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A new type of symmetry - supersymmetry - was in-
troduced in physics in the 70’s. The mathematical
foundations of this theory involve the representation
theory of the associated symmetry groups, the so-
called supergroups. Here we would like to understand
the fusion rules. In physical terms this is the ques-
tion what happens during the fusion of two physical
systems and how the new system is built from more
fundamental building blocks. The answer is largely
unknown, but one can get approximate answers in
some cases.

1 Symmetr ies and groups

The concept of symmetry is one of the foundational principles in Mathematics
and Physics. A symmetry of a system is an invariance under a transformation
of the system. A sphere in three dimensional space looks the same (is invariant)
after a rotation by an arbitrary angle, hence it is symmetric with respect
to rotations. The set {1, 2, . . . , n} is symmetric with regards to arbitrary
permutations of the numbers 1, 2, . . . , n (since a set does not depend on the

1 The research of T.H. was partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2047/1 –
390685813.

1



order of its elements). The transformations of the system which preserve partial
configurations form the associated symmetry group. In the case of the sphere
this is the special orthogonal group SO(3,R), in the case of the set {1, . . . , n}
this is the symmetric group Sn. Symmetries need not be geometric in nature as
the permutation example shows. Other such examples arise in physics: Particles
can have an inner symmetry called Spin. In the 70’s physicists described a
new conjectural form of symmetry: supersymmetry. Elementary particles can
be divided into two families (according to their spin) called bosons (like the
photon) and fermions (like the electron). The supersymmetry is a symmetry that
can transform bosons and fermions into each other. Laying the mathematical
foundations of supersymmetry has been an ongoing process since then. A key
part of this is the representation theory of supergroups. It is in this area that
we try to understand a mathematical problem that would physically correspond
to the fusion of two physical systems.

Let us step back for a moment and return to the basic notations of a group. If
we look at the set of rotations, it has a few remarkable properties:

1. If we take two rotations ϕ1, ϕ2, we get another rotation ϕ1 + ϕ2 by doing
the rotations consecutively.

2. We can rotate by 0 degrees; this rotation leaves all points fixed.
3. For any rotation with angle ϕ there is an inverse rotation, namely we rotate

by −ϕ. If we first do one and then the other, we rotate by 0-degrees.

In abstract terms we have a set (the rotations) in which any two elements
can be composed to yield another element from this set, and there is a neutral
element with respect to this composition (the rotation by 0-degrees) and an
inverse (the rotation by the angle −ϕ). A set with such a composition is called
a group. Groups abound in mathematics; obvious examples are sets of numbers:
the real numbers R form a group with the usual addition: a + b is another
real number, the neutral element is 0 and the inverse to a is −a. Yet another
example is the symmetric group mentioned above.

2 Representat ions of groups

Representation theory studies groups - or other similar structures - by repre-
senting them as linear transformations on vector spaces.

The prototypical example of a vector space is R3 - 3-dimensional space, or its
generalization Rn, n-dimensional space. An element in R3 is given by a 3-tuple
(x, y, z) or (x1, x2, x3) where x1, x2 and x3 are real numbers.
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Figure 1: A point in R3

It is common to call these tuples vectors. But R3 is not just a set of vectors:
We can add two tuples

(x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3)

and we can multiply them by real numbers

a · (x1, x2, x3) = (ax1, ax2, ax3) for a ∈ R

and there is zero vector

(0, 0, 0) + (x1, x2, x3) = (x1, x2, x3).

Such a structure is called a vector space in mathematics. The vector space R3

is specified by three coordinates, but there are vector spaces which cannot be
described by finitely many coordinates, therefore called infinite dimensional.

We now look at linear maps ϕ : V → V of a vector space V , the ones that
are compatible with the addition and scalar operation

ϕ(ax+ by) = aϕ(x) + bϕ(y), a, b ∈ R, x, y ∈ V.

A representation of a group G then assigns to every element g ∈ G a linear
map ϕg : V → V . We can also write this as G → End(V ), where End(V ) is
the set of linear maps of V to itself; and we often say that G acts on V (via
linear maps). A representation of G on a vector space allows one to study G by
looking at the simplified picture of the associated linear transformations. By
doing so we loose information about the group. We should therefore understand
the whole collection of representations.
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3 A quick pr imer on representat ion theory

The study of representations of groups (or similar algebraic structures) is called
representation theory. It is a vast theory with many different flavours, but at
the heart of the matter there are some simple questions such as: How many
representations are there? Can one classify them? In this generality there
is no hope to answer them. A first very harsh restriction might be to look
at finite dimensional vector spaces. In a second step one should not hope
to get uniform answers for all groups, but restrict to particular groups of
interest (such as Sn or SO(n,R)). In a third step the problem of describing
all finite dimensional representations should be reduced to some basic building
blocks. Like all matter is composed of atoms, and all atoms ultimately of
elementary particles, each representation should be built from some elementary
or fundamental representations. It would then be enough to describe these
elementary representations and furthermore all possible ways one can build
other representations with them. These elementary building blocks are called
irreducible representations. A representation is called irreducible if it does not
contain any other (non-trivial) representation, i.e. there is no subvector space
of V which is stable under the action of G.

Let us look at an example, the action of the symmetric group Sn on Rn.
An element in Rn is given by a tuple (x1, . . . , xn) of real numbers xi. The
permutation group acts on the set of such tuples by permuting the entries. If
σ is the permutation in S7 that swaps the 2-nd and 5-th entry, then σ sends
(x1, x2, x3, x4, , x5, x6, x7) to the tuple (x1, x5, x3, x4, x2, x6, x7). In this way we
can specify for each element in Sn a linear map from Rn → Rn which means
that we have defined a representation of Sn on Rn. But this representation is
not irreducible! Indeed look at the vectors in Rn of the form (x, x, . . . , x) where
x is an arbitrary real number. The space of such tuples is a 1-dimensional
subspace of Rn (since an arbitrary element is specified by a single number
x). This subspace is invariant under Sn: Sn sends (x, . . . , x) to itself and
preserves this subspace. We have hence found a subrepresentation in Rn (which
is therefore not irreducible). We identify this subrepresentation with R via
the map x 7→ (x, x, . . . , x). Conversely the set of tuples (x1, . . . , xn) for which
not all xi are the same is invariant under the Sn-action. Hence this is also a
subrepresentation, this time of dimension n− 1 (Rn has dimension n and the
dimensions of the two subrepresentations must add up to n). This representation
is sometimes called the standard representation st of Sn. Clearly the underlying
sets of the two subrepresentations are disjoint and any vector in Rn is in one of
them. We write this as

Rn ∼= R⊕ st (as representations of Sn).

It can be checked that st is irreducible, hence the representation of Sn on
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Rn is the direct sum of two irreducible representations. In fact a theorem of
Maschke asserts that every finite dimensional representation of a finite grup on
a real or complex vector space can be written as a direct sum of irreducible
representations. This theorem is no longer true if one works with infinite groups
or infinite dimensional vector spaces.

The representation theory of the symmetric groups is an old classical subject.
Much of it goes back to the work of Isaai Schur and Georg Frobenius more than
a hundred years ago.

Figure 2: Isaai Schur (left) and Georg Frobenius (right)

But even here one encounters elementary, yet unsolved questions. One such
question concerns the fusion rules. Given two representations V,W of a group G
(this means that V and W are vector spaces on which G acts), we can use these
to construct new representations. One such construction is the direct sum ⊕ used
above. Writing V ⊕W means looking at the tuples (v, w) where v ∈ V, w ∈W .
These tuples are closed under addition (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)
and multiplication by a real number a · (v, w) = (av, aw) and hence form a
vector space of dimension dim(V ) + dim(W ). The vector space V ⊕W is a
representation of G if we define g · (v, w) = (g · v, g ·w). One example of such a
construction is R2: As a vector space this is simply R⊕ R. Yet another way to
build a new representation is the tensor product V ⊗W . This is again a new
vector space, but this time of dimension dim(V ) · dim(W ). It contains elements
v ⊗ w for v ∈ V, w ∈ W , but also more complicated expressions (sometimes
called entangled states) of the form

∑
i,j vi ⊗ wj for vi some vectors in V and

some vectors wj in W.
In general any representation can be written as a direct sum of indecomposable

representations. These are representations which can not be decomposed any
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further (though they might not be irreducible). This applies therefore also to
the tensor product V ⊗W and we can write

V ⊗W = cI1
V,W I1 ⊕ . . .⊕ cInV,W In

for certain indecomposable representations Ii of G and certain multiplicities
cIiV,W ∈ N (which count how often Ii turns up in this decomposition). A rule
which tells us what these coefficients are and how they are computed (and
therefore how the tensor product V ⊗W decomposes) is called a fusion rule.

In the situation of the symmetric group, Maschke’s theorem says that any
finite dimensional representation can be written as a direct sum of irreducible
representations. In this case the coefficients cIνV,W have a special name: they
are called Kronecker coefficients. While the finite dimensional representation
theory of the symmetric group over the real or complex numbers is classical
and quite elementary, we don’t know any good description of these coefficients
yet! We would like to have a closed combinatorial expression of the cIνV,W , but
this unknown. The lesson is that finding the fusion rules is going to be very
hard in general if we already fail for such a well-studied example as Sn.

4 Cont inuous symmetr ies and Lie groups

It is important to take into account that there are many types of groups, and
hence we cannot expect a single theory that describes all possible representations
of groups. For example, groups could describe continuous symmetries (such as
SO(3,R)) or discrete symmetries (such as Sn). Continuous symmetries lead to
the theory of Lie groups, named after the Norwegian mathematician Sophus
Lie. An analysis of their representations requires other methods than the study
of discrete groups such as Sn.

The most important Lie group is GL(n,C), the group of invertible linear
maps from Cn → Cn, or its real analog GL(n,R). Many other important Lie
groups occur naturally as subgroups. For this it is convenient to identify linear
maps Cn → Cn or Rn → Rn by matrices in the following way. Each vector of
either Rn or Cn can be written as a linear combination of the standard basis

e1 =


1
0
. . .
0
0

 , e2 =


0
1
0
. . .
0

 , . . . , en =


0
0
. . .
0
1

 .
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If v has coordinates

v =


λ1
λ2
. . .
λn


with λi ∈ C or R, the vector v is given by

v = λ1e1 + λ2e2 + . . .+ λnen.

For any linear map ϕ : Cn → Cn we get

ϕ(v) = ϕ(
n∑
i=1

λiei) =
n∑
i=1

λiϕ(ei).

Therefore a linear map is completely determined by its values ϕ(ei) on the
basis vectors (i = 1, . . . , n). It is customary to collect this information into an
n× n-matrix defined by

M(ϕ) =
(
ϕ(e1) ϕ(e2) . . . ϕ(en)

)
.

The collection of all possible n× n-matrices (with n rows and n columns) with
real or complex entries is denoted by Mn×n(R) or Mn×n(C). These matrices
correspond 1:1 to linear maps from Rn → Rn or Cn → Cn. The groups GL(n,R)
and GL(n,C) can be identified with real and complex matrix with non-vanishing
determinant (The determinant of a matrix is a real or complex number that
measures whether the corresponding linear map is invertible).

One advantage of this viewpoint is that by representing elements of GL(n,R)
or GL(n,C) by matrices we immediately obtain a representation of GL(n). The
n-dimensional representation Rn or Cn defined by the action of matrices on
elements of Rn and Cn is called the standard representation.

Another advantage one is that one can easily define some important subgroups
of GL(n,R) and GL(n,C) now:

• The special linear groups SL(n,R) and SL(n,C) consisting of n×n matrices
with determinant one and entries in R or C.

• The real or complex orthogonal and special orthogonal groups, O(n,R),
SO(n,R), O(n,C), SO(n,C) consisting of (real or complex) n× n matrices
satisfying RT = R−1 (and also det(R) = 1 in the case of SO(n)). Here RT
is the transposed matrix, the matrix obtained by flipping all entries over
the diagonal.

• The unitary groups and special unitary groups U(n) and SU(n) consisting
of n× n complex matrices satisfying R∗ = R−1 (and det(R) = 1 in the case
of SU(n)). Here R∗ is the conjugate transpose, the matrix obtained by
transposition and then applying complex conjugation to each entry.
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• Other notable examples are the series of symplectic groups Sp(2n,C) and
several exceptional Lie groups.

As for finite groups one can now study (finite dimensional) representations of
Lie groups. Here again we consider (linear) actions of G on a finite dimensional
vector space such as Cn, but we require that the map is smooth, taking into
account the continuous symmetry. In this note we only look at the more
restrictive class of algebraic representations.

The representation theory of Lie groups is an extremely rich subject that
has connections to almost all areas of pure mathematics. In general, even finite
dimensional representations over the complex numbers need not be completely
reducible, but this is still true if one looks at algebraic representations of matrix
groups such as GL(n), SO(n), O(n), Sp(2n) and SU(n) (Weyl’s complete
reducibility theorem)(for simplicity we will only work over C and assume we are
dealing with the complex groups from now on). Contrary to the finite group
case there are always infinitely many irreducible representations, but they can
often be classified. Coming back to our old problem, we can ask now how we
can decompose the tensor product of two representations into a direct sum of
irreducible or indecomposable representations.

For groups of continuous symmetries such as SL(n), GL(n), SU(n), SO(n)
there are algorithmic descriptions of these fusion rules (the Littlewood-Richardson
rule for GL(n) and SL(n) and variants of it for other classical groups). In fact
Littlewood-Richardson "conjectured" an algorithm for the this problem in the
SL(n)-case in 1934 which was finally proven in the 70’s by Schuetzenberger and
Thomas. In the words of Gordon James:

Unfortunately the Littlewood-Richardson rule is much harder to
prove than was at first suspected. The author was once told that the
Littlewood-Richardson rule helped to get men on the moon but was
not proved until after they got there.

Indeed as soon as the dimensions of the representations become large, their
tensor product decomposes into zillions of summands with no obvious pattern.

5 Algebraic aspects of the standard model

Physicists are often not interested in a random group, they mostly need very
special low rank Lie groups: U(1) for translation symmetry, SO(3,R) for spatial
rotations, SU(2) to describe isospin and a few others more. The most important
groups are those that arise as gauge groups in gauge field theories, notably the
Standard Model, a special kind of quantum field theory.
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The symmetry group of the standard model and the classifaction of elemen-
tary particles is based on a feedback loop between symmetry considerations (i.e.
the representation theory of possible groups) and empirical data on the other
side. High energy collision experiments and the subsequent analysis of the data
suggested conservation laws and symmetry constraints which in turn allowed
the prediction of new particles that could ultimately be found in experiments.

Ultimately the goal is to describe all matter in terms of elementary particles
and the interactions between them by fundamental forces. The Standard model
achieves this excluding a description of gravity. The dynamics and kinetic of
the theory is described by a Lagrangian L. To get this Lagrangian one first
postulates a set of symmetries and then tries to find the most general form
a Lagrangian can have that satisfies these symmetries. Like in all relativistic
field theories, the Lagrangian has to observe so-called global Poincaré symmetry,
that is invariance under Lorentz transformations and translations in Minkowski
space. Additionally the Lagrangian has an internal symmetry (local gauge
symmetry) with respect to the gauge group G = U(1)× SU(2)× SU(3). The
three symmetry groups belong to the three interactions, electromagnetism and
weak and strong force that the Standard Model incorporates. The fields in the
Standard Model are then build from the fields of the three different symmetry
groups (which we should think of as taking values in irreducible representations).

Figure 3: The elementary particles in the standard model

But how do we get the irreducible representations of a product group like
U(1)×SU(2)×SU(3) if we know the irreducible representations of each factor?
The answer is fortunately simple: We take the external tensor product �
of the irreducible representations of each factor. So knowing the irreducible
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representations of U(1), SU(2) and SU(3) is enough to get the irreducible
representations of the product. In down to earth terms, if U, V,W are irreducible
representations of U(1) respectively SU(2) respectively SU(3), then U �V �W
is an irreducible representation of G, and every irreducible representation of G
is of this form.

In the standard model the elementary particles (like the electron or the quarks)
sit inside an inside an irreducible representation of G = SU(3)× SU(2)× U(1).
The different elementary particles span different irreducible representations of G.
An example is given by the up-quark. It comes in three different polarizations
(sometimes called red, green, blue). Together they combine to the standard
representation C3 of SU(3) (when ignoring the SU(2)× U(1)-part).

This description shows part of the algebraic structure of the Standard Model.
However the Standard Model is much more, it doesn’t just classify elementary
particles by representations. As any quantum field theory it describes the
dynamics of the system: How do particles move and interact? The mathematical
and physical descriptions of this are far beyond this little paper. For our purpose
let us note that here the Lagrangian comes into play. The evolution of a physical
state in the Standard Model is given by the so-called path integral (or Feynman
integral) formalism. These Feynman integrals are not mathematically rigorously
defined, but they have been used by physicists since decades to calculate the
effect of collisions and other physical effects with very high precision.

Figure 4: Data from a particle collision

Whatever the methods of computation are, if we want to evaluate a Feynman
integral that describes the collision of two particles, the result depends on
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the fusion rules between the corresponding irreducible representations. While
there are many open questions about these Feynman integrals, the part that
involves the fusion rules is a classical piece of mathematics and well-understood.
The situation changes considerably if one tries to replace the Standard Model
and its gauge group by a more complicated (?) theory based on the notion of
supersymmetry.

6 Super structures

While the Standard Model had tremendous success in unifying electromagnetism
and the weak and strong force and agrees with experimental results, it has several
shortcomings which lead physicists to search for alternatives. In particular one
would like to have a supersymmetric extension of the Standard Model. So far
no experimental evidence for such an extension was found at the LHC or other
colliders, and hence the concept of supersymmetry remains in limbo despite its
theoretical advantages.

Mathematically the passage to the supersymmetric extension involves re-
placing the Lie group with a Lie supergroup, a Z2-graded generalization of the
former. This means that the new algebraic structure has an even part (the
bosonic part) and an odd part (the fermionic part). Similarly the vector spaces
on which these groups or algebras act are replaced by super vector spaces, vector
spaces with an even and an odd part. The easiest example is simply

Cm|n := Cm ⊕ Cn,

a vector space with two parts, one seen as even (Cm), the other one as odd
(Cn). We can now look at all linear transformations of Cm|n.

The Z2-grading allows to introduce a Z2-grading on the space of linear maps
of (Cm|n) to itself: a transformation Cm|n → Cm|n is even if it maps the even
part to the even part and the odd part to the odd part. It is called odd, if it
maps the even to odd part and vice versa. Hence the space of linear maps of
Cm|n is itself a super vector space! Copying the definition of GL(n,C) we define

GL(m|n,C), the General Linear Supergroup

to be the group of invertible linear maps Cm|n → Cm|n. The super world
incorporates the classical case via GL(m|0,C) = GL(m,C). As in the classical
world there are analogs of SO(n) and Sp(2n) (the orthosymplectic supergroups)
but also new types of groups which have no classical counterpart.

Similarly to the classical theory of Lie groups, one can now ask: What are the
irreducible representations? What are their dimensions? Can every representa-
tion be written as a direct sum of irreducible representations? These and further
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questions have been investigated since the foundational work of Kac [Kac78] in
the 70’s; and the study of (algebraic) representations of Lie supergroups has
now become a thriving area in pure mathematics with connections to many
other fields such as algebraic geometry, quantum topology and even analytic
number theory.

7 Fusion rules for supergroups and truncat ions

One major difference is that Weyl’s theorem fails in the super world: Not
all finite dimensional representations can be written as a sum of irreducible
representations. This means that we will encounter representations which
have many subrepresentations, but there is no way to split them into a direct
sum of two other representations (called indecomposable). The occurence of
such representations renders many tools from classical Lie theory useless; and
the questions posed above have much more complicated answers or are even
unknown. In the beginning there is a fortunate surprise: It is quite easy to
parametrize the irreducible representations for many Lie supergroups.

In the GL(m|n)-case irreducible representations are parametrized by tuples

λ = (λ1, . . . , λm | λm+1, . . . , λm+n) ∈ Zm|n

where λ1 ≥ . . . ≥ λm and λm+1 ≥ . . . ≥ λm+n. We simply denote the
corresponding irreducible representation by L(λ). Actually for each λ there is
a second irreducible representation, namely the parity shift ΠL(λ) where we
swap the even and the odd part of the underlying super vector space.

Many of questions that one can ask about these L(λ)’s turn out to be very
hard: What is the dimension of L(λ)? What is its superdimension? In what
ways can we combine such L(λ) to form these big complicated indecomposable
modules? And, most importantly for this article, what are the fusion rules for
L(λ) ⊗ L(µ)? Some of these answers have been answered in the last 10 - 20
years [Ser10] [BS12] [HW21] but there are still open questions, and the situation
is even more complicated for other Lie supergroups.

Quite generally the fusion rules are known for the case GL(m|1), but beyond
that the decomposition L(λ)⊗ L(µ) is only known for special weights λ, µ. It
was suggested in [Hei15] and carried out in [HW18] [HW22] that one should
instead look at truncated fusion rules: A super vector vector space might have
an even part with the same dimension as the odd part. The difference of the
dimensions dim(V0)− dim(V1) is called the superdimension sdim(V ). Consider
for example the standard representation Cm|n of GL(m|n): Its superdimension
is m− n.

We then look at tensor products of irreducible representations of non-
vanishing superdimension and calculate the decomposition modulo superdi-
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mension 0 : In the formula L(λ) ⊗ L(µ) = I1 ⊕ I2 ⊕ . . . ⊕ In we disregard all
indecomposable summands such that sdim(Iν) = 0. While the actual fusion
rules are unknown, it turns out that one can determine these truncated fusion
rules in almost all cases!

Our main result [HW18] essentially says that the fusion rule describing this
decomposition is the same as the one for a classical groups such as Sp(2n),
SU(n) or SL(n) and so on!

The key point is that one can attach to an irreducible representation L(λ)
of GL(m|n) a group Hλ (which is now not a supergroup, but a classical group
like those above) and an irreducible representation V (λ) of Hλ such that
L(λ)⊗ L(µ) decomposes exactly as V (λ)⊗ V (µ) decomposes. The groups Hλ

and the representations V (λ) are completely explicitely given.
How does this work in practice? Suppose we want to decompose the tensor

product of L(2, 1, 0|0,−1,−2) of GL(3|3) with itself. (we use the abbrevi-
ation [2, 1, 0]). Our main theorems tell us that the corresponding pair is
(Sp(6), L(1, 0, 0)). Here L(1, 0, 0) is actually just the standard representation of
Sp(6): C6 with the action of Sp(6) given by matrix multiplication. The classical
tensor product rules for Sp(6) tell us that L(1, 0, 0)⊗2 decomposes as

L(1, 0, 0)⊗2 ∼= L(0, 0, 0)⊕ L(2, 0, 0)⊕ L(1, 1, 0).

To each of the three summands corresponds an indecomposable representa-
tion of gl(3|3) whose superdimension agrees with the dimension of the Sp(6)-
representations. Hence

[2, 1, 0]⊗ [2, 1, 0] ∼= I1 ⊕ I2 ⊕ I3

up to contributions of superdimension 0. But now we can iterate this further
and further and apply this to tensor products between the indecomposable
summands that appear in this way. Let’s say I3 corresponds to L(1, 1, 0). In
order to compute I3 ⊗ I3 up to superdimension 0, we can look at L(1, 1, 0)⊗2

and match the resulting summands with indecomposable summands in I⊗2
3 and

so forth.
If we would have taken an irreducible representation of GL(9|3) instead, the

associated group Hλ would have been GL(6)×Hλ′ for a group Hλ′ which can
be calculated in the GL(3|3)-case. Then our tensor product decomposition
would have been a mix of the Littlewood-Richardson rule for GL(6) and the
rule for Hλ′ (e.g. Sp(6)).

Alas there is a small caveat: For some special weights we cannot determine
Hλ completely. In these cases we have two candidates for Hλ and cannot decide
which of the two is actually the right one.
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8 Back to physics?

While these result can be seen as a first step to obtain general fusion rules,
one may wonder or dream whether there is more to it, whether maybe the
truncation at sdim = 0 actually has a physical meaning?

Let us suppose we have a supersymmetric extension of the Standard Model
with a super gauge group G. For supersymmetric fields ψ on super Minkowski
space M (a combination of 3-dimensional euclidian space and time to a 4-
dimensional superspace) with values in a finite dimensional representation V
of G, the computation of the Feynman integrals require the analysis of higher
tensor products V ⊗r ⊗ (V ∨)⊗s (here V ∨ is the dual representation). These are
approximated by our truncated fusion rules.

A particular important case is the one of GL(4|4). Its importance arises from
the connection to the conformal group of Minkowski space which consists of
those transformations that preserve angles. Every Lie group has an associated
infinitesal symmetry group attached to it (its Lie algebra) which controls to a
good extent its structure and representation theory. In the case of the conformal
group this Lie algebra is denoted so(2, 4); it lives naturally over R but can be
extended to C. Its complexification is isomorphic to sl(4,C), the Lie algebra of
GL(4,C) which gives a correspondence between irreducible representations of
GL(4,C) and so(2, 4). Generalizing to the superworld, the groups GL(4|N,C)
and their representation are the appropriate setup to study superconformal
extensions of the conformal group. Here is a list of small cases for GL(4|4)
(where Spc stands for the compact symplectic group):

• [3, 2, 1, 0], sdim = 24, Hλ = SO(24) (conjecturally).
• [3, 2, 0, 0], sdim = 12, Hλ = SU(12).
• [3, 1, 1, 0], sdim = 12, Hλ = Spc(12).
• [3, 1, 0, 0], sdim = 8, Hλ = SU(8).
• [3, 0, 0, 0], sdim = 4, Hλ = SU(4).
• [2, 2, 1, 0], sdim = 12, Hλ = SU(12).
• [2, 2, 0, 0], sdim = 6, Hλ = SO(6).
• [2, 1, 1, 0], sdim = 8, Hλ = SU(8).
• [2, 1, 0, 0], sdim = 6, Hλ = Spc(6).
• [2, 0, 0, 0], sdim = 3, Hλ = SU(3).
• [1, 1, 1, 0], sdim = 4, Hλ = SU(4).
• [1, 1, 0, 0], sdim = 3, Hλ = SU(3).
• [1, 0, 0, 0], sdim = 2, Hλ = SU(2).
• [1, 1, 1, 1], sdim = 1, Hλ = U(1).

In fact in the first example we cannot rule out the possibility that Hλ =
SU(12) o Z2. The reader will observe that the smallest arising groups are
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U(1), SU(2) and SU(3). One may ask whether the appearence of the groups
U(1), SU(2), SU(3) here is a mere accident, or whether there does exist some
connection with the symmetry groups arising in the standard model of elemen-
tary particle physics?

One special feature of supersymmetric field theories are cancellations due
to the appearances of minus signs and the existence of superpartners. These
cancellations are responsible for many of the more amenable features of such
theories compared to the standard model. If in such a theory, for some mysterious
physical reasons, the tensor product contributions to the Feynman integrals from
direct summands of V ⊗r ⊗ (V ∨)⊗s of superdimension zero would be relatively
small in a certain energy range due to supersymmetry cancellations, then to
first order they would be negligible. Hence a physical observer might come up
with the impression that the underlying rules of symmetry are imposed by the
invariant theory of the groups Hλ; and the groups Hλ or their product would
appear as an internal symmetry group of the theory in an approximate sense.
Of course this is highly speculative. Whether there exists any supersymmetry
in nature at all, and whether our Hλ appear as approximative symmetry groups
of such a theory, will probably take many years to uncover.
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