d|f

ϕ(f/d)
fuθd(g)

=
∑
d|f

ϕ(f/d)
f

= 1,

by the convolution identity of ϕ from Lemma 4.9. Since all uθd(g) are at least 1, this
is the maximal value of the sum. Now taking β = 0 in the main theorem, so that
2β−1 − 1 = −1/2 < 0, we note that the constant in front of the main term is smallest
for ambiguous forms. Consequently, ambiguous forms represent fewer small integers
than non-ambiguous forms. On the other hand, taking for instance β = 1 shows that
ambiguous forms represent small integers with higher multiplicity.

In contrast, for general classes of forms we cannot expect the sum to be 1. Indeed,
the values of uθd(g) usually vary with d and the sum does not necessarily equal a frac-
tion of the form 1/u, as one would naively try to generalize Theorem 4.18. Table 1,
computed using the computer algebra system Magma, shows a few examples of non-
ambiguous forms of discriminant −3600 = −4 · (2 · 3 · 5)2. Here, the number ũg denotes
the smallest integer represented by the coset gG(D) without the condition of coprimality
to the conductor. For the straight-forward (and non-optimized) algorithm used for these
computations see the Appendix (section 6).

We observe from the table that, unlike in the case of ambiguous forms, the smallest
4See alternatively Theorem 6.4.14 of [HK13]. It is shown there that the map θd corresponds through

the isomorphism between form classes FD and ideal classes C(D) to the homomorphism induced by the
map C(D) −→ C(D/d2), a 7→ aOD/d2 , which can be seen to be well-defined (see [HK13, Theorem 5.9.7]).
Since the composition of homomorphisms is again a homomorphism, θD preserves the group structure.
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g ũg ug uθ2(g) uθ3(g) uθ5(g) uθ6(g) uθ10(g) uθ15(g) uθ30(g)
∑ ϕ(f/d)

fuθd(g)

[8, 4, 113] 8 17 1 13 5 1 1 1 1 9491
16575

[9, 6, 101] 9 29 13 1 5 1 1 1 1 12527
28275

[13, 12, 72] 13 13 13 13 1 1 1 1 1 5
13

Table 1: Computed examples for forms of discriminant −3600

number represented by the coset need not be coprime to the conductor, so that uθd(g)

must be bigger. It is also not obvious how to simplify the sum. One possible idea is
to use the Reduction Theorem 4.5 and try to relate the numbers ug and uθd(g). This
strategy would at least require the homomorphisms θd to map ambiguous classes to am-
biguous classes surjectively, so that the cosets gG(D) and θd(g)G(D/d2) are correlated.
Unfortunately, this is not necessarily true for even discriminants. For instance, using the
formula from Theorem 3.39, we can compute that there are only two ambiguous classes
of discriminant −256 = −4 · 82, namely [4, 4, 17] and [1, 0, 64] (recall Lemma 3.38). Note
that, by applying the matrix

( 0 −1
1 0

)
, we have [4, 4, 17] = [17,−4, 4]. Now

θ2([1, 0, 64]) = [1, 0, 16] and θ2([17,−4, 4]) = [17,−2, 1] = [1, 0, 16],

where the last equality can be seen by applying the matrix
(−1 −1

1 0
)
. On the other hand,

there are two ambiguous classes of discriminant −64, so that the map θ2 restricted to
ambiguous classes is not surjective in this case.

To conclude, further study is needed to understand the constant in front of the main
term in our main theorem. Nevertheless, by estimating this constant, the result may be
good enough for some applications, as we shall see in section 5.3.

5.2 Proper representations

There are counting problems involving binary quadratic forms where it is only the prim-
itive representations that need to be considered. I have been able to obtain partial
results in this setting, but failed to prove a general asymptotic as in the main theorem
of this thesis. At the end of this section, the main difficulty and a possible strategy will
presented.

Lemma 5.1. For n ∈ N and a binary quadratic form g, we have

R∗(g, n) =
∑
d2|n

µ(d)R(g, n/d2).
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Proof. We first note that
R(g, n) =

∑
d2

R∗(g, n/d2), (5.1)

since if g(x, y) = n and gcd(x, y) = d, then g(x/d, y/d) = n/d2 ∈ Z and gcd(x/d, y/d) =
1; conversely, g(x, y) = n/d2 implies that g(dx, dy) = n. Equation (5.1) is a Dirichlet
convolution identity of the form R = 1� ∗ R∗, where 1� is the indicator function of
square integers. Since the Dirichlet series associated to 1� is ζ(2s), we find that the
inverse of 1� in the ring of arithmetic functions is the generating function of ζ−1(2s),
that is

ν(n) =

µ(m), n = m2,m ∈ Z,

0, if n is not a square.

Using this variant of Möbius inversion, we find that R∗ = ν ∗R, which is a restatement
of the claim.

Lemma 5.2. For a binary quadratic form g with discriminant −D < 0 and conductor
f , let a be the smallest integer represented by g. Then we have the asymptotics

∑
n≤x

R∗(g, n) = 1
ζ(2) ·

2πx√
D

+O

(√
x

a
log x

)

and ∑
1≤n≤x
(n,f)=1

R∗(g, n) = 1
ζ(2) ·

φ(f)
f
· 2πx√

D
+O

(
2ω(f)

(√
x+

√
x

a
log x

))
.

Proof. By the convolution relation between R and R∗, i.e. Lemma 5.1, and the asymp-
totics for R, i.e. Lemma 4.11 together with Remark 4.12, we compute

∑
n≤x

R∗(g, n) =
∑
n≤x

∑
d2|n

µ(d)R(g, n/d2)

=
∑
d≤
√
x

µ(d)
∑

k≤x/d2

R(g, k)

= 2πx√
D

∑
d≤
√
x

µ(d)
d2 +O

 ∑
d≤
√
x

1
d
·
√
x

a


= 1
ζ(2) ·

2πx√
D

+O

(√
x

D
+
√
x

a
· log x

)
.

Here we used the identity
∑
µ(n)/n2 = 1/ζ(2) and the simple estimate

∑
n≤x µ(n)/n2 =

1/ζ(2) +O(1/x). Since a ≤ D (recall (2.3)), the error term condenses to O(
√
x/a log x).
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The proof for the sum over numbers coprime to the conductor is completely analogous.

The previous lemma gives us one of the fundamental ingredients for the proof of the
main theorem in the case of primitive representations. We may use almost the same
proof to obtain the special result for the proper representation of numbers coprime to
the conductor.

Corollary 5.3. For a given binary quadratic form g with discriminant −D = D0f
2
D < 0

and conductor fD, let ag be the smallest positive integer that is represented by g, and let
ug be the smallest positive integer coprime to fD that can be represented by some form
in the coset gG(D). For any β ≥ 0 we have:

∑
n≤x

(n,fD)=1

r∗g(n)β = 1
ζ(2) ·

ϕ(fD)
fD

· 2
wD

(
1 + 2β−1 − 1

ug

)
πx√
D

+ Eβ(x,D),

where

Eβ(x,D)�


2ω(f)

(
√
x+

√
x

ag
log x

)
+ 2ω(D)

(
x log x
D

+ x

D3/4

)
, 0 ≤ β ≤ 2,

2ω(f)
(
√
x+

√
x

ag
log x

)
+ 2ω(D)x(log x)(2/q)(2(β−2)q+1−1)+1

D(3/4)(1−1/q) , β > 2,

for any real q > 1. The implied constants depend at most on β and q.

Proof. Note first that ug and ag are properly represented in virtue of their minimality.
Moreover, proper representations correspond by Theorem 3.33 to primitive ideals. In-
deed, if gcd(x, y) > 1, then (xa + yaτ)a−1 = gcd(x, y)( x

gcd(x,y)a + y
gcd(x,y)aτ)a−1 is not

primitive. Conversely, if kI = (xa + yaτ)a−1 for some OD-ideal I and k ∈ Z, then
kIa = (xa + yaτ)OD. Thus (xa + yaτ) = k(x′a + y′aτ), which is easily seen to imply
that k | x and k | y.

We can now adapt the proof of Theorem 4.13 simply by requiring all ideals to be
primitive. We can still factorize each pair of distinct primitive ideals into products of
the form bc and bc, where now both b and c must be primitive. Indeed, a primitive
ideal can only be written as a product of primitive ideals. For the corresponding sums
considering only primitive ideals, R∗1(x,G) = and R∗2(x,G), we may use the same bounds
from Lemma 4.16, since R∗1,2(x,G) ≤ R1,2(x,G). These bounds are used in estimating
the error terms and are essentially multiplied together to produce all pairs of the form
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(bc, bc). Although multiplying two primitive ideals does not necessarily yield a primitive
one, we are only interested in upper bounds, so that for G ∈ G(D) we may estimate

#{(bc, bc) | bc and bc primitive, c ∈ XG, b ∈ CgG ∩ A \ {u}, Nbc ≤ x, (Nbc, f) = 1)}

≤
∑
k≤x

(k,f)=1

ρ∗1(k,G)
∑
l≤x/k

(l,f)=1

ρ∗2(l, G)

Here, ρ∗1 and ρ∗2 only count primitive ideals. The rest of the computations for the error
term remain the same.

For calculating the main term we use the asymptotics for R∗(g, n) from Lemma 5.2
and the observations above. The rest is almost identical.

The other crucial ingredient which allowed us to generalize Theorem 4.18 to non-
fundamental discriminants, i.e. the reduction of representation numbers from Theorem
4.5, is not available any more in this case. We may easily find a counter-example.
Remark 5.4. The form g(x, y) = x2 + 36y2 has discriminant −4 · (2 · 3)2 = −144. Its
image under θ3 is the form g̃(x, y) = x2 +4y2 of discriminant −4 ·22. The number n = 37
has, up to equivalence, a single representation, namely g̃(1, 3) = g̃(−1,−3) = 37, which
is proper. On the other hand, the number m = n · 32 = 333 has only one equivalence
class of representations, namely g(3, 3) = g(−3,−3) = 333, which is not proper.

The asymptotic for proper representations of forms with non-fundamental discrim-
inant remains a topic for further study. The solution seems to require a better under-
standing of the reduction of representation numbers for proper representations or a new
technique for handling ideals not coprime to the conductor. A possible idea for the latter
would be to use factorization into primary ideals. The recent preprint [BGR19] gives in
Theorem 3.6 a precise description and count of the proper primitive primary ideals with
radical dividing the conductor.

5.3 Apollonian circle packings

Following Elena Fuchs’ survey [Fuc13], this last section presents one of the many and
newer applications of the theory of binary quadratic forms. The topic is a very old one:
it stems from a theorem proved by the ancient Greek geometer Apollonius of Perga (c.
262 BC – c. 190 BC), who was studying straight edge and compass constructions of
mutually tangent circles and lines.

Theorem 5.5. To any three mutually tangent circles or lines there are precisely two
other circles or lines which are tangent to all three.
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Figure 1: An Apollonian circle packing

Let us start with four mutually tangent circles (one of the circles contains the other
three). In each interstice between them we can inscribe by Theorem 5.5 a unique circle,
resulting in a configuration of eight mutually tangent circles. We can continue this
process for the newly formed interstices and so on ad infinitum, obtaining a so-called
Apollonian circle packing (ACP) as in Figure 1.5 In 1643 Descartes found a key property
of the curvatures, i.e. inverses of the radii, of circles in such configurations. They satisfy
the following relation.

Theorem 5.6. Let a, b, c and d denote the curvatures of four mutually tangent circles,
where a circle is taken to have negative curvature if it is internally tangent to the other
three. Then

Q(a, b, c, d) := 2(a2 + b2 + c2 + d2)− (a+ b+ c+ d)2 = 0. (5.2)

We refer to the quaternary quadratic form Q in (5.2) as the Descartes quadratic
form and to the curvatures (a, b, c, d) of any four mutually tangent circles as a Descartes
quadruple. From Theorem 5.6 we easily obtain a remarkable corollary: If any of the
Descartes quadruples (a, b, c, d) in an Apollonian circle packing is integral, i.e. a, b, c, d ∈
Z, then all circles in the packing must have integer curvature. This follows by noting

5All figures in this section are reprinted under the Creative Commons licence from the website
https://en.wikipedia.org/wiki/Apollonian gasket.
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that, if we view (5.2) as an equation in d, then we have the two solutions:

d, d′ = a+ b+ c± 2
√
ab+ bc+ ac.

Therefore, given four mutually tangent circles with integer curvatures a, b, c, d, the only
other circle tangent to all three circles with curvatures a, b and c must have curvature

d′ = 2a+ 2b+ 2c− d ∈ Z. (5.3)

The argument is similar for the rest of the circles in an ACP containing the quadruple
(a, b, c, d), using the reasoning above recursively and the fact that Q is symmetric in all
four variables.

ACP’s in which all circles have integer curvature are called integer ACP’s. A few
examples are illustrated in Figure 2 (recall the negative curvature convention from Theo-
rem 5.6). As noted above, we obtain integer ACP’s by starting with a generating integer
quadruple. Though there are many quadruples generating the same ACP, it is useful to
pick out the one with the smallest components. Equivalently, we would like to extract
the four largest generating circles in an ACP. This has been done by Graham, Lagarias,
Mallows, Wilks and Yan in [Gra+03].

Theorem 5.7. Define a Descartes quadruple (a, b, c, d) with a + b + c + d > 0 to be a
root quadruple if a ≤ 0 ≤ b ≤ c ≤ d and a + b + c ≥ d. Then every integer ACP has a
unique root quadruple. However, the packing may contain more than one quadruple of
mutually tangent circles which yields the root quadruple.

Now that we have integer ACP’s, it is very natural to start asking number theoretic
questions. In this thesis we will only touch upon Question 3 in [Fuc13]:

Question. Do the integers which come up as curvatures in a given ACP make up a
positive fraction of N?

The answer was suspected to be affirmative in [Gra+03] and the conjecture was first
proved in [BF11] by Jean Bourgain and Elena Fuchs. To understand the proof, we first
need to introduce the Apollonian group, which produces all Descartes quadruples in an
integer ACP by acting on the root quadruple.

Starting with four mutually tangent circles with curvatures a, b, c and d, we may
produce new circles in the packing by fixing three of the given ones and using the formula
(5.3) (and its analogues obtained by switching variables, since the Descartes quadratic
form Q is symmetric) to get the second solution for the fourth circle. Extending this
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(a) ACP generated by
(−1, 2, 2, 3)

(b) ACP generated by
(−6, 10, 15, 19)

(c) Unbounded ACP generated by (0, 0, 1, 1)

Figure 2: ACP’s with integer curvatures inscribed in the corresponding circles.

process we see that, given a Descartes quadruple vP = (a, b, c, d)t in a packing P , the
collection of Descartes quadruples in P is precisely the orbit AvP , where A is the group
generated by the four matrices

S1 =


-1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

 , S2 =


1 0 0 0
2 -1 2 2
0 0 1 0
0 0 0 1

 ,

S3 =


1 0 0 0
0 1 0 0
2 2 -1 2
0 0 0 1

 , S4 =


1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 -1

 .

The group A is called the Apollonian group.
We now state the main theorem in [BF11], which gives a positive answer to our

question.

Theorem 5.8. For an integer Apollonian circle packing P , let κ(P,X) denote the num-
ber of distinct integers up to X occuring as curvatures in the packing. Then for X large
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we have
κ(P,X)� X,

where the implied constant depends on the packing P .

Since it turns out that working with the full Apollonian group is too difficult, this
theorem is proven by considering certain subgroups of it, thus counting curvatures in
different ”subpackings” of the given ACP. We define Ai to be the group generated by all
but the i-th generator of A:

Ai := 〈{S1, S2, S3, S4} \ {Si}〉.

Since Si is the only generator acting on the i-th component of a vector in R4, we see
that Ai fixes the i-th circle in the root quadruple and produces circles which are tangent
to the fixed one.

In [Sar07], Peter Sarnak showed that the set of integers occurring in the orbits of
such a subgroup contains the set of integers represented by a certain binary quadratic
form with coefficients expressed in terms of the root quadruple of the packing. More
precisely, let vP = (a0, b, c, d)t be the root quadruple of a bounded packing P and Ca0 a
circle of curvature a0. For X ∈ N let

P1 := {n ∈ N | n ≤ X,n = |xj | for some 1 ≤ j ≤ 4, for some (x1, x2, x3, x4)t ∈ A1vP }

and let
fa0(x, y) = Ax2 + 2Bxy + Cy2,

where
A = b+ a0, B = a0 + b+ d− c

2 , C = d+ a0.

The discriminant of fa0 can be seen to be −4a2
0. Sarnak showed that P1 contains the set

A(a0) = {a ∈ N | a ≤ X, a = fa0(x, y)− a0 for some x, y ∈ Z, gcd(x, y) = 1}.

Therefore, since the orbit of A1 is contained in the orbit of the full group A, a lower
bound on the integers less than X represented by the shifted quadratic form fa0 − a0

will serve as a lower bound for κ(X,P ) as well. We may now finally apply our theory of
binary quadratic forms.

Unfortunately, the direct approach does not suffice: it can only show that κ(P,X)�
X/
√

logX (see [Sar07]). This is essentially because the orbit of a particular group Ai

51



gives us only the curvatures of the circles tangent to a fixed circle in P . To obtain some
of the missing curvatures, we can associate to each integer a ∈ A(a0) a circle Ca of
curvature a tangent to Ca0 in the packing P . Applying the same method as above, we
find a binary quadratic form fa such that the set

{α ∈ N | α ≤ X,α is the curvature of a circle tangent to Ca in P}

contains the set

Sa := {α ∈ N | α ≤ X,α = fa(x, y)− a for some x, y ∈ Z, gcd(x, y) = 1}.

Thus, if we take these sets for all a ∈ A(a0) into consideration, the new count will
again reflect circles tangent to a fixed circle in P , but also the circles tangent to all of
the already examined ones. Taking care that we do not count curvatures twice, this is
enough to show Theorem 5.8.

Indeed, as explained above, since

κ(P,X)�
∣∣∣∣ ⋃
a∈A(a0)

Sa

∣∣∣∣,
the theorem is proved if we are able to show that∣∣∣∣ ⋃

a∈A(a0)
Sa

∣∣∣∣� X.

This lower bound is achieved using the first step of inclusion-exclusion:∣∣∣∣ ⋃
a∈A(a0)

Sa

∣∣∣∣ ≥∑
a

|Sa| −
∑
a6=a′
|Sa ∩ Sa′ |.

There are many technical obstacles in the proof, which we will ignore in this thesis.
Essentially, we can only achieve good bounds on |Sa| when a is neither too small, nor
too big in relation to X. Moreover, one must also obtain a balance between bounds
on

∑
|Sa| and on

∑
|Sa ∩ Sa′ |. To achieve this, Bourgain and Fuchs restrict the sum

over A(a0) to the sum over a carefully chosen smaller set, which we denote by S. More
precisely, for a parameter 0 < η < 1 we define

S :=
⋃
k

(A(a0) ∩ [2k, 2k + η2k/
√
k]),
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where k ranges over all positive integers satisfying (logX)2 < 2k < (logX)3/2. In
particular S ⊂ A(a0) ∩ [(logX)2, (logX)3]. Bourgain and Fuchs show that

|A(a0) ∩ [2k, 2k + η2k/
√
k]| � η

2k

k
. (5.4)

We may now state and prove Lemma 3.2 from [BF11].

Lemma 5.9. Let 0 < η < 1. With the notation above we have∣∣∣∣ ⋃
a∈S

Sa

∣∣∣∣� ηX.

Proof. The proof given here is an application of Theorem 4.1 and our considerations
on proper representations. The article [BF11] applies Blomer and Granville’s Theorem
4.18 on the binary quadratic form fa, which has discriminant −D = −4a2. Since we
need to count only proper representations and because −D is fundamental if and only if
a = 1, Theorem 4.18 is generally not applicable. We may easily mend this by employing
essentially the same arguments given by Bourgain and Fuchs, but using the more general
main theorem of this thesis.

Although the analogue of Theorem 4.1 for proper representations is not yet available,
we can use the Cauchy-Schwarz inequality to reduce the problem to known cases:

∑
n≤x

R∗(fa, n)0 ≥
(∑

n≤xR
∗(fa, n)

)2∑
n≤xR

∗(fa, n)2 ≥
(∑

n≤xR
∗(fa, n)

)2∑
n≤xR(fa, n)2 , (5.5)

since R∗(fa, n) ≤ R(fa, n).
First we bound the denominator. Since (logX)2 ≤ a ≤ (logX)3 by our definition of

S, we find that (logX)4 � D � (logX)6. We now apply Theorem 4.1 for the form fa

with β = 2. Since we can crudely bound uθd(fa) ≥ 1 for all d | a (note that the conductor
of fa is a), we find that

1 + (22−1 − 1)
∑
d|a

ϕ(a/d)
auθd(fa)

≤ 1 +
∑
d|a

ϕ(a/d)
a

= 2,

by Lemma 4.9. Consequently, the main term is bounded by an absolute constant times
X/
√
D.

Next, we can also estimate the error term as follows. The first summand in E2(X,D)

53



is ∑
d|a

2ω(a/d)

d

√
X

aθd(g)
≤
√
X
∑
d|a

2ω(a/d) = τ(D2)
√
X.

Notice that for any ε > 0, we can bound τ(D2) �ε D
ε/6 � (logX)ε (see [Ten95,

Cor. 1.1, Chap. I.5] for the first bound). The last summand can be bounded by

Dε
(
X logX
D

+ X

D3/4

)
� X

D3/4−ε ,

where we used that logX � D1/4. Since Dε
√
X � X1/2+ε � X/(logX)3 � X/D3/4

we obtain
E2(X,D)�ε

X

D3/4−ε ,

for any ε > 0. Fixing ε ≤ 1/4, it follows that

∑
n≤X

R(fa, n)2 � X√
D
.

To bound the numerator we use Lemma 5.2. As above,
√
X logX � X/(logX)4 �

X/D, so that the error term is smaller than the main term. Consequently, we have∑
n≤X R

∗(fa, n)� X/
√
D. Applying the bounds obtained above to (5.5), we find that

∑
n≤x

R∗(fa, n)0 � X√
D
� X

a
,

where the implied constant does not depend on D = 4a2. Finally, this implies that

∑
a∈S

Sa �
∑
a∈S

X

a
� ηX

∑
2k+1≤(logX)3

2k>(logX)2

1
k
� ηX,

by (5.4) and comparing the sum to the integral.

The next step in proving the conjecture is to bound the sum over the intersections.
This is done in Proposition 3.4 of [BF11] using different techniques, which will not be
discussed here. The result states that there exists a positive constant c′′, independent of
the parameter 0 < η < 1, such that

∑
a6=a′
|Sa ∩ Sa′ | ≤ c′′η2X.
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Choosing η small enough, so that η − c′′η2 > 0, we obtain the desired bound

κ(P,X)�
∣∣∣∣ ⋃
a∈A(a0)

Sa

∣∣∣∣� (η − c′′η2)X � X.
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6 Appendix

For the computations done for the examples in Table 1 the following Magma code was
used.

// Input
D_0 := -4;
f := 5 * 3 * 2;

// Definitions
D := D_0 * fˆ2;
Q := QuadraticForms(D);
G := AmbiguousForms(Q);
C := ReducedForms(Q);
m := Divisors(f);

// Algorithm
// We cycle through classes
for j := 1 to #C do

// We are only interested in non-ambiguous classes
if Order(C[j]) ge 3 then
print "F =", C[j];
S := [];
// S will contain the smallest numbers represented
// by the product of C[j] with ambiguous forms
for i := 1 to #G do

F := C[j]*G[i];
n := 1;
while RepresentationNumber(F, n) eq 0 do

n := n + 1;
end while;
Append(˜S, n);

end for;
u, ind := Min(S);
print "the smallest number represented by coset: ", u;

suma := 0;

for d := 1 to #m do
// Definitions for the reduction
Q_d := QuadraticForms(D / m[d]ˆ2);
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G_d := AmbiguousForms(Q_d);
C_d := ReducedForms(Q_d);
theta_d := QuotientMap(Q, Q_d);

S := [];
for i:= 1 to #G_m do

F := psi_m(C[j])*G_m[i];
n := 1;
while Gcd(n, m[d]) ne 1 or RepresentationNumber(F,

↪→ n) eq 0 do
n := n + 1;
end while;
Append(˜S, n);

end for;
u_m, ind_m := Min(S);
print "m =", m[d], "and u_m =", u_m;
suma := suma + EulerPhi(m[d]) / u_m;

end for;
print "sum of phi(m)/u_m =", suma, "and then divided by f:", suma

↪→ /f;

end if;
end for;
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