## Exercises for the lecture Algebra 1 -Exercise sheet 12-

Remark: In a tensor product of two $R$-modules $M, N$, the $R$-dependence is sometimes indicated via $M \otimes_{R} N$. This subscript will be omitted if the underlying ring is clear.

Exercise 1 (15 points). Let $M$ be an $R$-module and $R^{\prime}$ an $R$-algebra. Then $R^{\prime} \otimes M$ becomes an $R^{\prime}$-Modul via

$$
a^{\prime}(a \otimes m)=a^{\prime} a \otimes m
$$

for $a^{\prime} \in R^{\prime}$ ( the scalar extension of $M$ to $R^{\prime}$ ).
(i) If $f: M \rightarrow N$ is $R$-linear,

$$
i d_{R^{\prime}} \otimes f: R^{\prime} \otimes M \rightarrow R^{\prime} \otimes N
$$

is $R^{\prime}$-linear.
(ii) Let $M$ be an $R$-module and $N$ an $R^{\prime}$-module (which can be considered as an $R$-module). There exists a unique $R^{\prime}$-lineare map

$$
f_{R^{\prime}}: R^{\prime} \otimes M \rightarrow N
$$

with $f_{R^{\prime}}(b \otimes x)=b f(x)$.
(iii) The map $\varphi: \operatorname{Hom}_{R}(M, N) \rightarrow \operatorname{Hom}_{R^{\prime}}\left(R^{\prime} \otimes M, N\right), f \mapsto f_{R^{\prime}}$, is $R$-linear and bijective.
(iv) Let $M$ be an $R$-module and $N$ an $R^{\prime}$-module. Show: $N \otimes M$ is an $R^{\prime}$-Modul via

$$
b\left(\sum y_{i} \otimes x_{i}\right)=\sum b y_{i} \otimes x_{i}
$$

and there exists a unique isomorphism

$$
N \otimes_{R} M \rightarrow N \otimes_{R^{\prime}}\left(R^{\prime} \otimes_{R} M\right)
$$

of $R$-modules with

$$
y \otimes x \mapsto y \otimes(1 \otimes x)
$$

(v) Let $M$ be an $R$-module which has one of the following properties:
(a) free
(b) finitely generated
(c) finitely presented
(d) flat

Then $R^{\prime} \otimes M$ has the same property. Recall that $M$ is called finitely presented if there is a surjection $R^{n} \rightarrow M$ with $n \in \mathbb{N}$ and finitely generated kernel.

Exercise 2 ( 10 points). Let $S \subset R$ multiplicative and $M$ an $R$-module. Then there exists a unique isomorphism of $S^{-1} R$-modules

$$
\varphi: S^{-1} R \otimes M \rightarrow S^{-1} M, \frac{a}{s} \otimes x \mapsto \frac{a x}{s}
$$

Conclude that $S^{-1} R$ is a flat $R$-module.

Exercise 3 (5 points). Let $\mathbb{Z}[\sqrt{5} i] \subset \mathbb{Q}(\sqrt{5} i)$ be the ring of integers of $\mathbb{Q}(\sqrt{5} i)$. Show: The element 2 cannot be written as a product of prime elements. Determine the (unique) decomposition of the principal ideal (2) as a product of prime ideals.

Exercise 4 ( 10 points). Let $R$ be a noetherian domain with quotient field $K$. For all fractional ideals $I, J$ and all multiplicative subsets $S$ of $R$
(i) $S^{-1}(I J)=S^{-1} I \cdot S^{-1} J$.
(ii) $S^{-1}\left(I:_{K} J\right)=S^{-1} I:_{K} S^{-1} J$.

