Exercises for the lecture Algebra 1 —Exercise sheet 6—

Exercise 1 (10 Punkte). (Going between) Let R ebe a finitely generated K-algebra over a field K. Let $R \subset R'$ be an integral ring extension. Let $p_1 \subsetneq p_3$ be prime ideals in R and $q_1 \subsetneq q_3$ prime ideals in R' with $q_1 \cap R = p_1$ and $q_3 \cap R = p_3$.

- (i) Show: If p_2 is a prime ideal in R with $p_1 \subsetneq p_2 \subsetneq p_3$, then there is a prime ideal q_2 in R' with $q_1 \subsetneq q_2 \subsetneq q_3$.
- (ii) Can one always find q_2 such that $q_2 \cap R = p_2$ holds?

Exercise 2 (10 Punkte). (Noether Normalization over an infinite field) In the lecture we showed that after the substitution

$$Y_1 = X_1 - X_n^{r_1}$$
$$Y_2 = X_2 - X_n^{r_2}$$
$$\dots$$
$$Y_n = X_n$$

every polynomial $p \in K[X_1, \ldots, X_n]$ (K a field) for certain r_i can be written in the form

$$cX_n^m + h_1(Y_1, \dots, Y_{n-1})X_n^{m-1} + \dots + h_m(Y_1, \dots, Y_{n-1}), \ c \in K^*.$$

Show that if K is an infinite field the linear variable substitution

$$Y_1 = X_1 - r_1 X_n,$$

$$Y_2 = X_2 - r_2 X_n$$

$$\dots$$

$$Y_n = X_n$$

already suffices to bring any non-zero $p \in K[X_1, \ldots, X_n]$ after appropriate choices of the r_i into the form

$$cX_n^m + h_1(Y_1, \dots, Y_{n-1})X_n^{m-1} + \dots + h_m(Y_1, \dots, Y_{n-1}), \ c \in K^*$$

Exercise 3 (10 Punkte). (Explicit Noether normalization)

- (i) Let K be a field. According to the Noether Normalization we can find for every finitely generated K-algebra A algebraically independent elements a_1, \ldots, a_n such that A is integral over $K[a_1, \ldots, a_n]$. Find such elements for the K-algebra $A = K[X_1, X_2, X_3]/(X_1X_2)$.
- (ii) Show that the statement of the Noether normalization cannot hold over \mathbb{Z} by considering the \mathbb{Z} -algebra $A = \mathbb{Z}[X_1, X_2]/(2X_1X_2 1)$.

Exercise 4 (10 Punkte). (Hilbert's theorem of zeros) Let k be a field and K an algebraic closure of k. Let $f, f_1, \ldots, f_r \in k[X_1, \ldots, X_n]$. We aassume that every simultaneous zero $a \in K^n$ of the f_i

$$f_1(a) = f_2(a) = \ldots = f_r(a) = 0$$

is also a zero of f. Show that there are polynomials $g_1, \ldots, g_r \in k[X_1, \ldots, X_n]$ and an $N \in \mathbb{N}$ such that

$$f^N = g_1 f_1 + g_2 f_2 + \dots g_r f_r.$$

Due date: Thursday, 16.05.2019, around 2pm before the lecture.