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Preliminaries: Good knowledge of the structure and representation theory
of Lie algebras. For talks 5,6 some knowledge about algebraic groups and
Hopf algebras is helpful. Furthermore some background about the language
of monoidal/tensor categories.

Literature: The main sources for the first half of the seminar are the books
Cheng-Wang [Mus12] (both for structure and representation theory), the
book [Sch79] for statements about the classification, the article [Kac77] for
the classification theorem and the survey articles [Kac78] [Ser17] for both
structure and representation theory. The talks 9 - 13 are mostly based on
the articles [CW12b] and [Ger98].

Content: The aim is to give both an introduction to the theory as well
as a survey of various results from different parts of the theory. Most of
the results should be proven which limits the possible topics severely. At
the same time the methods should be of wider interest and so we study
e.g. supercommutative Hopf algebras, Deligne categories, techniques from
quiver theory, highest weight categories,... The four first talks are basic, and
afterwards we start skipping through the theory.

Talk 1: Super structures and Lie superalgebras (M.R.)

The aim of this talk is to introduce the ’super’ language and then discuss
the simple Lie superalgebras (over C). These get grouped into different
families: classical (which gets again divided into basic and strange) and of
Cartan type.

• Discuss the category of super vector spaces. Tensor products, duals.
Endomorphisms. It becomes an abelian category when we only allow
parity preserving morphisms.
• Define superalgebras, the example of the exterior algebra.
• Define Lie superalgebras. Its even part is a Lie algebra. Its odd part

is a module under the even part. The associated universal enveloping
algebra (no PBW theorem required here).
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• As an example, endomorphisms of a super vector space with the
super commutator.
• Define a representation of a Lie superalgebra (on a super vector

space).
• Define simple, semisimple Lie superalgebras.
• The Killing form. Distinguish between simple Lie superalgebras

which have a non-degenerate Killing form and the rest (the first
ones are called classical).
• Write down all simple finite dimensional Lie superalgebras over C.

Discuss in particular the ones coming from some supersymmetric
even/odd bilinear form. Derive a matrix realization for osp and
q(n). Construct D(2, 1, α). The Cartan type algebras can be treated
superficially.
• Introduce Kac’s terminology: Classical Lie superalgebras, Basic clas-

sical Lie superalgebras, strange. Also type 1 Lie superalgebras and
type 2 Lie superalgebras.
• Warning: Semisimple 6= direct sum of simple.

Literature: [CW12a, Chapter 1.1], [Mus12, Chapter 1, 2.1 - 2.4, 4], [Sch79,
§4, §6, §7], [Kac78], [Ser17, Sections 1 - 3.1].

Talk 2: Simple Lie superalgebras and root systems (K.K.Z.)

We assume now that g is classical. The aim is to discuss the root space
decomposition and the systems of roots that arise for the simple classical
Lie superalgebras. In the classical case the choice of a Borel subalgebra or,
equivalent, a choice of simple roots, does not matter a lot. This is false for
Lie superalgebras. One can also associate some form of Dynkin diagram to
the simple roots, but the classification of the simple Lie superalgebras does
not use these diagrams.

• Cartan subalgebras
• Root space decomposition (see [CW12a, Theorem 1.18], [Kac77, Sec-

tion 2.5], [Ser17]).
• Even and odd roots, simple roots, bases, isotropic roots
• Different types of root spaces gα (leading to black, white or grey

dots in the Dynkin-Kac diagram)
• Simple roots and the Dynkin-Kac diagram [Mus12, Section 3.4].
• Diskuss the above roots for gl(m|n), osp(m|2n), p(n) (see [CW12a,

Chapter 1.2]).
• Warning: Not all Borel subalgebras are conjugate. Discuss this

shortly for gl(m|n) following [Mus12, ]. Show that this leads to
different Dynkin-Kac diagrams as e.g. in [Mus12, Table 3.4.2].
• Introduce the distinguished Borel [Mus12, Section 3.1, 3.4.5]. Show

the associated simple roots and the Dynkin diagram.

Literature: [Ser17, Section 3.2], [CW12a, Chapter 1.2 - 1.4], [Mus12, Chap-
ter 3.1 - 3.6, 8.1], [Sch79, §3], [Kac78].



Talk 3: Irreducible representations and highest weight theory
I (A.O.)

The aim of the next two talks is the discussion of finite dimensional irre-
ducible representations of a classical Lie superalgebra. Basically the highest
weight theory carries over and the irreducible representations of g can be
obtained by from the ones of the even subalgebra g0. However not every
representation is a direct sum of irreducible representations.

• The universal enveloping algebra and the PBW theorem (shortly -
the proof is essentially like for ordinary Lie algebras) (see [Mus12,
Chapter 6.1] for details)
• Define induced representations and show some standard properties.
• Define highest weight representations. Introduce Verma modules.
• Prove: Every irreducible representation of a classical Lie superalge-

bra is a highest weight representation. This is essentially [CW12a,
Chapter 1.5], leaving the p(n)-case open.
• Prove Proposition 2.1 and 2.2 in [CW12a] (the gl-case).
• Warning: The Kac module is always finite dimensional, but not

necessarily irreducible or semisimple.
• Discuss without proofs the osp-case [CW12a, Chapter 2.1.4, 2.1.5].
• Warning: The given dominant integral weights depend heavily on

the chosen Borel subalgebra.

Literature: [Ser17, Section 4], [CW12a, Chapter 1.4, 2.1, 2.2], [Mus12, Chap-
ter 14], [Kac78].

Talk 4: Irreducible representations and highest weight theory
II (T.H.)

Discuss atypical weights, Harish-Chandra isomorphism, failure of semisim-
plicity, character formula for typical modules

• TO DO [I will give this talk, so I might not flesh out its contents
before later]

Talk 5: Algebraic supergroups and supercommutative Hopf
algebras I (T.B.)

The main aim of the next two talks is to clarify the correspondence between
representations of an algebraic supergroup and representations of its Lie
superalgebra. We first start with some general background about algebraic
groups and supercommutative Hopf algebras. The notions and arguments
are almost the same as for algebraic groups and commutative Hopf algebras.
Sources for talks 5 and 6 are [Mas13] [Mas12] [MS17] [Wei09] [Wes09].

• Define the notion of an algebraic supergroup scheme and an algebraic
supergroup as a representable functor as e.g. in [Wes09] or [Mas13,
Section 4]. The associated super Hopf algebra. Explain the latter
notion. Give some examples, e.g. GL(m|n) and OSp(m|2n).



• Almost by definition one has a contravariant equivalence between the
categories of algebraic supergroup schemes and supercommutative
Hopf algebras.
• Introduce the categories Rep(G) and Rep(G, ε), the finite dimen-

sional representations of a supergroup scheme G and its subcategory
Rep(G, ε) [Del02].
• These can be alternatively described as categories of comodules over

the supercommutative Hopf algebra k[G].
• All this is parallel to the classical case. The definitions and construc-

tions should be precise, but proofs are not necessary, and this part
should not take too much time.
• Cite the following theorem [Wei09, Theorem 6].
• Cite [Del02, Proposition 0.5, Theorem 0.6]. For this the notion of

a Schur functor and of exponential growth need to be defined in a
tensor category.
• We now study super Harish Chandra pairs. An overview of the

theory is in [Mas13, Section 6], but the proofs are in [Mas12] [MS17].
Define the notion of a super Harish-Chandra pair and prove Theorem
6.5 in [Mas13] (see also [Ser11, Theorem 3.1]. For the proof see
[Mas12, Section 4]. It won’t be possible to finish the proof in this
talk, so some preparatory lemmas should be proven

Talk 6: Algebraic supergroups and supercommutative Hopf
algebras II (M.A.K.)

• Continue with the proof of Theorem 6.5 in [Mas13]. Note that many
of the remarks etc in [Mas12, Section 4] are not needed for the proof.
• We then want to prove that there is an equivalence of categories

between the categories of (g, G0)-modules and G-modules (see for
instance [ES17, Section 1.2, Proposition 1.3] for an account without
proof). For a proof see [Gav16, Section 7] (or [Wei09, Theorem 4,
Corollary 6] for a reduction to the differentiable case).

Talk 7: Schur-Weyl duality for gl(m|n) (J.A.)

From now on we restrict to the case gl(m|n). One of the basic results on
representations of GL(n) is Schur-Weyl duality. Here one considers the
natural representation V = Cn of GL(n) and views its tensor powers V ⊗r

simultaneously as a module under the symmetric group. SW duality then
consists of the usual double centralizer theorem and a description of the
decomposition of V ⊗r as a GL(n)× Sr-bimodule.

The same question can be asked for gl(m|n) and its natural representation

V = Cm|n. The decomposition of V ⊗r as a GL(m|n)×Sr module was given
in [BR87] [Ser85]. Remarkably V ⊗r is still completely reducible. In talks 7
and 8 we describe this decomposition and prove character formulas for the
irreducible constituents in terms of supersymmetric polynomials.



The main source for these talks is [CW12a]. Alternative sources are [Mus12,
Chapter 11, 12] and the original articles.

• Define the action of Sd [CW12a, Lemma 3.9]
• Prove [CW12a, Theorem 3.10]. You will need a version of Propo-

sition 3.5, but note that all Ψd(Sd) modules are of type M and so
the proposition can be proven directly without using too much of
section 3.1 in loc cit. Section 3.1.4 should be ignored completely.
• Prove [CW12a, Theorem 3.11].
• If time permits, include Remark 3.14 in loc. cit. or include an

example decomposition.

Talk 7: Schur-Weyl duality for gl(m|n) II (B.L.)

• Prove [CW12a, Theorem 3.15, Theorem 3.16, Corollary 3.17]. This
will need a lot of background from appendix A, e.g. A.26, A.37,....,
so the main bulk of the talk is contained in the appendix.
• Compute one example for a small weight.

Talk 9: Mixed tensor powers and Deligne’s category Rep(GLt)
(Z.W.)

An obvious question is whether one can extend Schur-Weyl duality to the
mixed tensor powers V ⊗r ⊗ (V ∨)⊗s for r, s ∈ N. The correct replacement
for the group ring of the symmetric group is the walled Brauer algebra. The
mixed tensor space is however not completely reducible. The best way to
understand the decomposition of this mixed tensor space is by building a
symmetric monoidal category Rep(GLt) which incorporates all these walled
Brauer algebras as endomorphism spaces. We will study this in talk 9 and
10. Contrary to previous talks some proofs will have to be skipped. All the
main results are contained in the article [CW12b].

• Consider the example V ⊗V ∨ where V is the standard representation
of GL(n|n) or gl(n|n). Show that this is indecomposable, but not
irreducible. Hence mixed tensor powers are not completely reducible.
• Define (walled) Brauer diagrams and the walled Brauer algebra (de-

pendent on a parameter t).
• Explain as in [CW12b, Section 4.2] the connection to the symmetric

group algebra.
• Define the skeletal Deligne category Rep0(GLt) as in [CW12b, Sec-

tion 3.2]. It is a monoidal category (maybe a brief reminder about
some monoidal terminology is helpful).
• Define idempotent completion and that monoidal structures extend

to this completion.
• Define Rep(GLt).
• Recall the notion of the dimension of an object in a tensor category.

Prove [CW12b, Proposition 3.4.1] and [CW12b, Proposition 3.5.1].



• Conclude that there exists a monoidal functor Fm|n : Rep(GLm−n)→
Rep(GL(m|n)) sending the distinguished object• to the natural rep-
resentation V of GL(m|n)).
• This functor induces a map on morphism spaces. In particular (r, s)

maps to End(V ⊗r ⊗ (V ∨)⊗s). That means one way to understand
the latter is to understand (r, s) and then the kernel of the induced
map.

Talk 10: Mixed tensor powers and Deligne’s category Rep(GLt)
II (M.B.)

• We first classify the indecomposable objects inRep(GLt) as in [CW12b,
Section 4].
• State the correspondence between conjugacy classes of primitive

idempotents in an algebra A and isomorphism classes of simple A-
modules
• Use the correspondence to prove [CW12b, Theorem 4.5.1]. The clas-

sification of simple modules of the walled Brauer algebra should be
used as a blackbox.
• Prove [CW12b, Theorem 4.6.2].
• We now want to understand the functors Fm|n from the previous

talk. We first work in a general setting. Prove Proposition 2.7.4 and
Theorem 4.7.1 in [CW12b]. Then skip forward to section 8.3 and
obtain as a corollary that Fm|n is full. In particular Theorem 4.7.1
gives the decomposition of mixed tensor powers provided we can a)
do this in Rep(GLt) and b) can work out the kernel of Fm|n.
• Time permitting an overview of the general case could be given (i.e.

Theorem 1.2.3).

Talk 11: Ext-quivers and relations (T.P.)

In the next three talks we follow the article [Ger98] where he obtains a
description of the singly atypical blocks in the gl-case. The first talk 11 is
purely formal and will be independent of the previous talks. The aim of this
talk is to show that any nice category in the sense of Germoni [Ger98] can
be a described by a quiver with relations.

• We need [Ger98, Section 1], most notably Theorem 1.4.1.

Talk 12: Representations of gl(m|n) and highest weight
categories (J.S.)

• We first prove some basic properties about Rep(g) as in [Ser11, Sec-
tion 9.1]. We don’t need Theorem 9.2 and the remark at the end of
the section. Lemma 9.1 and 9.4 are essentially also in [Ger98].
• Recall some background about Kac modules from [Ger98, Section

3.3, 3.4], in particular Theorem 3.4.1 and Lemma 3.4.2
• Good filtrations as in [Ger98, Section 3.6]



• The notion of a highest weight category [CPS88]. Give some exam-
ples (without proof).
• Rep(gl(m|n)) is a highest weight category, see [BKN09, Section 3.4,

3.5] in which the Kac modules are the cell or standard modules.

Talk 13: Singly atypical blocks and their indecomposable
modules (J.N.)

• The talk is essentially contained in [Ger98, Section 5]. The difficult
part is Proposition 5.1.1.
• Start with a short reminder about blocks, what is a singly atypical

block etc.
• Proposition 5.1.1 should be (partially) proven [VHKT90, Theorem

4.3]. It rests on properties of Kac modules established in talk 4 and
12. Due to the length and technicality of the arguments, Lemma 4.1
and 4.2 in [VHKT90] have to be probably used as blackboxes.
• Briefly explain how the indecomposable modules look like. This can

be found in [GQS07]. Essentially there are the simples, their pro-
jective covers of length 4, they have filtrations with 2 Kac modules
or 2 dual Kac modules (the twisted dual) and there are the zigzag
modules which are attached to intervals on the numberline as well
as their twisted duals.
• State as a theorem without proof: If Γ is a block of atypicality 2

(e.g. the principal block of GL(n|n), n ≥ 2), the representation type
of the block is wild.
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[Ger98] Jérôme Germoni. Indecomposable representations of special linear Lie super-
algebras. J. Algebra, 209(2):367–401, 1998.

[GQS07] Gerhard Götz, Thomas Quella, and Volker Schomerus. Representation theory
of sl(2|1). J. Algebra, 312(2):829–848, 2007.

[Kac77] V. G. Kac. Lie superalgebras. Adv. Math., 26:8–96, 1977.
[Kac78] V. Kac. Representations of classical Lie superalgebras. Differ. geom. Meth.

math. Phys. II, Proc., Bonn 1977, Lect. Notes Math. 676, 597-626 (1978).,
1978.

[Mas12] Akira Masuoka. Harish-Chandra pairs for algebraic affine supergroup schemes
over an arbitrary field. Transform. Groups, 17(4):1085–1121, 2012.

[Mas13] Akira Masuoka. Hopf algebraic techniques applied to super algebraic groups,
2013.

[MS17] Akira Masuoka and Taiki Shibata. Algebraic supergroups and Harish-Chandra
pairs over a commutative ring. Trans. Am. Math. Soc., 369(5):3443–3481, 2017.

[Mus12] Ian M. Musson. Lie superalgebras and enveloping algebras., volume 131. Prov-
idence, RI: American Mathematical Society (AMS), 2012.

[Sch79] M. Scheunert. The theory of Lie superalgebras. An introduction., volume 716.
Springer, Cham, 1979.

[Ser85] A. N. Sergeev. The tensor algebra of the identity representation as a module
over the Lie superalgebras Gl(n,m) and Q(n). Math. USSR, Sb., 51:419–427,
1985.

[Ser11] Vera V. Serganova. Quasireductive supergroups. In New developments in Lie
theory and its applications. Proceedings of the seventh workshop, Córdoba,
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