
Exercise 1.(i) Replacing R by R/p1 and R′ by R′/q1 we can assume that R and R′ are integral
domains and p1 and q1 are trivial.
By Noether Normalization there exist algebraically independent x1, . . . , xr ∈ R such that R is a �nite
module over A := k[x1, . . . , xn]. By Lemma 2.46 we get (0) ( p2 ∩A ( p3 ∩A. In the following we set
p′i := pi ∩A. Now as R′ integral over R it is also integral over A. Thus A ⊂ R′ is an integral extension
of integral domains and A is normal. Hence we can apply the Going-down-Theorem to obtain a prime
ideal q2 ⊂ q3 such that q2 ∩A = p′2. In particular q1 = (0) ( q2 ( q3. This �nishes the proof of (i).
(ii) Counterexample: B = K[X,Y ], A = {f ∈ B|f(0, 0) = f(0, 1)}, then as X,Y (Y − 1) ∈ A, we have
that A ⊂ B is an integral extension. As p1, p2, p3 ∈ Spec(A) we choose p1 = (0), p2 = (Y ) ∩ A and
p3 = (X,Y − 1) ∩ A. Note that p2 ( p3 since X ∈ p3. It is left to show that there is no prime ideal
q ( (X,Y − 1) such that q∩A = p2. So if such a q exists, then since Y (Y − 1), XY ∈ q we must have
either X, (Y − 1) ∈ q or Y ∈ q. The former gives q = (X,Y − 1), the latter q 6⊂ (X,Y − 1). So in both
cases we get a contradiction to the assumption q ( (X,Y − 1).
Exercise 2. We may assume that p is not constant. So let p be explicitely given by

p(X1, . . . , Xn) =
∑
ν∈Nn

|ν|≤m

aνX
ν1
1 . . . Xνn

n ,

where m ≥ 1 and |ν| := ν1 + . . .+ νn and some aν 6= 0 with |ν| = m. So the stated substitution yields

p(X1, . . . , Xn) = p(Y1 + r1Xn, . . . , Yn−1 + rn−1Xn, Xn)

=
∑
ν∈Nn

|ν|≤m

aν(Y1 + r1Xn)
ν1 . . . (Yn−1 + rn−1Xn)

νn−1Xνn
n

Unraveling these terms yields that the leading term in the variable Xn is of the form∑
ν∈Nn

|ν|=m

aνr
ν1
1 . . . r

νn−1

n−1 .

As the �eld K was assumed to be in�nite we generally have that the map

K[X1, . . . , Xn−1]→ Maps(Kn−1,K), f 7→ ((x1, . . . , xn−1) 7→ f(x1, . . . , xn−1),

is injective. Thus, as some aν 6= 0 with |ν| = m, we have that

(r1, . . . , rn−1) 7→
∑
ν∈Nn

|ν|=m

aνr
ν1
1 . . . r

νn−1

n−1

is not the zero function. So we can choose r1, . . . , rn−1 such that the leading term of Xn in p(Y1 +
r1Xn, . . . , Yn−1 + rn−1Xn, Xn) does not vanish. This yields the claim.
Exercise 3.(i) We clearly have (X1X2) = spanK(Xi1

1 X
i2
2 X

i3
3 |i1, i2 ≥ 1) ⊂ K[X1, X2, X3]. From this

follows that X3 and X1 −X2 are algebraically independent elements in A. As we have the following
relations in A:

X2
2 + (X1 −X2)X2 = 0 and X2

1 − (X1 −X2)X1,

we obtain that K[X1 −X2, X3] ⊂ A is an integral extension.
(ii) Note that A ∼= Z[X]2X and A is in particular an integral domain. For the sake of contradiction
we assume there exist a Noether Normalization for A. As dim A = 1 we have there exist one (over Z)
algebraically independent element t ∈ A such that Z[t] ⊂ A is integral. But since 2 ∈ A×, there exist
no prime ideal p ⊂ A such that p ∩ A = 2Z[t]. In particular Z[t] ⊂ A does not satisfy the Going-up
property - contradiction.
Exercise 4.(Solution 1). We have to show f ∈

√
I, where I = (f1, . . . , fr) and the radical is taken

in k[X1, . . . , Xr. As K/k is algebraic we have that K[X1, . . . , Xn]/k[X1, . . . , Xn] is integral. Thus we
obtain a 1:1 correspondence

{ max. ideals containing I} ↔ {m ∩ k[X1, . . . , Xn]|m max. in K[X1, . . . , Xn] and I ⊂ m}.
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As both k[X1, . . . , Xn],K[X1, . . . , Xn] are Jacobson-rings, we obtain that the radical of I in k[X1, . . . , Xn]
is the radical of I in K[X1, . . . , Xn] intersected with k[X1, . . . , Xn]. So it su�ces to show that f lies
in the radical of I in K[X1, . . . , Xn]. Given a maximal ideal m ⊂ K[X1, . . . , Xn] with I ⊂ m. By the
weak Nullstellensatz we have m = (X1 − λ1, . . . , Xn − λn) for λ1, . . . , λn ∈ K with

f1(λ1, . . . , λn) = . . . = fr(λ1, . . . , λn) = 0.

But by assumption this yields f(λ1, . . . , λn) = 0 and hence f ∈ m.
Exercise 4.(Solution 2). This is the standard way deducing the assertion from the Weak Nullstel-
lensatz, which can be found in many books on Algebraic Geometry.
Consider the ideal a = (f1, . . . , fr, 1−f ·Xn+1) ⊂ k[X1, . . . , Xn+1]. We are going to show that a is not
a proper ideal. So for the sake of contradiction suppose that a is a proper ideal of k[X1, . . . , Xn+1].
Then also aK[X1, . . . , Xn+1] is a proper ideal.
To see this we use basic methods of linear algebra. For the sake of contradiction assume that
aK[X1, . . . , Xn+1] is a proper ideal, in particular there are p1, . . . , pr+1 ∈ K[X1, . . . , Xn+1] such that

1 =

r∑
i=1

fipi + (1−Xn+1f)pr+1.

Let (vi)i∈I be a k-basis of K and without loss of generality let i0 ∈ I such that vi0 = 1. We then
have that (viX

j1
1 . . . Xjn+1)(i,j,...,jn+1)∈I×Nn+1 is a basis for K[X1, . . . , Xn+1] → k[X1, . . . , Xn+1. Now

let π : K[X1, . . . , Xn+1] be the projection with respect to this basis. We then have

1 = π(1) =

r∑
i=1

fiπ(pi) + (1−Xn+1f)π(pr+1).

As π(p1), . . . , π(pr+1) ∈ k[X1, . . . , Xn+1 we get that also 1 ∈ a - contradiction.
So alltogether aK[X1, . . . , Xn+1] is a proper ideal and hence contained in a maximal ideal m ⊂
K[X1, . . . , Xn+1]. By the Weak Nullstellensatz there exist λ1, . . . , λn+1 ∈ K such that m = (X1 −
λ1, . . . , Xn+1 − λn+1). This means aK[X1, . . . , Xn+1] lies inside the kernel of the evaluation

ev(λ1,...,λn+1) : K[X1, . . . , Xn+1]→ K, g 7→ g(λ1, . . . , λn+1).

In particular we have

f1(λ1, . . . , λn) = . . . = fr(λ1, . . . , λn) = 0 and f(λ1, . . . , λn)λn+1 = 1.

But by our assumptions on f we must have f(λ1, . . . , λn) = 0 - contradiction.
So we have 1 ∈ a, i.e. there exist h1, . . . , hr+1 ∈ k[X1, . . . , Xn+1] such that 1 =

∑r
i=1 hifi + hr+1(1−

Xn+1f). Now consider the evaluation

evX1,...,Xn,f−1 : k[X1, . . . , Xn+1]→ k[X1, . . . , Xn]f , g 7→ g(X1, . . . , Xn, f
−1).

Then we have

1 = evX1,...,Xn,f−1(1) =

r∑
i=1

hi(X1, . . . , Xn, f
−1)fi(X1, . . . , Xn).

Finally clearing denominators yields fN =
∑r
i=1 gifi, for some natural number N and polynomials

g1, . . . , gr ∈ k[X1, . . . , Xn].
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