Thorsten Heidersdorf Universität Bonn

Übungen zur Vorlesung Algebra 1 —Blatt 7—

Aufgabe 1 (10 points). ("Prime avoidance") Let R be a ring, $p, p_1, \ldots, p_m \in \operatorname{Spec} R$ prime ideals and I, I_1, \ldots, I_n ideals of R. Show:

- (i) If $I \subseteq \bigcup_{i=1,\dots,m} p_i$, then there exists an $i \in \{1,\dots,m\}$ such that $I \subseteq p_i$.
- (ii) If $\bigcap_{i=1,\ldots,m} I_i \subseteq p$, then there exists an $i \in \{1,\ldots,m\}$ such that $I_i \subseteq p$.
- (iii) If $\bigcap_{i=1,\dots,m} I_i = p$, then there exists an $i \in \{1,\dots,m\}$ such that $I_i = p$.
- (iv) For rings R and subsets $J \subseteq \operatorname{Spec} R$ the condition $I \subseteq \bigcup_{p_i \in J} p_i$ implies not necessarily that $I \subseteq p_i$ für ein $p_i \in J$.

Aufgabe 2 (10 points). (Charakterization of Jacobson rings) Let R be a ring. The following are equivalent:

- (i) R is a Jacobson ring.
- (ii) If B is a field which is finitely generated as an R-algebra, then B is finitely generated as an R-module.
- (iii) For $p \in \operatorname{Spec} R$ with $p \notin \operatorname{Specm} R$

$$p = \bigcap_{q \in \operatorname{Spec} R, q \supsetneq p} q.$$

(iv) For every ring homomorphism $f: R \to R'$ the nilradical of f(R) is equal to the Jacobson radical of f(R).

Conclude that every field, which is a finitely generated ring (i.e. as a \mathbb{Z} -algebra), is a finite field.

Aufgabe 3 (5 Punkte). (Polynomial rings) Describe the prime ideals of $\mathbb{C}[X, Y]$. If $p \in Spec \mathbb{C}[X, Y]$ is not maximal, how does its closure look geometrically?

Aufgabe 4 (5 Punkte). (Irreducibility) Which of the following varieties are irreducible?

- (i) $V(xy^3)$
- (ii) $V(x^2 + y^3 + xy)$

Aufgabe 5 (10 Punkte). (Varieties) Let K be algebraically closed. Which of the following subsets of an affine space are varieties?

- (i) $\{(x, sin(x)) \mid x \in \mathbb{C}\} \subset \mathbb{A}^2_{\mathbb{C}}$.
- (ii) The set of all $n \times n$ matrices of rank k (for $0 \le k \le n$) in $\mathbb{A}_K^{n^2}$.
- (iii) The set of all nilpotent $n \times n$ matrices in $\mathbb{A}_K^{n^2}$.