Exercises for the lecture Algebra 1
 -Exercise sheet 11-

Exercise sheet 12 (next week) will be the last regular exercise sheet. Exercise sheet 13 will only serve for repitition.

Definition: Let R be a ring and M, N, P three R-modules.
(i) A map $f: M \times N \rightarrow P$ is R-bilinear if $f(-, n): M \rightarrow P$ and $f(m,-): N \rightarrow P$ are R-linear for all $m \in M, n \in N$.
(ii) A tensor product of M and N over R is an R-module T together with a bilinear map τ : $M \times N \rightarrow T$, such that for every bilinear map $f: M \times N \rightarrow P$ into an R-module P there exists a unique linear map $\varphi: T \rightarrow P$ such that $f=\varphi \circ \tau$:

Exercise 1 (15 points). (Tensor products) a) Let $\left(T_{1}, \tau_{1}\right),\left(T_{2}, \tau_{2}\right)$ be two tensor products of M and N. Show that there exists a unique R-module isomorphism $\varphi: T_{1} \rightarrow T_{2}$ such that $\tau_{2}=\varphi \circ \tau_{1}$:

Therefore one simply talks about the tensor product $M \otimes N$ of M and N. The element $\tau(m, n)$ is denoted by $m \otimes n$.
b) Consider the free R-module $R^{M \times N}$ with basis $M \times N$. Its elements are linear combinbations $\sum a_{i}\left(x_{i}, y_{i}\right)$ with $a_{i} \in R, x_{i} \in M, y_{i} \in N$. Let $U \subset R^{M \times N}$ be the submodule which is generated by expressions of the form

$$
\begin{aligned}
& \left(a x+a^{\prime} x^{\prime}, y\right)-a(x, y)-a^{\prime}\left(x^{\prime}, y\right) \\
& \left(x, a y+a^{\prime} y^{\prime}\right)-a(x, y)-a^{\prime}\left(x^{\prime}, y\right)
\end{aligned}
$$

for all $a, a^{\prime} \in R, x, x^{\prime} \in M, y, y^{\prime} \in N$. Define T and τ via $T=R^{M \times N} / U$ and

$$
\tau: M \times N \rightarrow R^{M \times N} / U,(x, y) \mapsto(x, y)+U
$$

Show that the pair (T, τ) satisfied the universal property of the tensor product.
c) Let $\varphi: M \rightarrow N, \varphi^{\prime}: M^{\prime} \rightarrow N^{\prime}$ be two R-lineare mgaps. Show that there is an induced R-linear map

$$
\varphi \otimes \varphi^{\prime}: M \otimes M^{\prime} \rightarrow N \otimes N^{\prime}
$$

such that $\left(\varphi \otimes \varphi^{\prime}\right)\left(m \otimes m^{\prime}\right)=\varphi(m) \otimes \varphi^{\prime}\left(m^{\prime}\right)$.

Exercise 2 (10 points). (Tensor products 2) For all R-modules M, N, P exist isomorphisms (independent of the choice of a basis)
(i) $M \otimes N \cong N \otimes M$.
(ii) $M \otimes R \cong M$.
(iii) $(M \oplus N) \otimes P \cong(M \otimes P) \oplus(N \otimes P)$.
(iv) $M \otimes N \otimes P \cong(M \otimes N) \otimes P \cong M \otimes(N \otimes P)$.

Conclude that for free R-modules M and N with bases $\left(x_{i}\right)_{i \in I}$ and $\left(y_{j}\right)_{j \in J}$ the tensor product $M \otimes N$ is free with basis $\left(x_{i} \otimes y_{j}\right)_{i \in I, j \in J)}$.

Exercise 3 (15 Points). (Exaktness and adjunction) a) For all R-modules M, N, P

$$
\operatorname{Hom}(M, \operatorname{Hom}(N, P)) \cong \operatorname{Hom}(M \otimes N, P) .
$$

b) Let

$$
M_{1} \xrightarrow{\varphi_{1}} M_{2} \xrightarrow{\varphi_{2}} M_{3} \longrightarrow 0
$$

be short exact. For every R-module N the sequence

$$
M_{1} \otimes N \xrightarrow{\varphi_{1} \otimes i d} M_{2} \otimes N \xrightarrow{\varphi_{2} \otimes i d} M_{3} \otimes N \longrightarrow 0
$$

is short exact (i.e. $-\otimes N$ is a right exact functor).
c) Show via an example that $-\otimes N$ is in general not left exact.
d) An R-module N is called flat if $-\otimes N$ is exact. Show: If N is free, then N is flat.

Due date: Monday, 27.06.2019, around 2pm before the lecture.

