Exercises for the lecture Algebra 1 —Exercise sheet 4—

For $p \in Spec(R)$ let M_p be the localization of an *R*-module *M* at $S = R \setminus p$.

Exercise 1 (5 points). (Local-Global for modules) Let M be an R-module. The following statements are equivalent:

- (i) M = 0.
- (ii) For all $p \in Spec(R)$ is $M_p = 0$.
- (iii) For all maximal m is $M_p = 0$.

Exercise 2 (10 points). (Local-Global for morphisms) Let M, N be two R-modules and $f : M \to N$ R-linear. Then the following statements are equivalent:

- (i) f is injective respectively surjective.
- (ii) For all $p \in Spec(R)$ $f_p: M_p \to N_p$ is injective respektively surjective.
- (iii) For all maximal $p f_p : M_p \to N_p$ it injective respectively surjective.

Exercise 3 (20 Punkte). (Annulator and Torsion) For an *R*-module *M* let

$$Ann(M) = \{ x \in R \mid xm = 0 \forall m \in M \},\$$

the annulator of M. If $m \in M$, we write Ann(m) für Ann(Rm), where Rm is the submodule of M, which is spanned by m. Then $m \in M$ is called a *torsion element* if $Ann(m) \neq 0$. M is called a *torsion module* if $Ann(m) \neq 0$ for all $m \in M$. M is called *torsion free* if Ann(m) = 0 for all $m \in M$. The set of torsion elements is denoted by T(M).

Let R be an integral domain. Show:

- (i) T(M) is a submodule of M. Give an example of a ring R' (necessarily not an integral domain) and an R'-module M such that T(M) is not a submodule of M.
- (ii) If M is a torsion module, every non-empty subset of M is R-linear dependent.
- (iii) M/T(M) is torsion free.
- (iv) Let $f: M \to N$ be *R*-linear. Then $f(T(M)) \subset T(N)$.
- (v) If

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M''$$

is exact, the sequence

$$0 \longrightarrow T(M') \longrightarrow T(M) \longrightarrow T(M'')$$

is exakt.

- (vi) Let $S \subset R$ multiplicative. Then $T(S^{-1}M) = S^{-1}(T(M))$.
- (vii) The following are equivalent:
 - (a) M is torsion free.
 - (b) M_p ist torsion free for all $p \in Spec(R)$.
 - (c) M_p is torsion free for all maximal p.