Exercise 1.(i) Replacing R by R / \mathfrak{p}_{1} and R^{\prime} by $R^{\prime} / \mathfrak{q}_{1}$ we can assume that R and R^{\prime} are integral domains and \mathfrak{p}_{1} and \mathfrak{q}_{1} are trivial.
By Noether Normalization there exist algebraically independent $x_{1}, \ldots, x_{r} \in R$ such that R is a finite module over $A:=k\left[x_{1}, \ldots, x_{n}\right]$. By Lemma 2.46 we get $(0) \subsetneq \mathfrak{p}_{2} \cap A \subsetneq \mathfrak{p}_{3} \cap A$. In the following we set $\mathfrak{p}_{i}^{\prime}:=\mathfrak{p}_{i} \cap A$. Now as R^{\prime} integral over R it is also integral over A. Thus $A \subset R^{\prime}$ is an integral extension of integral domains and A is normal. Hence we can apply the Going-down-Theorem to obtain a prime ideal $\mathfrak{q}_{2} \subset \mathfrak{q}_{3}$ such that $\mathfrak{q}_{2} \cap A=\mathfrak{p}_{2}^{\prime}$. In particular $\mathfrak{q}_{1}=(0) \subsetneq \mathfrak{q}_{2} \subsetneq \mathfrak{q}_{3}$. This finishes the proof of (i).
(ii) Counterexample: $B=K[X, Y], A=\{f \in B \mid f(0,0)=f(0,1)\}$, then as $X, Y(Y-1) \in A$, we have that $A \subset B$ is an integral extension. As $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \mathfrak{p}_{3} \in \operatorname{Spec}(A)$ we choose $\mathfrak{p}_{1}=(0), \mathfrak{p}_{2}=(Y) \cap A$ and $\mathfrak{p}_{3}=(X, Y-1) \cap A$. Note that $\mathfrak{p}_{2} \subsetneq \mathfrak{p}_{3}$ since $X \in \mathfrak{p}_{3}$. It is left to show that there is no prime ideal $\mathfrak{q} \subsetneq(X, Y-1)$ such that $\mathfrak{q} \cap A=\mathfrak{p}_{2}$. So if such a \mathfrak{q} exists, then since $Y(Y-1), X Y \in \mathfrak{q}$ we must have either $X,(Y-1) \in \mathfrak{q}$ or $Y \in \mathfrak{q}$. The former gives $\mathfrak{q}=(X, Y-1)$, the latter $\mathfrak{q} \not \subset(X, Y-1)$. So in both cases we get a contradiction to the assumption $\mathfrak{q} \subsetneq(X, Y-1)$.
Exercise 2. We may assume that p is not constant. So let p be explicitely given by

$$
p\left(X_{1}, \ldots, X_{n}\right)=\sum_{\substack{\nu \in \mathbb{N}^{n} \\|\nu| \leq m}} a_{\nu} X_{1}^{\nu_{1}} \ldots X_{n}^{\nu_{n}}
$$

where $m \geq 1$ and $|\nu|:=\nu_{1}+\ldots+\nu_{n}$ and some $a_{\nu} \neq 0$ with $|\nu|=m$. So the stated substitution yields

$$
\begin{aligned}
& p\left(X_{1}, \ldots, X_{n}\right)=p\left(Y_{1}+r_{1} X_{n}, \ldots, Y_{n-1}+r_{n-1} X_{n}, X_{n}\right) \\
& =\sum_{\substack{\nu \in \mathbb{N}^{n} \\
|\nu| \leq m}} a_{\nu}\left(Y_{1}+r_{1} X_{n}\right)^{\nu_{1}} \ldots\left(Y_{n-1}+r_{n-1} X_{n}\right)^{\nu_{n-1}} X_{n}^{\nu_{n}}
\end{aligned}
$$

Unraveling these terms yields that the leading term in the variable X_{n} is of the form

$$
\sum_{\substack{\nu \in \mathbb{N}^{n} \\|\nu|=m}} a_{\nu} r_{1}^{\nu_{1}} \ldots r_{n-1}^{\nu_{n-1}}
$$

As the field K was assumed to be infinite we generally have that the map

$$
K\left[X_{1}, \ldots, X_{n-1}\right] \rightarrow \operatorname{Maps}\left(K^{n-1}, K\right), \quad f \mapsto\left(\left(x_{1}, \ldots, x_{n-1}\right) \mapsto f\left(x_{1}, \ldots, x_{n-1}\right)\right.
$$

is injective. Thus, as some $a_{\nu} \neq 0$ with $|\nu|=m$, we have that

$$
\left(r_{1}, \ldots, r_{n-1}\right) \mapsto \sum_{\substack{\nu \in \mathbb{N}^{n} \\|\nu|=m}} a_{\nu} r_{1}^{\nu_{1}} \ldots r_{n-1}^{\nu_{n-1}}
$$

is not the zero function. So we can choose r_{1}, \ldots, r_{n-1} such that the leading term of X_{n} in $p\left(Y_{1}+\right.$ $\left.r_{1} X_{n}, \ldots, Y_{n-1}+r_{n-1} X_{n}, X_{n}\right)$ does not vanish. This yields the claim.
Exercise 3.(i) We clearly have $\left(X_{1} X_{2}\right)=\operatorname{span}_{K}\left(X_{1}^{i_{1}} X_{2}^{i_{2}} X_{3}^{i_{3}} \mid i_{1}, i_{2} \geq 1\right) \subset K\left[X_{1}, X_{2}, X_{3}\right]$. From this follows that X_{3} and $X_{1}-X_{2}$ are algebraically independent elements in A. As we have the following relations in A :

$$
X_{2}^{2}+\left(X_{1}-X_{2}\right) X_{2}=0 \quad \text { and } \quad X_{1}^{2}-\left(X_{1}-X_{2}\right) X_{1}
$$

we obtain that $K\left[X_{1}-X_{2}, X_{3}\right] \subset A$ is an integral extension.
(ii) Note that $A \cong \mathbb{Z}[X]_{2 X}$ and A is in particular an integral domain. For the sake of contradiction we assume there exist a Noether Normalization for A. As $\operatorname{dim} A=1$ we have there exist one (over \mathbb{Z}) algebraically independent element $t \in A$ such that $\mathbb{Z}[t] \subset A$ is integral. But since $2 \in A^{\times}$, there exist no prime ideal $\mathfrak{p} \subset A$ such that $\mathfrak{p} \cap A=2 \mathbb{Z}[t]$. In particular $\mathbb{Z}[t] \subset A$ does not satisfy the Going-up property - contradiction.
Exercise 4. (Solution 1). We have to show $f \in \sqrt{I}$, where $I=\left(f_{1}, \ldots, f_{r}\right)$ and the radical is taken in $k\left[X_{1}, \ldots, X_{r}\right.$. As K / k is algebraic we have that $K\left[X_{1}, \ldots, X_{n}\right] / k\left[X_{1}, \ldots, X_{n}\right]$ is integral. Thus we obtain a 1:1 correspondence
$\{$ max. ideals containing $I\} \leftrightarrow\left\{\mathfrak{m} \cap k\left[X_{1}, \ldots, X_{n}\right] \mid \mathfrak{m} \max\right.$. in $K\left[X_{1}, \ldots, X_{n}\right]$ and $\left.I \subset \mathfrak{m}\right\}$.

As both $k\left[X_{1}, \ldots, X_{n}\right], K\left[X_{1}, \ldots, X_{n}\right]$ are Jacobson-rings, we obtain that the radical of I in $k\left[X_{1}, \ldots, X_{n}\right]$ is the radical of I in $K\left[X_{1}, \ldots, X_{n}\right]$ intersected with $k\left[X_{1}, \ldots, X_{n}\right]$. So it suffices to show that f lies in the radical of I in $K\left[X_{1}, \ldots, X_{n}\right]$. Given a maximal ideal $\mathfrak{m} \subset K\left[X_{1}, \ldots, X_{n}\right]$ with $I \subset \mathfrak{m}$. By the weak Nullstellensatz we have $\mathfrak{m}=\left(X_{1}-\lambda_{1}, \ldots, X_{n}-\lambda_{n}\right)$ for $\lambda_{1}, \ldots, \lambda_{n} \in K$ with

$$
f_{1}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\ldots=f_{r}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=0
$$

But by assumption this yields $f\left(\lambda_{1}, \ldots, \lambda_{n}\right)=0$ and hence $f \in \mathfrak{m}$.
Exercise 4. (Solution 2). This is the standard way deducing the assertion from the Weak Nullstellensatz, which can be found in many books on Algebraic Geometry.
Consider the ideal $\mathfrak{a}=\left(f_{1}, \ldots, f_{r}, 1-f \cdot X_{n+1}\right) \subset k\left[X_{1}, \ldots, X_{n+1}\right]$. We are going to show that \mathfrak{a} is not a proper ideal. So for the sake of contradiction suppose that \mathfrak{a} is a proper ideal of $k\left[X_{1}, \ldots, X_{n+1}\right]$. Then also $\mathfrak{a} K\left[X_{1}, \ldots, X_{n+1}\right]$ is a proper ideal.
To see this we use basic methods of linear algebra. For the sake of contradiction assume that $\mathfrak{a} K\left[X_{1}, \ldots, X_{n+1}\right]$ is a proper ideal, in particular there are $p_{1}, \ldots, p_{r+1} \in K\left[X_{1}, \ldots, X_{n+1}\right]$ such that

$$
1=\sum_{i=1}^{r} f_{i} p_{i}+\left(1-X_{n+1} f\right) p_{r+1}
$$

Let $\left(v_{i}\right)_{i \in I}$ be a k-basis of K and without loss of generality let $i_{0} \in I$ such that $v_{i_{0}}=1$. We then have that $\left(v_{i} X_{1}^{j_{1}} \ldots X^{j_{n+1}}\right)_{\left(i, j, \ldots, j_{n+1}\right) \in I \times \mathbb{N}^{n+1}}$ is a basis for $K\left[X_{1}, \ldots, X_{n+1}\right] \rightarrow k\left[X_{1}, \ldots, X_{n+1}\right.$. Now let $\pi: K\left[X_{1}, \ldots, X_{n+1}\right]$ be the projection with respect to this basis. We then have

$$
1=\pi(1)=\sum_{i=1}^{r} f_{i} \pi\left(p_{i}\right)+\left(1-X_{n+1} f\right) \pi\left(p_{r+1}\right)
$$

As $\pi\left(p_{1}\right), \ldots, \pi\left(p_{r+1}\right) \in k\left[X_{1}, \ldots, X_{n+1}\right.$ we get that also $1 \in \mathfrak{a}$ - contradiction.
So alltogether $\mathfrak{a} K\left[X_{1}, \ldots, X_{n+1}\right]$ is a proper ideal and hence contained in a maximal ideal $\mathfrak{m} \subset$ $K\left[X_{1}, \ldots, X_{n+1}\right]$. By the Weak Nullstellensatz there exist $\lambda_{1}, \ldots, \lambda_{n+1} \in K$ such that $\mathfrak{m}=\left(X_{1}-\right.$ $\left.\lambda_{1}, \ldots, X_{n+1}-\lambda_{n+1}\right)$. This means $\mathfrak{a} K\left[X_{1}, \ldots, X_{n+1}\right]$ lies inside the kernel of the evaluation

$$
\mathrm{ev}_{\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)}: K\left[X_{1}, \ldots, X_{n+1}\right] \rightarrow K, \quad g \mapsto g\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)
$$

In particular we have

$$
f_{1}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\ldots=f_{r}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=0 \quad \text { and } \quad f\left(\lambda_{1}, \ldots, \lambda_{n}\right) \lambda_{n+1}=1
$$

But by our assumptions on f we must have $f\left(\lambda_{1}, \ldots, \lambda_{n}\right)=0$ - contradiction.
So we have $1 \in \mathfrak{a}$, i.e. there exist $h_{1}, \ldots, h_{r+1} \in k\left[X_{1}, \ldots, X_{n+1}\right]$ such that $1=\sum_{i=1}^{r} h_{i} f_{i}+h_{r+1}(1-$ $\left.X_{n+1} f\right)$. Now consider the evaluation

$$
\mathrm{ev}_{X_{1}, \ldots, X_{n}, f^{-1}}: k\left[X_{1}, \ldots, X_{n+1}\right] \rightarrow k\left[X_{1}, \ldots, X_{n}\right]_{f}, \quad g \mapsto g\left(X_{1}, \ldots, X_{n}, f^{-1}\right)
$$

Then we have

$$
1=\mathrm{ev}_{X_{1}, \ldots, X_{n}, f^{-1}}(1)=\sum_{i=1}^{r} h_{i}\left(X_{1}, \ldots, X_{n}, f^{-1}\right) f_{i}\left(X_{1}, \ldots, X_{n}\right)
$$

Finally clearing denominators yields $f^{N}=\sum_{i=1}^{r} g_{i} f_{i}$, for some natural number N and polynomials $g_{1}, \ldots, g_{r} \in k\left[X_{1}, \ldots, X_{n}\right]$.

