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1 Kissing numbers and the centered maximal

operator

(after J. M. Aldaz [1])

A summary written by Ljudevit Palle

Abstract

Aldaz showed in [1] an interesting connection between kissing num-
bers and uniform bounds (independent of measure) for weak type es-
timates of centered maximal operators. The concept which plays a
key role is the Besicovitch constant, an integer invariant of a metric
space. As an application one obtains improved uniform bounds for
centered maximal operators in the Euclidean space with the standard
norm and even sharp bounds in the case of the `∞ norm.

1.1 Preliminaries

Let us fix a metric space (X, d). We shall be concerned with Borel measures
on X which are locally finite and τ -additive. A Borel measure µ on X is
locally finite if it assigns finite measure to bounded Borel sets, and it is
τ -additive if for any collection {Oα : α ∈ Λ} of open sets it satisfies

µ(∪αOα) = sup
F
µ(∪ni=1Oαi),

where the supremum is taken over all finite subcollections F = {Oα1 , . . . , Oαn}
of {Oα : α ∈ Λ}. In the Euclidean case when the metric is generated by a
norm Borel measures which are locally finite and τ -additive correspond pre-
cisely to Radon measures.

To each locally finite, τ -additive Borel measure µ on X such that µ 6= 0
we can associate the centered maximal function

Mµf(x) := sup
{r>0:µ(B(x,r))>0}

1

µ(B(x, r))

ˆ
B(x,r)

|f |dµ.

Since balls in general in a metric space have neither unique centers nor unique
radii, whenever we choose or consider a ball, we shall fix one of its possible
centers and radii.
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Our goal is to relate the centered maximal functions to the following
concept. We say that a collection of balls C in a metric space (X, d) is a
Besicovitch family if for every pair of distinct balls B(x, r) and B(y, s) from
C it necessarily holds x /∈ B(y, s) and y /∈ B(x, r). The Besicovitch constant
L(X, d) of (X, d) is defined by

L(X, d) := sup

{∑
B∈C

1B(x) : x ∈ X, C a Besicovitch family

}
.

One says that (X, d) has the Besicovitch intersection property if L(X, d) is
finite.

Finally, we need to recall what a translative kissing number is. Let (Rd, ‖·
‖) be a normed space. The Hadwiger number or translative kissing number
H(d, ‖·‖) is the maximum number of translates of the (metrically) closed unit
balls Bcl(0, 1) that touch Bcl(0, 1) with the condition that the translates do
not have overlapping interiors with each other. The strict Hadwiger number
or strict translative kissing number H∗(d, ‖ · ‖) is the maximum number of
disjoint translates of the closed unit balls Bcl(0, 1) that touch Bcl(0, 1). In
the case (Rd, ‖ · ‖2) the number H(d, ‖ · ‖2) is just called the kissing number.

1.2 Results

The main result is contained in the following theorem.

Theorem 1. For any metric space (X, d) one has

L(X, d) = sup
µ
‖Mµ‖L1→L1,∞ ,

where the supremum is taken over all locally finite, τ -additive Borel measures
µ on (X, d).

The connection with translative kissing numbers is given by the following
observation.

Theorem 2. Consider any normed space (Rd, ‖ · ‖). Then

L(Rd, ‖ · ‖) = H∗(d, ‖ · ‖).

where H∗(d, ‖ · ‖) is the strict Hadwiger number.
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As an application, by using the asymptotics for kissing numbers from
[2] and [3], we get the following uniform estimates for centered maximal
functions in the Euclidean case with the standard norm.

Corollary 3. Let us consider the normed space (Rd, ‖ · ‖2). Then we have

(1 + o(1))1.1547d ≤ L(Rd, ‖ · ‖2) = sup
µ
‖Mµ‖L1→L1,∞ ≤ 1.3205(1+o(1))d,

where the supremum is taken over all Radon measures.

This is a significant improvement over the estimates for centered maximal
functions obtained through the use of the Besicovitch covering theorem.
Namely, if we denote the number of collections appearing in the Besicov-
itch covering theorem in dimension d by βd, then from [4] we know that βd
grows exponentially with d to base at least 8/

√
15 and at most 2.641.

A further corollary we get is

Corollary 4. In the normed space (Rd, ‖ · ‖∞) we have

L(Rd, ‖ · ‖∞) = sup
µ
‖Mµ‖L1→L1,∞ = 2d,

where the supremum is taken over all Radon measures.

We also note the following result, which in combination with Theorem 1
yields the extrapolation result that a uniform weak type (p, p) estimate for
some 1 < p <∞ implies a uniform weak type (1, 1) estimate.

Theorem 5. Let (X, d) be a metric space. If there exists a p satisfying
1 < p <∞ and an integer N ≥ 1 such that for every locally finite, τ -additive
Borel measure µ we have ‖Mµ‖Lp→Lp,∞ ≤ N , then (X, d) has the Besicovitch
intersection property with the Besicovitch constant bpp(p− 1)1−pNpc.

1.3 The structure of the proof of Theorem 1

The proof has two steps. The first step is to prove the theorem for finite
positive linear combinations of Dirac delta measures.

Lemma 6. For a metric space (X, d) the following are equivalent:

1) L = L(X, d) <∞
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2) For any measure µ of the form
∑N

i=1 ciδxi with ci > 0 it holds
‖Mµ‖L1→L1,∞ ≤ L <∞.

The second and more difficult step is to prove

Theorem 7. Let (X, d) be a metric space and let µ be a locally finite, τ -
additive Borel measure µ such that ‖Mµ‖L1→L1,∞ > L for some finite positive
number L. Then there exists a finite positive linear combination of Dirac
delta measures ν such that ‖Mν‖L1→L1,∞ > L.

Combining Lemma 6 and Theorem 7 one easily obtains Theorem 1.
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2 New upper bounds for kissing numbers from

semidefinite programming

(after C. Bachoc and F. Vallentin [1])

A summary written by Carlos Andrés Chirre

Abstract

We explain the semidefinite programming approach to show new
upper bounds for the kissing numbers.

2.1 Introduction

We denote the standard inner product of the Euclidean space Rn by x · y
and we denote the unit sphere as Sn−1 = {x ∈ Rn : x · x = 1}. We want to
establish a bound for the maximal number

A(n, θ) = max{card(C) : C ⊂ Sn−1, c · c′ ≤ cos θ for c, c′ ∈ C, c 6= c′}

of points on the unit sphere with minimal angular distance θ. These config-
urations will be called spherical codes with minimal angular distance θ. The
kissing number problem is equivalent to the problem of finding A(n, π/3).

We consider the action restricted to a subgroup H of the ortogonal group
O(Rn), chosen to be the stabilizer group of a fixed point e ∈ Sn−1, lead us to
some symmetric matrices Snk whose coefficients are symmetric polynomials
in three variables such that:
For all finite C ⊂ Sn−1,

∑
(c,c′,c′′)∈C3 Snk (c·c′, c·c′′, c′ ·c′′) positive semidefinite.

2.2 Preliminaries

2.2.1 Semidefinite zonal matrices

Note that the orthogonal group O(Rn) acts homogeneously on the unit
sphere. We write the space of real polynomial functions on Sn−1 of degree
at most d by Pol≤d(S

n−1). It is endowed with the induced action of O(Rn),
and equipped with the standard O(Rn)-invariant inner product

(f, g) =
1

wn

ˆ
Sn−1

f(x)g(x)dwn(x),
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where wn is the surface area of Sn−1 for the standard measure dwn. A classical
result shows the descomposition, under the action of O(Rn),

Pol≤d(S
n−1) = Hn

0 ⊥ Hn
1 ⊥ · · · ⊥ Hn

d ,

where Hn
k is isomorphic to the O(Rn) irreducible space of homogeneous har-

monic polynomials of degree k in n variables, denoted by Harmn
k . We denote

the dimension of these spaces by hnk .
Let e be a fixed point of Sn−1. Under the restricted action of the subgroup

H := Stab(e, O(Rn)) = {M ∈ O(Rn) : Me = e} (note that H ' O(Rn−1)),
we have the following descomposition into isotypic components:

Pol≤d(S
n−1) = L0 ⊥ L1 ⊥ · · · ⊥ Ld,

where Lk ' (d− k + 1)Harmn−1
k , for 0 ≤ k ≤ d. In fact,

Lk = Hn−1
k,k ⊥ · · · ⊥ Hn−1

k,d ,

where, for i ≥ k, Hn−1
k,i is the unique subspace of Hn

i isomorphic to Harmn−1
k .

Let {ek0,1, ek0,2, · · ·, ek0,hn−1
k

} be an orthonormal basis of Hn−1
k,k and let φs :

Hn−1
k,k → Hn−1

k,k+s be some H-isomorphism. Then, we will write φs(e
k
0,i) = eks,i,

where 1 ≤ i ≤ hn−1
k , the ortonormal basis of Hn−1

k,k+s. For x ∈ Sn−1 we define
the following matrix

En
k (x) =

1√
hn−1
k


ek0,1(x) ek0,2(x) · · · ek

0,hn−1
k

(x)

...
...

. . .
...

ekd−k,1(x) ek0,2(x) · · · ek
d−k,hn−1

k

(x)

 .

Finally, for x, y ∈ Sn−1 we define

Zn
k (x, y) = En

k (x)En
k (y)t ∈ R(d−k+1)x(d−k+1).

It is possivel to prove that for M ∈ H, Zn
k (Mx,My) = Zn

k (x, y). This
implies that the coefficients of Zn

k can be expressed as polynomials in the
variables u = e · x, v = e · y and t = x · y. We can write Zn

k (x, y) =
Y n
k (e · x, e · y, x · y), where Y n

k (u, v, t) is a square matrix R(d−k+1)x(d−k+1).
For n ≥ 3 we will write P n

k (t) the Gegenbauer polynomial of degree k with
parameter n/2− 1, with P n

k (1) = 1. On another hand, for n ≥ 2, P n
k (t) will

be the Chebyshev polynomial of the first kind with degree k. The following
theorem establishs the relation between this polynomials and the matrices
Y n
k .

12



Theorem 1. We have, for all 0 ≤ i, j ≤ d− k,

(Y n
k )i,j(u, v, t) = λi,jP

n+2k
i (u)P n+2k

j (v)Qn−1
k (u, v, t),

where Qn−1
k (u, v, t) := ((1− u2)(1− v2))k/2P n−1

k

(
t− uv√

(1− u2)(1− v2)

)
and

λi,j =
wn
wn−1

wn+2k−1

wn+2k

(hn+2k
i hn+2k

j )1/2.

This result allows to have especial semidefinite positive matrices. We
write A � 0 to express that the matrix A is positive semidefinite.

Corollary 2. For all d ≥ 0, and for all k ≥ 0, let Y n
k be the matrix above

mentioned. We define the matrix

Snk =
1

6

∑
σ

σY n
k ,

where σ runs through the group of all permutations of the variables u, v, t
which acts on matrix coefficients in the obvious way. Then the matrices Snk
are symmetric and have symmetric polynomials as coefficients. We have that

1. For all finite C ⊂ Sn−1,
∑

(c,c′)∈C2 Y n
k (e · c, e · c′, c′ · c′′) � 0.

2. For all finite C ⊂ Sn−1,
∑

(c,c′,c′′)∈C3 Snk (c · c′, c · c′′, c′ · c′′) � 0.

2.3 The semidefinite programming bound

Now, we set up and semidefinite programming to give an upper bound for
A(n, θ). For a spherical code C we define the three-points distance distribu-
tion:

x(u, v, t) =
1

card(C)
{(c, c′, c′′) ∈ C3 : c · c′ = u, c · c′′ = v, c′ · c′′ = t},

where u, v, t ∈ [−1, 1] such that 1 + 2uvt − u2 − v2 − t2 ≥ 0. Note that
x(u, v, t) ≥ 0, x(1, 1, 1) = 1, there is a finite number of triple (u, v, t) such
that x(u, v, t) 6= 0. Also, if the minimal angular distance of C is θ, we have
x(u, v, t) = 0 whenever u, v, t /∈ [−1, cos θ] ∪ {1}. Finally, note that∑

u

x(u, u, 1) = card(C).

13



Therefore we can obtain a semidefinite program in the variables x′(u, v, t),
where x′(u, v, t) = m(u, v, t)x(u, v, t) such that the function m(u, v, t) contain
the information about the permutations of the variables. In fact, m(u, v, t) =
6 if u 6= v 6= t, m(u, v, t) = 3 if u = v 6= t or similar cases, and m(u, v, t) = 1
if u = v = t. This semidefinite program allows to obtain an upper bound for
A(n, θ), because we want to maximize

1 +
1

3

∑
u∈[−1,cos θ]

x′(u, u, 1),

under certain conditions. Using the principle of duality we obtain the follow-
ing result:

Theorem 3. Any feasible solution of the following semidefinite problem gives
an upper bound on A(n, θ):

1 + min

{
d∑

k=1

ak + b11 + Trace(F0 . S
n
0 (1, 1, 1)) :[

b11 b12

b12 b22

]
� 0

ak ≥ 0, for k = 1, ...d,

Fk � 0, for k = 0, ...d,

d∑
k=1

akP
n
k (u) + 2b12 + b22 + 3

d∑
k=0

Trace(Fk . S
n
k (u, u, 1)) ≤ −1,

b22 +
d∑

k=0

Trace(Fk . S
n
k (u, v, t)) ≤ 0

}
,

where the last inequality holds for all (u, v, t) such that −1 ≤ u ≤ v ≤ t ≤
cos θ and 1 + 2uvt − u2 − v2 − t2 ≥ 0 and the second last to last inequality
holds for all u ∈ [−1, cos θ].

2.3.1 The kissing numbers

We consider the polynomials p(u) = −(u+1/4)2+9/16, p1(u, v, t) = p(u), p2(u, v, t) =
p(v), p3(u, v, t) = p(t) and p4(u, v, t) = 1 + 2uvt− u2 − v2 − t2. The last two
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conditions of the semidefinite program in the above theorem are satisfied if
the following two equalities hold:

−1−
d∑

k=1

akP
n
k (u)−2b12−b22−3

d∑
k=0

Trace(Fk . S
n
k (u, u, 1)) = q(u)+p(u)q1(u),

and

−b22 −
d∑

k=0

Trace(Fk . S
n
k (u, v, t)) = r(u, v, t) +

4∑
i=1

pi(u, v, t)ri(u, v, t),

where q, q1 and r, r1, ...r4 are sums of squares of polynomials.
Finally, we fix d and restrict the polynomials q, q1, r, r1, ..., r4 to polyno-

mials having degree at most N , with N ≥ d. Using the computer we find a
feasible soluton of this semidefinite program. This implies an upper bound
on the kissing number τn. We denote the best previous result known about
kissing numbers with τ ′n and the new result with semidefinite programming
with τn.

1. τ ′3 = 12 and τ3 = 12.

2. τ ′4 = 24 and τ4 = 24.

3. τ ′5 = 46 and τ5 = 45.

4. τ ′6 = 82 and τ6 = 78.

5. τ ′7 = 140 and τ7 = 135.

6. τ ′8 = 240 and τ8 = 240.

7. τ ′9 = 379 and τ9 = 366.

8. τ ′10 = 594 and τ10 = 567.
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3 Geodesic distance Riesz energy on the sphere

(after D. Bilyk and F. Dai [BD19])

A summary written by Ganesh Ajjanagadde

Abstract

We study energy integrals and discrete energies on the sphere, in
particular, analogues of the Riesz energy with the geodesic distance in
place of the Euclidean, and we determine that the range of exponents
for which uniform distribution optimizes such energies is different from
the classical case. We also obtain a very general form of the Stolarsky
principle, which relates discrete energies to certain L2 discrepancies.

3.1 Introduction

Let B denote the collection of all Borel probability measures on the unit
sphere Sd ⊂ Rd+1. Given such a measure µ ∈ B, and a measurable function
F : [−1, 1]→ R, we define the energy integral :

IF (µ) ,
ˆ
Sd

ˆ
Sd
F (x · y)dµ(x)dµ(y).

In general, we are interested in maximizing or minimizing IF (µ) over all
µ ∈ B, and also over µ ∈ S ⊂ B for interesting subsets S. For example, an
important case is that of N -atom uniform measures, or equivalently discrete
energy of N -point configurations for some fixed N . Further specializing to
d = 2, F (x · y) = |x − y|−1 and minimization of IF (µ) over such N -atom
measures yields the famous Thomson’s problem, which physically amounts
to finding the equilibrium distribution of N electrons on a sphere subject
to Coulomb interactions. A more general version studies the so-called Riesz
potential F (x · y) = |x− y|−s.

The primary subject matter of this paper is a twist of the Riesz energy,
namely using geodesic distances as opposed to Euclidean ones. More pre-
cisely, the geodesic distance between x, y is:

ρ(x, y) = arccos(x · y).

Then we study energies induced by:

Fδ(x · y) , ρ(x, y)δ,
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for arbitrary δ ∈ R \ {0}; for δ = 0 the natural modification is to use

the logarithmic potential F0(t) , − log(arccos(t)
π

). In summary, we wish to
characterize extremizers of geodesic distance Riesz energy :

Id,δ(µ) , IFδ(µ), (1)

over µ ∈ B. In order to favor repulsion, it is natural to focus on minimization
for δ ≤ 0, and maximization for δ > 0.

Our focus in this summary is on the following:

Theorem 1. Let Id,δ(µ) be given by (1). Then:

1. For −d < δ ≤ 0, the unique minimizer of Id,δ(µ) is µ = σ (the normal-
ized uniform surface measure).

2. For 0 < δ < 1, the unique maximizer of Id,δ(µ) is µ = σ.

3. For δ = 1, Id,δ(µ) is maximized iff µ is centrally symmetric (µ(−E) =
µ(E) for measurable E).

4. For δ > 1, Id,δ(µ) is maximized iff µ = 1
2
(δp + δ−p) for some p ∈ Sd. In

other words, the mass is equally concentrated at a pair of antipodes.

Remark 2. 1. The restriction to δ > −d is natural, since for δ ≤ −d,
IFδ(µ) is infinite for all µ ∈ B.

2. For classical Riesz energy F (x · y) = |x − y|δ, the first statement is
still true (see e.g. [KS98]), while for δ > 0, the phase transition occurs
at δ = 2 as opposed to δ = 1 [Bjö56]. More precisely, for classical
Riesz energy, for δ ∈ (0, 2), σ is the unique maximizer. For δ > 2, the
maximizers collapse to the symmetric antipodal ones. At the critical
point δ = 2, the maximizers are precisely the measures µ with E[µ] = 0.

3.2 Methods

We first give a brief, impressionistic, sketch of the proof of Theorem 1. As
with most results on this subject, the basic approach is via spherical harmon-
ics/positive definiteness. This reduces the proof of optimality of the uniform
measure to checking certain sign conditions on the Gegenbauer coefficients of
the function F , modulo some technicalities such as the singularity of F (x ·y)
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at x = y. The check of these sign conditions utilizes the Taylor/Maclaurin
series of the function arccos(t) in [−1, 1]. Uniqueness statements amount to
strict positivity of the relevant Gegenbauer coefficients as opposed to mere
nonnegativity. We now proceed to some of the key concepts.

First, we explain what we mean by Gegenbauer coefficients. Let wλ(t) =

(1 − t2)λ−
1
2 where λ = d−1

2
in our setting. Define L1

wλ
to be the space of

integrable functions on [−1, 1] with respect to the weight wλ:

F ∈ L1
wλ
⇔ ||F ||1,λ ,

ˆ 1

−1

|F (t)|wλ(t)dt <∞.

Let

Cλ
n(z) ,

bn
2
c∑

k=0

(−1)k
Γ(n− k + λ)

Γ(λ)k!(n− 2k)!
(2z)n−2k

be the Gegenbauer polynomials.
Then every function F ∈ L1

wλ
has a Gegenbauer expansion:

F (t) ≈
∞∑
n=0

F̂ (n;λ)
n+ λ

n
Cλ
n(t), (2)

where

F̂ (n;λ) =
Γ(λ+ 1)

Γ(λ+ 1
2
)Γ(1

2
)

ˆ 1

−1

F (t)wλ(t)
Cλ
n(t)

Cλ
n(1)

dt.

We have used “≈” as a-priori we do not know convergence of the expan-
sion. However, it turns out that positivity of the coefficients (F̂ (n;λ) ≥ 0)
and F being continuous is sufficient for uniform and absolute convergence of
the expansion (2), see [BD19, Lemma 2.3] for details. The singularities of
the functions Fδ may be treated by standard continuous modifications:

Fδ,ε(t) =

{
(ε+ arccos(t))δ if δ 6= 0,

log
(

π
ε+arccos(t)

)
if δ = 0.

(3)

We now explain what we mean by positive definiteness. In this context,
it is simply the statement that for any µ ∈ B and n ≥ 0:

ˆ
Sd

ˆ
Sd
Cλ
n(x · y)dµ(x)dµ(y) ≥ 0. (4)
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The inequality (4) is at the heart of quite a few of the topics here; the proof
cited by [BD19] utilizes the addition formula for spherical harmonics.

Positive definiteness (4) together with the Gegenbauer expansion (2) allow
us to write:

IF (µ) =
∞∑
n=0

F̂ (n;λ)

ˆ
Sd

ˆ
Sd

n+ λ

λ
Cλ
n(x · y)dµ(x)dµ(y)

= F̂ (0;λ) +
∞∑
n=1

F̂ (n;λ)bn,µ,

where ∀n, bn,µ ≥ 0 by positive definiteness (4). Again by (4), and taking
µ = 1

2
(δx0 + δy0) for arbitrary x0, y0, we see that

|Cλ
n(x0 · y0)| ≤ Cλ

n(1). (5)

Integrating (5) over x, y wrt µ ∈ B, we get bn,µ ≤ adn ,
n+λ
λ
Cλ
n(1). At this

stage we would like to use the “nonnegativity of Gegenbauer coefficients”
alluded to in the impressionistic sketch (∀n ≥ 1, F̂ (n;λ) ≥ 0) to obtain
extrema of IF (µ) over µ ∈ B. This is certainly not obvious for the relevant
δ ranges for the functions F given in (3), and forms the content of [BD19,
Lemma 3.2]. This nonnegativity is established via the Rodrigues formula
for Gegenbauer polynomials together with the Maclaurin series for Fδ,ε given
in (3).

Here we content ourselves with obtaining extrema assuming the above
nonnegativity of coefficients. First, we have:

IF (µ) ≥ F̂ (0;λ) = IF (σ),

since bn,µ ≥ 0.
Similarly, we have:

IF (µ) ≤ F̂ (0;λ) +
∞∑
n=1

F̂ (n;λ)adn = F (1) = IF (δe),

where e is an arbitrary unit vector.
The above proves one direction of [BD19, Propn. 2.1], namely nonnegativ-

ity of Gegenbauer coefficients implying that δp, σ are extrema of IF (µ). The

converse direction is based on a perturbative argument, where if F̂ (n;λ) < 0
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for some n > 0, one can take µ defined via dµ(x) = (1 − εYn(x))dσ(x) for
sufficiently small ε. Here, Yn is a spherical harmonic of degree n on Sd.

Uniqueness statements are contained in [BD19, Propn. 2.2]. Basically,
one examines conditions for equality in the above inequalities on IF (µ). Strict
positivity of the nonzero Gegenbauer coefficients allows one to conclude for
the lower bound on IF (µ) that ∀n ≥ 1, bn,µ = 0, and a similar statement for
the upper bound. This rather strong information forces µ = σ, δp respectively.

For ease of exposition the above focuses on the first two statements of
Theorem 1, though it is possible to obtain the last two statements (covering
the symmetric, antipodal measures) by very similar methods. Essentially,

one needs alternation of signs of the Gegenbauer coefficeints F̂ (n;λ) with n;
the relevant precise statement is [BD19, Lemma 2.6]. There are alternative
approaches to these latter statements via the Stolarsky principle as obtained
in [BDM18] and a particularly simple one due to Tan [Tan17].

3.3 Stolarsky principle

We briefly discuss another theme present in [BD19], namely the classical
Stolarsky principle [Sto73]. This relates the difference between discrete and
continuous energies with a notion of “L2 discrepancy” over spherical caps.
As mentioned in [BD19], Stolarsky [Sto73] established an identity relating
the L2 discrepancy with the sums of pairwise Euclidean distances between
points of the finite point configuration Z , {z1, . . . , zN}. In [BD19, Theorem
4.2], a general form of this principle for energies is presented. However, we
note that such a form is already implicit in [Sto73]; see in particular the
remarks at the top of [Sto73, p. 577].

First, we define L2 discrepancy of Z = {z1, . . . , zN} ⊂ Sd with respect to
f : [−1, 1]→ R:

DL2,f (Z) ,

ˆ
Sd

∣∣∣∣∣
ˆ
Sd
f(x · y)dσ(y)− 1

N

N∑
j=1

f(x · zj)

∣∣∣∣∣
2

dσ(x)

 1
2

.

We may also define the optimal L2 discrepancy:

DL2,f,N = inf
Z
DL2,f (Z)

over sets Z with |Z| = N .
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Next, any positive definite function F on Sd has an associated f ∈
L2
wλ

[−1, 1] satisfying (see e.g. [BD19, Lemma 4.1]):

∀x, y ∈ Sd, F (x · y) =

ˆ
Sd
f(x · z)f(z · y)dσ(z). (6)

Then we have [BD19, Theorem 4.2], [Sto73, Theorem 2]:

N−2

N∑
i=1

N∑
j=1

F (zi · zj) = D2
L2,f (Z) + IF (σ). (7)

Together with some Fourier analysis and methods of discrepancy theory,
one may use (7) to obtain [BD19, Theorem 4.2]:

Cd min
1≤k≤cdN1/d

F̂ (k;λ) ≤ D2
L2,f,N ≤ N−1 max

0≤t≤cdN−1/d
(F (1)− F (cos(t))),

for some cd, Cd > 0. The notion of a small diameter area regular partition
of Sd plays an important role in the proof. Further results are obtained
in [BD19].
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4 Optimal asymptotic bounds for spherical

designs

(after A. Bondarenko, D. Radchenko and

M. Viazovska [3])

A summary written by Stefanos Lappas

Abstract

The goal of this paper is to prove the conjecture of Korevaar and
Meyers: for each N ≥ cdt

d there exists a spherical t-design in the
sphere Sd consisting of N points, where cd is a constant depending
only on d.

4.1 Introduction

Let Sd be the unit sphere in Rd+1 with the Lebesgue measure µd normalized
by µd(S

d) = 1. Delsarte, Goethals and Seidel [6] introduced the notion of a
spherical design:

Definition 1. A set of points x1, . . . , xN ∈ Sd is called a spherical t-design
if ˆ

Sd
P (x) dµd(x) =

1

N

N∑
i=1

P (xi)

for all algebraic polynomials in d+ 1 variables, of total degree at most t.

For each t, d ∈ N denote by N(d, t) the minimal number of points in a
spherical t-design in Sd. The following lower bound

N(d, t) ≥



(
d+ k

d

)
+

(
d+ k − 1

d

)
if t = 2k,

2

(
d+ k

d

)
if t = 2k + 1,

(1)

is proved in [6].

Definition 2. A spherical t-design is called tight if the bound (1) is attained.
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Example 3. The vertices of a regular t+1-gon form a tight spherical t-design
in the circle, that is N(1, t) = t+ 1.

In higher dimensions tight desings rarely exist. In particular, Bannai and
Damerell [1, 2] have shown that tight spherical designs with d ≥ 2 and t ≥ 4
may exist only for t = 4, 5, 7 or 11.

On the other hand, Seymour and Zaslavsky [10] have proved that spherical
t-designs exist for all d, t ∈ N. However, this proof is nonconstructive and
gives no idea of how big N(d, t) is. So, a natural question is to ask how
N(d, t) differs from the tight bound (1). Generally, to find the exact value of
N(d, t) even for small d and t is a surprisingly hard problem. For example,
everybody believes that 24 minimal vectors of the D4 root lattice form a 5-
design with minimal number of points in S3, although it is only proved that
22 ≤ N(3, 5) ≤ 24; see [5].

The conjecture of Korevaar and Meyers attracted the interest of many
mathematicians. For instance, Kuijlaars and Saff [7] emphasized the impor-
tance of this conjecture for d = 2, and revealed its relation to minimal energy
problems.

In order to prove the conjecture of Korevaar and Meyers we employ the
following result from the Brouwer degree theory [9].

Theorem 4. Let f : Rn → Rn be a continuous mapping and Ω an open
bounded subset, with boundary ∂Ω, such that 0 ∈ Ω ⊂ Rn. If 〈x, f(x)〉 > 0
for all x ∈ ∂Ω, then there exists x ∈ Ω satisfying f(x) = 0.

4.2 Preliminaries and auxiliary results

Let Pt be the Hilbert space of polynomials P on Sd of degree at most t such
that ˆ

Sd
P (x)dµd(x) = 0,

equipped with the usual inner product

〈P,Q〉 =

ˆ
Sd
P (x)Q(x)dµd(x).

By the Riesz representation theorem, for each point x ∈ Sd there exists a
unique polynomial Gx ∈ Pt such that

〈Gx, Q〉 = Q(x) for all Q ∈ Pt.

24



Then a set of points x1, . . . , xN ∈ Sd forms a spherical t-design if and only if

Gx1 + · · ·+GxN = 0. (2)

The gradient of a differentiable function f : Rd+1 → R is denoted by

∂f

∂x
:=

(
∂f

∂ξ1

, . . . ,
∂f

∂ξd+1

)
, x = (ξ1, ..., ξd+1).

For a polynomial Q ∈ Pt we define the spherical gradient as follows:

∇Q(x) :=
∂

∂x
Q

(
x

|x|

)
, (3)

where | · | is the Euclidean norm in Rd+1.

Remark 5. Let us define the following open subset Ω of a vector space Pt,

Ω :=

{
P ∈ Pt

∣∣∣∣ ˆ
Sd
|∇P (x)|dµd(x) < 1

}
. (4)

The proof of our main result is based on observing that the existence of a
continuous mapping F : Pt → (Sd)N , such that for all P ∈ ∂Ω

N∑
i=1

P (xi(P )) > 0, where F (P ) = (x1(P ), ..., xN(P )). (5)

readily implies the existence of a spherical t-design in Sd consisting of N
points.
Indeed, consider a mapping L : (Sd)N → Pt defined by

(x1, . . . , xN)
L−→ Gx1 + · · ·+GxN ,

and the following composition mapping f = L ◦ F : Pt → Pt. Clearly

〈P, f(P )〉 =
N∑
i=1

P (xi(P ))

for each P ∈ Pt. Thus, applying Theorem 4 to the mapping f , the vector
space Pt, and the subset Ω defined by (4), we obtain that f(Q) = 0 for some
Q ∈ Pt. Hence, by (2), the components of F (Q) = (x1(Q), ..., xN(Q)) form
a spherical t-design in Sd consisting of N points.
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To construct the corresponding mapping F we extensively use the follow-
ing notion of an area-regular partition.

Definition 6. Let R = {R1, . . . , RN} be a finite collection of closed sets
Ri ⊂ Sd such that ∪Ni=1Ri = Sd and µd(Ri ∩ Rj) = 0 for all 1 ≤ i < j ≤ N .
The partition R is called area-regular if µd(Ri) = 1/N , i = 1, . . . , N . The
partition norm for R is defined by

‖R‖ := max
R∈R

diamR,

where diamR stands for the maximum geodesic distance between two points
in R.

We need the following fact on area-regular partitions (see Bourgain, Lin-
denstrauss [4] and Kuijlaars, Saff [7])

Theorem 7. For each N ∈ N there exists an area-regular partition R =
{R1, . . . , RN} with ‖R‖ ≤ BdN

−1/d for some constant Bd large enough.

We will also use the following spherical Marcinkiewicz–Zygmund type
inequality:

Theorem 8. There exists a constant rd such that for each area-regular par-
tition R = {R1, . . . , RN} with ‖R‖ < rd

m
, each collection of points xi ∈ Ri

(i = 1, . . . , N), and each algebraic polynomial P of total degree m, the in-
equality

1

2

ˆ
Sd
|P (x)|dµd(x) ≤ 1

N

N∑
i=1

|P (xi)| ≤
3

2

ˆ
Sd
|P (x)|dµd(x) (6)

holds.

Theorem 8 follows naturally from the proof of Theorem 3.1 in [8].

Corollary 9. For each area-regular partition R = {R1, . . . , RN} with ‖R‖ <
rd
m+1

, each collection of points xi ∈ Ri (i = 1, . . . , N), and each algebraic
polynomial P of total degree m,

1

3
√
d

ˆ
Sd
|∇P (x)|dµd(x) ≤ 1

N

N∑
i=1

|∇P (xi)| ≤ 3
√
d

ˆ
Sd
|∇P (x)|dµd(x). (7)
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4.3 Main result

Theorem 10. For each N ≥ Cdt
d there exists a spherical t-design in Sd con-

sisting of N points, where Cd is sufficiently large positive constant depending
only on d.
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5 The Bourgain–Milman theorem

A summary written by Constantin Bilz and Gianmarco Brocchi
after Bourgain–Milman [2] and Nazarov [5]

Abstract

We present the Bourgain–Milman theorem on Mahler’s conjecture.
We explain both the original proof [2] based on the geometry of normed
spaces and Nazarov’s proof [5] based on Hörmander’s theorem.

5.1 Introduction

Let K ⊂ Rn be a convex centrally symmetric bounded open and absorbing
set and let K◦ = {x ∈ Rn : |〈x, y〉| ≤ 1 for all y ∈ K} be the polar set of
K. Let vol denote n-dimensional volume and let Bn be the n-dimensional
euclidean ball.

Consider the affine invariant quantity volK · volK◦. It holds that

4n

(n!)2
≤ volK · volK◦ ≤ (volBn)2.

The upper bound is sharp and was obtained by Santaló [7], improving on the
upper bound 4n established earlier by Mahler [4]. The lower bound was also
proved by Mahler and he conjectured that it can be improved to

volCn · volC◦n =
4n

n!
≤ volK · volK◦ (1)

so that the symmetric hypercube Cn would be minimising. He proved this
for n = 2. Partial progress towards (1) in higher dimensions has been made
by several authors, see e.g. [1] and the citations in [2]. We will present two
proofs of the following

Theorem 1 (Bourgain–Milman). There exists a constant c > 0 independent
of the dimension d such that

volK · volK◦ ≥ cn volCn · volC◦n. (2)

We remark that the largest known constant for which Theorem 1 holds
is c = π

4
and this is due to Kuperberg [3].
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5.2 The proof of Bourgain–Milman

Let µn−1 be the normalized surface measure on the euclidean unit sphere
Sn−1. We denote the norm on Rn with unit ball K by ‖·‖K . We write E(K)
for the normed space (Rn, ‖·‖K) and we write

MK =

ˆ
Sn−1

‖x‖K dµn−1(x), dK =
supx∈Sn−1 ‖x‖K
infx∈Sn−1 ‖x‖K

.

The (multiplicative) Banach–Mazur distance between (Rn, |·|2) and E(K) is

dE(K) = inf{du(K) | u : Rn → Rn linear isomorphism}.

The proof is based on an analysis of the linear structure of the convex body
K starting with the following result.

Proposition 2. Let λ ∈ (0, 1). There exists a subspace F of E(K) such that

dimF ≥ λn and ‖x‖K ≥ c(1− λ)M−1
K◦ |x| for any x ∈ F .

Proof sketch. We apply the isoperimetric inequality on Sn−1 to the geodesic
π/4-neighbourhood Aπ/4 of the set A = {‖x‖K◦ ≤ 2MK◦}. For any k < n
we hence find a k-dimensional subspace F that has a large intersection with
Aπ/4, namely

µk−1(Aπ/4 ∩ F ) ≥ 1− voln−2 S
n−2

voln−1 Sn−1

ˆ π/4

0

sinn−2 t dt.

If τ ∼ 1− k/n and x ∈ F ∩ Sn−1, then this implies

µk−1(Aπ/4 ∩ F ) > 1− µk−1(Bπ/4−τ (x))

where Bε(x) ⊂ F ∩ Sn−1 is the ball with respect to geodesic distance. Then
we have F ∩ Sn−1 ⊂ Aπ/2−τ . This implies the proposition.

We will combine this with an upper bound on MK◦ . Such a bound is pro-
vided by the following result which is well-known in the geometry of Banach
spaces.

Proposition 3. There is a linear isomorphism u : Rn → Rn such that

Mu(K) ·Mu(K)◦ ≤ C(1 + log dE(K))
2.

30



We can now prove the following “subspace of quotient” result.

Lemma 4. Let λ ∈ (0, 1). Then there exists a subspace F of Rn and a
quotient space G of F such that

dimG ≥ λn and dG ≤ C(1− λ)−2(1 + log dE(K))
2.

Proof sketch. We apply Proposition 2 twice. First, we find a subspace F of
E(K) with dimF ≥

√
λn and by duality

‖x‖K◦ ≤ C(1−
√
λ)−1MK◦|x| for any x ∈ F ∗.

Here F ∗ denotes the dual space of F . Secondly, we find a subspace G of F ∗

such that dimG ≥ λn and

‖x‖K◦ ≥ c(1−
√
λ)M−1

K |x| for any x ∈ G.

Now we replace K by the u(K) from Proposition 3 and use the definition of
dG to complete the proof.

Sketch of proof of Theorem 1. Fix an integer N . For n ≤ N let Cn(t) be the
class of convex bodies K in Rn for which dE(K) ≤ t. We write

σ(t) = inf
n≤N

K∈Cn(t)

(volnK · volnK
◦

(volnBn)2

)1/n

.

Using Lemma 4 we will show in the talk that

σ(t) ≥ c
1

log tσ(C(log t)6)

with constants independent of N . This inequality implies a uniform lower
bound for σ(t) which proves the theorem.

5.3 An alternative proof via Hörmander’s theorem

We can prove (2) constructing an analytic function on Cn with good de-
cay property. By the Paley–Wiener theorem, given any g ∈ L2(K◦) its
Fourier transform f(w) =

´
K◦
g(v)e−i〈w,v〉dv extends to an entire function on
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Cn. Applying Cauchy–Schwarz |f(0)|2 ≤ ‖g‖2
L2(K◦) volK◦, and Plancherel

‖f‖2
L2(Rn) = (2π)n‖g‖2

L2(K◦) we have the lower bound

volK◦ ≥ (2π)n
|f(0)|2

‖f‖2
L2(Rn)

.

We want an entire function which L2(Rn)-norm is not too large compared
with its value at the origin. We look for such a function in a Bergman space
with Hörmander type weight, i.e. L2(Cn, e−ϕ) where ϕ is plurisubharmonic.

Let TK be the (horizontal) tube domain {x + iy : x ∈ Rn, y ∈ K} and
consider the Bergman space A2(TK) = {analytic functions on TK}∩L2(TK).

This is a Hilbert space with reproducing kernel

K(z, w) =

ˆ
Rn

ei〈z−w̄,v〉´
K
e−2〈x,v〉dx

dv

(2π)n
.

An application of Cauchy–Schwarz gives

|f(0)|2 =

∣∣∣∣ˆ
TK

K(0, w)f(w)dw

∣∣∣∣2 ≤ ˆ |K(0, w)|2
ˆ
|f(w)|2 = K(0, 0)‖f‖2

A2(TK)

from which we have the lower bound for K(0, 0)

|f(0)|2

‖f‖2
A2(TK)

≤ K(0, 0) =

ˆ
Rn

1´
K
e−2〈x,v〉dx

dv

(2π)n
≤ n!

πn
volK◦

volK

and the upper one by using the convexity of x 7→ e−〈x,v〉 and optimising in v.
Up to affine linear transformations, we can assume that K contains the

ball B(0, r). By the John’s ellipsoid theorem, K ⊂ B(0, R) with R/r ≤
√
n.

For any t ∈ K◦, the Hermitian product z 7→ 〈z, t〉 maps TK in the strip
S = {ζ ∈ C : |=(ζ)| < 1}, while the conformal map

φ(ζ) =
4

π

e
π
2
ζ − 1

e
π
2
ζ + 1

maps the strip S to the disk D(0, 4
π
). Consider the set

KC := {z ∈ Cn : |〈z, t〉| ≤ 1,∀t ∈ K◦} ⊂ TK .

Note that KC contains 1√
2
(K + iK). It is enough to construct an analytic

function inside KC. For this purpose we will use the Hörmander’s theorem.
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Definition 5. A function ϕ : Ω ⊂ Cn → R is strictly plurisubharmonic if
there exists τ > 0 such that

〈H(z)w,w〉 ≥ τ |w|2, ∀w ∈ Cn , ∀z ∈ Ω

where H is the Hermitian matrix H =

(
∂2ϕ

∂zi∂z̄j

)n
i,j=1

.

Theorem 6 (Hörmander). Let Ω ⊂ Cn be an open, pseudoconvex domain,
and let ϕ : Ω → R be strictly plurisubharmonic for a τ > 0. For any (0, 1)-
form ω on Ω with ∂̄ω = 0, there exists a solution h of ∂̄h = ω in Ω satisfyingˆ

Ω

|h|2e−ϕdz ≤ τ−1

ˆ
Ω

|ω|2e−ϕdz.

We take the plurisubharmonic function ϕ on a shrunk version of KC:

ϕ(z) =
|=(z)|2

R2
+ log sup

t∈K◦
|φ(〈z, t〉)|2n.

The first term enforces the strict plurisubharmonicity on any ball of radius
δ < R with τ = δ2/R2. The second term ensures that the function h promised
by the theorem will vanish at 0, as soon as

´
|ω|2e−ϕ is finite. Indeed, since

φ(0) = 0 and φ′(0) = 1, using Taylor we see that |φ(ζ)| ∼ |ζ| near the origin,
and so e−ϕ ∼ |z|−2n which is not locally integrable at 0. Also note that
ϕ(z) ≤ 2n log(4/π) + 1 for z ∈ KC.

Fix a small δ and let g be a cut-off function on δKC. Applying the
Hörmander theorem to −∂̄g produces h such that ∂̄(h+g) = 0. Call f = h+g
this holomorphic extension of g. Then f(0) = 1 and

‖f‖2
A2(TK) ≤ 2(‖h‖2

L2(TK) + ‖g‖2
L2(TK))

≤ 2(‖eϕ‖L∞R2δ−2‖∂̄g‖2
L2(e−ϕ) + ‖g‖2

L2).

One can choose g appropriately so that ‖f‖2
A2(TK) ≤

(
4
π

)2n
eo(n)(volK)2 as

δ → 0. This gives the lower bound(π
4

)2n e−o(n)

(volK)2
≤ K(0, 0) ≤ n!

πn
volK◦

volK
.

One can remove the exponential factor with a “tensor power trick” to obtain(π
4

)2n

≤ n!

πn
volK◦ volK

which gives the value c =
(
π
4

)3
in (2).
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6 Gaussian subordination for the Beurling-

Selberg extremal problem

(after E. Carneiro, F. Littmann and J. Vaaler

[1])

A summary written by Nuria Storch-de-Gracia

Abstract

We solve a variant of the Beurling-Selberg extremal problem by
determining real valued entire functions of exponential type that mi-
norize and majorize the real Gaussian function x 7→ e−πλx

2
, where λ

is a positive parameter.

6.1 Introduction

We say that an entire function F : C → C is of exponential type at most
2πδ for some δ > 0 if for each ε > 0 there exists C > 0 such that |F (z)| ≤
Ce(2πδ+ε)|z|, for every z ∈ C. An interesting remark is that these functions are
closely related to the family of entire functions whose restriction to the real
line has compactly supported Fourier tranform. For instance, if we assume
that F is entire and F ∈ Lp(R) with 1 ≤ p ≤ 2, then F has exponential type
at most 2πδ if and only if the Fourier tranform of F restricted to the real line
is supported on [−δ, δ]. This is known as the Paley-Wiener theorem, and a
proof of this statement may be found in [8].

Now we can present the main problem that will be treated here. Let
f : R → R, then the Beurling-Selberg extremal problem for f consists of
finding an entire function F : C → C of exponential type at most 2πδ such
that the integral ˆ ∞

−∞
|f(x)− F (x)|dx

is minimized. We can also define an important variant of this problem by
imposing additional conditions on the function F (z). For instance, we say
that F is an extreme minorant of f if it solves the Beurling-Selberg problem
for f , it is real valued on R (we will just say real valued for simplicity) and it
satisfies F (x) ≤ f(x) for each x ∈ R. Analogously, if F satisfies f(x) ≤ F (x)
for all x ∈ R instead we say that F is an extreme majorant of f .

35



This extremal problem was introduced by A. Beurling in the late 1930’s
for the function f(x) = sgn(x). The reader may find information about the
early development of this theory in [7].

In this summary, we are devoted to determining the extreme minorants
and majorants of the Gaussian function Gλ(x) := e−πλx

2
, where λ > 0 is

a parameter. Some interesting functions which have applications on an-
alytic number theory arise from these results. The authors presented in
[1] a useful technique to determine extremal minorants and majorants for
various functions based on these solutions for the Gaussian and tempered
distribution arguments. More specifically, they proved that if ν is a finite
non-negative Borel measure on (0,∞) and g : R → R is a function given
by g(x) =

´∞
0
Gλ(x)dν(x), then there exists a unique minorant l(z) of ex-

ponential type at most 2π for g(x) which interpolates the values of g(x)
at Z + 1

2
. Moreover, this result allows us to determine the value of such

function and the corresponding minimal integral. The case for the majo-
rant is analogous. This procedure has recent applications to the theory of
the Riemann zeta-function. Assuming that the Riemann hypothesis holds,
E. Carneiro and V. Chandee obtained in 2011 upper and lower bounds of
|ζ(α+ it)| for large t and α in the critial strip using the extremal minorants

and majorants of the function x 7→ log

(
4+x2

(α− 1
2)

2
+x2

)
, and improving the

bounds known before (see [2]). These were obtained noting that the measure

dν(λ) := Gλ(α)−Gλ(β)
λ

satifies the assumptions of the theorem for 0 < α < β

and − log
(
α2+x2

β2+x2

)
=
´∞

0
Gλ(x)dν(λ) holds.

A similar situation occurs when bounding the argument function S(t) =
1
π

arg ζ
(

1
2

+ it
)

for large t assuming RH, where the argument is defined by
continuous variation along the line segments joining 2, 2 + it and 1

2
+ it, tak-

ing the argument of ζ(s) at 2 to be zero. In 2013, E. Carneiro, V. Chandee
and M.B. Milinovich bounded S1(t) :=

´ t
0
S(u)du. They used the extremal

minorant and majorant of the function x 7→ 1−x arctan
(

1
x

)
, which could be

obtained from [1] integrating the parameter λ of the Gaussian with respect
to a suitable non-negative Borel measure on (0,∞). Other examples of mi-
norants and majorants obtained from those of the Gaussian can be found in
[1].
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6.2 Preliminaries

In order to approach the Beurling-Selberg extremal problem for Gλ, we first
need to recall the definitions of some basic theta functions and some of its
properties. If we denote q := eπiτ and e(z) := e2πiz we may define, following
the notation used in [1], the functions given by

θ2(v, τ) :=
∞∑

n=−∞

qn
2

e(nv) and θ3(v, τ) :=
∞∑

n=−∞

(−1)nqn
2

e(nv),

where v, τ ∈ C with Im(τ) > 0. For fixed τ with Im(τ) > 0 the functions
v 7→ θi(v, τ) are even entire functions of v for i = 2, 3. Recall that the maps
v 7→ θi(v, τ) are periodic with period 1 for i = 2, 3, and they satisfy the
equality θ2

(
v + 1

2
, τ
)

= θ3(v, τ), for all v ∈ C. One can alternatively give
expressions of these theta functions in terms of the Gaussian Gλ(z) (see [4]).
In particular, we are interested in the following:

λ−
1
2 θ2(v, iλ−1) =

∞∑
n=−∞

Gλ

(
n+

1

2
− v
)
,

λ−
1
2 θ3(v, iλ−1) =

∞∑
n=−∞

Gλ(n− v),

(1)

for all v ∈ C. We also need to introduce three functions which are crucial for
solving our main problem. We first define

Lλ(z) :=
(cosπz

π

)2
(

∞∑
m=−∞

Gλ

(
m+ 1

2

)(
z −m− 1

2

)2 +
∞∑

n=−∞

G′λ
(
n+ 1

2

)
z − n− 1

2

)
,

Mλ(z) :=
(cosπz

π

)2
(

∞∑
m=−∞

Gλ (m)

(z −m)2 +
∞∑

n=−∞

G′λ (n)

z − n

)
,

where λ > 0 is a parameter and z ∈ C. These two entire functions are of
exponential type at most 2π. Lλ interpolates Gλ and G′λ on the coset Z+ 1

2
,

and so does Mλ on Z. The definition of these functions is motivated by the
work of S. W. Graham and J.D. Vaaler (see [5]). They described a method
to produce minorants and majorants of more general special functions f by
constructing entire functions of exponential type which interpolate f(x) and
f ′(x) at the points of some appropriate set. E. Carneiro et al. showed the
following theorem in [1]:
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Theorem 1. For all real values of x we have

0 ≤
( π

cos πx

)2

(Gλ(x)− Lλ(x)) and 0 ≤
( π

sin πx

)2

(Mλ(x)−Gλ(x)).

In particular Lλ(x) ≤ Gλ(x) ≤Mλ(x) holds for every x ∈ R.

Morever, one can prove that the functions Lλ and Mλ are the unique
extreme minorant and majorant of Gλ, respectively, for each λ > 0 which is
the main purpose of this summary, and it is be the aim of next section.

6.3 Extreme minorants and majorants of Gλ(z)

The following theorems formalize the ideas previously presented. Theorem 2
solves the problem of minorizing Gλ(z) on R by real valued entire functions
of exponential type at most 2π.

Theorem 2. Let F : C → C be an entire function of exponential type at
most 2π which is real valued on R and

F (x) ≤ Gλ(x) (2)

for all x ∈ R. Then
ˆ ∞
−∞

F (x)dx ≤ λ
1
2 θ2(0, iλ−1), (3)

with equality if and only if F (z) = Lλ(z) for all z ∈ C.

Analogously, Theorem 3 solves the problem of majorizing Gλ(z) on R by
real valued entire functions of exponential type at most 2π.

Theorem 3. Let F : C → C be an entire function of exponential type at
most 2π which is real valued on R and

Gλ(x) ≤ F (x) (4)

for all x ∈ R. Then

λ
1
2 θ3(0, iλ−1) ≤

ˆ ∞
−∞

F (x)dx, (5)

with equality if and only if F (z) = Mλ(z) for all z ∈ C.
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More generally, we might be interested in obtaning solutions of exponen-
tial type at most 2πδ instead. It is now elementary to deduce from Theorems
2 and 3 that the unique extremal minorant and majorant of Gλ(z) are given
by the maps z 7→ Lλδ−2(δz) and z 7→Mλδ−2(δz), respectively.

Proof of Theorem 2. We first prove the lower bound given by (3). Let
F (z) be an entire function of exponential type at most 2π that satisfies (2).
We may assume that the function x 7→ F (x) is integrable for each x ∈ R.
Otherwise, the bound (3) is trivial. Then, applying the Poisson summation

formula together with the fact that F̂ is continuous and compactly supported
on [−1, 1], (1) and condition (2) we obtain

ˆ ∞
−∞

F (x)dx = lim
N→∞

N∑
n=−N

F (v + n)

≤ lim
N→∞

N∑
n=−N

Gλ(v + n) = λ−
1
2 θ2

(
1

2
− v, iλ−1

) (6)

for each v ∈ R. Note that using the Poisson summation formula is justified
since by the Plancherel-Pólya theorem (see [6]) the sequence {F (n+ v)}n∈N
is summable. This implies, by a generalization on Bernstein’s inequality,
that F ′(x) is integrable and therefore F has bounded variation. From (1)
one deduces that v 7→ θ2

(
1
2
− v, iλ−1

)
takes its minimum value at v = 1

2
.

Therefore, the inequality (3) is satisfied.
Let us now prove that (3) is satisfied with equality if F (z) = Lλ(z) for all

z ∈ C. Note that by Theorem 1 Lλ is a minorant of Gλ, i.e. Lλ(x) ≤ Gλ(x)
for all real x. As Lλ interpolates Gλ on the coset Z + 1

2
then the inequality

(6) is an equality in this case. Therefore we haveˆ ∞
−∞

Lλ(x)dx = λ
1
2 θ2(0, iλ−1).

Conversely, let us now assume that F (z) is an entire function of expo-
nential type at most 2π that satisfies (2) for each real x and there is equality
in the inequality (6). The last assumption implies that v = 1

2
and this gives

F (n+ 1
2
) = Gλ(n+ 1

2
) for all n ∈ Z. Moreover, since we have assumed that (2)

holds for each real and Lλ interpolates Gλ on the coset Z+ 1
2

then necessarily
F ′(n+ 1

2
) = G′λ(n+ 1

2
) for all n ∈ Z. Therefore, the entire function

z 7→ F (z)− Lλ(z)
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has exponential type at most 2π, vanishes at each point of Z+ 1
2
, and so does

its derivative.
S. W. Graham and J.D. Vaaler proved in Lemma 4 in [5] that if there

exists a real number x0 such that G(x0+n) = G′(x0+n) = 0 for every integer
n, then G(z) = 0 for all z ∈ C given that G(z) is an entire function such

that G is integrable on the real line and supp(Ĝ) ⊆ [−1, 1]. Therefore, an
application of the Paley-Wiener theorem gives F (z) = Lλ(z) for each z ∈ C
as desired.

�
One observes easily that the proof of Theorem 3 follows similarly using

the properties of the theta functions convinently.
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7 Fourier optimization and prime gaps

(after E. Carneiro, M. B. Milinovich, and

K. Soundararajan [1]

A summary written by Zirui Zhou

Abstract

This paper studies a new set of extremal problems in Fourier anal-
ysis, motivated by a problem in prime number theory.

7.1 Introduction

We establish a connection between the extremal problems in Fourier analysis
we study in this paper and the problem of bounding the largest possible gap
between consecutive primes (assuming the Riemann hypothesis).

We are interested in the whether the universal constant c in the classical
result

lim sup
n→∞

pn+1 − pn√
pnlog(pn)

≤ c (1)

can get smaller than the current best form of this bound c = 1 due to
Dudek[3]. This paper gives an affirmative answer to this question and im-
proved other bounds by (i) using Guinand-Weil explicit formula connecting
the prime numbers to the root of Riemann-Zeta function, and (ii) known
bounds on Brun-Titchmarsh constant and (iii) transforming the above ques-
tion to an extremization problem in Fourier analysis.

Define the Brun-Titchmarsh constant

B = lim sup
n→∞

π(x+
√
x)− π(x)√

x/log(x)
.

Known bounds for B are 1 ≤ B ≤ 36
11
,the first by prime number theorem

π(x) ∼ x/log(x), and the latter bound by works of Iwaniec[5].
Define the following two Fourier optimization problems:

Definition 1. Given 1 ≤ A <∞, define

C(A) := sup
F∈A,F 6=0

|F (0)| − A
ˆ

[−1,1]c
|F̂ (t)|dt (2)
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where the supremum is taken over the class A of continuous functions F :
R→ C, with F ∈ L1(R). In the case A =∞, determine C(∞) = sup

F∈E,F 6=0

|F (0)|
‖F‖1

where the supremum is over the subclass E ⊂ A of continuous functions
F : R→ C, with F ∈ L1(R) and supp(F̂ ) ⊂ [−1, 1].

Definition 2. Given 1 ≤ A <∞, define

C+(A) := sup
F∈A+,F 6=0

1

‖F‖

(
F (0)− A

ˆ
[−1,1]c

(F̂ (ξ))+dξ

)
(3)

where the supremum is taken over the class A+ of even and continuous func-
tions F : R → R, with F ∈ L1(R). In the case A = ∞, set C+(∞) =

supF∈E,F 6=0
F (0)
‖F‖1 where E+ ⊂ A+ is the set of even and continuous functions

F : R→ R with F̂ (t) ≤ 0,∀|t| ≥ 1.

Here comes the main theorem that connects the Brun-Titchmarsh con-
stant and the fourier optimization problem to our question of interest con-
cerning prime gaps.

Theorem 3. Assume the Riemann hypothesis. Let C+(·) be defined as above
and B be the Brun Titchmarch constant. Then, for any α ≥ 0 , we have

inf

{
c; lim inf

x→∞

π(x+ c log(x)
√
x)− π(x)√

x
> α

}
≤ 1 + 2α

C+(B)
≤ 21

25
(1 + 2α) (4)

Plugging in α = 0 gives an affirmative answer to the question posed at
the beginning. The last inequality follows from the characterizations of the
optimizer C+(·) (see claims and theorem 5 in the last section). We use the
asymptotic analysis of Guinand-Weil explicit formula to prove theorem 3.

7.2 G-W Explicit formula and asymptotic estimates

Lemma 4. (Guinand-Weil explicit formula) Let h(s) be analytic in the strip
|Im(s)| ≤ 1

2
+ ε for some ε > 0,and assume that |h(s)| << (1 + |s|)−(1+δ) for
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some δ > 0 when |Re(s)| → ∞. Then

∑
ρ

h

(
ρ− 1

2

i

)
= h

(
1

2i

)
+ h

(
− 1

2i

)
− 1

2π
ĥ(0) log(π)

+
1

2π

ˆ ∞
−∞

h(u)Re
Γ′

Γ

(
1

4
+
iu

2

)
du

− 1

2π

∑
n≥2

Λ(n)√
n

(
ĥ

(
log(n)

2π

)
+ ĥ

(
− log(n)

2π

))
where ρ = β + iγ are the non-trivial zeros of ζ(s), Γ′/Γ is the logarithmic
derivative of the Gamma function, and Λ(n) is the Von-Mangoldt function
defined to be log(p) if n = pm with p a prime number and m ≥ 1 an integer,
and zero otherwise.

Motivated by the optimization problem, from now on we fix F : R → R
to be an even and bandlimited ((i.e. functions with compactly supported
Fourier transforms) Schwartz function, with F (0) > 0. Let us assume that
supp(F̂ ) ⊂ [−N,N ] for some parameter N ≥ 1. It then follows that F
extends to an entire function, which we continue calling F , and the fact
that x2F (x) ∈ L∞(R) implies, via the Phragmen-Lindelof principle, that
|F (s)| << (1 + |s|)−2 when |Re(s)| → ∞.

The idea of the proof is to translate and dilate F̂ (as appearing on the
righthand side of the formula) to concentrate the mass of F on the interval
that is a large prime gap. We then try to understand the effect of this
localization in all the terms of the formula through an asymptotic analysis.
Define f(x) = bF (bx), where parameter 0 < b < 1 will be chosen small
enough such that for another parameter a → ∞, 2πbN ≤ log a. This way
suppf̂ ⊂ [−bN, bN ]. let function h be defined by h(z) = f(z)aiz. Then
assuming Riemann Hypothesis, as we let b → 0+ and a → ∞, the lemma
gives the following inequality:

bF (0)(a1/2 + a−1/2) +O(b2
√
a) +O(1) (5)

≤
∑
γ

|f(γ)|+ 1

2π

∑
n≥2

Λ(n)√
n

(
f̂

(
log(n/a)

2π

)
+ f̂

(
− log(n/a)

2π

))
(6)

Let N(x) denote the the number of zeroes ρ = β+iγ of ζ such that 0 ≤ γ ≤ x.
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Using the fact that N(x) = x
2π

log x
2π
− x

2π
+O(log x), we get∑

γ

|f(γ)| = log(1/2πb)

2π
‖F‖1 +O(1). (7)

The summation over primes is where the Brun-Titchmarsh constant B comes
in (To be specified in the talk). Fix α ≥ 0 and assume that c is a positive
constant such that

lim inf
x→∞

π(x+ c log(x)
√
x)− π(x)√

x
≤ α.

Then for any ε > 0, there exists a sequence of xi →∞ such that

π(xi + c log(xi)
√
xi)− π(xi)√

xi
≤ α + ε

along this sequence. For each xi, choose ai and bi such that [xi, xi+c
√
xi log xi] =

[aie
−2πbi , aie

2πbi ] (To symplify the notation, we will drop the subscript i in the
next two equations, but we should keep in mind that they hold for different
pairs of a, b chosen according to specific x). For any B′ > B, we have∑

1≤| log(p/ai)
2πbi

|≤N

log(p)
√
p
F̂

(
log(p)

2πb

)
≤ B′

ˆ
1≤| log(p/a)

2πb
|≤N

F̂

(
log(t/a)

2πb

)
+

dt√
t

(8)

= B′2πbi
√
ai

ˆ
[−1,1]c

F̂ (t)+dt+O(1) (9)

Putting the assymptotic estimates together, we get that for any a, b chosen
according to an x in the sequence,

b
√
a

(
F (0)−B′

ˆ
[−1,1]c

(F̂ (t))+dt

)
≤ log(1/2πb)

2π
‖F‖1+

1

2π
‖F‖1(α+ε) log x+O(1).

Sending x → ∞ and then ε → 0+, B′ → B+, and plugging in a and b in
terms of c and x(a = x+O(

√
x log x), 4πb = c log x√

x
+O(log2 x)), we get

c ≤ (1 + 2α)
‖F‖1(

F (0)−B
´

[−1,1]c
(F̂ (t))+dt

) .
This suffices to prove the main theorem on prime gaps.
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7.3 Fourier optimization

Recall the definition of C(·) and C+(·) from introduction.
Claim: There exist extremizers for C(A), 1 < A ≤ ∞ and C+(A) for 1 <
A ≤ ∞, C(1) = C+(1) = 2. The extremizers for C(∞) is unique up to a
constant scalar.

Theorem 5. (i) Let c0 = 4
π
(
´ 1

−1
sin(πt)
πt

dt)−1 = 1.07995..., d0 = 1.09769 be the
upper bound of C(∞) obtained in [4], and λ = λ(A) be the unique solution
of 1− 1

A
= sin(πλ

2
)− πλ

2
cos(πλ

2
) with 0 < λ < 1, then

max

{
2A− 2

√
A(A− 1),

πAc0

2
cos

(
πλA

2

)}
≤ C(A) ≤ min

{(
d0

1− 0.3
A−2

)
, 2

}
,

(10)
where the first upper bound on the right-hand side of 10 is only available in
the range 2.6 ≤ A <∞. (ii)The sharp constant C+(A) verifies the inequality

C(A) ≤ C+(A) ≤ min

{(
1.2

1− 0.222
A−1

)
, 2

}
(11)

where the first upper bound on the right-hand side of (11) is only available
in the range 1.222 < A < ∞. In particular, if A = 36

11
a numerical example

yields the lower bound
25

21
< C+

(
36

11

)
Remark 1: Without loss of generality, we can assume that (1) |F (0)| =

‖F‖∞, by translating F ; (2) ‖F‖1 = 1 by dilating F ; (3) F (0) > 0 by
multiplying F by a unimodular complex number; (4) F is real-valued by
replacing F by (F + F (x))/2; and (5) F is even by replacing F by (F (x) +
F (−x))/2. Remark 2: As a consequence C+(A) ≥ C(A). Fejer kernel
F (x) = (sin(πx)/(πx))2 establishes C(∞) ≥ 1. We also have the trivial
bound C(A) ≤ 2. In summary

1 ≤ C(∞) ≤ C(A) ≤ C+(A) ≤ C+(1) ≤ 2.

(Proof for the existence of extremizers: omitted.)
Sketch of proof for theorem 5: Without loss of generality, we can assume

F̂ ∈ C∞c (R) (i.e., F is bandlimited). Construct η ∈ C∞ such that η̂ is an even,
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nonnegative, and radially non-increasing function and η̂(0) = 1, supp(η) =
[−1, 1],

´
η̂ = 1 (Fejer kernel K(x) = (sin(πx)/(πx))2 is an example). Let

ηλ(x) = λη(x/λ), we see that lim sup
λ→0

η(0)−A
´
[−1,1]c (η̂λ(t))+dt

‖ηλ‖1
≥ C+(A). The case

of A =∞ needs slight modification and the same reasoning holds for C(A).
This shows that we may replace F by some F ∗ ηλ which is bandlimited.

Lower bounds: Let H(x) = (cos2πx)/(1 − 16x2), Examining F (x) =
H(x/λ) for λ ∈ (0, 1] gives C(A) ≥ πAc0

2
cos(πλA

2
). Note that as A→ 1+, this

lower bound goes to πc0/2 and is not very effective. Alternatively, we can
then use a dilation of the Fejer kernel K(x) = (sin(πx)/(πx))2, and obtain
the other bound C+(A) ≥ C(A) ≥ 2A− 2

√
A(A− 1).

Upper bounds: We already know that C(A) ≤ C+(A) ≤ C+(1) = 2. The
other upper bounds all come from duality considerations, so we just show
the case C+(A) in detail. Suppose that Φ ∈ L∞(R) is a real-valued function
such that its distributional Fourier transform is identically equal to 1 on the
interval (−1, 1) and −A ≤ Φ(t)− 1 ≤ 0 for all t ∈ R, then for F ∈ A+ such
that F̂ ∈ C∞c we have

‖Φ‖∞
ˆ ∞
−∞
|F (x)|dx ≥

ˆ
F (x)Φ(x)dx =

ˆ
F̂ (t)Φ̂(t)dt ≥ F (0)−A

ˆ
[−1,1]c

F (t)dt.

(12)
Now it remains to minimize ‖Φ‖∞ with its restrictions.

7.4 related optimization problems

For the multi-dimensional generalizations, if we let the unit cube Q = [−1, 1]d

be in the place of [−1, 1] in our problem, Cd,Q(∞) = C(∞)d. However, we
do not have a sharp estimate for general compact set K.

Another extremal problem in Fourier analysis was proposed by Cohn
and Elkies [2] in connection to the sphere packing problem. Find C =

sup
F∈E+d ,F 6=0

F (0)

F̂ (0)
where the supremum is taken over the class E+

d of real-valued,

continuous, and integrable functions F : Rd → R with F ≥ 0 and F (y) ≤ 0
for |y| ≥ 1.
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8 New upper bounds on sphere packings I

(after H. Cohn and N. Elkies [1])

A summary written by Oleksandr Vlasiuk

Abstract

An analogue of the linear programming bounds for error-correcting
codes is developed for sphere packing and used to prove upper bounds
for the density of sphere packings in a range of dimensions.

8.1 Introduction

The problem of sphere packing consists in finding the densest arrangement
of equal non-overlapping spheres in the Euclidean space Rn. For a collection
of non-overlapping balls P , its upper density is defined as the quantity

∆ = lim sup
r→∞

sup
p∈Rn

vol(B(p, r) ∩ P)

volB(p, r)
,

where B(p, r) denotes the ball of radius r, centered at p, and B(p, r) ∩ P
consists of those parts of the balls in P that lie within B(p, r). To obtain an
upper bound on the density of sphere packings, it suffices to produce such a
bound for periodic packings, as any general packing can be approximated by
a periodic one with a sufficiently large fundamental domain. Furthermore,
for periodic packings, the lim sup above can be replaced by a lim, so that

∆ = lim
r→∞

vol(B(p, r) ∩ P)

volB(p, r)
,

where the right-hand side does not depend on p ∈ Rn. In addition to the
density ∆, defined above as the portion of volume contained inside the packed
spheres, the so-called center density is also of interest. Denoted by δ, it is
defined as the number of spheres per unit volume, if spheres of unit radius
are used. Thus

∆ =
πn/2

Γ(n/2 + 1)
δ = volB(0, 1) · δ.

We shall further need several standard definitions. Recall that a lattice
Λ is an additive subgroup of Rn, Λ = {Ax | x ∈ Zn}, for a fixed matrix
A ∈ Rn2

. Given a lattice Λ ⊂ Rn, the dual lattice Λ∗ is defined by

Λ∗ = {y | 〈x, y〉 ∈ Z for all x ∈ Λ}.
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The covolume |Λ| = vol(Rn/Λ) of a lattice Λ is the volume of any fundamen-
tal parallelotope. Given a lattice Λ with shortest nonzero vectors of length
l, the density of the corresponding lattice packing is

∆ =
πn/2

Γ(n/2 + 1)

(
l

2

)n
1

|Λ|
,

and its center density is therefore δ = (l/2)n/|Λ|.
The Fourier transform of an L1 function f : Rn → R is given by

f̂(t) =

ˆ
Rn
f(x)e2πi〈x,t〉 dx.

An essential step in the proof of Theorem 2 below is Poisson summation
formula, that is, the identity∑

x∈Λ

f(x+ v) =
1

|Λ|
∑
t∈Λ∗

e−2πi〈v,t〉f̂(t), (1)

which holds for every lattice Λ ⊂ Rn and vector v ∈ Rn under suitable
assumptions on f . It is therefore reasonable to consider a class of functions
for which convergence in the above formula is absolute. A convenient example
of such a class is given in the following

Definition 1. A function f : Rn → R is called admissible if there exist a
pair of constants C, δ > 0, such that f(x) and f̂(x) satisfy

|f(x)| ≤ C(1 + |x|)−n−δ, |f̂(x)| ≤ C(1 + |x|)−n−δ.

8.2 Main results

The following result has also been established independently in [4].

Theorem 2. Suppose f : Rn → R is an admissible function, not identically
equal to zero, and satisfies:

(1) f(x) ≤ 0 for |x| ≥ 1, and

(2) f̂(t) ≥ 0 for all t.
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Then the center density of n-dimensional sphere packings is bounded above
by

f(0)

2nf̂(0)
.

Since f 6≡ 0 and f̂ is nonnegative, f(0) = ‖f̂‖L1 > 0. If f̂(0) = 0, it is

understood that f(0)/f̂(0) = +∞, and the theorem is vacuously true.

Proof. It suffices to consider periodic packings, as their densities are arbitrar-
ily close to the largest value of ∆ over all packings. Consider a packing P
given by the translates of a lattice Λ by vectors v1, . . . , vN , with vi − vj /∈ Λ
when i 6= j. Assume spheres in P have radius 1/2, so no two centers are
at distance less than 1. Then a fundamental parallelotope of Λ contains N
balls of radius 1/2 from P , and so the central density of the latter satisfies
δ = N/(2n|Λ|).

By the Poisson summation formula (1),∑
x∈Λ

f(x+ v) =
1

|Λ|
∑
t∈Λ∗

e−2πi〈v,t〉f̂(t)

for all v ∈ Rn. It follows that∑
1≤j,k≤N

∑
x∈Λ

f(x+ vj − vk) =
1

|Λ|
∑
t∈Λ∗

f̂(t)

∣∣∣∣∣ ∑
1≤j≤N

e2πi〈vj ,t〉

∣∣∣∣∣
2

. (2)

Every term on the right is nonnegative, so the right-hand side is bounded
from below by the term with t = 0, equal to N2f̂(0)/|Λ|.

On the left, the vector x+ vj− vk is the difference between two centers in
the packing P , so |x+ vj − vk| < 1 if and only if x = 0 and j = k. Whenever
|x+vj−vk| ≥ 1, the corresponding term is nonpositive by the first assumption
of the theorem, so the left-hand side is at most Nf(0). Thus,

Nf(0) ≥ N2f̂(0)

|Λ|
,

and using the equality δ = N/(2n|Λ|) gives

δ ≤ f(0)

2nf̂(0)
,

as desired.
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An alternative form of the above theorem can be given as follows.

Theorem 3. Suppose f : Rn → R is an admissible function satisfying the
following three conditions :

(1) f(0) = f̂(0) > 0,

(2) f(x) ≤ 0 for |x| ≥ r, and

(3) f̂(t) ≥ 0 for all t.

Then the center density of sphere packings in Rn is bounded above by (r/2)n.

8.3 Sharpness of the bound and uniqueness of its so-
lution

Let Λ8 and Λ24 denote the E8 and the Leech lattice, respectively. An inspec-
tion of the proof of Theorem 2 reveals that for a lattice packing, the bound
becomes sharp if and only if f vanishes on Λ\{0} and f̂ vanishes on Λ∗\{0}.
Since both Λ8 and Λ24 coincide with their duals, to prove their optimality,
both f and f̂ must vanish on Λ\{0}. The nonzero vectors in Λ8 and Λ24 have
lengths

√
2n with n ≥ 1 and n ≥ 2, respectively. The functions constructed

in [5, 2] have a single root at the length of the shortest vector of the lattice,
and double roots afterwards.

Let Λ2 denote the isodual scaling of the hexagonal lattice in R2 (so that
the rescaled version is isometric with its dual). Assuming existence of a
function f satisfying the hypotheses of Theorem 3, proving that Λn is the
densest packing in Rn, and such that both f and f̂ have roots only at the
vector lengths in Λn, n ∈ {2, 8, 24}, Cohn and Elkies [1] demonstrate that
Λn is unique among periodic packings of maximal density.

Namely, let P be a periodic packing achieving equality in the bound,
scaled to have one sphere center per unit volume. From (2) with the function
f as above, and our discussion of sharpness, each vector x + vj − vk occurs
at a root of f . Recall the following lemma [1, Lemma 8.2]:

Lemma 4. Suppose S is a subset of Rn such that 0 ∈ S, there are n linearly
independent vectors in S, and for all x, y ∈ S, |x− y| =

√
2k, k ∈ Z. Then

the subgroup of Rn generated by S is an even integral lattice.

An integral lattice is one in which the inner product of each pair of vectors
is an integer; it is even if every vector has even norm. The proof of uniqueness
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then proceeds as follows. Let L be the subgroup of Rn generated by centers
in P . By the lemma, it is an even integral lattice, so its covolume is the
square root of an integer. Thus, L has at most one center per unit volume,
with equality if and only if L is unimodular. Notice that as L is the subgroup
generated by P , it contains more spheres. By the assumption, P has exactly
one center per unit volume, so it must coincide with L, and therefore be an
even unimodular lattice. The lattice must have minimal vector norm 2 in R8

and 4 in R24 to have this density; such lattices are unique, which completes
the proof.

8.4 2-point homogeneous spaces

The Euclidean space Rn is an example of non-compact 2-point homogeneous
space. That is, for any two pairs of points equal distance apart |x1 − x2| =
|y1 − y2|, there exists an isometry of Rn that maps xi to yi, i = 1, 2. This
allows to put Theorem 2 in the perspective of similar results on compact
2-point homogeneous spaces. For example, on the unit sphere Sn−1 in Rn,
let t(x, y) = (1 + 〈x, y〉)/2, and Pj be the Jacobi polynomial P

(α,β)
j (t), where

α = β = (n− 3)/2, then there holds the following theorem due to Delsarte.

Theorem 5 ([3]). Let C ⊂ Sn−1 be a finite subset. Suppose f(t) =
∑m

j=0 ajPj(t)
with aj ≥ 0 for all j and f(t) ≤ 0 for 0 ≤ t ≤ τ . If t(x, y) ≤ τ whenever x
and y are distinct points of C, then |C| ≤ f(1)/a0.

8.5 Subsequent progress

Based on extensive numerical experiments, authors of [1] formulate the fol-
lowing conjecture.

Conjecture 6. There exist functions that satisfy the hypotheses of Theorem 2
and solve the sphere packing problem in dimensions 2, 8, and 24.

This statement has been proved true in the works by Viazovska and Cohn,
Kumar, Miller, Radchenko, and Viazovska [5, 2] in dimensions 8 and 24. The
f constructed in these two cases are Schwartz functions, and thus admissi-
ble. In addition, they only have zeros at vector lengths from Λ8 and Λ24,
respectively, hence the uniqueness argument given above is applicable. The
auxiliary functions are constructed as integral transforms of certain modular
forms. For both Λ8 and Λ24, it is essential that the vector lengths in the
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lattice are of the form
√

2k, a property that does not hold for Λ2, optimality
of which for spherical packing remains an open question.
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9 An optimal uncertainty principle in twelve

dimensions via modular forms

(after H. Cohn and F. Gonçalves [3])

A summary written by Josiah Park

Abstract

In [1] a new uncertainty principle was derived and relations made
with the theory of zeta functions. We summarize recent progress in
understanding the behavior of certain extremizers for this and related
uncertainty principles.

9.1 Introduction

Heisenberg’s uncertainity principle states that
ˆ
|x|2|f(x)|2dx

ˆ
|ξ|2|f̂(ξ)|2dξ ≥ 1/16π2

when ‖f‖2 = 1 and f̂(ξ) =
´
Rd f(x)e−2πi〈x,ξ〉dx, equality holding precisely for

f(x) = 2d/4e−π|x|
2
. The importance of this inequality in modern science is

impossible to downplay, being absolutely fundamental for quantum mechan-
ics.

In [1] another question about trade-offs between localization of a function
and its Fourier transform was formulated through study of the value

r(f) = inf {R ≥ 0 : f(x) has the same sign for |x| ≥ R}.

Setting A+(d) to be the set of all functions f : Rd → R satisfying

1. f ∈ L1(Rd), f̂ ∈ L1(Rd), and f̂ is real-valued (i.e., f is even),

2. f is eventually nonnegative while f̂(0) ≤ 0, and

3. f̂ is eventually nonnegative while f(0) ≤ 0,

this uncertainty principle takes the form

A+(d) := inf
f∈A+(d)\{0}

√
r(f)r(f̂) > 0.
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The exact value of A+(d) remains unknown generally, however one of the
main results from [3] proves optimality of a “magic” function for this uncer-
tainty principle when d = 12. They show A+(12) =

√
2 and that this value is

attained for a radial eigenfunction of the Fourier transform having a double
root at |x| = 0, a single root at |x| =

√
2, and double roots at |x| =

√
2j for

integers j ≥ 2.
A clean exact solution is possible in part due to the connections the

authors make with well-established linear programming bounds for sphere
packing [2]. Recall that for suitable f , these upper bounds for the sphere
packing density ∆d are given as

∆d ≤ vol(Bd
r(f)/2).

The conditions satisfied by feasible f in the above setting naturally give rise to
another uncertainty principle closely related to the one previously mentioned.
When the set A+(d) is replaced with A−(d), a set of functions satisfying
conditions (1) and (2) in the definition of A+(d), but also containing only f
with f̂ eventually nonpositive and f(0) ≥ 0, one obtains another uncertainty
principle

A−(d) := inf
f∈A−(d)\{0}

√
r(f)r(f̂) > 0.

This inequality follows from an extension of the main result in [6].

Theorem 1. Let s ∈ {±1}. Then there exist positive constants c and C such
that

c ≤ As(d)√
d
≤ C

for all d. Moreover, for each d there exists a radial function f ∈ As(d) \ {0}
with f̂ = sf , f(0) = 0, and

r(f) = As(d).

Furthermore, any such function must vanish at infinitely many radii greater
than As(d).

9.2 Optimality in twelve dimensions

9.2.1 A+(12) ≥
√

2

The inequalities A+(12) ≥
√

2 and A+(12) ≤
√

2 follow from a summa-
tion formula from the Eisenstein series E6 and from construction of an
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optimal function via modular forms using techniques from [7]. E6(z) =

1 − 504
∞∑
j=1

σ5(j)qj, where q = e2πiz and σ5(j) is the sum of fifth powers of

the divisors of j. So, E6(z) = z−6E6(−1
z
), meaning E6 is a modular form of

weight 6 for SL2(Z). This fact translates to a summation formula for radial
Schwartz functions f : R12 → C.

Lemma 2. For all radial Schwartz functions f : R12 → C,

f(0)−
∑
j≥1

cjf(
√

2j) = −f̂(0) +
∑
j≥1

cj f̂(
√

2j).

This equation can be checked first for the Gaussian f(x) = eπiz|x|
2

and
then verfied in full by checking its validity on compactly supported radial C∞

functions by density of such functions in Srad(R12). The proof for the latter
functions just involves an application of Fourier inversion. Significantly, this
lemma may be used to show the following result.

Lemma 3. Let f ∈ A+(12). If both r(f) and r(f̂) are at most
√

2, then
f(x) = f̂(x) = 0 whenever |x| =

√
2j with j a nonnegative integer.

This lemma is established by natural use of the conditions that a function
f ∈ A+(12) satisfies, namely that f(0) ≤ 0, f̂(0) ≤ 0 and that f and f̂
are eventually nonnegative. The above summation formula along with a
mollification argument establish the result.

Together, these lemmas may be used to establish the final inequality
A+(12) ≥

√
2 which is equivalent to the next statement.

Lemma 4. Suppose f ∈ A+(12). If r(f)r(f̂) < 2, then f vanishes identi-
cally.

The idea here is to rescale f , gλ(x) = f(λx) (g ∈ A+(12)) applying the
previous lemma to gλ. Fitting what is known about each of these functions
together, one sees that f and f̂ must both be compactly supported, thus
vanishing entirely.

A quick remark is suitable now. The observations above carry over gen-
erally to other dimensions and both signed quantities As(d). By calculation,
this implies in particular that A−(8) and A−(24) are greater than

√
2 and

2 respectively. Since A−(d) is the optimal value for a broader optimization
problem than that associated with the LP upper bounds for sphere packing,
denoted r(g), r(g) ≥ A−(d). The known existence of optimal functions in
dimensions 8 and 24 [7, 4] imply finally that A−(8) =

√
2 and A−(24) = 2.
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9.2.2 A+(12) ≤
√

2

For the upper bound, the “magic” optimal function f : R12 → R establish-
ing A+(12) ≤

√
2 is constructed through a generalization of the procedure

developed in [7] to prove optimality of the E8 lattice for sphere packing.
Setting

∆(z) = e2πiz

∞∏
n=1

(1− e2πinz)24

and using the same notation from [7] for theta functions Θ00(z),Θ01(z), and
Θ10(z), by taking an integral transform of the weakly holomorphic modular
form

ψ =

(
Θ4

00 + Θ4
10

)
Θ12

01

∆
,

one arrives at a radial function f = f̂ satisfying that

f(x) = sin
(
π|x|2/2

)2
ˆ ∞

0

ψ(it)e−π|x|
2t dt

for |x| >
√

2. Further analysis of the series for ψ establishes that f behaves
as desired in the range 0 < |x| < 2 (f belongs to A+(12)) and the location
of the zeros of f shows finally that A+(12) ≤

√
2.

The choice of ψ here was guided by ensuring that ψ∆ be a holomorphic
modular form of weight 8 for Γ(2). This implies the form should be a linear
combination of five different products of theta functions, and the condition
used in Viazovska’s method removes three degrees of freedom. When it is
observed that the coefficient of e−πiz in the Fourier expansion for ψ(z) should
vanish, this pins down the choice of ψ up to scaling.

9.3 Negative uncertainty principle

Since Theorem 1 was demonstrated to hold for the “positive” uncertainty
principle in [6], it remains to consider only the negative case. As mentioned
earlier, the problem of computing good LP upper bounds for sphere packing
density is closely related to the problem of minimizing A−(d). These bounds
come from g ∈ L1(Rd) \ {0}, g = ĝ, g(0) = 0, and for g eventualy positive.
We noted earlier that each such g satisfies r(g) ≥ A−(d), however it also
holds that computing A−(d) reduces to minimizing r(g) also.
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Lemma 5. For each f ∈ A−(d) \ {0}, there exists a radial function g ∈
A−(d) \ {0} such that ĝ = −g, g(0) = 0, and r(g) ≤

√
r(f)r(f̂).

To show this, one can make first a few simple reductions to considering
only f radial and satisfying r(f) = r(f̂). Then the function g = f − f̂
satisfies g ∈ A−(d) and r(g) ≤ r(f). To show that g may be taken so that
g(0) = 0, proceed by contradiction, peturbing a g with g(0) > 0 by an
auxiliary function, h = g + g(0)(ϕt − ϕ̂t) where

ϕt(x) =
e−tπ|x|

2 − e−2tπ|x|2

t−d/2 − (2t)−d/2
.

One will see that r(h) ≤ r(g) while h(x) > g(x) for large x, a contradiction.
The arguments now for the lower bound for A−(d) from Theorem 1 come

in the same way they do in [6, Theorem 7] (which in turn is heavily influenced
by the proof in [1] for lower bounds). Similarly, the upper bound too follows
generally the same as those employed in the above works. Kabatiansky-
Levenshtein’s bounds (through an observation from [5]) alternatively show
that r(g) ≤ (0.3194... + o(1))

√
d, and it is expected that this bound should

hold too for A+(d) but has yet to be demonstrated.
The remaining ingredients of Theorem 1 are existence of extremizers for

A−(d) and a proof that such extremizers have infinitely many roots. Both
arguments employed here closely resemble those employed in [6]. The first
follows from Mazur’s lemma, Fatou’s lemma, and a version of Nazarov’s
uncertainty principle, while the latter uses again the function ϕt to construct
perturbations of a optimal function.

If the optimal function vanishes only finitely many times beyond r(f) one
obtains a contradiction by considering the constructed perturbation. Poisson
summation formula excludes the case d = 1 automatically, so the proof in
this line (using Laguerre polynomials similar to [6]) is given for d ≥ 2.

9.4 Numerics

Results from extensive numerical experiments using exact rational arithmetic
were collected to derive the (rigorous) upper bounds presented in the paper
(see the ancillary files at [3] for a larger database of bounds). This data
supports the conjecture that:

Conjecture 6. The limits limd→∞
A+(d)√

d
and limd→∞

A−(d)√
d

exist and are
equal.
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The value of A+(28) might be given extra attention since A+(12) =
A−(8), although numerically it is clear this value cannot be equal to A−(24) =
2. The big open conjecture from [2] must be emphasized too of finding a fea-
sible function g : R2 → R for the LP bounds for which r(g) = (4/3)1/4.

A few conjectures which do not appear in print are that A′−(8) =
√

2
30

,

A′−(24) = 368
12285

and A′+(12) =
√

8
63

, where the derivative here is with respect
to the dimension d. H. Cohn proposed these at an AIM meeting in 2018.

References

[1] J. Bourgain, L. Clozel, and J.-P. Kahane, Principe d’Heisenberg et fonc-
tions positives, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 4, 1215–
1232.

[2] H. Cohn and N. Elkies, New upper bounds on sphere packings I, Ann. of
Math. (2) 157 (2003), no. 2, 689–714.
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10 Universally optimal distribution of points

on spheres

(after H. Cohn and A. Kumar [1])

A summary written by Juan Criado del Rey and Alan Groot

Abstract

We prove that certain configurations on the sphere attain the mini-
mal potential energy among all other configurations of sphere with the
same number of points. Furthermore, we give a lower bound for the
potential energy of periodic point configurations in Euclidean space.

10.1 Introduction

The paper investigates the question which finite configurations C on the unit
sphere Sn−1 in Rn minimize the (f -)potential energy given by∑

x,y∈C,x 6=y

f(|x− y|2).

Let I be an interval in R and let f : I → R be a C∞ function. The
function f is completely monotonic if (−1)kf (k)(x) ≥ 0 for all x ∈ I and all
k ≥ 0, where derivatives at the endpoints are one-sided derivatives.

A finite subset of the sphere is called a spherical M-design if every poly-
nomial on Rn of total degree at most M has the same average over the design
as over the sphere. Moreover, such a finite subset C of the sphere Sn−1 is said
to be a sharp configuration if there are m inner products between distinct
points in it and it is a spherical (2m− 1)-design.

There is a list of all known sharp configurations on the unit sphere. (Even
though the 600-cell is not sharp, the arguments in the paper apply to this
case as well.) The main theorem of the paper is the following theorem, which
states that essentially these sharp configurations and the 600-cell are the only
configurations that minimize the potential energy on the sphere.

Theorem 1. Let f : (0, 4] → R be completely monotonic and let C ⊂ Sn−1

be a sharp arrangement or the vertices of a regular 600-cell. If C ′ ⊂ Sn−1 is
any subset satisfying |C| = |C ′|, then∑

x,y∈C′,x 6=y

f(|x− y|2) ≥
∑

x,y∈C,x 6=y

f(|x− y|2). (1)
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If f is strictly completely monotonic, then equality in (1) implies that C ′ is
also a sharp configuration or the vertices of a 600-cell (whichever C is) and
the same distances occur in C and C ′. In that case, C ′ can generally (see
remark below) be obtained by an orthogonal transformation of C.

Remark 2. There is a particular family of sharp configurations coming from
totally isotropic subspaces of a Hermitian vector space over a finite field for
which uniqueness does not hold. We will comment on this during the lecture.

The proof of the above theorem is split into two parts: the case in which C
is a sharp arrangement and the case of the 600-cell. The proof of the first part
uses Hermite interpolation, the ultraspherical (or Gegenbauer) polynomials
and further properties of orthogonal polynomials and linear programming
bounds.

The ultraspherical polynomials are denoted by Cλ
i , where i is the degree

of the polynomial and λ ∈ R is a parameter. They satisfy orthogonality with
respect to the measure (1− t2)λ−1/2dt on the interval [−1, 1]. This measure
is (up to scaling) the projection of the surface measure of the sphere to a
line passing through two antipodal points. The ultraspherical coefficients of a
function on [−1, 1] are the coefficients in terms of ultraspherical polynomials.
A function is positive definite if all its ultraspherical coefficients are nonneg-
ative, while a polynomial is strictly positive definite if all its ultraspherical
coefficients (up to its degree) are strictly positive.

One useful application of ultraspherical polynomials is that it gives a
criterion for a configuration to be a spherical design, namely a configuration
C ⊂ Sn−1 is a spherical M -design if and only if∑

x,y∈C

C
n/2−1
i (〈x, y〉) = 0

for all 1 ≤ i ≤M .
The part on linear programming bounds uses an auxiliary positive definite

polynomial h to give a bound on the f -potential energy of a configuration C.

Proposition 3. Let f : (0, 4]→ R be any function. Suppose h : [−1, 1]→ R
is a polynomial such that

h(t) ≤ f(2− 2t)
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for all t ∈ [−1, 1), and suppose there are nonnegative coefficients α0, . . . , αd
such that h has the expansion

h(t) =
d∑
i=0

αiC
n/2−1
i (t)

in terms of ultraspherical polynomials (i.e., h is positive definite). Then every
set of N points on Sn−1 has potential energy at least

N2α0 −Nh(1)

with respect to the potential function f .

The bound given by h is sharp for C if and only if two conditions hold:
h(t) must equal f(2−2t) at every inner product t that occurs between distinct
points in C and whenever the ultraspherical coefficient αi of h is positive with
i > 0, we must have ∑

x,y∈C

C
n/2−1
i (〈x, y〉) = 0.

In particular, if h is strictly positive definite, then C must be a spherical
deg(h)-design.

To complete the proof of the first part of the the theorem, an auxiliary
function h is introduced. Let C be a sharp arrangement with N points and
let −1 ≤ t1 < · · · < tm < 1 be the ordered inner products that occur between
distinct points in C. The auxiliary function is a Hermite interpolation poly-
nomial that agrees with f(2 − 2t) to order 2 at each ti. The authors prove
that h is (strictly) positive definite if f is (strictly) completely monotonic
and then apply the criterion above to prove the first part of the theorem.

The proof of the second part of the theorem does not follow directly from
the proof of the first part of the theorem, because the 600-cell is only a
spherical 11-design, but the auxiliary function h constructed in the proof of
the first part would have degree at least 14. Nevertheless, the same techniques
apply with some modifications.

Finally, the paper discusses a generalization of Proposition 3 to periodic
point configurations C in Euclidean space that are a union of finitely many
translates of a lattice. If the configuration consists of the N translates Λ +
v1, . . . ,Λ + vN of a lattice Λ in Rn, with vj − vk /∈ Λ for j 6= k, then the
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density is N/vol(Rn/Λ). For a potential function f : (0,∞) → [0,∞), the
(f -)potential energy of the configuration is defined as

1

N

∑
1≤j,k≤N

∑
x∈Λ,x+vj−vk 6=0

f(|x+ vj − vk|2).

The potential energy may be infinite.

Proposition 4. Let f : (0,∞)→ [0,∞) be any function. Suppose h : Rn →
R satisfies h(x) ≤ f(|x|2) for all x ∈ Rn \{0} and is the Fourier transform of
a function g ∈ L1(Rn) such that g(t) ≥ 0 for all t ∈ Rn. Then every periodic
configuration in Rn with density δ has f -potential energy at least

δ
(

lim inf
t→0

g(t)
)
− h(0).

The proof uses elements of Fourier analysis. In contrast to the proposition
in the case of configurations on the sphere, it is not known if there exists a
function h that satisfies the hypotheses of the above proposition. For three
types of lattices, the hexogonal lattice Λ2 in R2, the E8 root lattice Λ8 in R8

and the Leech lattice Λ24 in R24, the authors conjecture that such functions
h exist.

Conjecture 5. Let n ∈ {2, 8, 24}, and let f : (0,∞) → R be completely
monotonic and satisfy f(x) = O(|x|−n/2−ε) as |x| → ∞ for some ε > 0. Then
there exists a function h that satisfies the hypothesis of Proposition 2 and
proves that Λn has the least f -potential energy of any periodic configuration
in Rn with its density.

As an argument supporting this conjecture, the authors are able to prove
that in one dimension, Proposition 4 proves a sharp bound for the minimal
potential energy.
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11 Universal optimality of the E8 and Leech

lattices and interpolation formulas

(after H. Cohn, A. Kumar, S. Miller, D. Rad-

chenko and M. Viazovska[1])

A summary written by Matthew de Courcy-Ireland and Giuseppe Negro

Abstract

We apply the method of linear programming to show that the E8

and Leech lattices have minimal energy, among all point configurations
of unit density, and with respect to any completely monotonic radially
symmetric potential.

11.1 Introduction

Given a potential function p : (0,∞)→ R, we associate to any discrete point
configuration C ⊂ Rd its lower p-energy, defined by

Ep(C) := lim inf
r→∞

1

|C ∩Br(0)|
∑

x 6=y∈C∩Br(0)

p(|x− y|) (1)

where the sum is over pairs of distinct points x 6= y lying in the intersection
of C with a larger and larger ball Br(0) centered at the origin. The problem
of optimal configuration consists in finding those C that minimize (1) with a
prescribed density, that is a given value of

lim
r→∞

|C ∩Br(0)|
vol(Br(0))

. (2)

We denote by Λd, with d = 8 or 24, the E8 and Leech lattices, respectively.
These are additive subgroups of Rd with the further properties of being even
and self-dual. This means that a vector y satisfies x · y ∈ Z for all x ∈
Λd if and only if y ∈ Λd, and moreover |x|2 ∈ 2N for all x ∈ Λd. These
arithmetic constraints are quite restrictive: even, self-dual lattices exist only
in dimensions d divisible by 8. We remark that all self-dual lattices have
density equal to 1. The E8 and Leech lattices are exceptional structures
with exotic symmetries and many remarkable properties. The main result
summarized in these notes is the following theorem proved by Cohn, Kumar,
Miller, Radchenko, and Viazovska.
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Theorem 1 (Universal optimality). Let p(r) = g(r2), where g is a smooth
function satisfying (−1)kg(k) ≥ 0 for all k ≥ 0; we say that g is completely
monotonic. For every discrete subset C ⊂ Rd of unit density, where the
dimension d is 8 or 24,

Ep(C) ≥ Ep(Λd). (3)

By a theorem of Bernstein, every completely monotonic function is the
Laplace transform of a positive measure. It therefore suffices to prove Theo-
rem 1 with p(r) = e−παr

2
, where α > 0, the general case being a superposition

of these with different values of α.

11.2 Fourier interpolation and linear programming

Denote by Srad(Rd) the space of radially symmetric Schwartz functions; for
any such function g, we let ĝ denote its Fourier transform and g′ its derivative
in the radial direction. The proof of Theorem 1 is based on the following
lemma, introduced by Cohn and Kumar [2].

Lemma 2 (Linear programming bounds). Let p : (0,∞) → [0,∞). If there
is g ∈ Srad(Rd) satisfying

g(x) ≤ p(|x|), ĝ(x) ≥ 0, ∀x ∈ Rd, (4)

then, for every discrete C ⊂ Rd with unit density,

Ep(C) ≥ ĝ(0)− g(0).

If, moreover, Λ ⊂ Rd is a self-dual lattice, and

g(x) = p(|x|), ĝ(x) = 0, ∀x ∈ Λ, (5)

then Ep(Λ) = ĝ(0)− g(0).

We remark that (4) and (5) imply g′(x) = p′(|x|) at all x ∈ Λd. The
proof of Theorem 1 is therefore complete if we can construct a function
g ∈ Srad(Rd) satisfying (4) and (5), with Λ = Λ8 and Λ = Λ24, and with a
Gaussian potential p(r) = e−παr

2
. This construction is done via the follow-

ing interpolation theorem, which is the core result of Cohn-Kumar-Miller-
Radchenko-Viazovska [1]
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Theorem 3. Let (d, n0) be (8, 1) or (24, 2). There are an, bn, ãn, b̃n ∈ Srad(Rd),
with n ≥ n0, such that every f ∈ Srad(Rd) satisfies

f(x) =
∞∑

n=n0

f(
√

2n)an(x) + f ′(
√

2n)bn(x) + f̂(
√

2n)ãn(x) + f̂ ′(
√

2n)b̃n(x)

for all x ∈ Rd, where the series converges absolutely.

Here
√

2n0 is the length of the shortest nonzero vector in Λ8 or Λ24. By
this theorem, the function

g(x) =
∞∑

n=n0

p(
√

2n)an(x) + p′(
√

2n)bn(x) (6)

satisfies the condition (5) of Lemma 2.

11.3 Functional equations

The strategy of [1] is to solve for the unknowns an, bn, ãn, b̃n using generating
functions. Let

F (τ, x) =
∑
n≥n0

an(x)e2πinτ + 2πiτ
∑
n≥n0

√
2nbn(x)e2πinτ (7)

and
F̃ (τ, x) =

∑
n≥n0

ãn(x)e2πinτ + 2πiτ
∑
n≥n0

√
2nb̃n(x)e2πinτ (8)

where τ is a complex variable in the upper half-plane =(τ) > 0 and x ∈ Rd

(although only |x| will be relevant). Ultimately, g(x) = F (iα, x) will be

the test function (6), while F̃ (iα, x) = ĝ(x). The interpolation formula is

equivalent to certain functional equations that must be obeyed by F and F̃ .
To determine them, consider interpolating the function f(x) = eπiτ |x|

2
, which

decays rapidly as long as =(τ) > 0. The Fourier transform of a Gaussian is

êπiτ |x|2(ξ) =

(
i

τ

)d/2
e−πi|ξ|

2/τ (9)

that is, another Gaussian but with a change of parameter τ 7→ −1/τ . The
radial derivatives are given by

f ′(r) = 2πiτreπiτr
2

, f̂ ′(r) =

(
i

τ

)d/2(
−2πir

τ

)
e−πir

2/τ (10)
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In this case, the interpolation formula claims that

eπiτ |x|
2

=
∞∑

n=n0

e2πinτan(x) +
∞∑

n=n0

2πiτ
√

2ne2πinτbn(x) (11)

+

(
i

τ

)d/2 ∞∑
n=n0

e−2πin/τ ãn(x) +

(
i

τ

)d/2 ∞∑
n=n0

−2πi
√

2n/τe−2πin/τ b̃n(x).

In terms of the generating functions, we can restate (11) as

F (τ, x) +

(
i

τ

)d/2
F̃ (−1/τ, x) = eπi|x|

2

(12)

and Theorem 3 will be proved by solving this functional equation. Note that
proving the interpolation formula for all Gaussians is enough to conclude it
for all radial Schwartz functions.

In addition to (12), we have implicitly imposed two further conditions on

the generating functions. In order for F and F̃ to have an expansion in terms
of e2πinτ and τe2πinτ as above, they must also satisfy

F (τ + 2, x)− 2F (τ + 1, x) + F (τ, x) = 0 (13)

F̃ (τ + 2, x)− 2F̃ (τ + 1, x) + F̃ (τ, x) = 0 (14)

The required functional equations describe how F and F̃ must behave
under the transformations S : τ 7→ −1/τ and T : τ 7→ τ + 1. They can be
written more easily with the help of the “slash notation” for the action of
S, T , and other linear fractional transformations τ 7→ (aτ + b)/(cτ + d) on
functions. Given a “weight” k, which will either be d/2 or 2 − d/2 in the
proof of the interpolation formula for Rd, we write

f |k
(
a b
c d

)
(τ) = (cτ + d)−kf

(
aτ + b

cτ + d

)
for any real matrix obeying ad − bc = 1. Note that =((aτ + b)/(cτ + d)) is
positive. The slash notation extends linearly to expressions such as (T − 1)2

or S − 1 in the group ring of SL2. Thus the functional equations can be
written concisely as

F + id/2F̃ |d/2 = eπi|x|
2

(15)

F |(T − 1)2 = 0 (16)

F̃ |(T − 1)2 = 0 (17)
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where the slash acts on the variable τ , and the identities must hold pointwise
for all x. Note that id/2 = 1 for both d = 8 and d = 24, so this factor can be
omitted from (15).

11.4 Construction with modular forms

The solution F produced by Cohn-Kumar-Miller-Radchenko-Viazovska is an
integral transform

F (τ, r) = eπiτr
2

+ 4

(
sin

πr2

2

)2 ˆ ∞
0

K(τ, it)e−πr
2tdt (18)

of a certain kernel K = K(d) that can be written explicitly in terms of modu-
lar forms. For reasons of space, these notes will not describe the construction
in detail or review the theory of modular forms. Suffice it to say that modular
forms are classical special functions including theta functions and Eisenstein
series, and obeying special transformation laws under S and T . The integral
in (18) converges for real values r 6= 0 in dimension d = 8, or for |r| > 2
in case d = 24, and for τ in a fundamental domain for the group generated
by T 2 and ST 2S. An analytic continuation is needed to define F (τ, r) for
complex values of r, and then for τ throughout H. This ansatz and continu-
ation argument are adapted from Viazovska’s solution of the 8-dimensional
sphere-packing problem [3], with a new ingredient in the modular forms used
as building blocks. The factor sin(πr2/2) vanishes when r =

√
2n, which

guarantees that F (τ, r) interpolates eπiτr
2

at the required radii. The comple-

mentary function F̃ is also given by an integral transform involving another
kernel K̂, designed to interpolate the function 0 instead of eπiτr

2
.

11.5 Positivity of kernels and end of proof

The proof is achieved by showing that f(x) = F (iα, x) is a valid test function
for the Cohn-Kumar linear program. In other words, it is a radial Schwartz
function on Rd satisfying f̂ ≥ 0 and f(x) ≤ e−πα|x|

2
. In both of these

inequalities, equality holds if and only if |x| is the length of a nonzero vector
in the lattice E8 in the case d = 8 or the Leech lattice in the case d = 24.
Thus f is an optimal test function, as the bound it gives matches the energy
achieved by a known configuration.
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By an appeal to duality, one can deduce the inequailty f(x) ≤ e−πα|x|
2

from f̂ ≥ 0. Thus it is enough to show that

0 ≤ F̃ (τ, r) = 4

(
sin

πr2

2

)2 ˆ ∞
0

K̂(τ, it)e−πtr
2

dt

using the integral formula for F̃ . For d = 8, the integral converges absolutely
for all r > 0. The positivity will follow by showing that

K̂(8)(τ, it) > 0.

The condition for equality then follows in light of the factor (sinπr2/2)2.
For d = 24, the integral converges absolutely for |r| >

√
2. For small

values of r, the integral does not converge and it is necessary to truncate
K(τ, it) by subtracting certain leading terms. To confirm positivity, one must
check two-variable inequalities on the truncated kernel as a function of both
τ and t, as well as (comparatively easy) single-variable inequalities involving
the error term as a function of τ . Cohn-Kumar-Miller-Radchenko-Viazovska
do all of this by rigorous numerical verification.
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12 Upper bounds for packings of spheres of

several radii

(after D. de Laat, F. De Oliveira Filho and

F. Vallentin)

A summary written by Maria Dostert and Martin Stoller

Abstract

We give a summary of the paper [2] by de Laat, Oliveira, and
Vallentin in which they present theorems to obtain upper bounds on
the density of translative packings of different convex bodies in Rn as
well as for packings of different spherical caps on the unit sphere.

12.1 Translative packings of convex bodies and multiple-
size packings

In this section, we study the density of translative packings of different convex
bodies in Euclidean space. Let K1, . . . ,KN ⊂ Rn be convex bodies. A
translative packing P is a union of translated copies of the bodies K1, . . . ,KN
such that any two copies have disjoint interiors. In other words, a translative
packing P is given by

P =
m⋃
i=1

(
xi +Kr(i)

)
for some x1, . . . , xm ∈ Rm,

and some function r : {1, . . . ,m} → {1, . . . , N} such that
(
xi +K◦r(i)

)
∩(

xj +K◦r(j)
)

= ∅ whenever i 6= j. The density of P is ∆, if for all p ∈ Rn

∆ = lim
r→∞

vol(B(p, r) ∩ P)

vol(B(p, r))
,

where B(p, r) is the ball of radius r centered at p. Since not every packing
has a density, we also define the upper density of P by

lim sup
r→∞

sup
p∈Rn

vol (B(p, r) ∩ P)

vol(B(p, r))
.
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If there exists a lattice L ⊆ Rn such that P = x + P for all x ∈ L, then
P is called a periodic packing. A periodic packing has a density. Since the
supremum of the upper density of any packing can be approximated arbitrary
well by periodic packings, we can restrict ourselves to periodic packings.

In 2003, Cohn and Elkies [1] gave a linear programming method to obtain
upper bounds for the density of sphere packings. In 2014, de Laat, Oliveira
and Vallentin [2] extended the Cohn-Elkies method to obtain new upper
bounds of packings of spheres with different radii.

Before stating the corresponding theorem, we have to define the Fourier
transform of an L1 function. Let f : Rn → C be an L1 function. The Fourier
transform of f at u ∈ Rn is

f̂(u) =

ˆ

Rn

f(x)e−2πiu·xdx.

The function f is called a Schwartz function if it is infinitely differentiable
and if any derivative of f multiplied by any power of the variables x1, . . . , xn
is a bounded function. The Fourier transform of a Schwartz function is a
Schwartz function as well.

Theorem 1. Let K1, . . . ,KN be convex bodies in Rn, and let f : Rn → RN×N

be a matrix-valued function such that every component fij is a Schwartz func-
tion. Suppose that f satisfies the following conditions.

i) The matrix
(
f̂ij(0)− (vol Ki)1/2 (vol Kj)1/2

)N
i,j=1

is positive semidefi-

nite.

ii) The matrix of Fourier transforms
(
f̂ij (u)

)N
i,j=1

is positive semidefinite

for every u ∈ Rn \ {0}.

iii) fij(x) ≤ 0 whenever K◦i ∩
(
x+K◦j

)
= ∅.

Then the density of any packing of translates of K1, . . . ,KN in the Euclidean
space Rn is at most max{fii(0) : i = 1, . . . , N}.

In the proof of Theorem 1 we apply the Poisson summation formula.
By considering L1 functions instead of Schwartz functions this part of the
proof would not work anymore. However, the Poisson summation formula
also holds for continuous functions of bounded support and positive type.
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Using this property, de Laat, Oliveira and Vallentin develop a generalization
of Theorem 1 for continuous L1 functions of positive type.

Note that if we consider packings of spheres of different radii, which means
all Ki are spheres of a radius ri, then the last condition in Theorem 1 just
depends on the norm of x. The intersection K◦i ∩

(
x+K◦j

)
is empty if and

only if ‖x‖ ≥ ri + rj. Therefore, one can restrict fij to be radial Schwartz
functions. Furthermore, the Fourier transform of a radial function is radial
as well. Using the above observations, de Laat, Oliveira and Vallentin give
a version of Theorem 1 to obtain upper bounds for the packing density of
spheres of different radii. Moreover, they computed new upper bounds for
the density of sphere packings with two different radii called binary sphere
packings by using semidefinite optimization.

12.2 Multiple-size spherical cap packings

The spherical cap with center x ∈ Sn−1 and angle α ∈ (0, π] on the unit
sphere Sn−1 ⊆ Rn is defined as C(x, α) := {y ∈ Sn−1 : x · y ≥ cos(α)}. The
normalized volume of such a cap C(x, α) is independent of its center and
given by

w(α) :=
ωn−1(Sn−2)

ωn(Sn−1)

ˆ 1

cos(α)

(1− u2)(n−3)/2du, (1)

where ωn(Sn−1) = (2πn/2)/Γ(n/2) is the surface area of the unit sphere. We
have

C(x1, α1)◦ ∩ C(x2, α2)◦ = ∅ ⇔ x · y ≤ cos(α1 + α2).

For the remainder of the section, we fix a dimension n ≥ 3 and a set of angles
A = {α1, . . . , αN} ⊆ (0, π]. We are interested in packing spherical caps with
angles from A on Sn−1 and in obtaining upper bounds on the density of such
packings. This can be done by translating the problem into graph theory.
Define a conflict graph G = (V,E) with set of vertices V = Sn−1×{1, . . . , N}
and set of edges E defined by

{(x, i), (y, j)} ∈ E :⇔ x · y > cos(α1 + α2).

A vertex (x, i) ∈ V corresponds to the spherical cap C(x, αi) ⊆ Sn−1 and a
packing of spherical caps corresponds to a finite independent set of vertices
I. The density of such a packing is

∑
(x,i)∈I w(αi). We equip V with the

product topology and we let the orthogonal group H := O(n) act on V by
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h · (x, i) := (h · x, i). This action is continuous, the weight function w is
H-invariant and H acts by continuous graph automorphisms. Consider, for
a moment, a general triple (G = (V,E), H,w) with these properties. We
would like to bound the weighted independence number

αw(G) := sup

{∑
x∈I

w(x) : I ⊆ V is finite and independent

}
.

To that end we will use certain kernels on V × V , i.e. continuous functions
K : V × V → R. Such a kernel K is symmetric if K(x, y) = K(y, x) for all
x, y ∈ V . A symmetric kernel is positive, if for all m ≥ 1 and all x1, . . . , xm ∈
V , the real symmetric matrix (K(xi, xj))1≤i,j≤m is positive semidefinite. Let
Kw denote the set of all symmetric kernels K on V × V having the property
that

• K − w1/2 ⊗ w1/2 is a positive kernel,

• K(x, y) ≤ 0 for all {x, y} /∈ E.

Let KHw ⊆ Kw denote the subset consisting of H-invariant kernels. We define
the weighted theta-prime numbers

ϑ′w(G) := inf {max
x∈V

K(x, x) : K ∈ Kw},

ϑ′w(G)H := inf {max
x∈V

K(x, x) : K ∈ KHw }.

By averaging over the group H and using the assumptions on the action
H × V → V one can show that ϑ′w(G) = ϑ′w(G)H . It is also not hard to see
that αw(G) ≤ ϑ′w(G) (adapt the proof of [2, Theorem 1.1]).

We now return to the example of the spherical-cap-conflict graph G from
above and the group H = O(n). For k ≥ 0 we denote by Pk = P λ

k the kth
Gegenbauer polynomial with parameter λ = (n − 2)/2. It is shown in [2,
Theorem 2.1] that any H-invariant positive kernel Q : V × V → R is of the
form

Q((x, i), (y, j)) =
∞∑
k=0

gij,kPk(x · y),

where ((gijk)1≤i,j≤N)k≥0 is an absolutely summable sequence of positive semidef-
inite matrices in MN(R). One can combine these results to give a short proof
of the following theorem [2, Theorem 1.2].
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Theorem 2. Let Fw be the set of all functions F : [−1, 1] → MN(R) of
the form F (u) =

∑∞
k=0 Pk(u)Fk, where (Fk)k≥0 is an absolutely summable

sequence of real symmetric matrices such that:

i) F0 − (w(αi)
1/2w(αj)

1/2)1≤i,j≤N is positive semidefinite,

ii) Fk is positive semidefinite for all k ≥ 1,

iii) For all i, j ∈ {1, . . . , N} and all u ∈ [−1, 1] we have

u ≤ cos(αi + αj) ⇒ F (u)ij ≤ 0.

Then the density of every packing of spherical caps with angles from A on
Sn−1 is bounded by max1≤i≤N (F (1)ii).

Proof. Let F ∈ Fw. The kernelQ((x, i), (y, j)) := F (x·y)ij−w(αi)
1/2w(αj)

1/2

is in KHw and ϑ′w(G)H ≤ max(x,i) Q((x, i), (x, i)) ≤ maxi F (1)ii.

One can also show that

inf

{
max

1≤i≤N
(F (1)ii) : F ∈ Fw

}
= ϑ′w(G)H .

This says that Theorem 2 gives the sharpest possible upper bound in the
framework of the weighted-theta prime number ϑ′w(G)H .

References

[1] Cohn, H. and Elkies, N., New upper bounds on sphere packings I. Ann.
of Math. (2) 157 (2003), 689–714.

[2] de Laat, D., de Oliveira Filho, F. M., and Vallentin, F., Upper bounds
for packings of spheres of several radii. Forum of Mathematics, Sigma,
2, E23 (2014).

Maria Dostert, EPFL
email: maria.dostert@epfl.ch

Martin Stoller, EPFL
email: martin.stoller@epfl.ch

75



13 Bounds for unrestricted codes, by linear

programming

(after P. Delsarte [1])

A summary written by Louis Brown

Abstract

We give upper bounds on the number of codewords in unrestricted
additive codes with specified minimum distance δ between codewords.

13.1 Preliminaries

An (n,M) q-ary additive code C is a subgroup of V = (F,+)n of order M ,
where F is an arbitrary abelian group of order q. We say C has length n.

Remark 1.
Note that q need not be a prime power, and F need not be the additive group
of a field, hence “unrestricted”. Many of the results in this paper generalize
previously known results on linear codes (subspaces of vector spaces Fnq ) to
additive codes, which need not be linear even if q is a prime power.

The weight w(a) of a ∈ V is the number of non-zero entries in a.
Ai(C) is the number of elements in C with weight i.
C has designed minimum distance δ if Ai(C) = 0 for all i < δ.
The Hamming distance d(a, b) on F n is the number of coordinates at which
a and b differ (or, equivalently, w(a− b)).

Remark 2. For any a ∈ C, the number of codewords b in C with d(a, b) = i
is Ai(C), since C is additive and d is translation-invariant.

Yi is the subset of F n with weight i.
|Yi| = vi =

(
n
i

)
λi, where λ = |F\{0}| = q − 1.

The dual code of C is denoted C ′.
The Krawtchouk polynomial Pk(x) is given by

Pk(x) =
k∑
j=0

(−1)jλk−j
(
x

j

)(
n− x
k − j

)
.
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The MacWilliams transform of a homogeneous polynomial

A(y, z) =
n∑
i=0

Aiy
izn−i

is

A′(y, z) = A(z − y, z + λy) =
n∑
i=0

A′iy
izn−i.

We apply this where the Ai are Ai(C) for some code C with length n.

Remark 3. Using generating functions, we see that the MacWilliams trans-
form is described by Krawtchouk polynomials as follows:

A′k =
n∑
i=0

AiPk(i).

The kth characteristic matrix of C, Hk, is the M×vi matrix of inner products
between C and Yk, arbitrarily ordered.

13.2 Results

Theorem 4. For any a ∈ V ,∑
h∈Yk

〈a, h〉 = Pk(w(a)).

Theorem 5. For all k,

(HkH
∗
k)a,b = Pk(d(a, b)).

Proof.

(HkH
∗
k)a,b =

∑
h∈Yk

〈a, h〉〈b, h〉 =
∑
h∈Yk

〈a− b, h〉 = Pk(w(a− b)) = Pk(d(a, b)),

by Theorem 4. Note that 〈b, h〉 = 〈b, h〉−1 = 〈−b, h〉 since the inner product
is defined by mapping (V,+) to multiplicative characters in C.
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Theorem 6. For any code C, the MacWilliams transform of the weight
distribution is non-negative. That is, A′i(C) ≥ 0 for all i.

Proof. Let j = (1, . . . , 1). Then

‖H∗kj‖2 = j∗HkH
∗
kj =

∑
a,b∈C

Pk(d(a, b)) = M

n∑
i=0

Ai(C)Pk(i) = MA′k(C),

by Remarks 2 and 3, and Theorem 5. Then, since the left side is non-negative,
so must be the right side.

Theorem 7. Up to a constant factor, the MacWilliams transform yields the
weight distribution on the dual code. Specifically, for 0 ≤ k ≤ n,

MAk(C
′) = A′k(C).

Proof.

‖H∗kj‖2 =
∑
h∈Yk

∑
a,b∈C

〈a− b, h〉 = M
∑
h∈Yk

(∑
u∈C

〈u, h〉

)
.

It is well-known that the parenthetical term is 1 if h ∈ C ′ and 0 if not, so we
may simplify the expression to

M
∑

h∈Yk∩C′

∑
u∈C

1 = M2|Yk ∩ C ′| = M2Ak(C
′).

Combining with the argument in Theorem 6, we have

MA′k(C) = ‖H∗kj‖2 = M2Ak(C
′),

yielding the desired result.
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13.3 Linear Programming

Given a set D ⊆ N = {1, . . . , n} of possible codeword weights, we associate
the following linear program P -I:

∀k ∈ N,
∑
i∈D

AiPk(i) ≥ −vk (1)

∀i ∈ D, Ai ≥ 0 (2)

maximize z =
∑
i∈D

Ai (3)

Note that any code satisfies (1), by Remark 3 and the fact that Pk(0) = vk,
and satisfies (2) by Theorem 6.
Moreover, letting z̄(D) be the maximum value of z satisfying these 3 equa-
tions, M̄(D) = z̄(D) + 1 is an upper bound on the number of codes with
weights in D.

However, a solution to this linear program does not necessarily yield a code,
and indeed for certain q, n,D values, M̄(D) is far from tight. For instance,
when q = 2, n = 13, and D = {6, 8, 10, 12}, we have M̄(D) = 40 but the
classical Johnson bound is 35 and there is a known code with M = 32.

We can then define the dual program P -II by

∀i ∈ D,
∑
k∈N

αkPk(i) ≤ −1 (4)

∀k ∈ N, αk ≥ 0 (5)

minimize ζ =
∑
k∈N

αkvk (6)

We similarly denote the minimum value of ζ as ζ̄(D).

79



Theorem 8.

1. z̄(D) = ζ̄(D)

2. For any pair of (Ai), (αk) of solutions to P -I and P -II, respectively, we
have

∀k ∈ N, αkA′k = 0 (7)

∀i ∈ D, Aiα(i) = 0, (8)

where
α(i) =

∑
k∈N

αkPk(i)

(i.e., α(x) is a polynomial in Krawtchouk polynomials with coefficients αi).

Conversely, if (Ai), (αi) satisfy equations (1),(2),(4), (5), (7), and (8), then
they are necessarily optimal and satisfy (3), (6).

Theorem 9. For any (n,M) code with weights in D, and any polynomial

α(x) =
∑
k∈N

αiPk(x)

with α0 = 1, αk ≥ 0 for all k ∈ N , and α(i) ≤ 0 for all i ∈ D, we have

M ≤ α(0).

13.4 The Bounds

Theorem 10 (Plotkin Bound).
For any C of designed minimum distance δ > nλ/q, we have

M ≤ qδ

qδ − nλ
.

If equality is achieved, then C is equidistant with distance δ. That is, every
pair of codewords has distance exactly δ, and Ai(C) = 0 for i 6= δ.
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Theorem 11 (Singleton Bound).
For any C of designed minimum distance δ, we have

M ≤ qn−δ+1.

When equality is obtained, C is a maximum distance separable code, and

An−j(C) =
n−δ∑
i=j

(−1)i−j
(
i

j

)(
n

i

)
(qn−δ+1−i − 1).

Theorem 12 (Sphere-Packing Bound / Lloyd Theorem). For any C of de-
signed minimum distance δ, we have

M ≤ qn

(
t∑
i=0

vi

)−1

,

where t = bδ − 1)/2c. If some (n,M) q-ary code obtains equality above, it is
a perfect t-error-correcting code, and the Lloyd Polynomial

Qt(x) =
t∑
i=0

Pi(x)

has t distinct integral zeros in N = {1, . . . , n}.
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14 Spherical codes and designs

(after Delsarte, Goethals and Seidel [6])

A summary written by Hans Parshall

Abstract

The linear programming bound of Delsarte, Goethals and Seidel [6]
provides an upper bound on the cardinality of a spherical code in terms
of its angles. We provide some motivation for their approach, discuss
their main results, and consider some applications.

14.1 Spherical codes

A spherical code is a finite set X of unit vectors in Euclidean space Rd.
Fundamental problems in discrete geometry and communication theory are
concerned with the interplay between the size |X| and the set of inner prod-
ucts A(X) := {〈x, y〉 : x, y ∈ X, x 6= y}. For instance, the kissing number
τ(d) is the largest number of unit spheres in Rd that touch Sd−1 without over-
lapping. Equivalently, τ(d) is the size of the largest spherical code X ⊆ Sd−1

with A(X) ⊆ [−1, 1/2].
More generally, we call a spherical code X ⊆ Sd−1 an A-code when

A(X) ⊆ A ⊆ [−1, 1). Delsarte, Goethals and Seidel [6] obtain upper bounds
for the size |X| of an arbitrary A-code X ⊆ Sd−1 in terms of polynomials
that interact nicely with the set A. To see the utility of such a strategy,
consider their absolute bound:

Theorem 1 ([6, Theorem 4.8]). If X ⊆ Sd−1 is an A-code with s = |A| <∞,

|X| ≤
(
d+ s− 1

s

)
+

(
d+ s− 2

s− 1

)
. (1)

Proof. Observe that the polynomial F (t) =
∏

α∈A(X)(t−α)/(1−α) vanishes
on A and has degree s. For each y ∈ X, define the polynomial function
Fy : Sd−1 → R by Fy(x) = F (〈x, y〉). For each x, y ∈ X, notice Fy(x) = δx=y,
and so each Fy is linearly independent. Moreover, each Fy resides in the
vector space of real-valued functions on Sd−1 that can be represented by a
polynomial of degree at most s. It follows that |X| is at most the dimension
of this vector space, which is given by

(
d+s−1
s

)
+
(
d+s−2
s−1

)
; see [7, §2.2].
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Theorem 1 is clearly sharp for s = 1 by considering the d + 1 vertices
X ⊆ Sd−1 of a regular simplex. However, already for s = 2, equality in (1)
is only known to occur for d ∈ {2, 6, 22}, where the corresponding spherical
code X ⊆ Sd−1 is constructed from a set of

(
d+2

2

)
equiangular lines in Rd+1.

In what follows, we derive improved upper bounds on |X| for arbitrary A-
codes X ⊆ Sd−1 that depend on more detailed information about A.

14.2 Gegenbauer polynomials

The linear programming bound for spherical codes in Rd is stated in terms
of Gegenbauer polynomials {Qk}∞k=0 ⊆ R[t]. These can be described
recursively by Q0(t) = 1, Q1(t) = dt, and, for k ≥ 2,

k

d+ 2k − 2
Qk(t) = tQk−1(t)− d+ k − 4

d+ 2k − 6
Qk−2(t). (2)

Note the dependence on the ambient dimension d. This recursion has the
benefit of being concrete and the drawback of being completely unmotivated.
Before we see how these polynomials are useful, we give some motivation as
to why they naturally appear in the context of spherical codes. The rest of
this section is based loosely on the excellent lecture notes by Vallentin [14].

We want an upper bound on |X|, where X ⊆ Sd−1 is an arbitrary A-
code. Equivalently, we want an upper bound on the clique number of the
infinite graph with vertices Sd−1 and an edge between x, y ∈ Sd−1 exactly
when 〈x, y〉 ∈ A. One such influential bound for finite graphs is given by the
Lovász theta number [9], which is defined as a semidefinite program. This was
strengthened by Schrijver [13] and subsequently extended to infinite graphs
by Bachoc, Nebe, Oliveira and Vallentin [1]. To state a specialized version
of their bound, let C(Sd−1 × Sd−1) denote the set of continuous functions
K : Sd−1×Sd−1 → C, which we call kernels. A kernel K is called positive,
and we write K � 0, if for every set of m points x1, . . . , xm ∈ Sd−1, the matrix
(K(xi, xj))i,j∈[m] is positive semidefinite. We have the following bound.

Proposition 2. If X ⊆ Sd−1 is an A-code, then

|X| ≤ inf{λ : ∃K ∈ C(Sd−1 × Sd−1) such that K � 0, (3)

K(x, x) = λ− 1 ∀x ∈ Sd−1, and K(x, y) ≤ −1 ∀〈x, y〉 ∈ A}.
Proof. Let K ∈ C(Sd−1 × Sd−1) be feasible for (3). Since K � 0, we have∑

x,y∈X

K(x, y) = 1T (K(x, y))x,y∈X1 ≥ 0,
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and so

0 ≤
∑
x,y∈X

K(x, y) =
∑
x∈X

K(x, x) +
∑
x,y∈X
x 6=y

K(x, y) ≤ |X|(λ− 1)− |X|(|X| − 1).

Rearranging yields |X| ≤ λ as desired.

In Proposition 2, we may without loss of generality restrict our attention
to O(d)-invariant kernels K, where K(Rx,Ry) = K(x, y) for all R ∈ O(d).
In particular, if K is O(d)-invariant, then K(x, y) = F (〈x, y〉) for some
continuous function F ∈ C(Sd−1). The Peter–Weyl theorem provides the
decomposition C(Sd−1) =

⊕∞
k=0 Hk, where Hk is the vector space of restric-

tions of homogenous degree-k harmonic polynomials to Sd−1. Hence, we
may express O(d)-invariant kernels in terms of the orthogonal projections
πk : C(Sd−1) → Hk. Set hk := dim(Hk) and let {vik}hki=1 be a real orthonor-
mal basis for Hk. A kernel representation for πk is given by

(πkf)(x) =

hk∑
i=1

〈f, vik〉vik =

ˆ
Sd−1

f(y)

hk∑
i=1

vik(x)vik(y) dσ(y) (f ∈ C(Sd−1)).

The upshot is that every positive O(d)-invariant kernel K can be expressed
as
∑∞

k=0 fkKk with fk ≥ 0, with each kernel defined by the addition formula

Kk(x, y) :=
∑hk

i=1 vik(x)vik(y). Moreover, each kernel Kk can be expressed
as Kk(x, y) = Fk(〈x, y〉) for a polynomial Fk ∈ R[t] of degree k, and the
orthogonality of the spaces {Hk}∞k=0 leads to the orthogonality relation

ˆ 1

−1

Fj(t)Fk(t)(1− t2)(d−3)/2 dt = 0 for j 6= k.

This determines the polynomials {Fk}∞k=0 recursively, and rescaling each Fk
appropriately yields the Gegenbauer polynomials {Qk}∞k=0 described by (2).
The choice of scaling is irrelevant for our applications.

14.3 The linear programming bound for spherical codes

While we could derive the linear programming bound from Proposition 2, we
instead give a concrete proof in the spirit of Delsarte, Goethals, and Seidel [6].
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Theorem 3 ([6, Theorem 4.3]). If X ⊆ Sd−1 is an A-code, then

|X| ≤ inf{F (1) : F =
∞∑
k=0

fkQk, f0 = 1, fk ≥ 0 ∀k, F (α) ≤ 0 ∀α ∈ A}. (4)

Equality in (4) occurs if and only if F (α) = 0 for all α ∈ A(X) and

fk
∑
x,y∈X

Qk(〈x, y〉) = 0 for all k ≥ 1.

Proof. Let F =
∑

k fkQk be feasible for (4). The key idea is to consider
bounding

∑
x,y∈X F (〈x, y〉) from above and below. To begin, expand∑

x,y∈X

F (〈x, y〉) =
∑
x,y∈X

Q0(〈x, y〉) +
∑
k≥1

fk
∑
x,y∈X

Qk(〈x, y〉)

= |X|2 +
∑
k≥1

fk
∑
x,y∈X

Qk(〈x, y〉).

For k ≥ 1, Qk(〈x, y〉) is a positive kernel, and so
∑

x,y∈X F (〈x, y〉) ≥ |X|2.
For an upper bound, the constraint F (α) ≤ 0 for all α ∈ A provides∑

x,y∈X

F (〈x, y〉) =
∑
x∈X

F (〈x, x〉) +
∑
x,y∈X
x 6=y

F (〈x, y〉) ≤ |X|F (1).

All together, we have |X| ≤ F (1) with equality exactly when claimed.

Observe that the only property of the Gegenbauer polynomials that we
used for Theorem 3 was that, for each k,

∑
x,y∈X Qk(〈x, y〉) ≥ 0 for all finite

X ⊆ Sd−1. This is weaker than each Qk(〈x, y〉) being a positive kernel, and
Pfender [12] obtained slight improvements based on this observation.

The case of equality in (4) motivates the following definition. A t-design
is a spherical code X ⊆ Sd−1 with

∑
x,y∈X Qk(〈x, y〉) = 0 for all 1 ≤ k ≤ t.

Equivalently, for every polynomial f ∈ R[x1, . . . , xd] of degree at most t,

ˆ
Sd−1

f(x)dσ(x) =
1

|X|
∑
x∈X

f(x);

see [7, §9.6]. These highly uniform sets are good candidates for A-codes of
maximal cardinality. Indeed, if X ⊆ Sd−1 is a t-design with A(X) ⊆ A
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and F =
∑t

k=0 fkQk is a polynomial that is feasible for (4) that vanishes on
A(X), then every A-code has size at most |X|.

This strategy gives the exact values for the kissing numbers τ(8) = 240
and τ(24) = 196560. For d = 8, the 240 shortest vectors X8 ⊆ S7 of the
E8 lattice have inner products A(X8) = {−1,−1/2, 0, 1/2}. Hence, X8 is
a [−1, 1/2)-code and τ(8) ≥ 240. Delsarte, Goethals and Seidel [6] showed
that X8 is a 7-design, and later Levenshtein [8] and Odlyzko and Sloane [11]
independently showed that

F (t) = (320/3)(t+ 1)(t+ 1/2)2t2(t− 1/2) (5)

satisfies F =
∑6

k=0 fkQk with f0 = 1 and fk ≥ 0. Applying Theorem 3
proves τ(8) ≤ F (1) = 240. A similar strategy with the Leech lattice yields
τ(24) = 196560.

Delsarte, Goethals and Seidel again use Gegenbauer polynomials to give
a linear programming lower bound [6, Theorem 5.10] on the size |X| of an
arbitrary t-design X ⊆ Sd−1. In some sense, this lower bound is dual to
Theorem 3 and the proof is similar. They give an upper bound on |X| for
spherical t-designs X ⊆ Sd−1 with fixed s = |A(X)| and show that, in all
cases, t ≤ 2s [6, Theorem 6.6].

The linear programming method has been generalized beyond Theorem 3.
Musin [10] developed a nonconvex extension to prove τ(4) = 24. Cohn
and Elkies [3] extended the linear programming method to noncompact set-
tings, leading to the resolution of the sphere packing problems in R8 by Via-
zovska [15] and R24 by Cohn, Kumar, Miller, Radchenko, and Viazovska [4].
De Laat and Vallentin [5] identified a general semidefinite programming hier-
archy for problems in discrete geometry, the lowest level of which is the linear
programming method. For more on the development of these methods, the
reader is encouraged to consult the notes of Vallentin [14] and Cohn [2].

References

[1] Bachoc, C., Nebe, G., Oliveira, F. M. and Vallentin, F. Lower bounds for
measurable chromatic numbers, Geom. Funct. Anal. 19 (2009), 645–661.

[2] Cohn, H. Packing, coding, and ground states, arXiv:1603.05202.

[3] Cohn, H. and Elkies, N. New upper bounds on sphere packings. I, Ann.
of Math. (2) 157 (2003), 689–714.

86



[4] Cohn, H., Kumar, A., Miller, S. D., Radchenko, D. and Viazovska, M.
S. The sphere packing problem in dimension 24, Ann. of Math. (2) 185
(2017), 1017-1033.

[5] de Laat, D. and Vallentin, F. A semidefinite programming hierarchy for
packing problems in discrete geometry, Math. Program. 151 151 (2015),
Ser. B, 529–553.

[6] Delsarte, P., Goethals, J. M. and Seidel, J. J. Spherical codes and de-
signs, Geometriae Dedicata 6 (1977), 363–388.

[7] Ericson, T. Zinoviev, V. Codes on Euclidean spheres, (2001).

[8] Levenshtein, V. I. On bounds for packings in n-dimensional Euclidean
space, Soviet Math. Dokl. 20 (1979), 417–421.

[9] Lovász, L. On the Shannon capacity of a graph, IEEE Trans. Inform.
Theory 25 (1979), 1–7.

[10] Musin, O. R. The kissing number in four dimensions, Ann. of Math. (2)
168 (2008), 1–32.

[11] Odlyzko, A. and Sloane, N. J. A. New bounds on the number of unit
spheres that can touch a unit sphere in n dimensions, J. Combin. Theory
Ser. A. 26 (1979), 210–214.

[12] Pfender, F. Improved Delsarte bounds for spherical codes in small di-
mensions, J. Combin. Theory Ser. A. 114 (2007), 1133–1147.

[13] Schrijver, A. A comparison of the Delsarte and Lovász bounds, IEEE
Trans. Inform. Theory 25 (1979), 425–429.

[14] Vallentin, F. Lecture notes: Semidefinite programs and harmonic anal-
ysis, arXiv:0809.2017.

[15] Viazovska, M. S. The sphere packing problem in dimension 8, Ann. of
Math. (2) 185 (2017), 991–1015.

Hans Parshall, The Ohio State University
email: parshall.6@osu.edu

87



15 Minimal Riesz energy point configurations

for rectifiable d-dimensional manifolds

(after D. P. Hardin, E. B. Saff [1])

A summary written by Ryan W Matzke

Abstract

We give the asymptotic behavior of the minimal Riesz s-energy
over any compact A ⊂ Rd, for s ≥ d, as N → ∞, and show that if A
has nonzero d-dimensional Hausdorff measure, then N -point configu-
rations on A that minimize this energy are asymptotically uniformly
distributed, with respect to the Hausdorff measure.

15.1 Introduction

Let A ⊆ Rd and ωN = {x1, ..., xN} ⊂ A. For s > 0, we define the s-energy
(also called the Riesz s-energy) of ωN as

Es(ωN) :=
∑

x 6=y∈ωN

1

|x− y|s
=
∑
y∈ωN

∑
x∈ωN
x 6=y

1

|x− y|s
(1)

and the minimal N -point s-energy over A by

Es(A,N) := inf
ωN⊂A

Es(ωN). (2)

We are interested in the asymptotic behavior of Es(A,N) as N → ∞ and
s ≥ d. In this setting, standard potential theoretic arguments do not apply,
so alternative methods are necessary. On the sphere, Sd, Es(Sd, N) behaves
like N2 if 0 < s < d, N2 log(N) if s = d, and N1+s/d if s > d [2, 3]. Roughly
speaking, at s = d, there is a transition from the domination of global effects
(when s < d) to the domination of more local interactions. Such behave
generalizes to a much larger collection of sets. In this summary, we denote
the d-dimensional Hausdorff measure by Hd(·), the unit cube [0, 1]d by Ud,
and define

τs,d(N) :=

{
N2 log(N) if s = d

N1+s/d if s > d
, Gs,d(A,N) :=

Es(A,N)

τs,d(N)
,
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and gs,d(A) := limN→∞Gs,d(A,N), if it exists (gs,d and g
s,d

are the lim sup

and lim inf, respectively).
The following three theorems are the main results of [1]:

Theorem 1. Suppose A ⊂ Rd is compact. Then

lim
N→∞

Es(A,N)

τs,d(N)
=

Cs,d
Hd(A)s/d

, (3)

where Cs,d is a positive, finite constant, independent of A (and is in fact
gs,d(U

d)).

Theorem 2. Let A ⊂ Rd be compact, with Hd(A) > 0, and ωN = {xk,N}Nk=1

be a sequence of asymptotically optimal N-point configurations in A in the
sense that for some s ≥ d,

lim
N→∞

Es(ωN)

τs,d(N)
=

gs,d(U
d)

Hd(A)s/d
, (4)

Let δx denote the unit point mass in the point x. Then in the weak-star
topology of measures, we have

1

N

N∑
i=1

δxi,N →
Hd(·)|A
Hd(A)

as N →∞. (5)

We call A ⊆ Rd′ a d-rectifiable manifold if

A = ∪nk=1φk(Kk)

where, for k = 1, ..., n, Kk ⊂ Rd is compact and φk is bi-Lipschitz on Gk ⊃ Kk

open.

Theorem 3. Suppose A ⊂ Rd′ is a d-rectifiable manifold and s ≥ d. If
s = d, suppose further that A is a subset of a d-dimensional C1-manifold.
Then (3) holds. If Hd(A) > 0, then (5) holds for any asymptotically minimal
sequence of N-point configurations ωN for A satisfying (4).

In this summary, we will give a sketch of the first theorem, and then prove
the second. The first part of Theorem 3 is proven by carefully determining
bounds on the energy using the bi-Lipschitz constants and Theorem 1, and
the second part is proven the same way at Theorem 2.
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15.2 Energy Asymptotics

To sketch the proof of Theorem 1, we first need (3) to hold if A is the unit
cube or a bounded almost clopen set.

15.2.1 The Cube and Almost Clopen Sets

Theorem 4. The limit limN→∞
Es(Ud,N)
τs,d(N)

exists and is finite and positive.

While we will not go into the details of the proof of Theorem 4, we will
give a rough outline. For s > d, the self-similarity of Ud, as well as the
scaling and translation properties of Es and the monotonicity of Es(Ud, N)
and τs,d(N), allow one to obtain estimates relating Gs,d(U

d, N) at different
values N . A careful handling of the asymptotics of these relations shows
that gs,d(U

d) ≤ g
s,d

(Ud), giving us existence. Positivity and finiteness follow

from Ud being bounded and having nonempty interior (see Lemma 3.1 in [1]).
When s = d, one can make use of stereographic projection and the scaling
and translation properties of Ed to relate the minimal d-energy of Ud to the
minimal d-energy of a collection of subsets, {Aγ}γ∈(0,1/d), of the sphere, Sd.
A careful handling of the asymptotics of Gd,d(Aγ) (see [1], [2]) shows that
gd,d(U

d) = Hd(B
d), where Bd is the unit ball in Rd.

Due to the scaling and translation properties of the energy function, we

see that if A = γUd +x, with γ > 0 and x ∈ Rd, gs,d(A) =
gs,d(Ud)

γs
=

gs,d(Ud)

Hd(A)s/d
.

Applying the next lemma inductively, it follows that if A is the finite union of
cubes with disjoint interiors, Theorem 1 holds. We call a set A scalable if it
is closed and for each ε > 0, there is some bi-Lipschitz mapping h : A→ A◦

with constant (1 + ε).

Lemma 5. Suppose s ≥ d and A and B are compact subsets of Rd such that
A◦ ∩B◦ = ∅, gs,d(A) and gs,d(B) exist, and A is scalable. Then

gs,d(A ∪B) =
(
gs,d(A)−d/s + gs,d(B)−d/s

)−s/d
.

We call a measurable set A ⊂ Rd almost clopen if Hd(∂A) = 0.

Theorem 6. Let A be a bounded almost clopen set in Rd. Then gs,d(A) exists
for s ≥ d and

gs,d(A) =
gs,d(U

d)

Hd(A)s/d
.
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Proof. Let Qn be the collection of cubes of the form
[
k1
n
, k1+1

n

]
× · · · ×[

kn
n
, kn+1

n

]
, with k1, ..., kn ∈ Z. We define An as the union of cubes in Qn

that are contained in A and An as the union of cubes in Qn that intersect
the closure of A. Since Hd(∂A) = 0, it follows that limn→∞Hd(An∩Acn) = 0,
so

lim
n→∞

Hd(An) = lim
n→∞

Hd(An) = Hd(A).

Our claim then follows from

Hd(U
d)

Hd(An)s/d
= gs,d(An) ≤ g

s,d
(A) ≤ gs,d(A) ≤ gs,d(An) =

Hd(U
d)

Hd(An)s/d
.

15.2.2 Compact Sets

To prove Theorem 1, we first require the following lemma, relating the ener-
gies of two disjoint sets to the energy of their union:

Lemma 7. If A and B are bounded sets in Rd such that dist(A,B) > 0, then

gs,d(A ∪B) ≤
(
gs,d(A)−d/s + gs,d(B)−d/s

)−s/d
. (6)

Sketch of proof of Theorem 1. Let ε > 0 and G be the union of a finite col-
lection of open balls such that A ⊂ G and Hd(G \ A) = ε. The set G is
almost clopen, so Theorem 6 gives us

g
s,d

(A) ≥ gs,d(G) =
Hd(U

d)

Hd(G)s/d
≥ Hd(U

d)

(Hd(A) + ε)s/d
. (7)

If Hd(A) = 0, then g
s,d

(A) = gs,d(A) =∞. For the rest of the proof, we may

assume that Hd(A) > 0. Since (7) holds for ε > 0, we have

g
s,d

(A) ≥ Hd(U
d)

Hd(A)s/d
. (8)

Now we need only show that gs,d(A) ≤ Hd(Ud)

Hd(A)s/d
. Let

A∗ :=

{
x ∈ A : lim sup

r→0+

Hd(B(x, r) ∩ A)

Hd(B(x, r))

}
.
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The Lebesgue Density Theorem states that Hd(A \ A∗) = 0. For 0 < ε < 1,
set

Cε :=

{
B(x, r) : x ∈ A∗, r ∈ (0, 1),

Hd(B(x, r) ∩ A)

Hd(B(x, r))
> 1− ε

}
. (9)

The Besicovitch covering theorem guarantees a countable collection of pair-
wise disjoint closed balls {Bi = B(xi, ri)} ⊂ Cε that covers almost all of A∗,
and therefore almost all of A. We may choose n sufficiently large so that

Hd

(
n⋃
j=1

A ∩Bi

)
=

n∑
j=1

Hd(A ∩Bi) ≥ (1− ε)Hd(A). (10)

The energy over A ∩Bi can be bounded in terms of the energy over Bi, and
one finds that

gs,d(A ∩Bi) ≤
1

(1− 2v)s

(
1

1− 4Cεv−d

)1+s/d

gs,d(Bi). (11)

Lemma 7, Theorem 6, (11), and (10) combine to give us

gs,d(A) ≤ gs,d

(
n⋃
i=1

A ∩Bi

)
≤

(
n∑
i=1

gs,d(A ∩Bi)
−d/s

)−s/d

≤ 1

(1− 2v)s

(
1

1− 4Cεv−d

)1+s/d

gs,d(U
d)

(
n∑
i=1

Hd(Bi)

)−s/d

≤ 1

(1− 2v)s

(
1

1− 4Cεv−d

)1+s/d

gs,d(U
d)(1− ε)−s/dHd(A)−s/d

for ε > 0 and (4Cε)1/d < v < 1
2
. Taking ε → 0, then v → 0, we see that

gs,d(A) ≤ gs,d(Ud)

Hd(A)s/d
, giving us our claim.

15.3 Proof of Theorem 2

To prove Theorem 2, we need Theorem 1 and the following lemma:
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Lemma 8. Suppose s ≥ d and that A and B are bounded subsets of Rd . If
g
s,d

(A) or g
s,d

(B) are finite and (ωNj)j∈N is a sequence of sets ωNj ⊂ A ∪ B
such that

lim
j→∞

Es(ωNj)

τs,d(N)
=
(
g
s,d

(A)−d/s + g
s,d

(B)−d/s
)−s/d

,

then

lim
j→∞

|ωNj ∩ A|
N

=
g
s,d

(B)d/s

g
s,d

(B)d/s + g
s,d

(A)d/s
.

Proof of Theorem 2. Let B ⊆ A be a measurable set, with Hd(∂rB) = 0,
where ∂rB := ∂B ∩ A \B is the relative boundary of B. Then A = ∂rB ∪
A \ ∂rB = A1 ∪ A2, where A1 := B ∪ ∂rB and A2 := (A \ B) ∪ ∂r(A \ B).
Since Hd(∂r(A \ B)) = 0, we have Hd(A) = Hd(A1) + Hd(A2). Theorem 1
and Lemma 8 then give us that

lim
N→∞

|ωN ∪ A1|
N

=
Hd(B)

Hd(A)
and lim

N→∞

|ωN ∪ ∂rB|
N

= 0.

Thus, for all measurable B ⊆ A with Hd(∂rB) = 0, limN→∞
|ωN∪B|
N

= Hd(B)
Hd(A)

,

which is equivalent to (5), giving us our claim.
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16 On kissing numbers and spherical codes

in high dimensions

(after M. Jenssen, F. Joos, and W. Perkins

[1])

A summary written by Nina Zubrilina

Abstract

We prove a lower bound of Ω
(
d3/2 · (2/

√
3)d
)

on the kissing num-
ber in dimension d, improving the classical lower bound of Chabauty,
Shannon, and Wyner by a linear factor. We obtain a similar linear
factor improvement to the best known lower bound on the maximal
size of a spherical code of acute angle θ in high dimensions.

16.1 Introduction

Let Sd−1 denote the unit sphere in Rd. A spherical code of angle θ in dimen-
sion d is a set of vectors x1, . . . , xk ∈ Sd−1 such that 〈xi, xj〉 ≤ cos θ for all
i 6= j, i.e., a collection of unit vectors in Rd such that every pair forms an
angle at least θ. We call k the size of the code, and we let A(d, θ) be the
maximal size of a spherical code of angle θ in dimension d.

Spherical codes are closely related to kissing configurations. The kissing
number in dimension d, K(d), is the maximum number of non-overlapping
unit spheres that can touch a single unit sphere in Rd. By radially projecting
the centers of the spheres onto the unit sphere, it is easy to see that K(d) =
A(d, π/3).

We will give a lower bound on A(d, θ) by analyzing the expected size of
a random spherical code. Bounding it from below will allow us to prove the
following result:

Theorem 1.

K(d) ≥ (1 + o(1))

√
3π

8
log

3

2
√

2
d3/2

(
2√
3

)d
≈ 0.0639 d3/2

(
2√
3

)d
as d→∞.
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16.2 The hard cap model

For x ∈ Sd−1, let Cθ(x) := {y ∈ Sd−1 : 〈x, y〉 ≥ cos θ} be the spherical cap
of angular radius θ centered at x. Observe that a spherical code x1, . . . , xk
corresponds to a covering of Sd−1 by non-overlapping caps Cθ/2(xi).

Let Pk(d, θ) := {{x1, . . . , xk} ∈ Skd−1 : 〈xi, xj〉 ≤ cos θ for all i 6= j} be
the set of all spherical codes in dimension d of size k and angle θ. The
canonical hard cap model with k caps is a spherical code drawn from Pk(d, θ)
uniformly at random. For a measurable subset A ⊆ Sd−1, let

Ẑθ
A(k) :=

1

k!

ˆ
Ak

1D(x1,...,xk)ds(x1) · · · ds(xk),

where D(x1, . . . , xk) is the event that 〈xi, xj〉 ≤ cos θ for all i 6= j, and s(·)
denotes the normalized surface area, i.e., s(A) := ŝ(A)

ŝ(Sd−1)
, where ŝ(·) is the

surface area. Then Ẑθ
d(k) := Ẑθ

Sd−1
(k) is the partition function for the hard

cap model. Note that the probability that k random points on Sd−1 form a
spherical code is k! Ẑθ

d(k).
For a measurable subset A ⊆ Sd−1, we let XA be a Poisson point process

of intensity λ on A conditioned on 〈x, y〉 ≤ cos θ for all distinct x, y ∈ XA.
The partition function for this process is

Zθ
A(λ) :=

∑
k≥0

λkẐθ
A(k).

The grand canonical hard cap model at fugacity λ is the Poisson process
X := XSd−1

with a partition function Zθ
d(λ) := Zθ

Sd−1
(λ). This corresponds

to a random process where we choose a random integer k with probability
proportional to λkẐθ

d(k) and then choose a spherical code X from the canon-
ical hard cap model with k caps. We will write Eλ,Pλ, varλ to indicate the
dependence of the model on the fugacity λ.

Our goal will be to give a lower bound on the expected size αθd(λ) of a
random spherical code in this model (stated in the next section). Specifically,
we let

αθA(λ) :=
∑
k≥0

k·Pλ[|XA| = k] =
∑
k≥0

k
λkẐθ

A(λ)

Zθ
A(λ)

= λ
∂Zθ

A(λ)/∂λ

Zθ
A(λ)

= λ
∂
(
logZθ

A(λ)
)

∂λ
,

and let αθd(λ) := αθSd−1
(λ).
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We define sd(θ) := s(Cθ(x)) to be the normalized surface area of a cap
of angular radius θ in Sd−1. Let q(θ) denote the minimal angular radius of
a cap that contains the intersection of two spherical caps of angular radius

θ whose centers are at angle θ, that is, q(θ) := arcsin

(√
(cos θ−1)2(1+2 cos θ)

sin θ

)
(note q(θ) < θ for θ ∈ (0, π/2)). We let cθ := log

(
sin θ

sin q(θ)

)
(note this is

positive for θ ∈ (0, π/2)). We prove the following theorem:

Theorem 2. Let θ ∈ (0, π/2) and let λ ≥ 1

d · sd(q(θ))
. Then:

αθd(λ) ≥ (1 + o(1))
cθ · d
sd(θ)

.

Since K(d) = A(d, π/3) ≥ α
π/3
d (λ), we can obtain Theorem 1 by plugging

in θ = π/3 and using that sd(θ)
−1 = (1 + o(1))

√
2πd · cos(θ)/ sind−1(θ) (from

the work of Chabauty, Shannon, and Wyner).
We let the free area, F θ

A(λ), be the expected normalized surface area of
points y ∈ A that form a valid spherical code when added to XA, that is,

F θ
A(λ) := Eλ [s ({y ∈ A : 〈y, x〉 ≤ cos θ for all x ∈ XA})] .

For a spherical code XA and a random vector v ∈ A, we let

TA := {x ∈ Cθ(v) ∩ A : 〈x, y〉 ≤ cos θ for all y ∈ XA ∩ Cθ(vc},

i.e. TA is the set of points in A∩Cθ(v) which are not blocked from being in
the spherical code by a vector outside the cap Cθ(v). We let T := TSd−1

.

16.3 Outline of the proof of Theorem 2

The first step of the proof is to outline some basic properties enjoyed by some
of the objects defined above.

Lemma 3.

(i) αθA(λ) is strictly increasing in λ.

(ii) αθA(λ) = λ · s(A) · E
[

1
ZθTA

(λ)

]
.
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(iii) αθA(λ) =
1

sd(θ)
E
[
αθT(λ)

]
.

(iv) logZθ
A(λ) ≤ λs(A). .

Sketch of proof. To see (i), note

λ·αθA(λ)′ = λ

(
λ(Zθ

A(λ))′

Zθ
A(λ)

)′
= Eλ[|XA|]+Eλ[|XA|(XA−1)]−(Eλ[|XA|])2 = varλ(|XA|) > 0.

To see (ii), first, note that

αθA =
∞∑
k=0

Pλ[|XA| = k + 1] =
1

Zθ
A(λ)

∞∑
k=0

ˆ
Ak+1

λk+1

k!
1Dθ(x0,...,xk)ds(x0) · · · ds(xk)

=
1

Zθ
A(λ)

ˆ
A

(
1 +

∞∑
k=1

ˆ
Ak

λk

k!
1Dθ(x0,...,xk)ds(x1) · · · ds(xk)

)
ds(x0) = λ · F θ

A(λ),

and then note

F θ
A(λ) =

ˆ
A

P[max
y∈X
〈v, y〉 ≤ cos θ]ds(v) = s(A)·E [1TA∩XA=∅] = s(A)·E

[
1

Zθ
TA

(λ)

]
.

The last equality uses the spatial Markov property of the hard cap model:
conditioned on X ∩ Cθ(v)c, the distribution of X ∩ Cθ(v) is exactly that of
the hard cap model on the set TA.

To see (iii), let v be a random chosen point on Sd−1. Let X be a spherical
code chosen independently from the hard cap model on Sd−1. Let T ⊆ Cθ(v)
be the random set described above. Using the Markov property again,

αθd(λ) =
1

sd(θ)
E [X ∩ Cθ(v)] =

1

sd(θ)
E
[
αθT(λ)

]
.

Lastly, by definitions of Z and Ẑ we have, Zθ
A(λ) ≤

∑
k≥0

1
k!
s(A)kλk =

eλs(A), proving (iv).

We will also use the following lemma.
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Lemma 4. Let x ∈ Sd−1, let A ∈ Cθ(x) be measurable with positive measure.
Let u be a uniformly random point in A. Then:

E [s (Cθ(u ∩ A)] ≤ 2sd(q(θ)).

The proof of this lemma is a geometric calculation which we are going
to leave out. Now, from (ii), (iv) and Jensen’s inequality, we can see that
αθA(λ) ≥ λs(A)e−λE[s(TA)], so combined with the lemma above, we get that

αθA(λ) ≥ λs(A)e−2λsd(q(θ)). (1)

We are now ready to prove the main result.

Proof of Theorem 2. Let θ ∈ (0, π/2), and let α := αθd(λ). From Jensen’s
inequality and (ii),

α = λE
[

1

Zθ
T(λ)

]
≥ λe−E[logZθT(λ)].

On the other hand, by inequality (1) combined with (iii) and (iv),

α =
E
[
αθT(λ)

]
sd(θ)

≥ 1

sd(θ)
E
[
λs(T)e−2λsd(q(θ))

]
≥ e−2λsd(q(θ))

sd(θ)
E
[
logZθ

T(λ)
]
.

The idea now is to play these two lower bounds on α against each other.
Let z := E

[
logZθ

T(λ)
]
. From the two inequalities above,

α ≥ inf
z

max

{
λe−z,

z

sd(θ)
e−2λsd(q(θ))

}
.

As the first expression is decreasing in z and the second increasing, the
infimum occurs when they are equal, so α ≥ λe−z

∗
, where z∗ is the solution

to λe−z = z
sd(θ)

e−2λsd(q(θ)). It remains to compute z∗ asymptotically and set

λ :=
1

dsd(q(θ))
to get the desired bound (this is because although α increases

with λ, the obtained bound does not necessarily become sharper as λ grows;
the chosen value of λ gives the best lower bound).
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17 Bounding sphere packings and spherical

codes

(after G. A. Kabatiansky and V. I. Lev-

enshtein)

A summary written by Itamar Oliveira and Mateus Sousa

Abstract

We prove upper bounds for the spherical code problem, and we
obtain upper bounds for the sphere packing problem as a byproduct
via a simple geometric argument that associates these two quantities.

17.1 Introduction

We call a collection P of disjoint balls B ⊂ Rd such that every ball B ⊂ P
has the same radius a sphere packing. The sphere packing problem consists of
maximizing the proportion of the spaces that such a collection P can occupy.
More precisely, we define the density of a packing P as

∆P = lim sup
R→∞

|[−R,R]d ∩
[⋃

B∈P B
]
|

(2R)d
.

The sphere packing problem consists of determining the value

∆Rd = ∆ = sup
P packing

∆P ,

and if this value is attained by some packing P .

A spherical code with separation ϕ ∈ [0, π] is a set C = {x1, . . . , xN} ⊂ Rd

such that |xi| = 1 for any i = 1, . . . , N and 〈x, y〉 ≤ cosϕ. The spherical
code problem is to determine the value of

m[d, ϕ] = sup
C

#C,

where the supremum is taken over all spherical codes with separation ϕ. In
other words, this problem consists of finding the maximum number of points
one can place inside the unit sphere Sd−1, assuming the points are separated
by an angle bigger than ϕ.
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Intuitively, one might expect that the spherical code problem and the
sphere packing are connected. This is indeed the case, and one way to quan-
tify it is the following result

Proposition 1 (Cohn and Zhao [1]). Let d ≥ 1 and π/3 ≤ ϕ ≤ π. Then

∆Rd ≤ sind/2(ϕ/2)m[d, ϕ]. (1)

The main result we present is the following bound for spherical codes.

Theorem 2 (Kabatiansky, Levenshtein [2]). Fix 0 ≤ ϕ ≤ π/2. For big
enough d, one has

1

d
m[d, ϕ] .

1 + sinϕ

2 sinϕ
log

[
1 + sinϕ

2 sinϕ

]
− 1− sinϕ

2 sinϕ
log

[
1− sinϕ

2 sinϕ

]
(2)

Theorem 2 is a direct consequence of a result of Delsarte which we will
present in the next section. Due to the following inequality for ϕ′ ≤ ϕ

(1− cosϕ)(d−1)/2m[d, ϕ] ≤
√

2πd(1− cosϕ′)(d−1)/2,m[d+ 1, ϕ′],

we get the following result as a corollary of Theorem 2.

Corollary 3. Fix 0 ≤ ϕ ≤ ϕ∗, and big enough d, one has

1

d
m[n, ϕ] . −1

2
log(1− cosϕ)− 0.099,

where ϕ∗ solves the equation

cosϕ log

[
1 + sinϕ

1− sinϕ

]
+ (1 + cosϕ) sinϕ = 0

Corollary 3 together with (1) will imply the following sphere packing
bound.

Corollary 4. For big enough d, one has

∆Rd . 2−n(0.599...+o(1))
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17.2 Preliminaries

17.2.1 Spherical harmonics and Gegenbauer Polynomials

We let Hd
k denote the space of spherical harmonics of degree k over the sphere

Sd−1, which is known to be vector space of dimension hd,k =
(
d+k−1
k

)
−
(
d+k−3
k−2

)
.

If one chooses an orthonormal basis {Yk,`}
hd,k
`=1 of Hd

k, it follows from [4,
Chapter IV, Lemma 2.8 and Corollary 2.9] we know that the function

Zk(ξ, η) :=

hd,k∑
`=1

Yk,`(ξ)Yk,`(η)

is real-valued and does not depend on the choice of the orthonormal basis

{Yk,`}
hd,k
`=1 . It is indeed the reproducing kernel of the finite dimensional space

Hd
k, i.e, for every f ∈ Hd

k

f(ξ) =

ˆ
Sd−1

f(ω)g(ω)dσ(ω).

When d > 2, the function Zk(ξ, η) has a particularly simple expression in
terms of the Gegenbauer (or ultraspherical) polynomials Cλ

k . For λ > 0,
these are orthogonal polynomials in the interval [−1, 1] with respect to the

measure (1 − t2)λ−
1
2 dt (in particular, Cλ

k has degree k), and are defined by
the generating function

(1− 2rt+ r2)−λ =
∞∑
k=0

Cλ
k (t) rk.

From [4, Chapter IV, Theorem 2.14], if d > 2 we have

Zk(ξ, η) = cd,k C
(d−2)/2
k (ξ · η),

for some constant ck

17.2.2 Delsarte’s bound

The key to get Theorem 2 is the following bound:

Theorem 5 (Delsarte’s Lemma). Consider a function f : [−1, 1]→ R such
that
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(i) f(t) =
∑̀
k=0

fkC
(d−2)/2
k (t).

(ii) fk ≥ 0, when k > 0, and f0 > 0.

(iii) f(t) ≤ 0, for −1 ≤ t ≤ cosϕ.

Then

m[d, ϕ] ≤ f(1)

f0

.

Delsarte’s results is a simple consequence of the aforementioned connec-
tion between spherical harmonics and with Gegenbauer polynomials. Despite
its simplicity, it is a powerful tool, and a key ingredient of the proof of The-
orem 2.

17.3 A few words about the proof of Theorem 2

The proof of Theorem 2 consists of a optimization over the possible choices
of f in Delsarte’s lemma. The functions we are gonna consider are of the
form

f(t) =

[
C

(d−2)/2
l+1 (t)C

(d−2)/2
l (s)− C(d−2)/2

l (t)C
(d−2)/2
l+1 (s)

]2

t− s
, (3)

where s = cosϕ. It is clear that for any l, a function of the form (3) satisfies
automatically condition (iii) of Delsarte’s lemma, so now we are left with
analysing the other conditions. There are essentially three main steps:

Step 1: An application of the Christofell-Darboux formula [3] allows one to
express f in (3) as sum of Gegenbauer polynomials in the following fashion

f(t) =
∑

fk(s)C
(d−2)/2
k (t), (4)

and in fact one gets

f0 = f0(s) =
d− 2

l + 1
[−C(d−2)/2

l+1 (s)C
(d−2)/2
l (s)]

(
l + d− 1

l

)
. (5)

Step 2: Once one decomposes f as in (4), we have to prove the values of
fk(s) are non negative numbers in order to apply Delsarte’s lemma. That
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task is performed by choosing l big enough so the s lies between the last zero
of C

(d−2)/2
l (t) and the last zero of C

(d−2)/2
l+1 (t) to use the sign changes of the

polynomials in order for that f fullfills condition (ii) of Delsarte’s lemma.

Step 3: Now that f fullfills all the needed hypothesis, it becomes a problem
of optimization of the value of f(1)

f0
, and it can be deduced to be of the form

f(1)

f0

=

(
l + d− 2

l

)
(1 + τ)2

(1− s)τ
,

where

τ = − l + 1

l + d− 2

C
(d−2)/2
l+1 (s)

C
(d−2)/2
l (s)

.

The bound in Theorem 2 is now a consequence of the optimization process
over the degree.
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18 Asymptotics for Minimal Discrete Energy

on the Sphere

(after A. B. J. Kuijlaars and E. B. Saff [2])

A summary written by Changkeun Oh

Abstract

We investigate the energy of arrangements of N points on the
surface of the unit sphere Sd in Rd+1 that interact through a potential
V = 1/rs. In the cases when 0 < s < d or 2 ≤ d ≤ s, we obtain bounds
for the minimal energy for such N -point arrangements. For s = d, we
determine the precise asymptotic behavior of the minimal energy as
N →∞.

18.1 Introduction

We are interested in the asymptotics for minimal discrete energy on the
sphere. Let Sd = {x ∈ Rd+1 : |x| = 1} be the unit sphere in Rd+1. We
denote by σ the normalized Lebesgue measure on Sd.

For a given s > 0, the discrete s-energy associated with a finite subset
wN = {x1, . . . , xN} of points of Sd is

Ed(s, wN) :=
∑

1≤i<j≤N

1

|xi − xj|s
.

The minimal s-energy for N points on the sphere is

Ed(s,N) := inf
wN

Ed(s,WN),

where the infimum is taken over all N -points subsets of Sd. Any configuration
wN for which the minimum is attained is called an s-extremal configuration.

We try to obtain the asymptotic behavior of the minimal s-energy Ed(s,N).
We first consider the energy integral. For 0 < s < d,

Id,s(µ) :=

ˆ
Sd

ˆ
Sd

1

|x− y|s
dµ(x)dµ(y),

the measure is taken for probability measures µ on Sd. We define

Vd(s) := Id,s(σ).

The main theorems are as follows.
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Theorem 1. Let d ≥ 2 and 0 < s < d. There is a constant C > 0 such that

Ed(s,N) ≤ 1

2
Vd(s)N

2 − CN1+ s
d .

Theorem 2. Let d ≥ 2 and s > d. There are constants C1, C2 > 0 such that

C1N
1+ s

d ≤ Ed(s,N) ≤ C2N
1+ s

d .

Theorem 3. Let d ≥ 2 and s = d. Then

lim
N→∞

Ed(d,N)

N2 logN
=

1

2d
γd,

where

γd =
Γ(d+1

2
)

Γ(1
2
)Γ(d

2
)
.

Remark 4. Theorem 2 are improved and generalized by Hardin and Saff [1].
They also generalize Theorem 3 in [1].

18.2 Some conjectures for d = 2

The Voronoi cell associated with xi of a configuration wN = {x1, . . . , xN} is

{x ∈ S2 : |x− xi| ≤ |x− xj| for all j}.

We define the hexagonal lattice in R2

L = {m(1, 0) + n(
1

2
,

√
3

2
) : m,n ∈ Z}.

We define the zeta function for L

ζL(s) :=
∑

06=X∈L

|X|−s =
∑

(m,n)∈Z2\(0,0)

(m2 +mn+ n2)−s/2.

Conjecture 5. For s > 2 the limit

lim
N→∞

N−1− s
2E2(s,N) = Cs

exists, and

Cs :=
1

2
(

√
3

8π
)
s
2 ζL(s).
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Recall that the Riemann zeta function ζ is defined by

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ . . .

and L−3 is a Dirichlet L-function

L−3(s) = 1− 1

2s
+

1

4s
− 1

5s
+

1

7s
+ . . . .

Conjecture 6. Let 0 < s < 2. Then

E2(s,N) =
1

2
V2(s)N2 + 3

(
(

√
3

8π
)
s
2 ζ(

s

2
)L−3(

s

2
)
)
N1+ s

2 + o(N1+ s
2 ).

18.3 Preliminaries

18.3.1 Surface measure

A spherical cap with center x0 ∈ Sd and radius r is

C(x0, r) := {x ∈ Sd : |x− x0| ≤ r}.

It is not difficult to obtain that as r → 0,

ˆ
Sd\C(x,r)

|x− y|−sdσ(y) =

{
(s− d)−1γdr

d−s +O(rd−s) for s > d

−γd
(

log r
)

+O(1) for s = d.
(1)

18.3.2 Ultraspherical polynomials

We denote by P λ
n (t) the ultrashperical polynomials. They are orthogonal

polynomials on the interval [−1, 1] with respect to the weight (1 − t2)λ−1/2.
By Rodrigues formula, it is explicitly given by

P λ
n (t) =

(−2)n

n!

Γ(n+ λ)Γ(n+ 2λ)

Γ(n)Γ(2n+ 2λ)
(1− t2)

1
2
−λ(

d

dt
)n(1− t2)n+λ− 1

2 . (2)

Suppose that K is a continuous function on [−1, 1] with

K(t) =
∞∑
n=0

anP
(d−1)/2
n (t).

We need the following property of ultraspherical polynomials: if the coeffi-
cients a1, a2, . . . , are all non-negative, the following holds true∑

i 6=j

K(〈xi, xj〉) ≥ a0N
2 −K(1)N. (3)
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18.4 Sketch of the proof of Theorem 2 and 3

The upper bound for s ≥ d.

Consider the function
Ui(x) :=

∑
j 6=i

|x− xj|−s.

Note that
∑

i Ui(xi) = 2Ed(s,N). It suffices to show that for each i

Ui(xi) ≤
{
CN s/d for s > d
1
2d
γdN logN +O(N) for s = d.

Let wN = {x1, . . . , xN} be a configuration of N points on the unit sphere
that minimizes the s-energy. For each i we put

Di(r) = Sd \ C(xi, rN
−1/d), D(r) :=

N⋂
i=1

Di(r).

Since wN minimizes the s-energy, we obtain

Ui(xi) ≤
1

σ(D)

ˆ
D

Ui(x) dσ(x) ≤
∑
j 6=i

1

σ(D(r))

ˆ
Dj

|x− xj|−s dσ(x).

We apply (1) to estimate the integration. Take r = 1 (resp. r → 0) for the
case s > d (resp. s = d) gives the desired bounds.

The lower bound for s > d.

Let wN = {x1, . . . , xN} be any configuration of N points on Sd. We define

ri = min
j 6=i
|rj − ri|.

Then the caps C(xi, ri/2) are disjoint. Since σ(C(xi, ri/2)) ≥ Ardi , we obtain

A
N∑
i=1

rdi ≤
N∑
i=1

σ(C(xi, ri/2)) ≤ 1.

By Lagrange multipliers, it implies

N∑
i=1

r−si ≥ As/dN1+s/d.

Since A is independent of a configuration, it gives Ed(s,N) ≥ C1N
1+s/d.
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The lower bound for s = d.

We define two functions

K(t) = (2− 2t)−d/2, Kε(t) = (2− 2t+ ε)−d/2,

and expand Kε in a series with respect to P
(d−1)/2
n :

Kε(t) =
∞∑
n=0

anP
(d−1)/2
n (t).

Since the ultraspherical polynomials P
(d−1)/2
n are orthogonal with respect to

(1− t2)d/2−1, the coefficients are given by

an(ε) = An,d

ˆ 1

−1

(2− 2t+ ε)−
d
2P

(d−1)
2

n (t)(1− t2)
d
2
−1 dt.

By using Rodrigues formula (2), we can check that ai are all non-negative.
Thus, by using (3) and K(t) ≥ Kε(t), we obtain

Ed(d,N) ≥ 1

2
(−1

2
γd(log ε)N2 − ε−d/2N).

Taking ε = N−2/d, we find that

Ed(d,N) ≥ 1

2d
γdN

2 logN +O(N2).
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19 Quasicrystals and Poisson’s summation for-

mula

(after N. Lev and A. Olevskii [3])

A summary written by Lenka Slav́ıková

Abstract

Following Lev and Olevskii [3], we show that each measure µ on R
with uniformly discrete support and spectrum has a periodic structure.
In the higher-dimensional setting, an analogous result is obtained un-
der the additional assumption that µ is a positive measure.

19.1 Introduction

We say that a set Λ ⊆ Rn is uniformly discrete (u.d.) if

d(Λ) = inf
λ,λ′∈Λ, λ6=λ′

|λ− λ′| > 0.

Let µ be a (complex) measure on Rn supported on a u.d. set Λ. Then µ has
the form

µ =
∑
λ∈Λ

µ(λ)δλ, µ(λ) 6= 0, d(Λ) > 0. (1)

We shall assume that µ is a temperate distribution and that its Fourier
transform

µ̂(x) =
∑
λ∈Λ

µ(λ)e−2πi〈λ,x〉

(in the sense of distributions) is a measure supported on a u.d. set S, that
is,

µ̂ =
∑
s∈S

µ̂(s)δs, µ̂(s) 6= 0, d(S) > 0. (2)

The set S is called the spectrum of the measure µ and we shall use the
notation S = spec(µ).

An example of a measure µ satisfying the above-mentioned assumptions
is the measure

µ =
∑
m∈Zn

δm. (3)
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Then µ̂ = µ, a fact which can be expressed in terms of the classical Poisson
summation formula ∑

m∈Zn
f(m) =

∑
m∈Zn

f̂(m),

where f is a function on Rn satisfying some mild smoothness and decay
conditions.

There is a conjecture (see, e.g., [1, page 79]) that the measure µ given
by (3) is essentially the only example of a measure satisfying (1) and (2).
More precisely, it is conjectured that the support of every such measure is
contained in a finite union of translates of a certain lattice (let us recall
that by a lattice we mean the image of Zn under some invertible linear
transformation). The main goal of this summary is to outline a proof of
this conjecture in the case when either n = 1, or n > 1 and µ is a positive
measure. Our exposition follows that of Lev and Olevskii [3] (see also [2]).

Theorem 1. Let µ be a measure on Rn satisfying (1) and (2). Assume that
either n = 1, or n > 1 and µ is a positive measure. Then the support Λ of µ
is contained in a finite union of translates of a certain lattice. The same is
true for the spectrum S (with the dual lattice).

The following proposition, whose proof will be omitted, describes the
explicit form of the measure from Theorem 1.

Proposition 2. Let µ be a measure on Rn satisfying (1) and (2) whose
support Λ is contained in a finite union of translates of a certain lattice L.
Then µ takes the form

µ =
N∑
j=1

Pj
∑

λ∈L+θj

δλ, (4)

where θj ∈ Rn and Pj(x) is a trigonometric polynomial (that is, a finite linear
combination of exponentials exp 2πi 〈ω, x〉).

In addition, let us point out that every measure of the form (4) satis-
fies (1) and (2). Thus, a measure µ on R has uniformly discrete support and
spectrum if and only if it is of the form (4), and a similar equivalence holds
for positive measures on Rn.
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19.2 Proofs

In this subsection we describe several ingredients which, when combined, lead
to the proof of Theorem 1. We do not prove each particular claim; the reader
is referred to [3] for more details.

19.2.1 Spectral gaps

Given R > 0, we denote by BR the open ball in Rn with radius R centered
at the origin. For a set Λ ⊆ Rn we introduce the following two variants of
density:

D#(Λ) = lim inf
R→∞

#(Λ ∩BR)

|BR|
and

D+(Λ) = lim sup
R→∞

sup
x∈Rn

#(Λ ∩ (x+BR))

|BR|
.

Clearly, D#(Λ) ≤ D+(Λ).
We say that a measure µ has a spectral gap of size a > 0 if its Fourier

transform µ̂ vanishes on a ball of radius a. It turns out that, in the one-
dimensional case, a u.d. set Λ which supports a measure with a spectral gap
needs to have a positive density.

Lemma 3. Let Λ ⊆ R be a u.d. set which supports a non-zero measure µ
whose Fourier transform vanishes on the open interval (0, a) for some a > 0.
Then

D#(Λ) ≥ c(a, d(Λ)) > 0.

Lemma 3 fails in the higher-dimensional case. Indeed, the set Λ = Z ×
{0} ⊆ R2 has density zero and, at the same time, it supports the measure

µ =
∑
m∈Z

(−1)mδ(m,0)

which has a spectral gap around the origin. Nevertheless, if the measure µ
has not only a spectral gap, but an isolated atom in its spectrum, then the
conclusion of Lemma 3 is valid even in the higher-dimensional setting.

Lemma 4. Let Λ ⊆ Rn be a u.d. set which supports a measure µ satisfying

sup
λ∈Λ
|µ(λ)| <∞
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and having the property that spec(µ) ∩Ba = {0} for some a > 0. Then

D#(Λ) ≥ c(a, n) > 0.

19.2.2 Delone and Meyer sets

A set Λ ⊆ Rn is called relatively dense if there is R > 0 such that every ball
of radius R intersects Λ. We say that Λ is a Delone set if Λ is both u.d. and
relatively dense. Further, Λ is a Meyer set if it is a Delone set and there is a
finite set F such that Λ− Λ ⊆ Λ + F .

It can be shown that the support Λ of any non-zero measure µ satisfy-
ing (1) and (2) is a relatively dense set, and, therefore, a Delone set.

Below we present a sufficient condition for a Delone set to be a Meyer
set.

Lemma 5. Assume that Λ ⊆ Rn is a Delone set satisfying D+(Λ−Λ) <∞.
Then Λ is a Meyer set.

19.2.3 The set Λh

Let µ be a measure on Rn satisfying (1) and (2). For h ∈ Λ− Λ we denote

Λh = {λ ∈ Λ : λ+ h ∈ Λ}

and introduce the new measure

µh =
∑
λ∈Λh

µ(λ)µ(λ+ h)δλ.

Then µh is a non-zero measure supported in the set Λh and having bounded
atoms, so it is a tempered distribution. Further, we claim that each measure
µh has a spectral gap.

Lemma 6. For any h ∈ Λ− Λ, we have spec(µh) ∩Bd(S) ⊆ {0}.

In addition, if µ is a positive measure then so is µh. This implies that
0 ∈ spec(µh) which, in combination with Lemma 6, yields that the spectrum
of µh has an isolated atom at the origin.

Let us now present the last two ingredients needed for the proof of The-
orem 1.
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Lemma 7. Let Λ be a u.d. set in Rn such that

inf
h∈Λ−Λ

D#(Λh) > 0. (5)

Then D+(Λ− Λ) <∞.

Lemma 8. Let Λ be a Meyer set in Rn satisfying (5). Then Λ is contained
in a finite union of translates of some lattice.

19.2.4 Proof of Theorem 1

We shall now combine the results of the previous three subsections to prove
Theorem 1. We assume that µ is a measure on Rn which satisfies (1) and (2)
and which is positive if n > 1. Let h ∈ Λ − Λ. In the one-dimensional
case, it follows from Lemma 6 that the Fourier transform of the measure µh
vanishes on the interval (0, d(S)). In the higher-dimensional case, we use the
remark after Lemma 6 to conclude that spec(µh)∩Bd(S) = {0}. According to
Lemma 3 (if n = 1) or Lemma 4 (if n > 1), condition (5) is satisfied. Thus,
by Lemma 7, we obtain that D+(Λ−Λ) <∞, and Lemma 5 in turn implies
that Λ is a Meyer set. An application of Lemma 8 then concludes the proof.
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20 Measures with locally finite support and

spectrum.

(after Y. F. Meyer)

A summary written by Marco Fraccaroli and Milan Kroemer

Abstract

We answer an important question in harmonic analysis: is the Pois-
son summation formula unique or does it belong to a wider class? Are
there measures combining the conflicting properties of locally finite
support and locally finite spectrum which are not lattices?

20.1 Introduction

The celebrated Poisson summation formula∑
n∈Zn

f(n) =
∑
m∈Zn

f̂(m), (1)

establishes that the Fourier transform of the Dirac comb associated with the
lattice Zn is itself, yielding the basic example of a crystalline measure on Rn.

Definition 1. A tempered distribution on Rn given by a linear combination
of Dirac masses

µ =
∑
λ∈Λ

c(λ)δλ, (2)

is called a crystalline measure if both its support, Λ, and the support of its
Fourier transform, the spectrum S, are locally finite sets.

Applying affine transformations both in space and in frequency to the
Dirac comb associated with the lattice Zn, these properties are preserved.
Finite sums of such measures produce the generalized Dirac combs.

The cancellation properties between the waves associated to the Dirac
masses in the point of the lattice come from the structure of Λ itself. A first
step in questioning its necessity was established by Lev and Olevskii.

Theorem 2. There exists a crystalline measure µ on Rn such that it is not
a generalized Dirac comb.
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The construction described by Lev and Olevskii produces crystalline mea-
sures such that the Q-linear spans of Λ and S, respectively ΛQ and SQ, have
finite dimension over Q. An improvement was obtained by Kolountzakis.

Theorem 3. There exists a crystalline measure µ on R such that both ΛQ
and SQ have infinite dimension.

In both cases, the proof is not given by a closed-form expression. Then,
the first contribution of Meyer is to recall a summation formula discovered
by Guinand in [1] and produce from it an explicit example for both of the
results. However, both the construction described by Kolountzakis and the
Guinand’s distribution provide crystalline measures such that both Λ and S
are not Q-linearly independent.

The work on the Guinand’s distribution inspired the construction im-
proving the previous results.

Theorem 4. There exists an odd crystalline measure µ on R such that, for
Λ+ = Λ ∩ (0,∞), S+ = S ∩ (0,∞), each finite subset of both Λ+ and S+ is
Q-linearly independent.

This theorem extends to higher dimension.

Theorem 5. There exists a crystalline measure µ on Rn, odd in the last
variable xn, such that

1. the support Λ of µ is the union of Λ+ = Λ ∩ {xn > 0} and Λ− = Λ ∩
{xn < 0}. Moreover, each finite subset of Λ+ is Q-linearly independent
and similarly for Λ−;

2. the analogous property holds true for the spectrum S.

20.2 Guinand’s distribution

Let r3(n) be the number of decompositions of the integer n ≥ 1 into a sum of
three squares, 02 being admitted, with r3(n) = 0 if no such a decomposition
exists. In [1], Guinand introduced the odd distribution

σ = −2∂δ0 +
∞∑
n=1

r3(n)√
n

(δ√n − δ−√n). (3)
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The behaviour of the mean of r3(n) is regular enough to guarantee that σ is
a tempered distribution. In particular, Guinand proved that σ̂ = −iσ.

To get rid of the derivative of δ0, one can consider, for α ∈ (0, 1),

τα(t) = (α2 + α−1)σ(t)− ασ(αt)− σ(α−1t), (4)

so that τ̂α = −iτα. Fixing α = 1/2, we obtain a crystalline measure τ with
support Λ given by the square roots of the numbers in

N \ ({4j(8k + 7): j = 0, 1, k ∈ N} ∪ 16N). (5)

The set in the display contains infinitely many primes p, whose square roots
are Q-linearly independent. The tensor product between n copies of τ gives
a crystalline measure on Rn satisfying the analogous property.

It is worth noting the identity

∞∑
n=1

r3(n)√
n

(δ√n − δ−√n) =
∑

k∈Z3\{0}

1

|k|
(δ|k| − δ−|k|), (6)

which, relating a measure in R with a Dirac comb in R3, inspired the con-
struction used to prove Theorem 4.

20.3 Proof of Theorem 4 and Theorem 5

The main ingredient in the proof of Theorem 4 is the following theorem.

Theorem 6. Let α = (α1, α2, α3), β = (β1, β2, β3) /∈ Z3. Then, for

σ(α,β) =
∑
k∈Z3

exp(2πik · β)

|k + α|
(
δ|k+α| − δ−|k+α|

)
, (7)

its Fourier transform is −i exp(−2πiα · β)σ(β,−α).

When α, β tend to zero, then the limit σ(0,0) is the Guinand’s distribution.
The key part in the construction of the measures in Theorem 6 is the use
of the generalized Dirac comb with support α + Z3 and spectrum β + Z3.
The idea, described by Theorem 7 below, is to produce a measure on R by
associating δλ to (δ|λ| − δ−|λ|)/|λ|. In the same way, an odd test function φ
on R can be lifted to a radial function Φ(x) = φ(|x|)/|x| on R3, for which the
Fourier transform behaves nicely. Since the origin doesn’t belong to either
the support or the spectrum of the generalized Dirac comb, we can allow for
non smoothness of Φ in it.
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Sketch of proof of Theorem 4. Observe that σ(α,β) is an odd measure. Choos-
ing α such that 1, α1, α2, α3 are Q-linearly independent guarantees that the
support of σ(α,β) is Q-linearly independent. This condition on α implies

1

x

ˆ x+1

x

d|σ(α,β)|
x→∞−−−→ 1. (8)

so that σ(α,β) is a tempered measure.

Theorem 6 is a corollary of a more general statement.

Theorem 7. Let µ be a crystalline measure on R3. Then we have
µ =

∑
λ∈Λ a(λ)δλ and µ̂ =

∑
y∈S b(y)δy. Suppose 0 /∈ Λ and 0 /∈ S and

consider the measures on R given by

σΛ =
∑
λ∈Λ

a(λ)

|λ|
(
δ|λ| − δ−|λ|

)
, σS =

∑
y∈S

b(y)

|y|
(
δ|y| − δ−|y|

)
(9)

Then σΛ is a crystalline measure and its Fourier transform is −iσS.

Sketch of proof. The measures σΛ and σS are odd. Therefore it suffices to
check the identity

〈σΛ, φ̂〉 = −i〈σS, φ〉 (10)

for every odd test function φ. This is verified considering the radial function
Φ(x) = φ(|x|)/|x| on R3, its Fourier transform and the definition of µ.

Analogously to what we have seen above, the main ingredient in the proof
of Theorem 5 is an extension of Theorem 6. Consider a lattice Γ ⊂ Rn−1×R3

such that the projections p1 : Γ → Rn−1 and p2 : Γ → R3 are injective with
dense range. Let Γ∗ be its dual lattice and assume vol(Γ) = 1.

Theorem 8. Let α /∈ Γ and β /∈ Γ∗. Then the measure defined on Rn by

σ
[α,β]
Γ =

∑
γ∈Γ+α

exp(2πiβ · γ)

|p2(γ)|
(
δ(p1(γ),|p2(γ)|) − δ(p1(γ),−|p2(γ)|)

)
(11)

is a crystalline measure with Fourier transform −i exp(2πiα · β)σ
[β,−α]
Γ∗ .

Sketch of the proof. It suffices to show that

〈σ(α,β), φ̂〉 = −i exp(2iπα · β)〈σ(β,−α), φ〉 (12)

holds for every test function φ(u, v) = φ1(u) ⊗ φ2(v), u ∈ Rn−1, v ∈ R, with
φ2 odd. The proof is analogous to the one of Theorem 6.

118



Sketch of the proof of Theorem 5. If Λ is the support of σ
[α,β]
Γ , then for al-

most every α the set

Λ ∩ {xn > 0} = {(p1(γ), |p2(γ + α)|) : γ ∈ Γ}

is Q-linearly independent. The same holds for the spectrum of σ
[α,β]
Γ .

20.4 The crystalline measures of Kolountzakis

Kolountzakis ([2]) and Meyer ([6]) independently came up with two similar
constructions that provide a different proof of Theorem 3. Let {Nj} ⊂ N
be a strictly increasing sequence, {aj} a bounded Q-linearly independent
sequence. Then there exist a sequence of atomic measures {σj} such that
both σj, σ̂j are 10Nj-periodic measures with support contained in (10Nj)

−1Z
and vanishing in the interval (−Nj, Nj). Moreover, there exists a sequence
{εj} ⊂ [0,∞) that ensures the following is a well-defined Borel measure,

∞∑
j=1

εjMajTajσj, (13)

where Ta,Ma are respectively the translation and the modulation operator.
The construction of σj is based on the following observation.

Lemma 9. For every N ∈ N, there is a function f : Z/NZ→ C not identi-

cally zero such that both the function and its Fourier transform f̂ : Z/NZ→
C vanish in the interval {x ∈ Z/NZ : |x| ≤ N/10}.

20.5 The crystalline measures of Lev and Olevskii

In [5], Lev and Olevskii gave a different proof of Theorem 2. Let Γ ⊂ Rn×R
an oblique lattice, namely such that the projections p1 : Rn×R→ Rn, p2 : Rn×
R → R restricted to Γ are injective, hence they have a dense range. For
I = [−a, a], let the model set ΛI be defined by the standard cut and projection
scheme

ΛI = {λ = p1(γ) : γ ∈ Γ ∩ p−1
2 (I)}. (14)

Let {hj}, {aj} ⊂ (0,∞) be two strictly increasing sequences tending to in-
finity, and set a0 = 0. Let {Λj} be the sequence of model sets Λj associated
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to [−hj, hj]. The associated enriched model set is defined by

Λ̃ =
∞⋃
j=1

Λ̃j, Λ̃j = {λ ∈ Λj : |λ| ≥ aj−1}. (15)

An example is given by setting hj = aj = j and considering the lattice

Γ = {(k +m
√

2, k −m
√

2) : (k,m) ∈ Z2} (16)

The associated enriched model set is then {k+m
√

2: (k,m) ∈ N2 ∪ (−N)2}.
Lev and Olveskii proved the following existence result.

Theorem 10. Every enriched model set Λ̃ contains the support of a measure
µ that is not a generalized Dirac comb and such that the Fourier transform
of µ is also supported by an enriched model set S.

20.6 Geometry of crystalline measures

Envisioning all these constructions, one may ask what does the set L of
possible supports of a crystalline measure look like. In the examples, the
support Λ is neither a lattice nor a uniformly discrete, namely

inf
λ,λ′∈Λ,λ 6=λ′

|λ− λ′| = 0. (17)

However, it is worth noting that in all the constructions it was involved a
lattice structure in equal or higher dimension.

Some basic questions can be the following:

• is every locally finite set in L? No, in fact {1/2} ∪ Z \ {0} /∈ L;

• do there exist model sets in L a part from lattices?

• do there exist uniformly discrete sets in L except lattices? This was
partially answered by Lev and Olevskii in [3], [4].

Theorem 11. On R, if the support and the spectrum of a crystalline
measure µ are uniformly discrete, then µ is a generalized Dirac comb.
On Rn, n ≥ 2, the additional hypothesis µ non negative is required.

• do there exist non negative crystalline measures except Dirac combs?

120



References

[1] A.P. Guinand, Concordance and the harmonic analysis of sequences.
Acta Math. 101, (1959), 235–271;

[2] M. Kolountazakis, Fourier pairs of discrete support with little structure.
J. Fourier Anal. Appl. 22, 1 (2016), 1–5;

[3] N. Lev, A. Olevskii, Measures with uniformly discrete support and spec-
trum. C. R. Math. Acad. Sci. Paris 351, 15–16 (2013), 599–603;

[4] N. Lev, A. Olevskii, Quasicrystals and Poisson’s summation formula.
Invent. Math. 200, 2 (2016), 585–606;

[5] N. Lev, A. Olevskii, Quasicrystals with discrete support and spectrum.
Rev. Matem. Iberoamericana 32, 4 (2016), 1341–1352;

[6] Y. Meyer, Measures with locally finite support and spectrum. Proc. Natl.
Acad. Sci. USA 113, 12 (2016), 3152–3158.

Marco Fraccaroli, University of Bonn
email: mfraccar@math.uni-bonn.de
Milan Kroemer, University of Bonn
email: milan.kroemer@uni-bonn.de

121



21 Fourier interpolation on the real line

(after D. Radchenko and M. Viazovska)

A summary written by Gevorg Mnatsakanyan and João P. G. Ramos

Abstract

Using weakly holomorphic modular forms for the Hecke theta group,
we prove an interpolation result for even Schwartz functions on the
real line, recovering the function from its data at {±

√
n : n ∈ N}.

21.1 Main results

We first start with a little digression. Let f : R → R be integrable with
Fourier transform f̂ supported in [−1/2, 1/2]. It then holds that

f(x) =
∑
n∈Z

f(n)sinc(x− n),

where sinc(x) = sin(πx)
πx

. By dilating our original function, we get an interpo-
lation formula recovering a function g whose Fourier support is contained in
[−w/2, w/2] by its values at n/w, n ∈ Z. This unique property unfortunately
does not hold for general Schwartz functions f, such as the gaussian e−πx

2
.

The main results here exposed are resolving this issue by interpolating at a
somewhat denser subset of R than multiples of Z.

Theorem 1. There exists a collection of Schwartz functions {an} such that,
for each even Schwartz function f, it holds that

f(x) =
∞∑
n=0

f(
√
n)an(x) +

∞∑
n=0

f̂(
√
n)ân(x),

where the right hand side coverges absolutely.

We then have the following immediate corollary to this theorem:

Corollary 2. Let f : R→ R be an even Schwartz function, so that f and f̂
vanish at

√
n, ∀n ∈ N. Then f ≡ 0.
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Our second main theorem deals with a converse to the Poisson summation
formula. In fact, let s be the space of sequences {xn}n∈Z such that nkxn → 0
as n → ∞, for any k > 0. Let Seven denote the space of even Schwartz
functions. The map

Ψ :Seven → s⊕ s

f 7→ (f(±
√
n))n≥0 ⊕ (f̂(±

√
n))n≥0

is well-defined. The following result is a detailed description of the map Ψ.

Theorem 3. Ψ is an isomorphism from Seven to the ker L, where

L({xn}, {yn}) =
∑
n≥0

xn2 −
∑
n≥0

yn2 .

21.2 The Hecke theta group and modular forms

Define the matrices

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

These are obviously elements of the special linear group SL2(Z) of matrices
with integer coefficients and determinant 1. We define then the Hecke theta
group Γθ to be the subgroup of SL2(Z) generated by S and T 2. Alternatively,
the following characterization holds:

Γθ =

{
A ∈ SL2(Z) : A ≡

(
1 0
0 1

)
or

(
0 1
1 0

)
mod 2

}
.

With this subgroup in mind, we define the following classical Jacobi theta
series: if q = e2πiz, and

η(z) = q1/24
∏
n≥1

(1− qn)

denotes the Dedekind η−function, we let

Θ2(z) = 2
η(2z)2

η(z)
, Θ3(z) =

η(z)5

η(z/2)2η(2z)2
, Θ4(z) =

η(z/2)2

η(z)
.
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Among many properties, these functions are used to define the following
modular λ−invariant:

λ(z) =
Θ4

2(z)

Θ4
3(z)

.

This function satisfies that

λ(γz) = λ(z), ∀γ ∈ SL2(Z), γ ≡
(

1 0
0 1

)
mod 2.

We then define the Hauptmodul associated to Γθ as

J(z) =
1

16
λ(z)(1− λ(z)).

This function, in particular, is invariant under action of elements of Γθ.

21.3 Weakly modular forms of weight 3/2

The definition of J above enables us to define, implicitly, a sequence of holo-
morphic functions on the upper half plane that will be crucial to our con-
struction of the sequence an in Theorem 1. Explicitly, let ε ∈ {−,+} be a
sign. We find functions {gεn}n≥0 satisfying

gεn(z + 2) = gεn(z), (−iz)−3/2gεn(−1/z) = εgεn(z),

together with appropriate behaviour near the cusps of Γθ. That is,

g+
n (z) = q−n/2 +O(q1/2), g−n (z) = q−n/2 +O(1), z → i∞;

gεn(1 + i/t)→ 0 as t→∞.

The construction of these functions is evident by considering

g+
n (z) = Θ3

3(z)P+
n (J−1(z)), g−n (z) = Θ3

3(z)(1− 2λ(z))P−n (J−1(z)),

where we let P±n be monic, rational polynomials of degree n, with P−n (0) = 0.
These are uniquely determined by the fact that the Fourier expansion of J−1

near i∞ is q−1/2 +24+O(q1/2). We remark that both the modularity and the
vanishing of Fourier coefficients of these functions are of crucial importance,
as they will provide us, respectively, with eigenfunction properties for the
Fourier transform and delta-like behaviour at the interpolation nodes.
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21.4 Construction of the interpolation basis

Next, we use the functions gεn above to build our interpolation basis. As
we would like to first obtain eigenfunctions of the Fourier transform with
good properties at the interpolation nodes ±

√
n, we define the sequence of

functions

bεn(x) =
1

2

ˆ 1

−1

gεn(z)eiπx
2z dz,

where integration is defined on the semicircle contained in the upper half
plane H connecting −1 and 1. By the modularity of gεn, the good decay
properties of J−1 and the Fourier expansion conditions we have imposed on
gεn, we have the following:

Proposition 4. The function bεn : R → R is an even Schwartz function
satisfying

b̂εn = εbεn,

as well as
bεn(
√
m) = δm,n, for m ≥ 1, n ≥ 0.

Additionally, we have b+
0 (0) = 1.

21.5 Growth estimate

Next, we need to estimate the growth of bεn, in order to conclude the conver-
gence of the right hand side of Theorem 1.

Theorem 5. For ε ∈ {+,−} we have |bεn(x)| = O(n2) uniformly in x.

In order to prove this Theorem, we will work instead with the generating
function Fε(τ, x) of bεn. This object is initially defined through certain contour
integrals of the generating function of gεn, but we will omit this definition here
for shortness. The bottomline is that the representation

Fε(τ, x) =
∞∑
n=0

bεn(x)eiπnτ

holds in the upper half space, and the following equations hold

Fε(τ, x)− Fε(τ + 2, x) = 0, (1)

Fε(τ, x) + ε(−iτ)−1/2Fε(−
1

τ
, x) = eiπτx

2

+ ε(−iτ)−1/2eiπ(−1/τ)x2 . (2)
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The last identity induces the definition of a Γθ−cocycle associated to the
generating function by

φT 2(τ) = 0, φS(τ) = eiπx
2τ + ε(−iτ)−1/2eiπx

2(−1/τ),

In an overly simplified way, the main strategy to prove Theorem 5 is to use
the following result by Hecke:

Theorem 6 (Hecke). If a 2-periodic function f : H→ C has Fourier expan-
sion

∑
n≥0 ane

iπnτ and satisfies

|f(τ)| ≤ CIm(τ)−α,

for Im(τ) < c, then the coefficients satisfy |an| ≤ C(eπ/α)αnα.

We want to use this result for f(τ) = Fε(τ, x). We need bounds uniform
on x, so the idea is to exploit the generating function relation (1) to split
our task into two parts: the first deals with bounding a cocyle term – which
corresponds to complex numbers τ with small imaginary part – and the
second deals with a straight analytical property of the generating function,
which can be proved directly for τ in the fundamental domain of Γθ. The
inequality we arrive is |Fε(τ ;x)| ≤ C0Im(τ)−2, with C0 independent of x. By
Theorem 6, we conclude Theorem 5.

21.6 Proof of the main results

Let us define

an(x) =
b+
n (x) + b−n (x)

2
.

The properties of bεn imply

ân(x) =
b+
n (x)− b−n (x)

2
.

Modularity properties of gεn imply the representation

eτ (x) =
∞∑
n=0

an(x)eτ (
√
n) +

∞∑
n=0

ân(x)êτ (
√
n)
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for eτ = eiπτx
2
. Thus, Theorem 1 holds for the subspace spanned by {eτ}Im(τ)>0.

Noting that the functional

φx(f) = f(x)−
∞∑
n=0

an(x)f(
√
n)−

∞∑
n=0

ân(x)f̂(
√
n)

is a tempered distribution by Theorem 5, the rest of the proof is just a stan-
dard approximation argument.

For Theorem 3, first note that, by the Poisson summation formula, the
image of Ψ is in ker L. We then define Φ : ker L→ Seven, the inverse map of
Ψ, by

({xn}, {yn}) 7→
∑
n

xnan(x) + ynân(x).

The right hand side above is a Schwartz functions, as long as we prove a
polynomial growth estimate for norms (‖bεn‖α,β)n. This, however, is just a
modification of the proof of Theorem 5 using derivatives of the generating
function.

21.7 A possible extension?

Finally, we remark that it is expected for Theorem 1 to be extendable to
a larger class than Schwartz functions. More specifically, the most general
question in this setting remains open:

Question 7. Does Theorem 1 still hold whenever the right hand side con-
verges absolutely? Say, for instance, whenever f, f̂ are both continuous so
that pointwise values are well-defined.

In this regard, we have the following generalization to our main theorems:

Theorem 8. Let f be even and integrable. If both f, f̂ are bounded pointwise
by (an absolute constant times) (1 + |x|)−13, then the conclusion of Theorem
1 still holds.

Gevorg Mnatsakanyan and João Pedro Ramos, University of
Bonn
email: jpgramos@math.uni-bonn.de
and mnatsakanyan g@yahoo.com
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22 Lower bounds for the optimal density of

sphere packings

(after A. Venkatesh and P. Moustrou [2,

4])

A summary written by Cristian Gonzalez-Riquelme and Oscar Quesada

Abstract

Venkatesh improves on the lower bounds for the optimal density of
sphere packings. In all sufficiently large dimensions, the improvement
is by a factor of at least 10,000; along a sparse sequence of dimensions
ni, the improvement is by roughly log log ni. Moustrou proves an ex-
plicit version of this last result, in the sense of exhibiting, for the same
set of dimensions, finite families of lattices containing a lattice reach-
ing this bound. Moustrou’s construction uses codes over cyclotomic
fields, lifted to lattices via Construction A.

22.1 Introduction

We denote the optimal density of spheres packings in dimension d by ρd.

22.1.1 A brief historical perspective

The first result that implied the existence of a lower bound for ρd in every
dimension was due to Minkowski, who proved that it is bounded below by
2−d. Minkowski’s proof relies in the existence of an origin-centered ellipsoid
of volume 1, containing no nonzero vector in Zd. Here, by origin-centered
ellipsoid we mean the image under a linear transformation of the standard
unit ball. This result can be reformulated as the existence of a lattice Λ of
covolume 1 in Rd such that B(0, 1) ∩ Λ = {0}, thus providing a periodic
sphere packing with density 2−d. We define here

cd = sup{V olume(E);E is an origin centered ellipsoid with E ∩ Zd = {0}}.

Minkowski’s result implies cd ≥ 1. It is possible then to get better lower
bounds for ρd by getting better lower bounds for cd. The first substantial
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improvement on Minkowski’s work was given by Rogers in 1947; he showed
that cd > 0.73d for d large enough. Later K. Ball proved that

cd ≥ 2(d− 1),

providing therefore an sphere packing with density at least 2(d− 1)2−d; and
Vance proved that cd > (2.2)d when d is divisible by 4, providing an sphere
packing with density at least (2.2d)2−d. These results far surpass the density
of any “explicitly known” sphere packing. It is in this context where A.
Venkatesh made the improvements that are the central results of our talk.

22.1.2 Codes, cyclotomic lattices, and geometry of numbers

The concept of error-correcting codes comes from the design of signals for
data transmission systems (see chapter 3 of [1]). One model for these systems
encodes information via sequences of 0’s and 1’s, and due to noise, there is a
probability that when a symbol is transmitted, the other one is received. A
codeword is a sequence of d symbols, and a binary code of length d is a set
of codewords, with d coordinates each.

To be able to correct errors, we choose codewords that are sufficiently
distinct from each other under some given metric. One would like codes
with a large number of codewords, given some mininum distance between
them. This is analogous to the sphere packing problem, and one can exploit
this similarity to construct sphere packings and lattices from binary codes.
Construction A is one such construction ([1], Chapter 7). Similarly, instead
of binary digits, one can instead consider as symbols the elements of Fs =
{0, 1, ..., s−1}, the finite field of order s, where s is either a prime or a prime
power. This motivates the following

Definition 1. A s-ary code is a subset of Fds. A linear s-ary code is a subset
which is also a vector space over Fs.

We can obtain finite fields as the quotient of the integers modulo a prime,
and this can be done in general algebraic number fields. Minkowski’s “geom-
etry of numbers” insight is that algebraic number fields can be seen as points
in an euclidean space (see [3], Section 5 of Chapter 1), and, for cyclotomic
fields, this lies at the heart of the constructions in both papers.
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22.2 Summary of article: A note on sphere packings
in high dimension. Akhsay Venkatesh.

22.2.1 Main results

A. Venkatesh proved the following theorem:

Theorem 2. There exist infinitely many dimensions d for which

cd >
1

2
d log(log(d)).

Also, in every sufficiently large dimension, cd > 65967d.

The results are proved with a similar idea: One consider random lattices
but constrained in some algebraic way. Now we elaborate a little more in the
proofs of the first assertion of this theorem:

22.2.2 Proof of the first assertion:

Let us define the basic objects of the proof. Let K = Q(µd) be the ciclotomic
field, o be its ring of integers, and V a 2-dimensional vector space over K.
Let VR = V ⊗

Q
R, Λ0 = o2 ⊂ VR, G = Sl2(K⊗

Q
R) and Γ = Sl2(o) ⊂ G. Endow

G/Γ with the G invariant probability measure, denoted by µ, and endow VR
with the Lebesgue measure for which Λ0 has covolume 1. For f ∈ Cc(VR)
and Λ ⊂ VR any lattice, we put

Ef (Λ) =
∑

v∈Λ−\0

f(v)

The crucial tool of the proof is the following lemma

Lemma 3. We have:
´
g∈G/ΓEf (gΛ0)dµ(g) =

´
VR
f(x)dx

After proving that we can conclude the proof of the assertion. Let us
consider an quadratic form q0 invariant under the action of µd. If the ellipsoid
E = {x ∈ V R : q0(x) ≤ T} has volume less than n, it follows from 3 that
there exists a lattice Λ = gΛ0 so that the size of Λ ∩ E \ {0} is less than
n; since E is µd invariant and µd acts without fixed points, Λ ∩ E = {0}.
Thus we have proved that there is a lattice Λ of covolume 1 in dimension
2φ(d), and an ellipsoid of volume d − ε so that Λ ∩ E = 0. This means, in
the notation of the introduction, that c2φ(d) ≥ d. Using estimates on φ(d) for
an appropiate sequence of dimensions, we conclude.
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22.2.3 Discussion of the proof of the second assertion:

The proof of the second assertion is significantly more involved; we will briefly
discuss here the ideas behind the proof. Here one considers random lattices
with fixed discriminant but subject to the constraint that all the lenghts are
integers.

We discuss the basic definitions here. We define k = d
2
, Γ(k + 1) =: (k)!.

The jth minima γj of a quadratic form q on a free abelian group Λ is the

smallest number for which {x ∈ Λ :
√
q(x) ≤ γj} spans a real space of

dimension ≥ j. We also define Vj = V ol({√q ≤ γj}).
The proof of the second assertion is based in the following result due to

Minkowski: If Λ is a lattice equipped with a quadratic form q in Λ⊗R with
sucessive minima γ1, ...γn, then there is a Lattice Λ2 ⊂ Λ⊗ R with Λ2 \ {0}
disjoint from an ellipsoid of volume n

√
V1...Vd. The idea is to find a positive

definite quadratic form q in Zd with

n
√
V1...Vd ≥ δ2 sinh

2(πe)

π2e3
2d (1)

where δ is a constant, δ < 1.
In order to do that, the main intermediate results are the following: First

we consider a class of positive definite quadratic forms Q (taking represen-
tatives under isomorphisms) with the following properties: For every q ∈ Q
we have q(Zd) ⊂ 2Z, and q has discriminant D (where D has a certain arith-
metic restriction). If Nq(m) is the number of representation of m by q, we
consider the following weighted average:

NQ(m) :=

∑
QNq(m)|Aut(q)|−1∑
Q |Aut(q)|−1

=
2kmk−1πk

k!
√
D

(1 +O(2
k
2 )).

Then we have to find the “Transitional point” m1 such that m1 is sufficiently
large, and if V (T ) := V ol({Q(x) ≤ T}, we have that for δ < 1 there ex-
ists a constant D(δ) with the following property: in any sufficiently large
dimension, there exists an admissible D ≤ D(δ) such that∑

m even <m1

NQ(m)log

(
δV (m1)

V (m)

)
< 2d.

This implies that there exists q ∈ Q with∑
m even <m1

Nq(m)log

(
δV (m1)

V (m)

)
< 2d
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and to conclude we use the previous assumption together with some estimates
to conclude that q satisfies the desired property (1).

22.3 Summary of article: On the density of cyclotomic
lattices constructed from codes

Like before, let K = Q(µd) and KR = K ⊗Q R. The trace form tr(xȳ)
induces a scalar product on KR, denoted by 〈 , 〉, giving KR the structure
of an Euclidean space of dimension φ(d). We have a natural embedding
K → KR, and the image of the ring of integers o := Z[µn] is a lattice in KR
(see Proposition 5.2 in [3]).

22.3.1 Construction A for cyclotomic fields

Given a linear s-ary code, one can obtain an associated lattice via Construc-
tion A, which takes the following form in our context, from [2]:

“Let B be a prime ideal of o lying over a prime number p which does
not divide d. Then F = o/B is a finite field of cardinality s = pf . Consider
E = K2

R and denote by 〈 , 〉 the scalar product 〈x, y〉 = 〈x1, y1〉 + 〈x2, y2〉
induced on the 2φ(d)-dimensional R-vector space E by that ofKR, and denote
the associated norm by || · ||. Consider the lattice Λ0 = o2 in E, it is also a
o-submodule of E. Consider the projection

π : Λ0 → Λ0/BΛ0.

Define the weight of an element c ∈ Λ0/BΛ0:

wt(c) = min{||z||, π(z) = c}

Denote the discrete ball of radius r by B̄(r) = {c ∈ Λ0/BΛ0,wt(c) ≤ r}. Note
that the quotient Λ0/BΛ0 is a 2-dimensional vector space over F , so that a
linear subspace C ⊂ Λ0/BΛ0 is a linear s-ary code. The lattice obtained
from C is defined by

ΛC = π−1(C)”.

Its properties are given in [2], Lemma 2.
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22.3.2 Density of a family of lattices

Each line in Λ0/BΛ0 is a 1-dimensional subspace, and therefore a code. Mous-
trou uses this family of codes:

Definition 4. Denote by C the set of (s + 1) lines of Λ0/BΛ0, and LC =
{ΛC , C ∈ C} the associated lattices from the previous construction.

The first ingredient is a mean value theorem for this family, analogous
to Lemma 3. Since the family C is finite, it is a straigthforward counting
argument.

Lemma 5.

E(|B̄(r) ∩ (C\0)|) < |B̄(r)

s

The second ingredient is the symmetry argument with the d roots of
unity: If |B̄(r) ∩ (C\0)| < d, then necessarily B̄(r) ∩ (C\0) = ∅. This would
prove the existence of a code C such that its minimal weight is at least r. It
turns out that the minimal weight of a code can be related to the minimal
norm of the associated lattice, and therefore to its density (see [2], Lemma
3). The problem then reduces to finding, for a given d, the largest possible

radius rd such that
|B̄(rd)|
s

< d, in order to apply the symmetry argument.

|B̄(r)| can be estimated in terms of r and d from properties of Λ0. Allowing
s to also depend on d and imposing adequate growth conditions on s, after
some asymptotic analysis one finds the optimal radius rd and arrives at the
main result of [2]:

Theorem 6. For every 1 > ε > 0, if φ(d)2d = o(s
1

φ(d) ), then for d big enough,
the family of lattices LC contains a lattice Λ ⊂ R2φ(d) satisfying

∆(Λ) >
(1− ε)d

22φ(d)

Venkatesh’s bound is recovered from his same bounds on φ(d), as before.
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23 The Sphere Packing Problem in Dimen-

sions 8 and 24

(after M. Viazovska)

A summary written by Tainara Borges and Cynthia Bortolotto

Abstract

Using Cohn and Elkies linear programming bounds we solve the
sphere packing problem in dimension 8 and 24 by constructing suitable
functions.

23.1 Main results

In dimension 8 and 24 we know two special lattice sphere packings, associated
to the E8 lattice and the Leech lattice Λ24, respectively. Computing their
densities, we conclude that the sphere packing constant in dimension 8 and
24 are at least vol(B8(

√
2/2)) and vol(B8(1)), respectively.

Cohn and Elkies showed that we can give upper bounds for the sphere
packing constant by finding functions satisfying given properties. Precisely,

Theorem 1 (Cohn and Elkies). Let f : Rn → R be a Schwartz function and
r a positive real number such that f(0) = f̂(0) = 1, f(x) ≤ 0 for ||x|| ≥ r
and f̂(y) ≥ 0 for y ∈ Rn. Then, the sphere packing density in Rn is at most
vol(Bn(r/2)).

Viazovska constructed such a function in dimension 8, with r =
√

2,
proving the optimality of the E8 lattice. Using similar ideas, Cohn, Kumar,
Miller, Radchenko and Viazovska found the function in dimension 24 that
proves that the Leech lattice is the unique periodic lattice that achieves the
optimal sphere packing density, up to scaling and isometries.

23.2 Constructing the functions

We first deduce some properties that the functions that we want to construct
must satisfy. Assuming that f is radial and using the Poisson summation
formula, in dimension 8, we conclude f and f̂ must have a simple zero at√

2 and double zeros at
√

2m, for m ≥ 2. Analogously, in dimension 24, the
function and its Fourier transform must have a simple zero at 2 and double
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zeros at
√

2m, for m ≥ 3. Also, we can write f = a + b, with â = a and
b̂ = −b, so a and b must satisfy the conditions stated above.

Then, the main task is to construct good eigenfunctions a and b, in a way
that a convenient combination of them give us the function with the desired
properties. We state two theorems that lead to their construction. Both
theorems are not presented in Viazovska’s paper in the way we do, but one
could infer them given her results. We give an idea of how the formulation
of the functions can be deduced given the conditions.

23.2.1 The eigenfunctions

Theorem 2. Let n ≥ 4 be a positive integer such that 4|n and k = 4 − n
2
.

Consider ϕ a weakly holomorphic quasimodular form of weight k and depth
2 over Γ(1), satisfying the conditions:

1. There exists ε > 0 such that |ϕ(it)| = O(e−εt), for t→∞;

2. There exists P ≥ 0 such that |tn/2−2ϕ(i/t)| = O(ePπt), for t→∞.
Then, the function

a(x) = sin2

(
π|x|2

2

) ˆ ∞
0

t
n
2
−2ϕ(i/t)e−πt|x|

2

dt

is well defined for |x|2 > P and extends analytically for |x| ≥ 0. Fur-
thermore, a is a radial Schwartz function and â = (−1)n/4a.

Theorem 3. Let n ≥ 4 be a positive integer such that 4|n and k = 2 − n
2
.

Consider ψ a weakly holomorphic modular form of weight k over Γ(2) and,
satisfying the conditions:

1. There exists ε > 0 such that |ψ(i/t)tn/2−2| = O(e−εt)|, for t→∞;

2. The exists P ≥ 0 such that |ψ(x+ iy)| = O(ePπt)|, for t→∞.

3. zn/2−2ψ(−1/z) + ψ(z + 1) = ψ(z), for all z ∈ H.

Then, the function

b(x) = sin2

(
π|x|2

2

) ˆ ∞
0

ψ(it)e−πt|x|
2

dt
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is well defined for |x|2 > P and extends analytically for |x| ≥ 0. Fur-
thermore, b is a radial Schwartz function and b̂ = (−1)n/4+1b.

The starting point for the construction of a and b given by Viazovska
is the use of the Laplace transform to create eigenfunctions of the Fourier
transform. If we define

f(x) =

ˆ ∞
0

g(it)e−πt|x|
2

dt,

and assume that g is sufficiently well-behaved, we get that

f̂(y) =

ˆ ∞
0

g(it)t−n/2e−π|x|
2/tdt =

ˆ ∞
0

g(i/t)tn/2−2e−πt|x|
2

dt.

One can notice that if g is a modular form of weight 2−n/2, then g(it) =
(i)

n
2
−2g(i/t)tn/2−2 and, consequently, the function f is a −1 eigenfunction in

dimension n, if n
2
− 2 ≡ 2 mod 4, which is the case when n = 8 or n = 24.

However, defining the functions a or b this way will not solve our problem,
since we have no control of the zeros of the function f . Viazovska’s great
idea was to multiply the Laplace transform by sin2(π|x|2/2), that is, we let

f(x) = sin2

(
π|x|2

2

) ˆ ∞
0

g(it)e−πt|x|
2

dt.

The factor sin2(πr2/2) gives us some of the desired roots and also infor-
mation about the poles of the Laplace transform and, consequently, about
the q-expansion of the function g.

To get the remaining information about g that we need, we consider f in
the form

f(x) =
i

4

(ˆ 1+i∞

1

g(t− 1)eiπr
2tdt+

ˆ −1+i∞

−1

g(t+ 1)eiπr
2tdt− 2

ˆ i∞

0

g(t)eiπr
2tdt

)
,

and take its Fourier transform. We change variables and the contours of
integration, so we can compare f with f̂ and derive some identities that g
must satisfy so that f is a ±1-eigenfunction.
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23.2.2 The magic functions

We now give the explicit form for the magic function that solves the sphere
packing problem in dimension 8 and 24. The spaces of quasi-modular forms
that are considered in both theorems stated above have finite dimension, so
our job is to find the right linear combination of the generators that satisfies
all the desired conditions.

For n = 8,

a(x) = 4i sin2

(
π|x|2

2

) ˆ ∞
0

t2ϕ(i/t)e−πt|x|
2

dt, for |x| >
√

2.

where ϕ is the quasimodular form of weight 0 and depth 2 given by

ϕ =
1728E2

4

E3
4 − E2

6

E2
2 + 2

−1728E4E6

E3
4 − E2

6

E2 +
1728E3

4

E3
4 − E2

6

− 1728,

and

b(x) = −4i sin2

(
π|x|2

2

) ˆ ∞
0

ψ(it)e−πt|x|
2

dt, for |x| >
√

2,

where the weakly holomorphic modular form ψ over Γ(2) is

ψ(z) := 128
θ4

00(z) + θ4
01(z)

θ8
10(z)

+ 128
θ4

01(z)− θ4
10(z)

θ8
00(z)

.

Then, linear combination of a and b

g(x) :=
πi

8640
a(x) +

i

240π
b(x),

solves the problem in dimension 8.

In dimension n = 24, we construct a and b as in dimension 8, but now in
terms of the quasi-modular form

ϕ =
25E4

4 − 49E2
6E

2
4 + 48E6E

2
4E2 + (−49E3

4 + 25E2
6)E2

2

∆2
,

and the weakly modular form

ψ =
7θ20

01θ
8
10 + 7θ24

10θ
4
01 + 2θ28

01

∆2
.
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The solution of the problem is given by

g(x) = − πi

113218560
a(x)− i

262080π
b(x).

In order to check that both functions, in dimensions 8 and 24, satisfy all
the conditions of Cohn and Elkies theorem, one needs to show that associated
functions are eventually non-negative/non-positive and computer assistance
was needed to this purpose.
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24 Lattices with exponentially large kissing

numbers

(after Serge Vlăduţ [4])

A summary written by Philippe Moustrou

Abstract

In [4] it is shown that there exist, in any dimension, lattices with
exponentially large kissing numbers. These lattices are obtained from
algebraic geometric codes. Here we give the main results of the paper
and describe the strategy of the proofs, introducing the main ingredi-
ents needed.

24.1 Introduction

What is the largest number τn of non-overlapping unit spheres in a real space
of dimension n that can simultaneously touch a central unit sphere? This is
the celebrated kissing number problem. Even though it has been extensively
studied, the number τn is only known for a very small set of dimensions:
τ1 = 2, τ2 = 6, τ3 = 12 (Schütte and van der Waerden), τ4 = 24 (Musin),
τ8 = 240 and τ24 = 196560 (Levenshtein and independently Odlyzko and
Sloane).

Here we are interested in the asymptotic behaviour of τn. Kabatianski
and Levenstein proved that log2(τn)

n
≤ 0.4041.... The classical lower bound is

log2(τn)
n
≥ 0.2075..., due independently to Chabauty, Shannon, and Wyner.

Note that it has been improved lately by Jenssen, Joos and Perkins. However,
these arguments only relate to non-lattice configurations. If we restrict our
attention to lattices and denote by τ ln the lattice kissing number in dimension
n, it was not known whether τ ln grows exponentially in n. The best lower
bound so far, log2(τ ln) ≥ c log2

2(n), was given by the Barnes-Wall lattices in
dimensions n = 2m. The main result that we discuss here follows.

Theorem 1. There exists a constant c0 > 0 such that for every dimension
n ≥ 1,

log2(τ ln)

n
≥ c0.

We will discuss later the value of c0.
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24.2 Ingredients and sketch of the proof

24.2.1 Lattice packings and kissing numbers

A lattice L in Rn naturally defines a packing of spheres of diameter d, where
d is the minimal norm realized by a non-zero vector of L, also called the
minimum of L. An element of L with norm d is called a minimal vector of L.
The kissing number of the packing provided by L is then the number of its
minimal vectors. In other words, we aim at proving the existence of lattices
with an exponentially many minimal vectors.

24.2.2 Linear codes

Linear codes are closely related to lattices. Consider a finite field Fq. A
q-ary linear code is a linear subspace C ⊂ Fnq . We call n the length of C
and R = k/n its rate, where k is the dimension of C as an Fq-vector space.
The number of non-zero coordinates of an element c of Fnq gives its Hamming
weight wt(c). The minimum distance d of C is the minimal Hamming weight
realized by the non-zero elements of C, and we denote by δ = d/n its relative
minimum distance. We call C an [n, k, d]q-code.

24.2.3 From codes to lattices: Construction D

There are several ways to construct lattices from codes. One of them is
Construction D: Let n ≥ 1 and r ≥ 1. Suppose we have a decreasing sequence
of linear binary codes C0 = Fn2 ⊃ C1 ⊃ . . . ⊃ Cr, where for i = 1, . . . , r, the
code Ci is an [n, ki, di]2-code with di = 4i. We see the elements of Fn2 as
elements of Rn by taking their representatives with coordinates 0 and 1.
Take a basis {c1, . . . , cn} of Fn2 such that for every i = 1, . . . , r, the code Ci
is generated by c1, . . . , cki . Also define kr+1 = 0. The lattice L constructed
from this sequence of codes is the lattice generated by 2Zn and all the vectors
in

r⋃
i=1

 ki⋃
j=ki+1+1

cj2
1−i

 .

By construction, the minimum of L is 2, and every element of weight 4i in Ci
produces a minimal vector of L. Therefore codes with exponentially many
elements of minimal weight lead to lattices with exponential kissing numbers
through Construction D.
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24.2.4 Codes with many light vectors

The problem now boils down to a coding theory problem: Are there codes
with exponentially many vectors of minimal weight? Unsurprisingly, this
question is not easy. The following was even conjectured by Kalai and
Linial: Assume (Cn)n is a sequence of codes of length n and minimal dis-
tance dn. Denote by Adn the number of elements of Cn having weight dn.
Then log2(Adn) = o(n). In 2001, fortunately for our purpose, this conjecture
was disproved by Ashikhmin, Barg, and Vlăduţ in [1]. Let us describe their
result: Let q = 22s with s ≥ 3 and consider the function

Es(δ) = H(δ)− 2s

2s − 1
− log2

22s

22s − 1
,

where H(δ) = −δ log2(δ) − (1 − δ) log2(1 − δ) is the entropy function. The
function Es has two zeroes 0 < δ1 < δ2 < 1 − 2−2s and is positive for
δ1 < δ < δ2.

Theorem 2. Let q = 22s, for s ≥ 3 a fixed integer. Then for any δ1 < δ < δ2,
there exists a sequence (Cn)n of binary linear codes of length n = qN with N
going to infinity, minimal distance dn = nδ/2, such that

log2(Adn)

n
≥ Es(δ)

22s
− o(1).

Theorem 1 follows then from Theorem 2 by taking families of codes
adapted to Construction D.

24.2.5 Algebraic geometric codes

We now say a few more about the codes involved in Theorem 2, the so-called
algebraic geometric codes. More details, including all the definitions that we
do not give here can be found in [3].

Let X be a smooth projective curve absolutely irreducible over a finite
field Fq. Let g be its genus, and let D be an Fq-rational divisor of degree
a ≥ g − 1. Denote by L(D) the associated function space

L(D) = {f ∈ Fq(X) : (f) +D ≥ 0}.

For N > a, take a set P = {P1, . . . , PN} of N distinct Fq-rational points of
X, outside the support of D, and consider

evP : L(D) → FNq
f 7→ (f(P1), . . . , f(PN))
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the evaluation map. It is well defined, injective, and its image is a linear
[N, k, d]q-code, where k ≥ a− g + 1 and d > N − a. The parameters of this
code are good if the curve has many rational points compared to its genus.

From these codes one can build appropriate binary codes for Theorem 2.
The challenge is then to find good families of curves that produce codes that
are suitable for Construction D.

An example of a good family of curves is given by the Garcia-Stichtenoth
tower [2], where for k ≥ 1, the curve Xk is recursively defined by the equa-
tions, for 1 ≤ i ≤ k − 1,

xqi+1 + xi+1 =
xqi

xq−1
i + 1

.

By considering these curves over Fq2 , one can construct a sequence of codes
leading to Theorem 1.

24.3 Improvements

By using the previous strategy, the constant c0 obtained in Theorem 1 is very
small. We conclude by describing in a few words how it can be optimized.

First, the Garcia-Stichtenoth tower can be replaced by towers of Drinfeld
modular curves, leading to a slight improvement in the constant. More im-
portantly, one can use a generalization of Construction D to construct good
lattices from good codes: Construction E. It allows to deal with more general
sequences of codes, and produces better lattices. With these refinements, one
gets the following theorem:

Theorem 3. We have

lim inf
n→∞

log2(τ ln)

n
≥ 0.0219.

By restriction to particular sequences of dimensions, the constant can be
further improved. Among all the results of this flavour given in [4], we only
give the one with the best constant:

Theorem 4. For N = 5 · 210k+2, we have

log2(τ lN)

N
≥ 0.0338− o(1).
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