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1 On the Riemann surface type of random

planar maps

after J. Gill and S. Rhode [3]
A summary written by Joe Adams

Abstract

Given a sequence of random disk triangulations satisfying some
conditions converging in distribution to a random triangulation T , we
form a Riemann surface by gluing together planar equilateral triangles
with side length 1 according to T . This Riemann surface is almost
surely conformally equivalent to C. It is then possible to prove that
the UIPT is parabolic almost surely.

1.1 Preliminaries and notation

We will think of triangulations as combinatorial objects, and we will assume
that any vertex in a given triangulation is connected to at most finitely many
other vertices. Let T be a triangulation. Let ∆ be a closed equilateral triangle
in C with side length 1. The interstice I of ∆ is the equilateral subtriangle
whose vertices are the midpoints of the sides of ∆. If the object obtained
by gluing copies of ∆ according to T is a Riemann surface, we denote it by
R(T ). We denote by F (T ) the set of faces of triangles of R(T ). We say that
T is a disk triangulation if R(T ) is simply connected.

A rooted triangulation is a pair (T, o), where o is an oriented triangle
of T . Let B0(T, o) denote the unoriented triangle corresponding to o. For
any integer k ≥ 1, let Bk(T, o) denote Bk−1(T, o) together with the triangles
incident to any vertex of Bk−1(T, o). Let X denote the set of rooted trian-
gulations. We define a metric on X by defining the distance between (T, o)
and (T ′, o′) as 1/(k+1), where k is the largest integer such that Bk(T, o) and
Bk(T

′, o′) are isomorphic. This metric topology is separable.
A center embedding is a triple (T, o, g), where (T, o) is a rooted trian-

gulation and g : F (T )→ C is an injective map such that g(o) = 0 and

inf{|g(o′)| : o′ 6= o} = 1.

Let E denote the set of center embeddings. Abusing notation, we will often
think of g as a map defined on the set of centers (which we will denote by
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c) of faces of triangles of R(T ). We define a topology on E by saying that
(Tn, on, gn)→ (T, o, g) if and only if (Tn, on)→ (T, o) and gn → g uniformly
on finite subtriangulations. This topology is metrizable and separable.

Let Xfinite ⊂ X and Efinite ⊂ E denote the subsets arising from finite
triangulations.

A Borel probability measure µ on X is unbiased if whenever a random
sample (T, o) arises from a finite triangulation, the distribution of o is uni-
form.

Theorem 1. Suppose that a sequence of unbiased random rooted finite disk
triangulations (Tn, on) converge in distribution to a random triangulation
(T, o). Suppose that dist(on, ∂Tn) → ∞ and T is one-ended almost surely.
Then R(T ) is conformally equivalent to C almost surely.

Lemma 2. Let T be a triangulation. There is a constant C such that for any
injective holomorphic map f : R(T )→ C and any adjacent centers c and c′,

1

C
≤ |f(c)− f(c′)|

diam f(Ic)
≤ C. (1)

Lemma 3. Suppose that (T, o) be a rooted disk triangulation satisfying distT (o, ∂T ) =
∞. Let φ : R(T ) → C be an injective holomorphic map. If the image of φ
restricted to the centers of the triangles of T has at most finitely many accu-
mulation points in C, then φ is surjective.

1.2 A magical lemma

The following magical lemma is due to Benjamini and Schramm [2].

Lemma 4. Let δ ∈ (0, 1). There is a constant c = c(δ) > 0 such that for
any number s ≥ 2 and any finite set V ⊂ C,

#{v ∈ V : v is (δ, s)-supported}
#V

≤ c

s
.

Given a finite set V ⊂ C, the probability that a point of V chosen uni-
formly at random is (δ, s)-supported is the fraction to the left of the inequality
in the lemma above.
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Lemma 5. Let E0 be a subset of Efinite such that if (T, o, g) and (T ′, o′, g′)
belong to E0 and satisfy T = T ′, then there is an affine map α such that
g = α ◦ g′. Suppose that a sequence of unbiased Borel probability measures
µn on E0 converge in distribution on E to a Borel probability measure µ. Let
A denote the set of (T, o, g) in E such that the image of g has at least two
accumulation points in C. Then µ(A) = 0.

Proof. Let Aδ,p1,p2 denote the set of (T, o, g) in E such that the image of g
has at least one accumulation point in each of BC(p1, δ) and BC(p2, δ). One
can check that ⋃

δ

⋃
p1,p2

Aδ,p1,p2 = A, (2)

where the first union is taken over all δ = 1/n, n ∈ Z≥1, and the second
union is taken over all p1 and p2 in C that have rational real and imaginary
parts and satisfy |p1 − p2| ≥ 4δ and p1, p2 ∈ BC(0, δ−1).

Suppose that µ(A) > 0. It follows from (2) that one of the sets Aδ,p1,p2
satisfies µ(Aδ,p1,p2) =: ε > 0. Let Ok,s denote the set of all (T, o, g) in E such
that BC(p1, δ) and BC(p2, δ) each contain at least s points of the image of
the centers of triangles of Bk(T, o) under g. It is easy to see that the sets
Ok,s are open, and one can check that⋂

s

⋃
k

Ok,s ⊃ Aδ,p1,p2 .

Consequently, for any integer s ≥ 2, there is an integer k ≥ 0 such that
µ(Ok,s) ≥ ε/2. Since Ok,s is open, distributional convergence implies

lim inf
n

µn(Ok,s) ≥ µ(Ok,s). (3)

We will now speak in terms of probabilities. Let (Tn, on, gn) denote a
random sample of µn. Assume that the inequality

Prob((Tn, on, gn) ∈ Ok,s|Tn = T ) ≤ c/s (4)

has already been established. Then

µn(Ok,s) = µn({(T, o, g) ∈ Ok,s : T is a finite triangulation}
= Prob((Tn, on, gn) ∈ Ok,s)

=
∑
T

Prob((Tn, on, gn) ∈ Ok,s|Tn = T ) Prob(Tn = T )

≤ c

s

∑
T

Prob(Tn = T ) =
c

s
.
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Together with (3), this implies that c/s ≥ ε, which is impossible when s is
sufficiently large.

Now we will show that (4) is valid. Whenever (T, o, g) and (T, o′, g′)
belong to E0, there is an affine map α such that g = α◦g′. Choose a preferred
map gT from the set of all injective maps g : F (T ) → C appearing as the
third component of a triple (T, o, g) in E0 having T as its first component.
Let V denote the image of gT . We see that

Prob((Tn, on, gn) ∈ Ok,s|Tn = T )

≤ Prob(0 is (δ, s)-supported in the image of gn|Tn = T )

= Prob(gT (on) is (δ, s)-supported in V |Tn = T )

The inequality above follows from the observation that for any (T, o, g) in
Ok,s, g(o) = 0 is (δ, s)-supported. The equality above follows from the fact
that affine maps preserve the property of a point being (δ, s)-supported. Since
µn is unbiased, gT (on) is distributed uniformly among the points of V . Then
lemma 4 implies that

Prob(gT (on) is (δ, s)-supported in V |Tn = T ) ≤ c

s
.

1.3 Proof of theorem 1

Consider a sequence of unbiased Borel probability measures µn on Xfinite

converging in distribution on X to a Borel probability measure µ, where

µ({(T, o) ∈ X : T has at most one end}) = 1,

and for every number D > 0,

µn({(T, o) ∈ Xfinite : dist(o, ∂T ) > D)→ 1.

For each finite triangulation T , choose an injective, holomorphic map
φT : R(T ) → C. For each (T, o) ∈ Xfinite, choose numbers a > 0 and b ∈ C
such that the map f(T,o) : R(T )→ C satisfies f(T,o)(co) = 0 and

inf{|f(T,o)(c)| : c 6= co} = 1.
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Having made these choices, we obtain an injective function h : Xfinite → E
defined by

(T, o) 7→ (T, o, f(T,o)),

where we consider the restriction of f(T,o) to the centers of the triangles of T .
It is easy to see that h is measurable, so we can consider the sequence of

Borel probability measures Pn = h∗µn on E .

Remark 6. We have not arranged for h to be continuous, and it is certainly
possible to make choices so that h is not continuous.

Now, we will show that the collection {Pn} is tight. To this end, given
integers k ≥ 0 and L ≥ 2, let Uk,L denote the set of all (T, o) ∈ X such that
the degree of any vertex v of Bk(T, o) is at most L. It is easy to see that the
sets Uk,L are open.

Let ε > 0. For each k, Uk,L ⊂ Uk,L+1 and
⋃
L Uk,L = X . It follows that

we can choose a number L(k) such that

µ(Uk,L(k)) ≥ 1− ε

2k
. (5)

Since Uk,L(k) is open, the Portmanteau theorem implies that

lim inf
n

µn(Uk,L(k)) ≥ µ(Uk,L(k)).

Consequently, there is an integer N such that for each n > N ,

µn(Uk,L(k)) ≥ µ(Uk,L(k))−
ε

2k
. (6)

Choosing a larger value for L(k), we can guarantee that (6) holds for each
of the finitely many indices n ≤ N and that (5) remains valid. Set U =⋂
k Uk,L(k). Induction on (5) leads to

µ(U) ≥ 1−
∞∑
k=0

ε

2k
= 1− 2ε.

Induction on (6) leads to

µn(U) ≥ µ(U)−
∞∑
k=0

ε

2k
= µ(U)− 2ε.
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Combining these inqualities, we conclude that for each n,

µn(U) ≥ 1− 4ε. (7)

Let Ak,L denote the set of all (T, o, g) ∈ E such that (T, o) ∈ Uk,L, g(co) =
0, inf{|g(c)| : c 6= co} = 1, and g extends to an injective, holomorphic
map R(T ) → C. Set A =

⋂
k Ak,L(k). It is easy to see that for each n,

Pn(Ak,L) = µn(Uk,L), so (7) implies that

Pn(A) ≥ 1− 4ε.

To establish tightness, it remains to show that A is compact. To this
end, let {(Tn, on, gn)} be a sequence of points in A. We can assume that
(Tn, on)→ (T, o). (For each k, using finiteness of L(k), we see that there are
only finitely many isomorphism classes of Bk(T, o).)

Fix k. For large enough n, Bk(Tn, on) is isomorphic to Bk(T, o), so we can
assume that the gn are all defined on R(Bk(T, o)). The sequence of maps fn
restricted to R(Bk(T, o)) \ {o, o′} miss 0 and gn(o′), so they form a normal
family.

By a diagonalization process, we can pick a subsequence converging on
each R(Bk(T, o)), k ∈ Z≥0. From the left inequality in (1), we see that
diam gn(Io) ≤ C|gn(co) − gn(c)| for all centers c adjacent to co. From our
normalization, we then have diam gn(Io) ≤ C. From the right inequality in
(1), we see that |gn(co)− gn(c)| ≤ C diam gn(Io). Hence,

1 ≤ |gn(c)| ≤ C2,

where the left inequality follows from our normalization, and the right in-
equality follows from the inequalities in the two preceding sentences. This
implies that any limiting map is nonconstant. This completes the proof that
A is compact.

We have established that {Pn} is tight. By Prokhorov’s theorem, a sub-
sequence converges in distribution on E to a Borel probability measure P
supported on the set of all (T, o, g) in E such that g extends to an injective
holomorphic map R(T )→ C.

Let (T, o, g) be a random sample of P. By lemma 5, the image of g has at
most one accumulation point almost surely. By lemma 3, R(T ) is conformally
equivalent to C almost surely.
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1.4 Implications for UIPT

Let τn denote the uniform measure on the set of rooted triangulations of
the sphere having exactly n vertices. Angel and Schramm [1] showed that
τn converges in distribution to a measure τ , and random samples of τ are
almost surely one-ended. Let Mn,r denote the maximal degree of any vertex
in Br(T ), where T is a random sample of τn. Angel and Schramm [1] also
showed that for a fixed r, Prob(Mn,r > t) → 0 as t → ∞ uniformly with
respect to n.

Theorem 7. Let T be a sample of UIPT. Then R(T ) is conformally equiv-
alent to C almost surely.

Proof. Let Sn be a random sphere triangulation chosen according to τn. Re-
moving a triangle chosen uniformly at random from Sn, we obtain a disk
triangulation Tn. Choose an oriented triangle on uniformly at random from
Tn. Then (Tn, on) is a sequence of random triangulations, converging to
UIPT, to which we can apply theorem 1.
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2 Recurrence of distributional limits of finite

planar graphs

after I. Benjamini and O. Schramm [1]
A summary written by Gerandy Brito

Abstract

In their paper [1] the authors proved that the distributional limit
of rooted random unbiased finite planar graphs with degrees uniformly
bounded is almost surely recurrent. In this note we focus on the case
where the graphs are triangulations of the sphere.

2.1 Preliminaries

By a rooted graph, we mean a pair (G, o) where G is a connected graph and o
is a vertex of G. Two rooted graphs (G, o) and (G′, o′) are isomorphic if there
is an isomorphism of graphs from G to G′ which sends o to o′. Denote by X
the space of isomorphism classes of rooted connected, locally finite graphs.
From now on, (G, o) refers to the point of X corresponding to the isomorphic
class of (G, o).

Let BG(o, r) denote the closed ball of radius r and center o in (G, o). Put:

k(G,G′) = sup{k : BG((o, k), o) and BG′((o
′, k), o′) are isomorphic}

Then d((G, o), (G′, o′)) = 2−k(G,G′) is a metric in X .
A random rooted finite graph is an element of X chosen according to a

Borel probability µ supported on a set of finite graphs. A random rooted
finite graph (G, o) with law µ ((G, o) is chosen according to µ) is unbiased
if, given G, the root o is uniformly distributed among the vertices of G. A
precise definition can be found in [1].
The main object of study in this note is a distributional limit of a sequence
of random elements of X , this can be defined as follows: let (G, o), (Gj, oj)j≥1

be random connected rooted graphs. Then (G, o) is the distributional limit
of (Gj, oj) as j → ∞ if the law of (G, o) is the weak limit of the law of
(Gj, oj). An equivalent way to look at it (perhaps more intuitive) is saying
that, for every k > 0 and every finite rooted graph (H, o′) the probability
that (BGj(oj, k), oj) is isomorphic to (H, o′) converges to the probability that
(BG(o, k), o) is isomorphic to (H, o′).
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We will restrict our attention to graphs with degrees uniformly bounded by
a constant M . One important consequence of this assumption is that the
subspace XM of such graphs is compact in (X , d). The reader can easily
check this by noticing that the combinatorics of BG(o,R) is finite. Hence, if
a sequence of rooted graphs (Gj, oj) ∈ XM a Cantor diagonal argument will
produce a subsequence with a distributional limit.

A probabilistic audience will immediately ask how the random walk in
such graphs will behave. Here we answer the question of whether a distribu-
tional limit is recurrent. We recall that, a connected rooted graph is recurrent
if, with probability one, the random walk starting at the root will revisit it.

A random rooted graph is a triangulation if all its faces are topological
triangles. The main goal of this note is to prove the following:

Theorem 1. Let M < ∞, and let (T, o) be a distributional limit of rooted
random unbiased finite triangulations of the sphere Tj with degrees bounded
by M . Then with probability one T is recurrent.

This is proposition 2.1 in [1].
A natural choice for the law of (Gj, oj) is the uniform measure on the

set of all rooted triangulations (with uniformly bounded degrees!) with j
vertices. The more general case, where the uniform measure is on the set of
all triangulations of size j is not included here. Furthermore the set of all
isomorphism classes of triangulations is not compact, as one can see by exam-
ining the sequence (Tn) of triangulations where Tn is obtained by connecting
all the vertices in an n-cycle to two new vertices (forming a double pyramid).
Angel and Schramm [2] proved the existence of the limit in this scenario and
Gurel and Nachmias [3] showed that the limit is, in fact, recurrent almost
surely, as was conjectured in [1].

The proof of the main theorem relies on the theory of circle packing.

2.2 Circle packing theorem and the ring lemma

A packing P is simply a collection of closed disks in the plane with disjoint
interiors. The tangency graph of a packing is a graph which vertices are
indexed by the disks of P and an edge connects two vertices iff their cor-
responding disks are tangent. The connection between the circle packing
theory and planar graphs goes back to the work of Koebe ([4]) who proved

13



that for every triangulation of the sphere G, there is a packing whose tan-
gency graph is G and the packing is unique up to Möbius transformations.
Many years later the theorem was rediscovered by Thurston ([8]) who con-
jectured ([9]) that finite circle packings can approximate the Riemann map
from a simply connected domain to the unit disk. This result was proved
by Rodin and Sullivan ([5]). Much research have been done in the theory of
circle packing after the work of Rudin and Sullivan.

2.2.1 The ring lemma

If the tangency graph of a packing P is a triangulation, for any circle C that
does not intersect the unbounded component of R2 − P the neighbors will
surround it completely. The ring lemma ([5]) states that, if the neighbors of
a circle C with radius r are Ci with radii ri then the quotient r

ri
is bounded

from above by a constant that only depends on the degree of C. We will
use this powerful result and the combinatorics of the graphs to produce a
packing with tangency graph T as follows: denote by Pj the packing with
tangency graph Tj such that Coj is the unit disk. Let tj be the triangle that
intersect the unbounded component of R2 − Pj. Note that:

• The graph distance from oj to tj converges to infinity (in probability)
as j →∞. By the assumption on the bound of the degrees, for any k,
the number of vertices at distance at most k from tj is bounded by a
constant, that depends on k and M , uniformly in j.

• For any fixed k > 0 there is a constant c = c(M,k) such that all disks
in Pj at distant at most k from oj have radii in [1/c, c] asymptotically
almost surely. (one should exclude those disks which intersect the un-
bounded component of R2 − P ). This is a consequence of the ring
lemma.

The last observation implies that, the family of random variables denot-
ing the radii of the disks of Pj at distance at most k from oj is tight for all
k. Hence, one can take a subsequence of these random variables that con-
verges in distribution. Another diagonal argument will produces a sequence
of packings that converges to a (random) packing P which tangency graph
will be T . The packing P obtained above will be infinite and disks may
accumulate on different points of the plane. We say a point z in the plane is
an accumulation point of a packing if any open set containing z intersects

14



infinitely many disks. The next is proposition 2.2 in [1] which proves that,
in our case, there is at most one accumulation point in the plane.

Proposition 2. With probability 1, there is at most one accumulation point
in R2 of the packing P .

With this at hand one needs to look at two cases to finish the proof of
the theorem: if the packing P has no accumulation point the result follows
from [6] and [7]. In these two papers it was shown, independently, that the
tangency graph of a packing with no accumulation points in the plane and
bounded degrees is recurrent.
If P has one accumulation point, p, consider the graph G1 spanned by P in
the disk B(p, 1). Theorems 2.6, 3.1 and 8.1 in [6] imply that G1 is recurrent.
Similarly, the graph outside B(p, 1) is recurrent. Since these two graphs are
connected by a finite number of edges it follows that T is recurrent.
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3 An Estimate for the Conformal Radius

after S. Rohde and C. Wong [2]
A summary written by Angel Chavez

Abstract
The half-plane capacity of a subset of the upper-half plane is com-

parable to the euclidean area of the hyperbolic neighborhood of radius
one of this set. This is proved by showing a similar estimate for the
conformal radius of a subdomain of the unit disk. We summarize
Rohde and Wong’s proof (from [2]) of the estimate for the conformal
radius.

3.1 Introduction

Throughout this paper we will let H = {z ∈ C : Im(z) > 0} and D = {z ∈
C : |z| < 1} denote the upper-half plane and open unit-disk, respectively. A
hull in H is a subset A ⊂ H with the property that H\A is simply-connected.
If A ⊂ H is a hull, then we let gA : H\A −→ H denote the unique conformal
map satisfying the normalization

gA(z) = z +O
(1

z

)
(1)

as z →∞. The half-plane capacity of A is defined as the limit

hcap(A) = lim
z→∞

z
(
gA(z)− z

)
. (2)

The half-plane capacity is intrinsically linked to SLE: The evolution of a curve
determines a collection of hulls {At : t ≥ 0} in H, and the conformal maps
gAt satisfy the chordal Loewner equation. Naturally, it is of great interest for
the study of SLE to estimate hcap(A) in terms of simpler geometric quantities
associated to A. Rohde and Wong proved the following in [2].

Theorem 1 (Theorem 1.1 in [2]). The half-plane capacity and the (euclidean)
area of the hyperbolic neighborhood of radius one are comparable,

hcap(A) � |N(A)|.

More precisely, there are absolute constants C1, C2 > 0 so that C1|N(A)| ≤
hcap(A) ≤ C2|N(A)|, where |N(A)| denotes the (euclidean) area of the hy-
perbolic neighborhood of radius one of A and

N(A) = {z ∈ H : disthyp(z, A) ≤ 1}.
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Theorem 1 is proved by showing that a similar estimate holds for the
conformal radius of a subdomain of the unit disk. Recall the conformal
radius of a simply-connected region B ⊂ C relative to a point z0 ∈ B is
defined as

crad(B, z0) = |f ′(0)|, (3)

where f : D −→ B is a uniformization of B satisfying f(0) = z0.
As with chordal SLE and the half-plane capacity, we also have an intrinsic

relationship between radial SLE and we refer to as disk capacity. In partic-
ular, suppose that B ⊂ D for which 0 ∈ D\B and D\B is simply-connected.
The disk capacity of B is defined as the positive number

dcap(B) = − log crad
(
D\B, 0

)
.

Estimating the disk capacity is the context of the next theorem.

Theorem 2 (Theorem 1.2 in [2]). If B ⊂ {z ∈ D : 1
2
< |z| < 1} such that

D\B is simply-connected, then

dcap(B) � |N(B)|,

where dcap(B) denotes the disk capacity of B and |N(B)| denotes the (eu-
clidean) area of the hyperbolic (with respect to D) neighborhood of radius one
of B.

Theorem 2 actually implies Theorem 1 (see page 8 in [2]). In this paper
we will summarize the proof of Theorem 2 given in [2].

3.2 Dyadic Decomposition of D
Here, we state two results related to the dyadic decomposition of the disk. We
will provide the ideas for the proofs, closely following [2]. We begin by fixing
a subset B ⊂ {z ∈ D : 1

2
< |z| < 1} with the property that D\B is simply-

connected. As before, we let N(B) denote the hyperbolic neighborhood of
B of radius 1. Given a dyadic interval,

J =
[k − 1

2n
,
k

2n
]

(n = 1, 2, . . . and k = 1, 2 . . . , 2n),
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we define the dyadic square,

Qj =
{
z ∈ D :

z

|z|
∈ exp(2πiJ) and 1− |z| ≤ 2−n

}
.

The top half of QJ is defined as

T (QJ) =
{
z ∈ QJ : 1− |z| > 2−(n+1)

}
.

Denote by Q(B) the union of all dyadic squares whose top half intersected
with B is non-empty. Lastly, we write x . y if there exists a constant C > 0
for which x ≤ Cy.

Proposition 3 (Proposition 2.1 in [2]). If B ⊂ {z ∈ D : 1
2
< |z| < 1} and

D\B is a simply-connected region, then

C1|B| ≤ dcap(B) ≤ dcap
(
Q(B)

)
≤ C2|Q(B)|,

with absolute constants C1, C2 > 0.

Idea of Proof. The first inequality follows from Parseval’s identity and the
second inequality follows from the Schwarz lemma.

To prove the third inequality one writes Q(B) as union of dyadic squares
Q1, Q2, . . . satisfying (1) {Qj} is a disjoint family (modulo boundary) and
(2) |Q1| ≥ |Q2| ≥ · · · . Define fm to be the conformal map from D onto
D\
⋃∞
j=m+1 with the normalization fm(0) = 0, and let Km = f−1

m (Qm). Show-
ing

dcap(Km) � |Qm| (4)

for each m ≥ 1 implies the third inequality. Inequality (4) is proven in [3]
(see Proposition 2) by showing that one can construct two concentric circular
hulls in D with sizes that are comparable and such that one contains Km and
the other is contained in Km.

We will now take N̂(B) to be the union of N(B) with its complementary
components (w.r.t. D) which do not contain the origin.

Proposition 4 (Proposition 2.2 in [2]). If B ⊂ {z ∈ D : 1
2
< |z| < 1} and

D\B is a simply-connected region, then

dcap
(
N̂(B)

)
. dcap(B).
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Idea of Proof. Let ε > 0 and define Nε(B) to be the hyperbolic neighborhood

of B of radius ε. Define N̂ε(B) just as N̂(B) with Nε(B) in place of N(B).
Define the dyadic layer

Dn =
{
z ∈ D : 2−(n+1) ≤ 1− |z| < 2−n

}
and let Bn = B ∩Dn. One first establishes the relationships

dcap(B) �
∞∑
n=1

2−nωn(0) and dcap
(
N̂ε(B)

)
�

∞∑
n=1

2−nω̂n(0), (5)

where ωn(z) denotes harmonic measure of Bn with respect to the region D\B
and the point z (similarly for ω̂). The inequality

ω̂n(0) . ωn−1(0) + ωn(0) + ωn+1(0) (6)

can be shown to hold provided ε > 0 is chosen so that for each n one has the
property that every hyperbolic ball centered in Dn of radius 2ε is contained
in Dn−1 ∪Dn ∪Dn+1. Relations (5) and (6) together imply

dcap
(
N̂ε(B)

)
. dcap(B).

Iteration of this inequality 1
ε

times gives dcap
(
N̂(B)

)
. dcap(B). The

Schwarz lemma implies the reverse inequality.

3.3 Proof of Theorem 2

Theorem 2 follows in a straightforward manner from Propositions 3 and 4. In
particular, dcap(B) & dcap

(
N̂(B)

)
by Proposition 4. Applying Proposition

3 to the subset N̂(B) implies dcap
(
N̂(B)

)
& |dcap

(
N̂(B)

)
|. Altogether,

dcap(B) & |N(B)|

by monotonicity of | · |. By Proposition 3 we have dcap(B) ≤ dcap
(
Q(B)

)
,

wich implies dcap(B) ≤ dcap
(
Q(N̂(B))

)
sinceN ⊂ N̂(B). Applying Proposi-

ton 3 to the subset N̂(B) now implies dcap(B) . |Q
(
N̂(B)

)
| . |N(B)|.

Therefore,

dcap(B) � |N(B)|.

20



References

[1] Lawler, G., Conformally Invariant Processes in the Plane. American
Mathematical Society, 2005.

[2] Rohde, S. and Wong, C., Half-Plane Capacity and Conformal Radius.
Proc. Amer. Math. Soc. 142 (2014), 931-938.

[3] Rohde, S. and Zinsmeister, M., Variation of the Conformal Radius. J.
Anal. Math. 92 (2004), 105-115.

Angel Chavez, University of Arizona
email: achavez@math.arizona.edu

21



4 Forward and backward SLE(κ; ~ρ) processes

after O. Schramm, D. B. Wilson [2], S. Rohde and D. Zhan [3]
A summary written by Laurie Field

Abstract

We define the SLE(κ; ~ρ) processes and give the relationship be-
tween the disk and half-plane versions of them. We also discuss back-
ward SLE(κ; ~ρ).

4.1 SLE(κ; ~ρ) processes

SLE(κ; ~ρ) processes are variants of SLE(κ) that appear when one or more
force points are tracked and the measure is weighted in the sense of the
Girsanov theorem by certain martingales.

Though some of the motivation for studying them is omitted by doing
so, SLE(κ; ~ρ) processes can be defined without using the Girsanov theorem
in the following simple manner. This approach was expounded by Schramm
and Wilson [2], though the concept of SLE(κ; ~ρ) processes was introduced by
Lawler, Schramm and Werner [1]. For simplicity we restrict our discussion
to the upper half-plane H and the unit disk D. Recall the chordal and radial
Loewner equations in H and D respectively,

∂tgt(z) =
2

gt(z)−Wt

, g0(z) = z, z ∈ H, (1)

∂tgt(z) = −gt(z)
gt(z) +Wt

gt(z)−Wt

, g0(z) = z, z ∈ D, (2)

where Wt is the driving function lying on the real line or unit circle, respec-
tively.

Definition 1. Let ρ1, . . . , ρm ∈ R.
Chordal SLE(κ; ρ1, . . . , ρm), often just called SLE(κ; ~ρ), in H starting

from W0, V
1

0 , . . . , V
m

0 is the solution to the chordal Loewner equation (1) with
driving function given by the solution to the SDE system

dWt =
√
κ dBt +

m∑
i=1

ρi<
1

Wt − V i
t

, dV i
t =

2

V i
t −Wt

, 1 ≤ i ≤ m,
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which is well-defined until the first time τ that V i
t approaches Wt for some i.

Radial SLE(κ; ρ1, . . . , ρm) in D starting from W0, V
1

0 , . . . , V
m

0 is the solu-
tion to the chordal Loewner equation (1) with driving function given by the
solution to the SDE system

dWt = −(κ/2)Wt dt+ i
√
κWt dBt +

m∑
i=1

ρi
4
Wt

(
V i
t +Wt

V i
t −Wt

+
V i
t

−1
+Wt

V i
t

−1
−Wt

)
,

dV i
t = −V i

t

V i
t +Wt

V i
t −Wt

, 1 ≤ i ≤ m,

which is once again well-defined until the first time V i
t approaches Wt for

some i.

We remark that V i
t

−1
is simply the inversion of V i

t in the unit circle.
The following theorem shows that the image of chordal or radial SLE(κ; ~ρ)

under a Möbius transformation is again SLE(κ; ~ρ) with the same weights, as
long as the sum of those weights is κ − 6. In particular, it implies the
well-known result that the image of radial SLE in the disk under a Möbius
transformation to the upper half-plane is a time change of chordal SLE(κ;κ−
6), with the force point at the image of 0. This uses the fact that a force
point of any weight can be introduced at 0 (for radial SLE(κ; ~ρ) in D) or ∞
(for chordal SLE(κ; ~ρ) in H) without changing the law of the process.

In the theorem, we adopt the convention that SLE(κ; ~ρ) in D is always
radial SLE(κ; ~ρ) and SLE(κ; ~ρ) in H is always chordal SLE(κ; ~ρ), both as
specified in Definition 1.

Theorem 2. Let ψ : X → Y be a Möbius transformation between two do-
mains X and Y , each of which is either D or H. Suppose that ρ1, . . . , ρm ∈ R
with ρ1 + · · ·+ ρm = κ− 6. Then the image under ψ of SLE(κ; ~ρ) in X start-
ing from (W,V 1

0 , . . . , V
m

0 ) is a time change of SLE(κ; ~ρ) in Y starting from
(ψ(W ), ψ(V 1

0 ), . . . , ψ(V m
0 )), up to a stopping time.

Proof sketch. It suffices to cover the case of ψ : H→ D. After changing the
time parametrization so that the half-plane capacity parametrization in H
becomes the capacity parametrization in D, one can calculate the evolution
of (ψ(W ), ψ(V 1

0 ), . . . , ψ(V m
0 )) by applying Itō’s formula to the SDE system

that appears in the definition.
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4.2 Backward SLE(κ; ~ρ) processes

The concept of backward SLE processes is simple: instead of growing the
curve from the tip, grow it from the base, always attaching new segments
to the boundary of the reference domain, and mapping the existing curve
conformally inwards. Instead of a single evolving curve, this yields a family
of curves over time.

As a matter of taste, it is possible to define the radial version of SLE
processes in the disk by lifting the disk to the half-plane under the map
z 7→ −i log z. This makes certain formulas simpler, especially when tracking
points on the boundary. We follow Rohde and Zhan [3] in this section.

Definition 3. The backward Loewner equations are the forward Loewner
equations flowed in the reverse direction, that is,

∂tft(z) = − 2

ft(z)−Wt

, f0(z) = z, z ∈ H,

∂tft(z) = ft(z)
ft(z) +Wt

ft(z)−Wt

, g0(z) = z, z ∈ D,

∂tf̃t(z) = − cot
( f̃t(z)− W̃t

2

)
f̃0(z) = z, z ∈ H,

respectively being chordal, radial and radial lifted under the map z 7→ −i log z.

The backwards Loewner equations generate hulls Lt that are the comple-
ment of the image of ft in the original domain; note that these hulls are not
nested as they were for the hulls of the forward Loewner equation.

Definition 4. The backward chordal SLE(κ; ~ρ) processes are those generated
by the backward chordal Loewner equation driven by the solution to the SDE

dWt =
√
κ dBt −

m∑
i=1

ρi<
1

Wt − V i
t

, dV i
t = − 2

V i
t −Wt

dt, 1 ≤ i ≤ m.

The backward radial SLE(κ; ~ρ) processes (lifted by z 7→ −i log z) are generated
by the backward lifted radial Loewner equation driven by the solution to the
SDE

dW̃t =
√
κ dBt −

m∑
i=1

ρi
2

cot
(W̃t − Ṽ i

t

2

)
dt,

dṼ i
t = − cot

( Ṽ i
t − W̃t

2

)
dt, 1 ≤ i ≤ m.
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Note the minus sign in front of the ρi weighted terms in addition to that
in front of the usual Loewner vector field.

The existence of these processes can be deduced from the existence of
backward chordal SLE(κ) via the Girsanov theorem.

The analogue to Schramm and Wilson’s theorem for backward SLE is as
follows.

Theorem 5. Let Lt by the backward chordal SLE(κ; ~ρ) hulls started from
(W0, V

1
0 , . . . , V

m
0 ). Suppose that ρi ∈ R with

∑
i ρi = −κ − 6. Let φ be a

Möbius transformation of the upper half-plane and suppose that∞, φ−1(∞) ∈
{V 1

0 , . . . , V
m

0 }. Then, after a time-change, φ∗(Lt) are the backward chordal
SLE(κ; ~ρ) hulls started from (φ(W0), φ(V 1

0 ), . . . , φ(V m
0 )).

In this theorem, the map φ∗ sends a hull K to φK(K), where φK is
the unique R-symmetric conformal map defined in domain(φ)K such that
VK = φ. See [3], Section 2 for definitions of these objects. Once they are
understood, the proof proceeds via Itō’s lemma as in the forward case.
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5 Random curves, scaling limits and Loewner

evolutions

after A. Kemppainen and S. Smirnov [5]
A summary written by Alexander Glazman

Abstract

It is shown that a weak estimate on the probability of an annulus
crossing implies that a random curve arising from a statistical me-
chanics model will have scaling limits and those will be well-described
by Loewner evolutions with random driving forces. Interestingly, the
proofs indicate that existence of a nondegenerate observable with a
conformally-invariant scaling limit seems sufficient to deduce the re-
quired condition.

The paper serves as an important step in establishing the conver-
gence of Ising and FK Ising interfaces to SLE curves, moreover, the
setup is adapted to branching interface trees.

5.1 Introduction

The paper is concerned with sequences of random planar curves and different
conditions sufficient to establish their precompactness.

Typically, the random curves we want to consider connect two boundary
points a, b ∈ ∂U in a simply connected domain U . While we work with
different domains U , we still prefer to restate our conclusions for a fixed
domain. Thus we encode the domain U and the curve end points a, b ∈ ∂U
by a conformal transformation φ from U onto the unit disc D = {z ∈ C :
|z| < 1}. The domain U = U(φ) is then the domain of definition of φ and
the points a and b are preimages φ−1(−1) and φ−1(1), respectively.

Because of the above reasons the first fundamental object in our study
is a pair (φ,P) where φ is a conformal map and P is a probability measure
on curves with the following restrictions: Given φ we define the domain
U = U(φ) to be the domain of definition of φ and we require that φ is
a conformal map from U onto the unit disc D. Therefore U is a simply
connected domain other than C. We require also that P is supported on (a
closed subset of){

γ ∈ Xsimple(U) :
the beginning and end point of

φ(γ) are −1 and +1, respectively

}
, (1)
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where Xsimple(U) denotes the set of Jordan curves γ : [0, 1] → Ū such
that γ(0, 1) ⊂ U . The second fundamental object in our study is some
collection Σ of pairs (φ,P) satisfying the above restrictions.

We uniformize by a disk D to work with a bounded domain. As it is
shown in the paper, our conditions are conformally invariant, so the choice
of a particular uniformization domain is not important.

For any 0 < r < R and any point z0 ∈ C, denote the annulus of radii r
and R centered at z0 by A(z0, r, R):

A(z0, r, R) = {z ∈ C : r < |z − z0| < R}. (2)

The following definition makes speaking about crossing of annuli precise.

Definition 1. A curve γ is said to make a crossing of the annulus A =
A(z0, r, R) if for some T0 and T1 both γ(T0) and γ(T1) lie outside A and they
are in the different components of C \ A.

For given domain U and for given simple (random) curve γ on U , we
always define Uτ = U \ γ[0, τ ] for each (random) time τ . We call Uτ as the
domain at time τ .

Definition 2. For a fixed domain (U, a, b) and for fixed simple (random)
curve in U starting from a, define for any annulus A = A(z0, r, R) and for
any (random) time τ ∈ [0, 1], Auτ = ∅ if ∂B(z0, r) ∩ ∂Uτ = ∅ and

Auτ =

{
z ∈ Uτ ∩ A :

the connected component of z in Uτ ∩ A
doesn’t disconnect γ(τ) from b in Uτ

}
(3)

otherwise.

5.2 Main theorem

The main theorem is proven under a specific condition on the crossing prob-
ability. Four different ways to state this condition are mentioned in the
paper — 2 geometric and 2 conformal. It is proven in the paper that they
are equivalent. We will use one of the geometric conditions to state the main
theorem.

Condition G2. The family Σ is said to satisfy a geometric bound on an
unforced crossing if there exists C > 1 such that

P
(
γ[τ, 1] makes a crossing of A which is contained in Auτ

∣∣ γ[0, τ ]
)
<

1

2
. (4)
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for any (φ,P) ∈ Σ, for any stopping time 0 ≤ τ ≤ 1 and for any annulus
A = A(z0, r, R) where 0 < C r ≤ R.

Denote by φP the pushforward of P by φ defined by

(φP)(A) = P(φ−1(A)) (5)

for any measurable A ⊂ Xsimple(D). In other words φP is the law of the ran-
dom curve φ(γ). Given a family Σ as above, define the family of pushforward
measures

ΣD = {φP : (φ,P) ∈ Σ} . (6)

The family ΣD consist of measures on the curves Xsimple(D) connecting −1
to 1.

Fix a conformal map

Φ(z) = i
z + 1

1− z
(7)

which takes D onto the upper half-plane H = {z ∈ C : Imz > 0}. Note that
if γ is distributed according to P ∈ ΣD, then γ̃ = Φ(γ) is a simple curve in
the upper half-plane slightly extending the definition of Xsimple(H), namely,
γ̃ is simple with γ̃(0) = 0 ∈ R, γ̃((0, 1)) ⊂ H and |γ(t)| → ∞ as t → 1.
Therefore, if γ̃ is parametrized with the half-plane capacity, then it has a
continuous driving term W = Wγ : R+ → R. As a convention the driving
term or process of a curve or a random curve in D means the driving term
or process in H after the transformation Φ and using the half-plane capacity
parametrization.

The following theorem is the main result of this paper.

Theorem 1.3. If the family Σ of probability measures satisfies Condi-
tion G2, then the family ΣD is tight and therefore relatively compact in the
topology of the weak convergence of probability measures on (X,BX). Fur-
thermore if Pn ∈ ΣD is converging weakly and the limit is denoted by P∗ then
the following statements hold P∗ almost surely

1. the point 1 is not a double point, i.e., γ(t) = 1 only if t = 1,

2. the tip γ(t) of the curve lies on the boundary of the connected component
of D\γ[0, t] containing 1 (having the point 1 on its boundary), for all t,

3. if K̂t is the hull of Φ(γ[0, t]), then the capacity capH(K̂t)→∞ as t→ 1
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4. for any parametrization of γ the capacity t 7→ capH(K̂t) is strictly in-
creasing and if (Kt)t∈R+ is (K̂t)t∈[0,1) reparametrized with capacity, then
the corresponding gt satisfies the Loewner equation with a driving pro-
cess (Wt)t∈R+ which is Hölder continuous for any exponent α < 1/2.

Furthermore, there exists ε > 0 such that for any t, E∗[exp(ε|Wt|/
√
t)] <∞.

5.3 Corollaries

The first corollary clarifies the relation between the convergence of random
curves and the convergence of their driving processes. For instance, it shows
that if the driving processes of Loewner chains satisfying Condition G2 con-
verge, also the limiting Loewner chain is generated by a curve.

Corollary 1. Suppose that (W (n))n∈N is a sequence of driving processes of
random Loewner chains that are generated by simple random curves (γ(n))n∈N
in H satisfying Condition G2. If (γ(n))n∈N are parametrized by capacity,
then the sequence of pairs (γ(n),W (n))n∈N is tight in the topology of uniform
convergence on the compact intervals of R+ in the capacity parametrization.
Furthermore, if either (γ(n))n∈N or (W (n))n∈N converges (weakly), also the
other one converges and the limits agree in the sense that γ = limn γn is
driven by W = limnWn.

For the next corollary let’s define the space of open curves by identifying
in the set of continuous maps γ : (0, 1)→ C different parametrizations. The
topology will be given by the convergence on the compact subsets of (0, 1).

We say that (Un, an, bn), n ∈ N, converges to (U, a, b) in the Carathéodory
sense if there exists conformal and onto mappings ψn : D → Un and ψ :
D → U such that they satisfy ψn(−1) = an, ψn(+1) = bn, ψ(−1) = a and
ψ(+1) = b (possibly defined as prime ends) and such that ψn converges to ψ
uniformly in the compact subsets of D as n→∞.

The next corollary shows that if we have a converging sequence of ran-
dom curves in the sense of Theorem 1.3 and if they are supported on domains
which converge in the Carathéodory sense, then the limiting random curve is
supported on the limiting domain. Note that the Carathéodory kernel con-
vergence allows that there are deep fjords in Un which are “cut off” as n→∞.
One can interpret the following corollary to state that with high probability
the random curves don’t enter any of these fjords. This is a desired property
of the convergence.
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Corollary 2. Suppose that (Un, an, bn) converges to (U∗, a∗, b∗) in the
Carathéodory sense (here a∗, b∗ are possibly defined as prime ends) and sup-
pose that (φn)n≥0 are conformal maps such that Un = U(φn), an = a(φn), bn =
b(φn) and limφn = φ∗ for which U∗ = U(φ∗), a∗ = a(φ∗), b = b(φ∗). Let
Û = U∗ \ (Va ∪ Vb) where Va and Vb are some neighborhoods of a and b,
respectively, and set Ûn = φ−1

n ◦ φ(Û). If (φn,Pn)n≥0 satisfy Condition G2

and γn has the law Pn, then γn restricted to Ûn has a weakly converging sub-
sequence in the topology of X, the laws for different Û are consistent so that
it is possible to define a random curve γ on the open interval (0, 1) such that
the limit for γn restricted to Ûn is γ restricted to the closure of Û . Espe-
cially, almost surely the limit of γn is supported on open curves of U∗ and
don’t enter (lim supUn) \ U∗.

5.4 Proof of the main theorem

There are essentially two parts in the main theorem — tightness of a family
of measures satisfying Condition G2, and properties of a weak limit of a
converging sequence of measures chosen in this family.

The first part follows from [1]. In [1] the tightness of a family of measures
is obtained under a similar assumption — we call it Condition G4. Thus,
one just needs to prove that Condition G4 follows from Condition G2. This
is done in Propostion 3.5.

As a general strategy in the proof of the properties of the limitting mea-
sure, we find an increasing sequence of events En ⊂ Xsimple(D) such that

lim
n→∞

inf
P∈ΣD

P(En) = 1

and the curves in En have some good properties which among other things
guarantee that the closure of En is contained in the class of Loewner chains.
The main tool is Lemma A.5 from the appendix.

Lemma A.5. Let T > 0 and for each n ∈ N, let γn : [0, T ]→ C be injective
continuous function such that γn(0) ∈ R and γn(0, T ] ⊂ H. Suppose that

1. γn → γ uniformly on [0, T ] and γ is not constant on any subinterval
of [0, T ]

2. Wn → W uniformly on [0, υ(T )].
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3. Fn → F uniformly on [0, T ]× [0, 1], where

Fn(t, y) = g−1
γn[0,t]

(
Wn(υn(t)) + iy

)
. (8)

Then t 7→ ν is strictly increasing and gt := gγ◦υ−1[0,t] satisfies the Loewner
equation with the driving term W . Furthermore, the sequence of mappings
(t, z) 7→ gγn◦υ−1

n [0,t] converges to gt uniformly on

SK(T, δ) = {(t, z) ∈ [0, T ]×H : dist(z,Kt) ≥ δ} (9)

for any δ > 0. Here Kt is the hull of γ[0, t].

Thus, it is enough to find an increasing sequence of events En ⊂ Xsimple(D)
mentioned above that satisfies all three conditions in this lemma — then a
weak limit of {Pk} will be“almost supported” on

⋃
Ēn, and Lemma A.5

shows that
⋃
Ēn satisfies all the desired properties.

An En will be found as the intersection of several events, each of them
having a measure almost 1 according to any Pk and ensuring one of the
conditions of Lemma A.5 being satisfied. The question why these events can
be chosen is addressed in Proposition 3.8, Proposition 3.5, Theorem 3.9 and
Theorem 3.10.

A tool which makes many of the proofs easier is the fact that we can use
always the most suitable form of the equivalent conditions. In particular,
if Condition G2 can be verified in the original domain then Condition G2
(or any equivalent condition) holds in any reference domain where we choose
to map the random curve as long as the map is conformal. Furthermore,
Condition G2 holds after we observe the curve up to a fixed time or a random
time and then erase the observed initial part by conformally mapping the
complement back to reference domain.

5.5 Interfaces in statistical physics and Condition G2

In this section, we prove (or in some cases survey the proof) that the interfaces
in the following models satisfy Condition G2:

• Fortuin–Kasteleyn model with the parameter value q = 2, a.k.a. FK
Ising, at criticality on the square lattice or on a isoradial graph

• Site percolation at criticality on the triangular lattice
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• Harmonic explorer on the hexagonal lattice

• Loop-erased random walk on the square lattice.

It turns out that Condition G2 fails for uniform spanning tree (UST) but it
is possible to extend this method to the case of UST Peano curve. This is to
appear in [4].

5.5.1 FK Ising

Suppose that G = (V (G), E(G)) is a finite graph, which is allowed to be a
multigraph, that is, more than one edge can connect a pair of vertices. For
any q > 0 and p ∈ (0, 1), define a probability measure on {0, 1}E(G) by

µp,qG (ω) =
1

Zq,p
G

(
p

1− p

)|ω|
qk(ω) (10)

where |ω| =
∑

e∈E(G) ω(e), k(ω) is the number of connected components in

the graph (V (G), ω) and Zp,q
G is the normalizing constant making the measure

a probability measure. This random edge configuration is called the Fortuin-
Kasteleyn model (FK) or the random cluster model.

A fundamental property of the FK models is the FKG inequality which
holds for q ≥ 1 — it says that two increasing events are positively associated.
It is well known that the FK model with parameter q is connected to the
Potts model with parameter q. Here we are interested in the model connected
to the Ising model and hence we mainly focus to the case q = 2 which is called
FK Ising (model).

Denote O(U) the event that there is a open crossing of a 4-admissible
domain U . The following proposition was proved in [3] and it is the main
ingredient used to prove that FK Ising satisfies Condition G2.

Proposition 4.5. Let Un = hnÛn be a sequence domain such that the
sequence of reals hn ↘ 0 and Ûn is a sequence of 4-admissible domains. If
the sequence Un converges to a quadrilateral (U, a, b, c, d) in the Carathéodory
sense as n→∞, then Pn[O(Ûn)] converges to a value s ∈ [0, 1]. If (U, a, b, c, d)
is non-degenerate then 0 < s < 1. Here Pn is the probability measure µpsd,2

Ûn,P

where P is a fixed partitioning of the set {1, 2}.

In [2] it was derived using the main theorem of [5] that the interface in
FK Ising model converges to SLE16/3.
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5.5.2 Percolation

The percolation measure on the whole triangular lattice with a parame-
ter p ∈ [0, 1] is the probability measure µpT on {open, closed}T such that
independently each vertex is open with probability p and closed with prob-
ability 1− p. The independence property of the percolation measure gives a
consistent way to define the measure on any subset of T by restricting the
measure to that set. The well-known critical value of p is pc = 1/2.

The proof of the fact that the collection (PU : U admissible) satisfies Con-
dition G2 can be easily derived from Russo–Seymour–Welsh theory (RSW)
which proves the existence of q > 0 such that for any n

µpcT (∃ open path inside A(0;n, 3n) separating 0 from ∞) ≥ q. (11)

5.5.3 Harmonic explorer

The result that the harmonic explorer satisfies Condition G2 appears already
in [7]. In [5] just a survey of that proof is given.

5.5.4 Chordal loop-erased random walk

The loop-erased random walk is one of the random curves proved to be
conformally invariant. In [6], the radial loop-erased random walk between an
interior point and a boundary point was considered. In [5] the chordal loop-
erased random walk between two boundary points is treated. Condition G2
is slightly harder to verify in this case. Namely, the natural extension of
Condition G2 to the radial case can be verified in the same way, except that
Proposition 4.11 is not necessary, and it is done in [6].

Let (Xt)t=0,1,... be a simple random walk (SRW) on the lattice Z2 and Px
its law so that Px(X0 = x) = 1. Consider a bounded, simply connected
domain U ⊂ C whose boundary ∂U is a path in Z2. Call the corresponding
graph G, i.e., G consists of vertices U ∩ Z2 and the edges which stay in U
(except that the end points may be in ∂U). Let V be the set of vertices
and ∂V := V ∩ ∂U . When X0 = x ∈ ∂V condition SRW on X1 ∈ U .
For any X0 = x ∈ V define T to be the hitting time of the boundary, i.e.,
T = inf{t ≥ 1 : Xt ∈ ∂V }.

For a ∈ V and b ∈ ∂V define Pa→b = PU
a→b to be the law of (Xt)t=0,1,2,...,T

with X0 = a conditioned on XT = b. If (Xt)t=0,1,2,...,T distributed accord-
ing to PU

a→b then the process (Yt)t=0,1,2,...,T ′ , which is obtained from (Xt) by
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erasing all loops in chronological order, is called loop-erased random walk
(LERW) from a to b in U . Denote its law by PU,a,b.

It is shown in [5] that the collection {PU,a,b : (U, a, b)} of chordal LERWs
satisfies Condition C2 (one of conformal reformulations of Condition G2),
where U runs over all simply connected domains as above and {a, b} ⊂ ∂U .
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6 Basic properties of SLE

after S. Rohde and O. Schramm [3]
A summary written by Jianping Jiang

Abstract

We give a short summary of the basic properties of SLE in the
seminal paper by Rohde and Schramm[3]. We discuss the existence of
SLE paths, phases for SLE and dimension of the SLE paths.

6.1 Introduction

Let Bt be a standard Brownian motion on R with B0 = 0. For κ ≥ 0 let
ξ(t) =

√
κBt and for each z ∈ H \ {0} let gt(z) be the solution of the ODE

∂tgt(z) =
2

gt(z)− ξ(t)
, g0(z) = z. (1)

Let τ(z) := inf{t ≥ 0 : gt(z)− ξ(t) = 0}, and set

Kt := {z ∈ H : τ(z) ≤ t}.

The parameterized collection of maps {gt : t ≥ 0} is called chordal SLEκ.
The sets Kt are the hulls of the SLE. It is easy to verify that for any t ≥ 0
the map gt : Ht → H is conformal where Ht is the unbounded component of
H \Kt.

Note that there are other versions of SLE. For example, the radial SLEκ,
whole-plane SLEκ and more generally SLEκ in doubly connected domains
(see [4]).

In this paper, we give a short summary of the basic properties of SLE.
We will follow the seminal paper by Rhode and Schramm [3]. We will focus
ourselves on the chordal SLEκ, but those properties are also valid for other
versions of SLEκ we mentioned above.

Let ft(z) := g−1
t (z) and f̂t(z) := ft(z+ξ(t)). The trace γ of chordal SLEκ

is defined by
γ(t) := lim

z→0,z∈H
f̂t(z).

If the limit does not exist, let γ(t) denote the set of all limit points.
The first property we will discuss is the existence of the trace γ and

moreover γ(t) is a continuous function of t.
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Theorem 1. For every t ≥ 0, the limit

γ(t) := lim
z→0,z∈H

f̂t(z) (2)

exists, γ : [0,∞)→ H is a continuous path, and Ht is the unbounded compo-
nent of H \ γ([0,∞)).

Remark 2. Rohde and Schramm proved the above theorem for κ 6= 8, the
case when κ = 8 is proved in [2].

The second property is about the phases of SLEκ.

Theorem 3. 1. If 0 ≤ κ ≤ 4, the SLEκ trace γ is a.s. a simple path and
γ[0,∞) ⊆ H ∪ {0}.

2. If 4 < κ < 8, then ∪t>0Kt = H but γ([0,∞)) ∩H 6= H.

3. If κ ≥ 8, then γ is a space filling curve, i.e., γ([0,∞)) = H.

The third property is about the dimension of the SLEκ trace.

Theorem 4. The Hausdorff dimension of the SLEκ trace is a.s min{1 +
κ/8, 2}.

Remark 5. Rohde and Schramm proved the upper bound of the Hausdorff
dimension of SLEκ trace is min{1 + κ/8, 2}. The lower bound is proved by
Beffara [1].

6.2 Existence of the curve

In this section, we will sketch the proof of Theorem 1. Our goal is to prove
the existence and continuous in t of the limit in (2). The follow lemma says
that it is enough to prove the limit exists along one particular direction in
the complex plane.

Lemma 6. Let gt be the corresponding solution of (1). Suppose β(t) :=
limy↓0 f̂t(iy) exists for all t ∈ [0,∞) and is continuous, then Theorem 1
holds.

The proof of Lemma 6 is not hard, so we skip the proof. So our main con-
cern is to prove β(t) = limy↓0 f̂t(iy) exists for all t ∈ [0,∞) and is continuous,
and this follows form the following theorem.
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Theorem 7. Define H(y, t) := f̂t(iy) where y > 0, t ≥ 0. If κ 6= 8, then a.s.
H(y, t) extends continuously to [0,∞)× [0,∞).

By the scale-invariance of chordal SLE, i.e., (t, z) 7→ α−1/2gαt(
√
αz) has

the distribution as the process (t, z) 7→ gt(z) for any α > 0, it is enough to
show that H(y, t) extends continuously to [0, 1]× [0, 1]. We need some upper
bounds for |f̂ ′t |.

Lemma 8. Let b ∈ [0, 1 + κ/4), a := 2b+ κb(1− b)/2 and λ := 4b+ κb(1−
2b)/2. There is a constant C(κ, b) , depending only on κ and b, such that the
following estimate holds for all t ∈ [0, 1], y, δ ∈ (0, 1] and x ∈ R.

P (|f̂ ′t (x+ iy)| ≥ δy−1) ≤ C(κ, b)(1 + x2/y2)b(y/δ)λϑ(δ, a− λ),

where

ϑ(δ, a− λ) =


δλ−a, a− λ > 0

1 + | ln δ|, a− λ = 0

1, a− λ < 0.

The proof of this lemma will be delayed until we finish the proof of The-
orem 7.

Proof of Theorem 7. Given j, k ∈ N ∪ {0} with k < 22j, let R(j, k) be the
rectangle

R(j, k) := [2−j−1, 2−j]× [k2−2j, (k + 1)2−2j],

and set
d(j, k) := diamH(R(j, k)).

One can show that

d(j, k) ∼ 2−jN max{|f̂ ′t̂n(i2−j)| : n = 0, 1, · · · , N},

where N is an integer valued random variable satisfying P (N > m) ≤ ρm

for some 0 < ρ < 1 and t̂i ∈ [k2−2j, (k + 1)2−2j]. Then Lemma 8 implies for
some 0 < σ < (λ− 2)/max{a, λ}

P (d(j, k) > 2−jσ) ≤ O(1)2−2j2−εj, (3)
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where ε = ε(κ) > 0. Note that (3) fails for κ = 8 since the maximum of λ is
achieved when b = (8 + κ)/(4κ), and the maximum is (8 + κ)2/(16κ) which
is greater than 2 if κ 6= 8 but equals 2 if κ = 8. (3) implies

∞∑
j=0

22j−1∑
k=0

P (d(j, k) > 2−jσ) <∞.

So Borel-Cantelli lemma gives d(j, k) ≤ C(w)2−jσ, which completes the proof
of the theorem.

The last piece of the proof of Theorem 1 is the proof of Lemma 8. We
need some new notations. For any z ∈ H and u ∈ R, define the random time
change

Tu(z) := sup{t ∈ R : Im(gt(z)) ≥ eu}.
Let ẑ = x̂+ iŷ be fixed, z(u) := gTu(ẑ)(ẑ)− ξ(Tu(ẑ)) := x(u) + iy(u) and

ψ(u) :=
ŷ

y(u)
|g′Tu(ẑ)(ẑ)|.

Theorem 9. Assume ŷ 6= 1 and set ν := −sign(ln ŷ). Let b ∈ R. Define a
and λ by

a := 2b+ νκb(1− b)/2, λ := 4b+ νκb(1− 2b)/2.

Then
ŷaE[(1 + x(0)2)b|g′T0(ẑ)(ẑ)|a] = (1 + (x̂/ŷ)2)bŷλ := F (ẑ).

Proof. It is easy to see du = −2|z(u)|2dt. So

B̂(u) := −
√

2/κ

ˆ Tu

t=0

|z(u)|−1dξ

is a Brownian motion (with respect to u). Set M(u) := ψ(u)aF (z(u)). Then
Ito’s formula gives

dM(u) =
√

2κM(u)
bx√
x2 + y2

dB̂.

Thus M is a local martingale, some extra work can show that M is a mar-
tingale, and thus

ψ(ln ŷ)aF (z(ln ŷ)) = E[ψ(0)aF (z(0))],

which is exactly what we need to show.
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Proof of Lemma 8. The key idea for the proof is for u1 := ln Im(g−t(x+ iy)),
we have ∣∣∣∣∣ g

′
−t(z)

g
′
T0(z)(z)

∣∣∣∣∣ ≤ e|u1|,

which follows from
∣∣∂u ln |g′t(z)|

∣∣ ≤ 1. Note that u1 is bounded for any
0 ≤ t ≤ 1, 0 < y ≤ 1. The rest of the proof using Theorem 7 and Chebyshev’s
inequality.

6.3 Phases

Set Yz(t) := gt(z)−ξ(t)√
κ

for z ∈ H and t ≥ 0. Then

dYz(t) =
2/κ

Yz(t)
dt+ dBt, (4)

where Bt = −ξ(t)/
√
κ is a standard Brownian motion. When z ∈ R, (4) is

a Bessel process. Theorem 3 follows from the basic theory of Bessel process,
.i.e,

Theorem 10. 1. If κ ≤ 4, then w.p.1 τx =∞ for all x > 0.

2. If κ > 4, then w.p.1 τx <∞ for all x > 0.

3. If κ ≥ 8, then w.p.1 τx < τy for all 0 < x < y.

4. If 4 < κ < 8 and 0 < x < y, then P (τx = τy) > 0.

We refer the reader to the original paper [3] or Zinsmeister’s lecture notes
[5] for the detailed proof.
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7 Loewner Curvature

after Joan Lind and Steffen Rohde
A summary written by Kyle Kinneberg

Abstract

We summarize the work of Lind and Rohde in [3] that develops a
theory of curvature for sufficiently smooth curves in H. This is done
via comparison with self-similar curves in the Loewner framework. It
is shown that appropriate upper bounds on the curvature guarantee
that the curve is simple.

7.1 Introduction

The Loewner equation provides a canonical way to encode simple curves
in the upper half-plane, H, by a continuous 1-dimensional function. If
γ : [0, T ) → H is continuous with γ(0) ∈ R and γ(0, T ) ⊂ H, then after
re-parameterization, the hydrodynamic conformal maps gt : H\γ(0, t] → H
have the form gt(z) = z + 2t

z
+ O( 1

z2
) as z →∞, and they solve the chordal

Loewner equation

∂tgt(z) =
2

gt(z)− λ(t)
, g0(z) = z, (1)

where λ(t) = gt(γ(t)) ∈ R varies continuously in t.
This process can be reversed. If λ(t) is continuous on [0, T ), then the

solutions to (1) are hydrodynamic conformal maps gt : H\Kt → H, where Kt

is an increasing family of half-plane hulls. When is the family Kt generated
by a simple curve, γ, in the sense that Kt = γ(0, t] for all t?

Theorem 1 (Marshall–Rohde [4], Lind [2]). If ||λ||1/2 < 4, then λ generates
a simple curve meeting R non-tangentially.

Here, ||λ||1/2 = sups 6=t |λ(s) − λ(t)|/
√
|s− t| is the Lip(1/2)-norm. Our

goal is to approach the problem above by developing a notion of curvature
for which appropriate bounds guarantee that the curve is simple.

We will need some basic properties for the chordal Loewner equation. Let
λ(t), t ∈ [0, T ) be continuous with corresponding hulls Kt. For r > 0, the
family rKt/r2 is generated by rλ(t/r2), with t ∈ [0, r2T ); for x ∈ R, the family
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Kt +x is generated by λ(t) +x, with t ∈ [0, T ); and for fixed 0 ≤ t0 < T , the
family gt0(Kt0+t) is generated by λ(t0 + t), with t ∈ [0, T − t0). We will call
these, respectively, the scaling, translation, and concatenation properties.

We will also make use of the following fact, proved by Earle and Ep-
stein [1]. If γ : (0, T ) → H is a simple curve that is Cn(0, T ), then its half-
plane capacity parametrization and the corresponding driving function are
Cn−1(0, τ), where τ = hcap(γ).

The idea behind Loewner curvature is relatively straightforward. First,
we use the Loewner framework to identify a family of “self-similar” curves
in H. By conformal mapping, we obtain a family of self-similar curves in
any Jordan domain Ω. These will be the curves of constant curvature. For
γ : (0, T )→ H, we will then define LCγ(t) to be the curvature of the unique
self-similar curve in H\γ(0, t] that “best-fits” γ at γ(t).

7.2 Identifying self-similar curves

Let Ω ⊂ C be a Jordan domain with distinct boundary points a, b ∈ ∂Ω. For
0 < T ≤ ∞, we use the notation γ : (0, T ) → (Ω, a, b) if γ[0, T ) is a simple
curve with γ(0, T ) ⊂ Ω and γ(0) = a. Notice that we do not assume that γ
is parameterized by half-plane capacity. Also, the point b is irrelevant in this
notation. However, it is very important in the following definition.

Definition 2. We say γ : (0, T ) → (Ω, a, b) is self-similar if γ ∈ C3(0, T )
and for each t ∈ (0, T ), there is a conformal map φt : Ω\γ(0, t] → Ω, with
φt(γ(t)) = a and φt(b) = b, such that φt(γ(t, T )) ⊂ γ.

Note that sub-curves of self-similar curves are self-similar. We use S(Ω, a, b)
to denote the collection of maximal self-similar curves in (Ω, a, b).

The triple (Ω, a, b) that one should have in mind is (H, 0,∞). In order to
identify the self-similar curves in (Ω, a, b) it suffices to find those in (H, 0,∞)
and then map them to Ω by a conformal map sending 0 to a and ∞ to b.

Proposition 3. The curves in S(H, 0,∞) are precisely those whose driving
function, λ, is one of the following:

0, ct, c
√
τ − c

√
τ − t, c

√
τ + t− c

√
τ , where c 6= 0 and τ > 0.

These curves are uniquely determined by the parameters λ′(0) and λ′′(0).
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Proof. We may assume that γ is parameterized by half-plane capacity, though
it is now guaranteed only to be C2(0, T ). Let λ(t) be the driving term for γ,
which is also C2(0, T ), and let gt : H\γ(0, t]→ H be the corresponding maps.
Let φt : H\γ(0, t]→ H come from self-similarity of γ. Then [gt − λ(t)] ◦ φ−1

t

is a conformal map of H fixing 0 and∞, so φt = rt[gt−λ(t)] for some rt > 0.
By self-similarity,

rt[gt(γ(t, T ))− λ(t)] ⊂ γ. (2)

The scaling, translation, and concatenation properties show that the driving
term for the curve on the left is rt[λ(t+ s/r2

t )− λ(t)], so that

rt[λ(t+ s/r2
t )− λ(t)] = λ(s), for s small enough.

The left-hand side is twice differentiable at s = 0, so the right-hand side
is as well. Taking derivatives gives λ′(0) = λ′(t)/rt and λ′′(0) = λ′′(t)/r3

t ,
which is valid for each 0 < t < T . If λ′(0) = 0, then λ is constant and so is
identically 0. Similarly, if λ′′(0) = 0, then λ is linear and thus of the form ct.
Otherwise, λ′ and λ′′ are non-zero, and λ satisfies

λ′(t)3

λ′′(t)
=
λ′(0)3

λ′′(0)
,

so that λ′ is a solution to the equation u′/u3 = const. Solving this and
integrating shows that λ must be one of the other two listed functions.

Conversely, a straightforward computation shows that, for each of the
four types of driving functions in the list, every t ∈ (0, T ) has a corre-
sponding rt > 0 such that rt[λ(t + s/r2

t ) − λ(t)] = λ(s) for small s. If
γ : (0, T ) → (H, 0,∞) is the curve generated by λ, the scaling, transla-
tion, and concatenation properties ensure that (2) holds. Thus, γ is self-
similar. The maximal intervals on which these driving functions can be
defined are [0,∞) for the functions 0, ct, and c

√
τ + t − c

√
τ ; and [0, τ) for

c
√
τ − c

√
τ − t.

7.3 Curve-fitting and Loewner curvature

Fix γ : (0, T )→ (Ω, a, b). We say that a curve γ∗ ∈ S(Ω, a, b) is best-fitting to
γ at a if, under the conformal transformation φ : (Ω, a, b)→ (H, 0,∞), either
the curves φ(γ) and φ(γ∗) agree, in their half-plane capacity parameteriza-
tions, up to 2nd order in t near 0, or both have λ′(0) = 0 = λ′∗(0). If γ is
smooth enough, best-fitting self-similar curves always exist and are unique.
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Proposition 4. If γ : (0, T )→ (Ω, a, b) is C3(0, T ), then for each 0 < t < T ,
there is a unique best-fitting curve γ∗ ∈ S(Ω\γ(0, t], γ(t), b) to γ(t, T ) at γ(t).

Proof. We can assume that γ : (0, T ) → (H, 0,∞) is parameterized by half-
plane capacity, and so γ ∈ C2(0, T ). Let λ ∈ C2(0, T ) be its driving term.
As gt − λ(t) maps (H\γ(0, t], γ(t),∞) conformally to (H, 0,∞), it suffices
to find a best-fitting curve to gt(γ(t, T )) − λ(t) at 0. The driving function
for this mapped curve is λ(t + s) − λ(t) for 0 ≤ s < T − t, which is twice
differentiable at s = 0. Thus, it suffices in general to find a best-fitting curve
for γ : (0, T )→ (H, 0,∞) at 0, assuming that the corresponding driving term
λ is twice differentiable at t = 0.

To this end, choose the (unique) driving term λ∗ from the list in Propo-
sition 3 that has λ′∗(0) = λ′(0) and λ′′∗(0) = λ′′(0) if λ′(0) 6= 0, and choose
λ∗ ≡ 0 otherwise. In the latter case, the curve γ∗ generated by λ∗ is, by def-
inition, best-fitting to γ at 0. Thus, we may assume that λ′(0) 6= 0. Taylor’s
theorem then ensures that |λ(t)− λ∗(t)| = o(t2). Using [5, Theorem 3.3], we
have

sup
0≤t<ε

|γ(t)− γ∗(t)| ≤ C sup
0≤t<ε

|λ(t)− λ∗(t)|

for ε small, so |γ(t)− γ∗(t)| = o(t2) as well.
One can also verify, by direct computation, that

γ∗(t) = 2i
√
t+ at− i(a2/8)t3/2 + bt2 + o(t2), for t near 0,

where a = (2/3)λ′∗(0) and b = (4/15)λ′′∗(0) + (1/135)λ′∗(0)3. Thus, γ has the
same expansion, with the same values of a and b, near t = 0.

We can now define Loewner curvature. First, for the curves in S(H, 0,∞):
if γ has driving term 0, ct, c

√
τ − c

√
τ − t, or c

√
τ + t− c

√
τ with c 6= 0 and

τ > 0, then LCγ ≡ 0, ∞, c2/2, −c2/2 (respectively) is constant. For curves
in S(Ω, a, b), we define LCγ by conformal invariance. For all other curves,
LCγ(t) is defined by comparison, as follows.

Definition 5. If γ : (0, T ) → (Ω, a, b) is C3(0, T ) and 0 < t < T , then
LCγ(t) = LCγ∗, where γ∗ ∈ S(Ω\γ(0, t], γ(t), b) is the best-fitting curve to
γ(t, T ) at γ(t).

The proof of Proposition 4, along with a computation for the driving
functions in Proposition 3, gives the following corollary.
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Corollary 6. If γ : (0, T ) → (H, 0,∞) is C3(0, T ) and is parameterized by
half-plane capacity, then LCγ(t) = λ′(t)3/λ′′(t), where λ is the driving func-
tion for γ. Here, we declare 0/0 to equal 0.

7.4 Simple curves from LC bounds

Our goal in this section is to prove the following result.

Theorem 7. Let γ : (0, T )→ (Ω, a, b) be C3(0, T ). If LCγ(t) ≤ c < 8 for all
0 < t < T , then γ extends continuously to [0, T ] with γ[0, T ] a simple curve
in Ω ∪ {a, b}.

The bulk of the proof consists in the following proposition.

Proposition 8. If γ : (0, T )→ (H, 0,∞) is C3(0, T ) and has 0 < LCγ(t) ≤ c,
then the corresponding driving function λ has ||λ||1/2 ≤

√
2c.

Proof. Let 0 < T ′ < T . It suffices to show the desired bound on [0, T ′]. The
bound on Loewner curvature implies that 0 < λ′(t)3/λ′′(t) ≤ c. Let σ = λ′

so we have the inequality 0 < σ3 ≤ cσ′. A computation shows that the
non-negative solutions to σ3 = cσ′ are of the form σc,B(t) =

√
c/2(B− t)−1/2

for some B > 0. We claim that σ ≤ σc,T ′ .
If not, there is 0 ≤ t0 < T ′ such that σ(t0) > σc,T ′(t0). Along with

1

2σ(t0)2
− 1

2σ(t)2
=

ˆ t

t0

σ′

σ3
≥
ˆ t

t0

1

c
=

1

2σc,T ′(t0)2
− 1

2σc,T ′(t)2
,

this implies that σ(t) > σc,T ′(t) for all t0 ≤ t ≤ T ′. But σc,T ′(t) → ∞ as
t↗ T ′, so that σ(t)→∞ as well. This contradicts the fact that λ ∈ C1(0, T ).

As σ < σc,T ′ , we have

λ(t)− λ(s) =

ˆ t

s

σ(u)du ≤
ˆ t

s

σc,T ′(u)du = 2
√
c/2 ·

(√
T ′ − s−

√
T ′ − t

)
≤
√

2c ·
√
t− s

for all 0 ≤ s ≤ t ≤ T ′, as desired.

Proof of Theorem 7. It suffices to treat (Ω, a, b) = (H, 0,∞). Let λ be
the driving term for γ, so that LCγ(t) = λ′(t)3/λ′′(t).

As a first case, assume that there is t0 ∈ (0, T ) for which LCγ(t0) > 0.
We claim that LCγ(t) > 0 for t ∈ [t0, T ). Indeed, the fact that LCγ < ∞
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implies that λ′′(t) = 0 only if λ′(t) = 0. This cannot happen on [t0, T ), as λ′

and λ′′ have the same sign at t0. Thus, we can apply Proposition 8 to the
curve gt0(γ(t0, T )) whose driving function, t 7→ λ(t+ t0), has Lip(1/2)-norm
at most

√
2c < 4. This function therefore extends continuously to [0, T − t0],

and Theorem 1 ensures that gt0(γ(t0, T ]) is simple. Consequently, γ extends
continuously to [0, T ] and is simple.

In the other case, LCγ(t) = λ′(t)3/λ′′(t) ≤ 0 for all t. Consequently, λ′

and λ′′ always have opposite sign, or are zero. This implies that λ′ is bounded
on each interval [t0, T ), for 0 < t0 < T . In particular, λ extends continuously
to [0, T ] and is Lipschitz on [t0, T ]. Its local Lip(1/2)-norm is very small on
[t0, T ], so again by Theorem 1, the curve gt0(γ(t0, T ]) is simple.

7.5 A comparison theorem

One can also use LC bounds to compare two curves when one of them is
self-similar. We need some notation. For c > 0, let λc(t) = c2 − c

√
c2 − t

and Λc(t) = c
√
c2 + t− c2, and let γc and Γc denote, respectively, the corre-

sponding curves. Notice that λ′c(0) = 1/2 = Λ′c(0). Also, let Tc = c2 if c ≥ 4;
otherwise, let Tc be the first time that the tangent to γc points downward.

Theorem 9. Let γ : (0, T ) → (H, 0,∞) be generated by λ ∈ C2[0, T ) with
λ′(0) = 1/2.

(i) If 0 < LCγ(t) ≤ c2/2, then γ[0, T ) is below γc[0, Tc].

(ii) If c2/2 ≤ LCγ(t) <∞, then γc[0, Tc] is below γ[0, T ).

(iii) If −∞ < LCγ(t) ≤ −c2/2, then γ[0, T ) is below Γc[0,∞).

(iv) If −c2/2 ≤ LCγ(t) < 0, then Γc[0,∞) is below γ[0, T ).

Here, we say that γ1 is below γ2 if, when parameterized by height h, we
have Re(γ1(h)) ≥ Re(γ2(h)) for small h, and the curves never cross.

Proof idea. Let γ1 and γ2 denote the curves under consideration so that
LCγ1 ≤ LCγ2 . The first step is to prove that the base of γ1 lies to the
right of the base of γ2. This is done by comparing the expansions for γ1 and
γ2 that we found in the proof of Proposition 4.

The second step is more involved. For ease, we use γ∗ to denote either γc
or Γc. Notice that λ′∗(t) is either monotonically increasing from 1/2 to ∞ or
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decreasing from 1/2 to 0. As λ′ is similarly either increasing or decreasing,
we can make the time change s = s(t) = (λ′∗)

−1(λ′(t)) to get λ′∗(s) = λ′(t).
Consider the Loewner flows associated to λ and λ∗. Namely, for z0 ∈ H, let
zt = gt(z0)−λ(t), and for w0 ∈ H, let wt = g∗s(t)(w0)−λ∗(s(t)). The Loewner

equation gives ∂tzt = (2/zt)− λ′(t) and

∂twt =
2s′(t)

wt
− λ′∗(s)s′(t) =

(
2

wt
− λ′(t)

)
s′(t).

Notice that if wt = zt, then the direction of these flows at time t is the same.
The goal is to show that this implies persistence of “staying above/below
g∗s(t)(γ∗).” Namely, if zt0 is above/below g∗s(t0)(γ∗), then zt is above/below

g∗s(t)(γ∗) for all t0 ≤ t < T . This is done by proving that the LC bounds

imply either |s′(t)| ≤ 1 or |s′(t)| ≥ 1 (depending on the case), so that one of
the flows moves faster than the other for all time.
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8 Quasiconformal Variation of Slit Domains

after Clifford J. Earle and Adam Lawrence Epstein [1]
A summary written by Kirill Lazebnik

Abstract

We use quasiconformal variations to study Riemann mappings onto
variable single slit domains when the slit is the tail of a Jordan arc with
a real analytic parametrization. The results show that the function κ
in Löwner’s differential equation is real analytic.

8.1 Introduction

We let Ω be a simply connected region in C that contains the origin, and
f : [0, T ) → Ω, with 0 < T ≤ ∞ a parametrization of a Jordan arc Γ in Ω.
(In particular f is a homeomorphism onto Γ). We will assume the follow-
ing... First, f is regular (differentiable everywhere with non-zero derivative).
Second, Γ ⊂ Ω is closed. Third, 0 6∈ Γ. Then by topological considerations
we can prove that:

Proposition 1. If tn → T , then for some subsequence tnj of tn we have
f(tnj) converges to some point in ∂Ω. (the ‘end’ of the arc Γ tends to the
boundary of Ω). Each arc Γt := f([t, T )) is closed in Ω, and each region
Ωt := Ω− Γt is simply connected.

Some examples of such arcs/domains include Ω = C,Γ = {x + i sinx :
x ≥ 1} and Ω = Rez < 1,Γ = {1 − t−1 + it sin t : t ≥ 1}. We establish the
following lemma which we will use in several proofs. It allows us to deform
a disc in the complex plane by a nice function, controlling where the center
of the disc is sent. The function η taken below is usually constructed in say,
the theory of partitions of unity on a smooth real manifold, or as a standard
mollifier.

Lemma 2. Given t0 ∈ C, r > 0, let D(t0, r) ⊂ C be the open disk with center
to and radius r. Let η be a compactly supported real-valued C∞ function on
D(t0, r) such that η(t0) = 1, and let M be the maximum of 2

∣∣∂η
∂t

∣∣. For any
complex number λ < 1/M the function:

ψλ(t) = t+ λη(t), t ∈ D(t0, r)
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Is a bi-Lipschitz, quasiconformal C∞ diffeomorphism of D(t0, r) onto it-
self, and its Beltrami coefficient µλ satisfies the following identity:

µλ =
∂ψλ/∂t̄

∂ψλ/∂t
=

λ∂η/∂t̄

1 + λ∂η/∂t
= λ

∂η

∂t̄

∞∑
n=0

(
−λ∂η

∂t

)n
In addition ψλ is the identity in a neighborhood of the boundary of D(t0, r),

and when t0, λ ∈ R then ψλ maps D(t0, r) ∩ R onto itself.

Proof: This is a nice, straightforward proof. I regretfully leave it out to
meet length requirements.

8.2 A theorem on a conformal radius function

Through the rest of our discussion, we will assume the parametrization f is
in fact real analytic. (The original paper by Clifford, Earle explores weaker
assumptions on f .) Recall that the conformal radius of the region Ωt at 0
is the size |g′(0)| where g is any Riemann map from the unit disk 4 to Ωt

fixing 0. (It is easy to see this is well-defined.) This defines for us a map
R : [0, T )→ R sending any t ∈ [0, T ) to the conformal radius of Ωt at 0. Our
first theorem is that this map is in fact real analytic:

Theorem 3. The conformal radius function R(t) of Ωt at the origin is a real
analytic function of t in the interval [0, T ).

The idea of the proof is to construct (using our lemma) a holomorphic
motion of ∂Ωt0 to get to ∂Ωt0+ε for small ε. The conclusions of the theorem
then follow by a result of Rodin [2]. Rodin’s result in turn relies on a form
of the powerful λ-lemma. For convenience we have recopied Rodin’s theorem
(but not the proof) in the appendix and changed notation a bit from the
original paper to conform with ours.

Proof: We fix t0 ∈ [0, T ). We abbreviate D = D(t0, r). Now we choose
a small enough r so that several things happen:

1. t0 + r < T
2. There is a conformal map f̃ : D(t0, r) → Ω agreeing with f on their

common domain D ∩ [0, T ).
3. 0 6∈ f̃(D).
4. Γ ∩ f̃(D) = f(D ∩ [0, T ))
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The ability to choose r so that 2. happens comes from the fact that f
is real analytic at t0 and so we can definef̃ by the same power series but
with complex variables. Conformality is an important consequence of the
fact that f ′(t0) 6= 0. 1,3,4 are topological considerations.

Now we define our holomorphic motion φ : D(0, 1/M)×∂Ωt0 → C (using
ψλ from our lemma):

φ(λ,w) =

{
f̃ ◦ ψλ ◦ f̃−1(w) : w ∈ ∂Ωt0 ∩ f̃(D)

w : w 6∈ ∂Ωt0 ∩ f̃(D)

It is easy to check this is in fact a holomorphic motion. The most im-
portant observation to make is that, if λ ∈ D(0, 1/M) ∩ R and t0 + λ ≥ 0,
then φλ(∂Ωt0) = ∂Ωt0+λ and so the region φλ(∂Ωt0) bounds is exactly Ωt0+λ.
The fact that φλ(∂Ωt0) = ∂Ωt0+λ can be proven by looking back at our func-
tion ψλ. Now we apply Rodin’s theorem. We let Φλ denote the normalized
Riemann mapping of 4 onto Ωt0+λ, so that:

R(t0 + λ) = Φ′λ(0) if λ ∈ D(0, 1/M) ∩ R and t0 + λ ≥ 0

Rodin’s theorem says exactly that for some ε < 1/M we know that
(λ, z)→ Φλ(z) is real analytic on D(0, ε)×4 in the sense already described.
In the same sense λ → Φ′λ(0) is real analytic on D(0, ε). It follows by our
various definitions of real analytic and the equation relating R,Φ that R(t)
is real analytic.

8.3 A theorem regarding the dependence on t of Rie-
mann maps from the unit disc to Ωt

Our next theorem has two parts. The first proves, as in our previous theo-
rem, that a certain function is real analytic. The second gives a differentiation
formula which will lead to the proof that the κ in Löwner’s differential equa-
tion is real analytic. As before, ‘real analytic’ is defined in the statement of
Rodin’s theorem.

Theorem 4. For t ∈ [0, T ), let z → h(z, t) be the Riemann mapping of
4 onto Ωt such that h(0, t) = 0, h(1, t) = f(t). Then the mapping h :
4× [0, T )→ C is real analytic. Moreover we have real-valued, real analytic
functions α, β on [0, T ) with α positive so that the following differentiation
formula holds:
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∂h

∂t
(z, t) = z

∂h

∂z
(z, t)

[
α(t)

1 + z

1− z
+ iβ(t)

]
for all (z, t) ∈ 4× [0, T )

The idea of the proof is to use quasiconformal maps to construct a formula
relating h(·, t0) and h(·, t) for t close to t0. One then uses this formula to
deduce both the real analyticity of h and the differentiation formula. The
proof uses a theorem from a classical paper by Ahlfors and Bers [3] that says
if one has a family of beltrami coefficients that depend real analytically on a
parameter, then so do the normalized solutions to the beltrami equation.

Proof: Let (z0, t0) ∈ 4 × [0, T ) and denote h0 = h(·, t0). Let r > 0
and f̃ conformal on D as in the proof of our previous theorem. We specify
additionally that h0(z0) 6∈ f̃(D). We let ε = 1/M and define quasiconformal
maps φλ,Wλ for λ ∈ (−ε, ε) as follows:

φλ(w) =

{
f̃ ◦ ψλ ◦ f̃−1(w) : w ∈ f̃(D)

w : w 6∈ f̃(D)

It is easy to see that φλ is quasiconformal (since ψλ is). It is important
also to note that φλ(Ωt0) = Ωt0+λ if t0 +λ ≥ 0. Next we let E be the compact
support of the function η from our lemma, and V := C−f̃(E). It follows that
V, f̃(D) cover C and that φλ is the identity on V . Notice that the beltrami
coefficients νλ of φλ depend real analytically on λ:

νλ(z) = χf̃(D)(z) · f̃
′(f̃−1(z))

f̃ ′(f̃−1(z))
· λ∂η
∂t̄

∞∑
n=0

(
−λ∂η

∂t

)n
Next we define Wλ a quasiconformal self-map of 4 by applying the mea-

surable Riemann mapping theorem to the beltrami coefficient:

σλ(z) = vλ(h0(z))
h′0(z)

h′0(z)
, z ∈ 4

By reflection we can extend Wλ to a quasiconformal map of the whole
plane, and we specify that this map fixes 0, 1. We can compute then that
Wλ, φλ◦h0 have the same beltrami coefficient on4 and so then φλ◦h0◦W−1

λ

is conformal. It follows since that φλ ◦ h0 ◦W−1
λ : 4→ Ωt0+λ is a conformal

homeomorphism fixing 0 and 1 that φλ ◦ h0 ◦W−1
λ = h(·, t0 + λ) as long as
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t0 + λ ≥ 0. We have thus established the following formula from which the
rest of the proof relies on:

φλ ◦ h0(z) = h(Wλ(z), t0 + λ) if t0 + λ ≥ 0 and λ ∈ (−ε, ε)

One uses this formula to establish the real analyticity of h at (z0, t0).
Similarly one differentiates this formula and uses some standard complex
analysis to deduce the formula in the conclusion of our theorem. Details are
deferred so that we have space to present the last of our results.

8.4 Löwner’s Equation

The differentiation formula of our previous result reduces to traditional Löwner
form under a change of parametrization of Γ and the normalization of the
Riemann mapping.

Theorem 5. Let a(t) be a real analytic antiderivative for α(t) on [0, T )
normalized by a(0) = 0, and let [0, T̂ ) be the image of [0, T ) under a. For
each τ ∈ [0, T̂ ) let z → g(z, τ) be the Riemann mapping of 4 onto Ωa−1(τ)

normalized by g(0, τ) = 0 and ∂g
∂z

(0, τ) > 0. Then g is a real analytic function

on 4× [0, T̂ ) and there is a real analytic function κ on [0, T̂ ) so that |κ(τ)| =
1, g(1/κ(τ), τ) = f(a−1(τ)), and

∂g

∂τ
(z, τ) = z

∂g

∂z
(z, t)

1 + zκ(τ)

1− zκ(τ)
for all (z, τ) ∈ 4× [0, T̂ )

Proof: We define ĥ(z, τ) = h(z, a−1(τ)) on 4 × [0, T̂ ). Our previous
result together with a chain rule computation show that:

∂ĥ

∂τ
(z, τ) = z

∂ĥ

∂z
(z, τ)

[
1 + z

1− z
+ iβ̂(τ)

]
for all (z, τ) ∈ 4× [0, T̂ )

Where β̂ is the function on [0, T̂ ) so that β̂(a(t))a′(t) = β(t) for t ∈ [0, T ).
Since g(·, 0), ĥ(·, 0) fix the origin and are Riemann maps onto the same region,
we have the formula g(z, 0) = ĥ(e−ib0z, 0) for z ∈ 4. Let b(τ) be a real
analytic antiderivative for β̂ on [0, T̂ ) so that b(0) = b0. Next we define the
real analytic function ĝ(z, τ) = ĥ(e−ib(τ)z, τ) on 4 × [0, T̂ ). One deduces
from this definition that in fact ĝ = g and by a chain rule computation:
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∂g

∂τ
(z, τ) = z

∂g

∂z
(z, τ)

1 + e−ib(τ)z

1− e−ib(τ)z
if (z, τ) ∈ 4× [0, T̂ )

So that the theorem follows with κ(τ) := e−ib(τ).

8.5 Appendix

Here is Rodin’s result on which our first theorem relies:

Theorem 6. Let Ωt0 be a simply connected proper subregion of C, let r > 0,
0 ∈ Ωt0 and let

φ : D(0, 1/M)× ∂Ωt0 → C̄

be a holomorphic motion of ∂Ωt0. Then there is an ε > 0 such that, for
|λ| < ε, φ(λ, ∂Ωt0) is the boundary of a simply connected region Ωλ containing
0. We also have that the Riemann mapping function:

Φλ : {|w| < 1} → Ωλ

normalized by Φλ(0) = 0,Φ′λ(0) > 0 depends real analytically on Reλ,
Imλ in the following sense: If |λ0| < ε then there is a δ0 > 0 so that Φλ(w)
is a power series in Re(λ− λ0), Im(λ− λ0), w which converges in

{−δ0 < Re(λ− λ0) < δ0} × {−δ0 < Im(λ− λ0) < δ0} × {|w| < 1}
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9 Second Phase Transition of the Determin-

istic Loewner Equation

after J. Lind and S. Rohde [3]
A summary written by Jhih-Huang Li

Abstract

We are interested in the hulls of the deterministic Loewner equa-
tion driven by functions λ ∈ Lip(1/2), where the norm ‖λ‖1/2 would
play a similar role as κ in SLE process. We will show a result about
its phase transition.

9.1 Introduction

It is known that the famous Schramm-Loewner Evolution SLEκ process ex-
hibits 2 phase transitions when κ varies. More precisely, for κ ≤ 4, the traces
are simple curves, while for κ > 4, they touch themselves. For κ < 8, the
curves have empty interior, while for κ ≥ 8, these are space-filling.

We could establish an analogy for the processes driven by deterministic
Lip(1/2) functions. When ‖λ‖1/2 < 4, it is known that the trace is simple
([1], [4]). And here we show a result for the second phase transition.

Theorem 1. If λ is a Lip(1/2) driving function generating a curve with
non-empty interior, then ‖λ‖1/2 > 4.0001.

To get this result, it is important to require the curve to have non-empty
interior. If it were only dense in the upper half plane, Theorem 1 would be
no longer true, as shown by the following Theorem.

Theorem 2. Let (zn) be a sequence of points in H. Then there exists a trace
γ going through these points having Lip(1/2) norm at most 4.

It is possible that Lip(1/2) driving functions generate only curves with
empty interior, in which case Theorem 1 would not be interesting. A crite-
rion allows us to say, given a curve, whether its driving function has Lip(1/2)
norm. In particular, the Hilbert space-filling curve (cf. Figure 1) falls into
this category and its Lip(1/2) norm is greater than 4.0001 according to The-
orem 1.
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9.2 Reminder: some geometric properties

To make the summary self-containing, we would like to remind some basic
properties related to the Loewner equation.

Let us take (Kt), the family of hulls generated
by the driving term λ(t), then we have the
following 4 geometric properties.

1. Scaling: for r > 0, the scaled hulls
(rKt/r2) are driven by rλ(t/r2).

2. Translation: for x ∈ R, the translated
hulls (Kt+x) are driven by t 7→ λ(t)+x.

3. Reflection: The reflection of hulls with
respect to the imaginary axis RI(Kt) are
driven by t 7→ −λ(t).

4. Concatenation: for fixed T , the mapped
hulls (gT (KT+t)) are driven by t 7→
λ(T + t).

Figure 1: Hilbert space-
filling curve, drawn with
Lindenmayer system of
tikz package.

9.3 An important example: Theorem 2

First of all, we would like to contruct a dense curve whose driving function
has Lip(1/2) norm smaller or equal to 4.

Let (zn) be a sequence of points in H. The idea would be to construct
the curve piece by piece then glue them all together in such a way that the
norm of the driving function stays small.

Preliminary: given x ∈ R and z ∈ H, we will contruct a Lip(1/2)
driving function with norm at most 4 generating a simple curve from x to z
in H ∪ {x}.

• If <z = x, then take λ(x) ≡ x on an apporpriate time interval.

Construction: we will construct by induction a family of driving func-
tions λn : [0, Tn] → R, ‖λn‖1/2 ≤ 4 such that the curve generated contains
z1, . . . , zn. We want this family to be compatible, meaning that λn+1 re-
stricted to [0, Tn] is λn.
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• Otherwise, let us consider λ(t) = 4
√

1− t,
whose Lip(1/2) norm is 4. The curve gen-
erated by λ is shown in Figure 2. (For
more details, see [2].) It is a simple curve
from 4 to 2 and for all θ ∈ (π/2, π), each
ray {4 + reiθ, r > 0} intersects the curve
exactly once. So by scaling, reflecting (cf.
subsection 9.2) and taking an appropriate
time interval, we have a cuve from x to z. Figure 2:

• If zn+1 is already in the trace, we have nothing to do. Set Tn+1 = Tn.

• Otherwise, set λn+1(t) ≡ λn(Tn) for all t ∈ [Tn, Tn + τn] where τn is to
be determined later. (View from gTn , the trace is vertical.) We then
construct λ̂ on [0, σn], driving function given in the first step generating
a trace from xn = λn(Tn) to wn = gTn+τn(zn+1). We put all these
together and set Tn+1 = Tn + τn +σn and λn+1(t) = λ̂(t− (Tn + τn)) for
t ∈ [Tn + τn, Tn+1]. Since λn+1 restricted to [0, Tn] and [Tn + τn, Tn+1]
has Lip(1/2) norm at most 4, it remains to show that, by choosing τn
carefully, the Lip(1/2) norm stays at most 4 for λn+1.

By scaling property mentionned in Subsection 9.2, we can show that this
can be satisfied for large enough τn. The proof is thus completed.

Remark 3. If we want the points (zn) to be visited in the order, we may
modify slightly the previous construction.

9.4 Proof of the main Theorem

9.4.1 How the points in R are captured?

First of all, we would like to understand how the points in R are captured
by the driving function. We say that a point x ∈ R\{λ(0)} is captured by λ
at time t if gt(x) = λ(x). By scaling, we can assume for now that this takes
place at time t = 1, the case of general t will be given later (Lemma 6).

We take λ : [0, 1]→ R, whose Lip(1/2) norm is C and satisfying λ(1) = 0
and λ(t) > 0 for all t ∈ [0, 1). We will consider a point x < λ(0) captured
by λ at t = 1. First of all, we make the time change s = − ln(1 − t), or
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t = 1− e−s. We then define for s ∈ [0,∞),

Gs(z) :=
gt(z)√
1− t

and σ(s) :=
λ(t)√
1− t

≤ C.

We then rewrite the Loewner equation as

∂

∂s
Gs =

2

Gs − σ(s)
+
Gs

2
= −1

2

G2
s − σ(s)Gs + 4

σ(s)−Gs

, G0(z) = z (1)

and we say Gs is generated by σ.
We write xs = Gs(x) the solution to (1). Since we assume that x is

captured only at time t = 1, xs is well defined on [0,∞).
If σ(s) < 4 for all s, then xs is decreasing if x < σ(0) = λ(0).
If σ(s) ≥ 4 for all s, we can factorize the numerator of (1) :

∂

∂s
xs = −1

2

(xs − As)(xs −Bs)

σ(s)− xs
where σ(s) > As > Bs and are functions of σ(s). To make As and Bs well
defined for all s, we take As = Bs = 2 whenever σ(s) < 4.

A special case: λ(t) = C
√

1− t, and σ(s) ≡ C. In consequence, all the
points in [As, σ(s)] are captured by λ at time t = 1 because xs decreases
towards As.

The next Lemma says that in a more general case, if x < λ(0), we en-
counter a similar situation: xs decreases towards As until it reaches a small
neighborhood of [Bs, As] in which it stays forever.

Lemma 4. Let ε ∈ (0, 1/2). Suppose that ‖λ‖1/2 ≤ 4 + 2ε and that x < λ(0)
captured by λ at t = 1. Then there exist a time S0 < ∞ and an interval I
containing [Bs, As] of length 5

√
ε so that xs ∈ I for s ≥ S0.

Proof. The proof is actually based on finding bounds to estimate the de-
creasing speed, which is quite similar to what we have done. It is omitted
here.

Since xs should stay in the interval I, if we have a nearer look to the partial
differential equation, we can see that σ cannot be bounded from above. More
precisely, see the following Lemma.

57



Lemma 5. Let ε ∈ (0, 1/2) and M ∈ (0, 4). Suppose that ‖λ‖1/2 ≤ 4 + 2ε
and x < λ(0) captured at time T . Let S0 be given previously. Then there
exists ∆ < ∞ so that is σ < M on [s1, s2] with s1 > S0, then s2 − s1 ≤ ∆.

We may take ∆ = 10
√
ε

4−M .

Proof. The technique is quite similar, we only give important steps and for-
mulae here. We assume that σ(s) < M on the time interval [s1, s2], therefore
we can get a lower bound for the decreasing speed of xs :

− ∂

∂s
xs ≥

4−M
2

,

which implies that xs cannot stay in I, an interval of length 5
√
ε for a time

longer than ∆ = 10
√
ε

4−M .

Here is the last lemma, combining Lemma 4 and Lemma 5 without the
time change.

Lemma 6 (without time change). Let ε ∈ (0, 1/2) and M ∈ (0, 4). Suppose
that ‖λ‖1/2 ≤ 4 + 2ε and that x < λ(0) captured at time T . Then there exist
S0,∆ <∞ (depending only on ε and M) so that for all s ≥ S0, we can find
a time t ∈ [(1− e−s)T, (1− e−(s+∆))T ] such that |λ(T )− λ(t)| ≥ M

√
T − t.

Moreover, we may take ∆ = 10
√
ε

4−M .

9.4.2 Proof of Theorem 1

Now, we are able to show the Theorem 1.

Proof. Take λ ∈ Lip(1/2) generating γ with non-empty interior. We assume
that ‖λ‖1/2 ≤ 4 + 2ε and want to get a contradiction when ε is too small.

By Baire category theorem, there is a T such that γ[0, T ] has non-empty
interior. We notice as well that if γ(t0) ∈ Int(γ), then λ(t0) = gt0(γ(t0)) ∈
Int(gt0(γ)) in H. We can, by replacing λ(t) with λ(t+ t0)−λ(t0) and scaling,
assume that there is an interval I ⊂ KT ∩R+ where K is the hull at time T .

The points in I are captured at different time and there are uncountably
many of them, so there exist T1 < T2 in I such that T2−T1 ≤ e−2S0T2, where
S0 is given earlier. (Note that S0 depends only on M and ε whose values will
be specified later.)

Take ∆ = 10
√
ε

4−M as before and consider I2 = [(1− e−s)T2, (1− e−(s+∆))T2]
where s is chosen so that T1 is the midpoint of I2. Then we define I1 =
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I2− (T2−T1) = [(1−e−s′)T2, (1−e−(s′+∆))T2], an interval of the same length
but shifted. We can easily check that both s and s′ are greater than S0 by
our hypothesis. By Lemma 6, there exist t1 ∈ I1 and t2 ∈ I2 such that

λ(T2)− λ(t2) ≥M
√
T2 − t2 and λ(T1)− λ(t1) ≥M

√
T1 − t1.

Our goal is to conclude by contradiction by taking appropriate M and ε. In
particular, we would like to have

λ(T2)− λ(t1) > (4 + 2ε)
√
T2 − t1.

We write

λ(T2)− λ(t1) = (λ(T2)− λ(t2)) + (λ(t2)− λ(T1)) + (λ(T1)− λ(t1))

≥ M
√
T2 − t2 − (4 + 2ε)

√
|t2 − T1|+M

√
T1 − t1,

so we just need to show that the last formula is greater than (4+2ε)
√
T2 − t1.

This inequality can be satisfied by taking M = 3.5 and ε = 0.00005.
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10 Distributional limits of Riemannian mani-

folds and graphs with sublinear genus growth

A summary written by Zhiqiang Li

Abstract

We discuss a recent work of H. Namazi, P. Pankka, and J. Souto
on distributional limits of certain sequences of Riemannian manifolds
and applications to distributional limits of certain sequences of graphs
of sublinear genus growth, which somewhat improves I. Benjamini and
O. Schramm’s original result on the recurrence of the simple random
walk on limits of planar graphs of uniformly bounded valence.

10.1 Introduction

I. Benjamini and O. Schramm proved in their seminal paper [1] the recurrence
of the simple random walk on limits of planar graphs. We will discuss a
recent work of H. Namazi, P. Pankka, and J. Souto [2] on related results in
the context of certain Riemannian manifolds and certain non-planar graphs.

Recall the following main theorem of [1].

Theorem 1 (I. Benjamini and O. Schramm [1]). Let (G, o) be a distribu-
tional limit of rooted random unbiased finite planar graphs Gj with uniformly
bounded valence. Then with probability one G is recurrent.

We say a (rooted) graph is recurrent if the simple random walk on it is
recurrent. In the same spirit, one of the results of [2] is the following.

Theorem 2. Let {Gi}i∈N be a sequence of finite graphs with uniformly bounded
valence, with |G| −→ +∞, and with sublinear genus growth. If {Gi}i∈N con-
verges in distribution to λ, then the set of recurrent rooted graphs (G, p) has
full λ-measure.

Here a graph G is considered as a metric space equipped with the graph
metric, and |G| denotes the cardinality of the set V (G) of vertices of G. We
now define formally what exactly it means to say that {Gi}i∈N converges in
distribution to λ, which is similar to the corresponding concept in [1].

Let H be the space of all isometry classes of pointed metric spaces en-
dowed with the pointed Gromov-Hausdorff topology. Recall that two pointed
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metric spaces (X, x, dX) and (Y, y, dY ) are close to each other in the pointed
Gromov-Hausdorff topology if for R > 0 large and ε > 0 small, there exists
L ∈ R close to 1 and two discrete subsets U ⊆ X and V ⊆ Y with x ∈ X,
Y ∈ Y ,

B(X,dX)(x,R) ⊆
⋃
u∈U

B(X,dX)(u, ε), B(Y,dY )(y,R) ⊆
⋃
v∈V

B(Y,dY )(v, ε),

and an L-bi-Lipschitz map (U, dX)→ (V, dY ) mapping x to y.
Given a sequence {Gi}i∈N of finite graphs with uniformly bounded va-

lence. For each i, consider the map τi : V (Gi)→ H such that τi(v) = (Gi, v)
for v ∈ V (G). Let µi = 1

|Gi|
∑

v∈V (G)

δv be the probability measure which gives

equal weight to each vertex. Then we say {Gi}i∈N converges in distribution
to a measure λ on H if the push-forward (τi)∗µi of µi converges to λ in the
weak∗-topology as i tends to +∞.

In [2], Theorem 2 is actually a consequence of one of the main results
in the context of Riemannian manifold. For a Riemannian manifold M , we
denote κM , inj(M), g(M), and volM the sectional curvature, the injectivity
radius, the genus, and the Lebesgue measure induced by the Riemannian
metric of M , respectively.

Theorem 3. Let ε > 0, and {Mi}i∈N be a sequence of closed Riemannian
surfaces with |κMi

| ≤ 1 and inj(Mi) > ε for all i ∈ N. Suppose that {Mi}i∈N
converges in distribution to λ and that

lim
i→+∞

g(Mi) + 1

volMi
(Mi)

= 0.

Then the set of (X, x) ∈ H such that X is a Riemannian surface conformally
equivalent to C or C \ {0} has full λ-measure.

Similar to the definition above, we say that {Mi}i∈N converges in distri-

bution to a measure λ on H if (τi)∗

(
volMi

volMi (Mi)

)
converges to λ in the weak∗-

topology, where τi : Mi → H is the map with τi(x) = (Mi, x) for x ∈Mi.

10.2 Technical results

In this section, we summarize some technical results that are needed to prove
Theorem 3.
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As experts would expect, we need a form of the Benjamini-Schramm
lemma in the context of Riemannian manifold.

Recall that if (X, d) is a metric space and C ⊆ X a finite set of points,
then the isolation radius ρX,C(w) of a point w ∈ C is its minimal distance
to a different point in C:

ρX,C = min
z∈C, z 6=w

d(w, z).

Give δ ∈ (0, 1) and s > 0, we say that w ∈ C is (δ, s)-supported if

min
p∈X

∣∣C ∩ (B(X,d)(w, δ
−1ρX,C(w)

)
\B(X,d)(p, δρX,C(w))

∣∣ ≥ s.

Lemma 4 (I. Benjamini and O. Schramm [1]). For every d ∈ N and every
δ ∈ (0, 1), there exists a constant c(d, δ) such that for every finite subset C
of Rd and every s ≥ 2 the set of (d, δ)-supported points in C has cardinality

at most c(d, δ) |C|
s

.

For Riemannian manifold, we need the following form.

Lemma 5. Let k ∈ N be a positive integer, M be a compact d-manifold,
{Ui}i∈I an open covering of M =

⋃
Ui with multiplicity k, and φi : Ui → Rd

an embedding for each i ∈ I, where I is a finite index set.
For each δ ∈ (0, 1), each finite subset C of M , and each s ≥ 2, the set

of x ∈ C for which there exists i ∈ I with x ∈ Ui and such that φi(x) is

(δ, s)-supported in φi(C ∩Ui) has cardinality at most c(d, δ)k|C|
s

, where c(d, δ)
is the constant in Lemma 4.

Recall that the multiplicity of a covering {Ui}i∈I of M is

sup{|{i ∈ I : x ∈ Ui}| : x ∈M}.

In order to apply Lemma 5 in the context of Riemannian surfaces, we
need to be able to construct coverings in a controlled way.

Lemma 6. There exists k ∈ N and δ > 0 such that for each orientable
Riemannian surface M with constant curvature κM ≡ −1, 0, 1 (and with
volM(M) = 1 if M is a torus), there exists an open covering {Ui}i∈I with the
following properties:

(i) The cover has at most multiplicity k.
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(ii) For every x ∈M there is i ∈ I such that BM(x, δ) ⊆ Ui.

(iii) Each Ui admits a conformal embedding into C.

We also need some properties of quasi-conformal maps on Riemannian
manifolds. Let M and N be Riemannian manifolds. A homeomorphism
f : M → N is quasi-conformal if there exists H ∈ [1,+∞) so that for each
x ∈M ,

lim sup
r→0

max
d(x,y)=r

d(f(x), f(y))

min
d(u,v)=r

d(f(u), f(v))
≤ H.

Equivalently, f is in the local Sobolev space W 1,n
loc (M,N) of mappings M →

N and there exists a constant K ∈ [1,+∞) so that ||dfx||n ≤ K det(dfx) for
almost every x ∈M , in which case we call f a K-quasi-conformal map.

Proposition 7. For all d, K, and κ, there exists C(d,K, κ) and ε0(d,K, κ)
such that the following holds:

If f : M ′ →M is a K-quasi-conformal homeomorphism between two Rie-
mannian d-manifolds satisfying |κM | ≤ κ, |κM ′| ≤ 1, and inj(M ′) ≥ 10, then
for each 1-net N ⊆M ′, each R ≥ 1, and each ε ∈ (0, ε0(d,K, κ)), we have

|{p ∈ N : diamM(f(BM ′(p,R))) > ε}| ≤ C(d,K, κ) volM(M)Rdε−de(d−1)R.

A r-net N of a metric space (X, d) is a subset of X with d(x, y) ≥ r for
each pair of distinct points x, y ∈ N .

The following compactness property of quasi-conformal maps may seem
familiar.

Lemma 8. Fix d and suppose that X is a complete Riemannian d-manifold
with |κX | ≤ 1 and inj(X) > 0. Let Ω ⊆ X be a domain, and M be a closed
Riemannian d-manifold.

Suppose that F is a family of K-quasi-conformal embeddings Ω → M
so that for some uniform δ > 0 and for every f ∈ F , there exist points
pf , qf ∈M \ f(X) with d(pf , qf ) ≥ δ. Then F is equicontinuous.

The following corollary is used in the proof of Theorem 3.

Corollary 9. Fix d and suppose that X is a complete Riemannian d-manifold
and that Ω1 ⊆ Ω1 ⊆ Ω2 ⊆ · · · is an exhaustion of X by bounded domains.
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Then a sequence fi : Ωi → Rd of K-quasi-conformal embeddings has a sub-
sequence converging to a K-quasi-conformal embedding f : X → Rd if there
exist x, y ∈ X so that the sequences {fi(x)}i∈N and {fi(y)}i∈N converge in Rd

to different points.

The following well-known C1,1-compactness theorem of Gromov is impor-
tant in the proof of Theorem 3.

Theorem 10 (M. Gromov). Fix d and ε, and suppose that {(Mi, pi)7}i∈N
is a sequence of pointed Riemannian d-manifolds satisfying |κMi

≤ 1 and
inj(Mi, pi) ≥ ε for i ∈ N. If {(Mi, pi)7}i∈N converges in H to a pointed metric
space (X, x), then X is a smooth manifold endowed with a C1,1-Riemannian
metric and (Mi, pi) converges to (X, x) in the C1,α-topology for all α ∈ (0, 1).

Recall that a sequence {(Mi, pi)}i∈N of pointed Riemannian manifolds
converges in the C1,α-topology to a pointed Riemannian manifold (N, p) if
for each R > 0, there exists a domain Ω ⊆ N containing BN(p,R) and
a sequence of maps f : (Ω, p) → (Mi, pi) such that the pulled-back metrics
converges in the C1,α-topology on tensors on Ω to the restriction to Ω of the
metric of N .

10.3 Generalizations to higher dimensions

Theorem 3 has a higher-dimensional version, which is proved before Theo-
rem 3 is established in [2], with an analogous but more technical proof.

Denote by Q the set of all Riemannian manifolds M ′ with |κM ′ | ≤ 1 such
that there exists a K-quasi-conformal homeomorphism f : M ′ →M .

Theorem 11. Fix K ≥ 1 and d ≥ 3, and suppose that M is a closed Rie-
mannian d-manifold. Let {Mi}i∈N be a sequence in Q(M,K) which converges
in distribution to λ. If volMi

(Mi) −→ +∞, then the set of (X, x) ∈ H such
that X is a Riemannian manifold K-quasi-conformally equivalent to Rd or
Rd \ {0} has full α-measure.
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11 Backward SLE and the symmetry of the

welding

after S. Rhode and D. Zhan [2]
A summary written by Benjamin Mackey

Abstract

We introduce the backward chordal SLEκ process and its associ-
ated conformal welding. We then use the welding to prove reversability
of backward chordal SLEκ for κ < 4.

11.1 Introduction

The goal of this paper is to show that the conformal welding induced by
backward chordal SLEκ satisfies a certain symmetry.

SLEκ : ∂tgt(z) =
2

gt(z)−
√
κBt

, Backward SLEκ : ∂ft(z) =
−2

ft(z)−
√
κBt

The particulars of the welding will be defined later in Section 11.3.3. The
main theorem is

Theorem 1 (Theorem 1.1, [2]). If κ < 4 and φ is a backward chordal SLEκ

welding, then h ◦ φ ◦ h has the same distribution as φ.

A consequence of this theorem is that backward SLEκ is reversible for
κ < 4. That is, the trace is invariant under the map h(z) = −1/z. For κ ≤ 8,
we know that chordal SLEκ is reversible (For κ ≤ 4, [3]. For κ ∈ (4, 8], [1]).

Theorem 2 (Theorem 1.2, [2]). Let κ < 4, let β be a “normalized global
backward chordal SLEκ trace,” and suppose h(z) = −1/z. Then the random
sets β\{0} and h(β\{0}) have the same distribution.

Some tools will need to be developed first. We will need to discuss hulls
in H and hulls in D, along with associated lifts of symmetric conformal maps.
We will then discuss backward Loewner equations and their traces in gen-
erality. We will also need to discuss backward SLE with force points and
their commutativity properties. We will then discuss proofs of the above
theorems.
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11.2 Extension of Conformal Maps

11.2.1 Definitions

A set K ⊂ H is called an H-hull if K is bounded, K is relatively closed in H,
and H\K is simply connected. There is a unique surjective conformal map
gK : H\K → H such that gK(z) = z + c/z + O(1/z2) as z →∞. Define the
half plane capacity of K by hcap(K) = c. Let fK = g−1

K .
A set K ⊂ D is called a D-hull if K is relatively closed in D, 0 /∈ K,

and D\K is simply connected. By the Riemann mapping theorem, there is
a unique surjective conformal map gk : D\K → D so that gK(0) = 0 and
g′K(0) > 0. Define the D-capacity of K to be dcap(K) = log g′K(0). Most
results in this section which are true for H-hulls are also true for D-hulls with
minor modifications, so they will be omitted.

Let K1, K2 be H-hulls. If K1 ⊂ K2, define the quotient hull K2/K1 by
K2/K1 = gK1(K2\K1). We say K1 ≺ K2 if there is a hull K ⊂ K2 so that
K2/K = K1. This hull K is unique and is denoted by K2 : K1.

Let IR be the conjugation map, IR(z) = z. Let BK = K ∩R be the base
of K, and define the double of K by K̂ = K ∪ IR(K) ∪ BK . The map gK
extends to Ĉ\K̂ with image Ĉ\SK for some compact interval SK ⊂ R called
the support of K.

A set S ⊂ Ĉ is called R-symmetric if IR(S) = S. A map W defined
on an R-symmetric domain Ω is called R-symmetric if W (z) = W (z) and
W (Ω ∩H) ⊂ H.

11.2.2 Lifting and Collapsing

Let Ω be an R-symmetric domain, and K and H-hull.

(a) If SK ⊂ Ω, let ΩK = K̂ ∪ fK(Ω\SK) be the lift of Ω via K.

(b) If K̂ ⊂ Ω, let ΩK = SK ∪ gk(Ω\K̂) be the collapse of Ω via K.

(c) If K̂ ⊂ Ω, and W : Ω → C is an R-symmetric conformal map so that
∞ /∈ W (K̂), define the collapse of W via K to be the conformal map
WK : ΩK → C given by

WK = gW (K) ◦W ◦ fK .

So we can collapse a conformal map. Can we lift it?
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Theorem 3 (Theorem 2.12, [2]). Let W be an R-symmetric conformal map
defined in an R-symmetric domain Ω. Let K be an H-hull so that SK ⊂ Ω
and ∞ /∈ W (SK). Then there exists a unique R-symmetric conformal map
V : ΩK → C so that VK = W.

The map V obtained in Theorem 3 is called the lift of W via K, and is
denoted by WK . We denote the H-hull WK(K) by W ∗(K). A similar result
holds for D-hulls, with R-symmetry replaced by T-symmetry.

11.3 Backward Loewner Equations

11.3.1 Chordal backward Loewner equations

Let λ ∈ C[0, T ). The backward chordal Loewner equation driven by λ
is

∂tft(z) =
−2

ft(z)− λ(t)
, and f0(z) = z. (1)

Each ft is a conformal map defined on H with image contained in H. Let Lt =
H\ft(H) denote the backward chordal hulls driven by λ. How do we know
automatically that they are hulls? We can appeal to a more general Loewner
equation which connects the backward and forward Loewner equations. For
t1, t2 < T , consider a family of functions which give the maximal solution to
the ODE

∂t2ft2,t1(z) =
−2

ft2,t1(z)− λ(t2)
, and ft1,t1(z) = z. (2)

A quick inspection of this differential equation reveals the following facts:

(a) ft = ft,0 for every t > 0.

(b) ft3,t2 ◦ ft2,t1 is a restriction of ft3,t1 . In particular, ft2,t1 = f−1
t1,t2 .

(c) Fix t0 ∈ [0, T ). Then (ft0+t,t0)0≤t<T−t0 are the backward Loewner maps
driven by λ(t0 + t).

(d) Fix t0 ∈ [0, T ). Then (ft0−t,t0)0≤t<t0 are the forward Loewner maps
driven by λ(t0 − t).

Define Lt2,t1 = H\ft2,t1(H), which are all H-hulls by the forward theory,
and ft2,t1 = Lt2,t1 . Also, Lt,0 = Lt.
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Lemma 4 (Lemma 3.2, Lemma 3.3 [2]). For 0 ≤ t < T , Lt is an H-hull
with hcapLt = 2t, and ft = fLt. If 0 ≤ t1 < t2 < T , then Lt1 ≺ Lt2 and
SLt1 ⊂ SLt2 . For any fixed t0, (Lt0 : Lt0−t)0≤t<t0 are chordal Loewner hulls
for λ(t0 − t).

When λ(t) =
√
κBt for a Brownian motion Bt, the resulting process is

the backward chordal SLEκ process. There are also backward radial and
backward covering Loewner equations which play an important role in this
paper, but they have been omitted from this summary.

11.3.2 Traces

Note that we do not have Lt1 ⊂ Lt2 for t1 ⊂ t2, so this family of hulls
is not increasing in the sense that forward chordal Loewner hulls define an
increasing family. This makes defining “a” trace more complicated, so we
must take a different approach.

Suppose for all t0, the forward Loewner equation driven by λ(t0 − t)
generates a forward chordal trace, which we will denote βt0(t0 − t). Then λ
generates a backward chordal trace βt0 with Lt2,t1 = βt2 [t1, t2] for each t.

Since Lt = βt[0, t] for each t, we get that ft2,t1(βt1(t)) = βt2(t). Note, the
path flows from the tip down to the base, and grows from the base rather
than from the tip as in the foward case.

We have shown how the backward Loewner equation can create a family
of curves, but what we want is some form of global trace for the entire process.
We use the following Lemma to construct such a trace.

Lemma 5 (Lemma 3.6 [2]). There exists a family of conformal maps (FT,t)t<T
defined on H so that

FT,t1 = FT,t2 ◦ ft2,t1
in H for all t1 ≤ t2.

Using this lemma, we can define a trace β by β(t) = FT,t0(βt0(t)). Define
FT = FT,t ◦ ft. Then we can normalize this family by requiring

FT (λ(0)) = λ(0), and FT (λ(0) + i) = λ(0) + i. (3)

With this, the curve β depends only on λ and is called the normalized
backward chordal trace driven by λ. It satisfies β(0) = λ(0) and λ(0)+i /∈
β.

Since we know that forward SLEκ always generates a trace, we know that
backward chordal SLEκ generates traces and a normalized global trace β.
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11.3.3 Weldings

Let β be an H-simple curve. Then β is an H-hull with Bβ =point ∈ R and
Sβ ⊂ R a compact interval. Then fβ can be extended continuously to H with
fβ(Sβ) = β. The endpoints of Sβ both go to Bβ. There is a unique zβ ∈ Sβ
which is sent to the tip of β, and this point divides Sβ into two components,
each mapped continuously and bijectively onto β by fβ. This induces the
involution φβ of Sβ : Sβ → Sβ which satisfies y = φβ(x) =⇒ fβ(x) = fβ(y).
The map φβ is the welding induced by β.

Let (Lt)t<T be backward chordal Loewner hulls generated by λ which
generates traces Lt = βt[0, t] and has support St = SLt . Then the family of
supports is increasing and we can consider ST := ∪t<TSt. By the properties
of the general Loewner maps, we can see that if t1 < t2, then φt2|St1 = φt1 .
Thus, there is a unique involution φ : ST → ST so that φ(x) = y if and only
if ft(x) = ft(y) for some t < T . The map φ is the welding induced by
the process. If FT is the normaliized map used to define the global trace,
then FT (x) = FT (φ(x)) for every x ∈ ST . In the case of a backward chordal
SLEκ, ST = R. Welding is well preserved by conformal mappings.

Proposition 6. Suppose (Lt) is backward chordal Loewner hulls which are
all H-simple curves and that W is an R-symmetric map. Suppose that φ
is the welding induced by this process. Then W ∗(Lt) is a family of backward
Loewner hulls which are all simple curves. Let φW denote the welding induced
by the new family. Then

φW = W ◦ φ ◦W−1.

11.4 Backward SLE with force points

Let ρ = (ρ1, . . . , ρn) ∈ Rn, and suppose x0, q1, . . . , qn ∈ R so that x0 6= qk for
each k. Let λ(t) and fλt (z) solve the Bt-adapted SDEs:

dλ(t) =
√
κdBt +

n∑
k=1

−ρk
λ(t)− fλt (qk)

dt, and λ(0) = x0, (4)

where fλt is the backward chordal Loewner map driven by λ. The process
driven by λ is called a backward chordal SLE(κ; ρ) process started from
x0 with force points (q1, . . . , qn). We write this as the process is started
from (x1; q1, . . . , qn).
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Definition 7. Let κ1, κ2 > 0 and ρ1, ρ2 ∈ R. Let z1, z2 ∈ R be distinct. We
say that a backward chordal SLE(κ1, ρ1) process started from (z1; z2) com-
mutes with a backward SLE(κ2, ρ2) process from (z2, z1) if there is a coupling
of the two processes {Lj(t) : 0 ≤ t < Tj} so that

(a) Each Lj(t) os a complete backward chordal SLE(κj, ρj) process started
from (zj, zk),

(b) If tk < Tk is any stopping time with respect to Fkt , the sigma field
generated by Lk(t), then

{(fk(tk, ·)∗(Lj(t)) : 0 ≤ t < Tj(tk)}

has the distribution of a partial backward chordal SLE(κj, ρj) process
started from (fk(tk, zj);λk(tk)),

where fk(tk, ·) = fLk(tk) and Tj(tk) = sup{t > 0 : SLk(tk) ∩ SLj(t) = ∅}.

Theorem 8 (Theorem 5.2 and 6.1, [2]). For any κ > 0, any backward
chordal(resp. radial) SLE(κ;−κ− 6) process started from (z1; z2) commutes
with any backward chordal(resp. radial) SLE(κ,−κ− 6) process started from
(z2; z1). In the radial case, both processes a.s. induce the same welding ψ.

The proof of this theorem is the heart of the paper. Stochastic calculus
is used to craft a weight used to create local couplings for the process. To
create a global coupling, the techinique developed in [3] is used to create local
couplings µn on an appropriate dense subset of hulls. The global coupling is
the limit of µn in an appropriate topology.

11.5 Weldings and reversability of backward SLE

Proof of Theorem 1. Let L1(t), L2(t) be two backward radial SLE(κ,−κ −
6) process which commute, and therefore induce the same welding ψ by
Theorem 8. Let Wj : D → H be appropriate Möbius transformations so
that W2 = h ◦W1. By Corollary 4.8 in [2], Kj(t) := W ∗

j (Lj(t)) is a backward
chordal SLEκ after a time change which induces a welding φj for each j. Then
we know that φ, φ1, and φ2 all have the same distribution. By Proposition 6,
we have that φj = Wj ◦ψ ◦W−1

j for each j. Therefore, φ2 = W2 ◦ψ ◦W−1
2 =

h ◦ (W1 ◦ ψ ◦W−1
1 ) ◦ h = h ◦ φ1 ◦ h.
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We can show how the symmetry of the welding is used to prove the
reversability of backward chordal SLE.

Proof idea for Theorem 2: First, let φ1 and φ2 be two backward chordal SLEκ

weldings with corresponding global traces β1 and β2. Recall that to construct
the traces, we created conformal maps Fj : H → C\β with Fj(0) = 0 and
Fj(i) = i. By construction, this map satisfied Fj(x) = Fj(φj(x)) for each
x ∈ R. By Theorem 2, we can assume that φ1 and φ2 are coupled so that
φ2 = h◦φ1 ◦h. It suffices to show that h(β2\{0}) = β1\{0}. Let G = h◦F2 ◦
h ◦ F−1

1 : C\β1 → C be conformal. We show that G extends continuously to
β1\{0} and satisfies G(β1\{0}) = h(β2\{0}), and then it is shown that G is
the identity map.
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12 Random conformal weldings

after K. Astala, P. Jones, A. Kupiainen and E. Saksman [2, 3]
A summary written by Miika Nikula

Abstract

Define a homeomorphism φ : T→ T by formally setting

τ(dx) = exp
(
βGFF|T(e2πix)

)
dx,

where β > 0 is a parameter and GFF|T is the two-dimensional Gaus-
sian free field restricted to the unit circle, and taking φ(e2πix) =

exp
(

2πi τ([0,x))
τ([0,1))

)
. The conformal welding problem for the random

homeomorphism φ is shown to almost surely have a unique solution,
a random Hölder continuous planar Jordan curve.

12.1 Overview

Formally, the two-dimensional Gaussian free field is a Gaussian process X
on the plane with the covariance structure

EX(z)X(w) = log
1

|z − w|
, z, w ∈ C.

Due to the logarithmic singularity of the covariance kernel, X is a random
distribution rather than a random pointwise function. Given a parameter
β2 < 2, in Section 12.2 we see how to give a precise meaning for a ran-
dom measure τ(dx) ∝ exp (βX(e2πix)) dx and thus define a random circle

homeomorphism φβ(e2πix) = φ(e2πix) = exp
(

2πi τ([0,x))
τ([0,1))

)
.

The main theorem in [2, 3] is the solution of the conformal welding prob-
lem for the random homeomorphism φ, thus associating a planar Jordan
curve to φ. It is easiest to explain conformal welding concretely through its
inverse process. Let Γ be a given Jordan curve and write C = Ω+ ∪ Γ ∪ Ω−

where Ω+ and Ω− are disjoint domains. Denoting the exterior disk by
D∞ = C \ D, by the Riemann mapping theorem there exist conformal maps
f+ : D → Ω+ and f− : D∞ → Ω−. Since ∂Ω+ = ∂Ω− = Γ is a Jordan
curve, by Carathéodory’s extension theorem the maps f+ and f− may be
extended to continuous homeomorphisms D → Ω ∪ Γ and D∞ → Ω− ∪ Γ
respectively (the extensions are still denoted by f+ and f−). We may thus
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form the composition φ = f−1
+ |Γ ◦ f−|T : T→ T, which is a homeomorphism

by construction. The φ obtained this way is called the welding homeomor-
phism of the Jordan curve Γ. In conformal welding the problem is to recover
the curve Γ that corresponds to a given homeomorphism φ. Generally both
existence and uniqueness of a solution are nontrivial.

With this preparation, the main theorem may be stated as follows.

Theorem 1. Let β2 < 2. Then the welding problem associated to φ = φβ
almost surely has a solution. Explicitly, almost surely there exists a domain
Ω+ bounded by a Jordan curve Γ and conformal maps f+ : D → Ω+, f− :
D∞ → C \ Ω̄+ for which f−1

+ |Γ ◦ f−|T = φ. Moreover, the Jordan curve Γ is
unique (up to Möbius transformations) and Hölder continuous.

This theorem is further elaborated on by proving that almost surely, the
welding curve depends continuously on the parameter β. More precisely,
almost surely for a fixed realization of the free field one may consider a
parametric family of curves Γβ that depends continuously on β2 < 2.

12.2 A white noise decomposition of the Gaussian free
field

The first technical issue is to give a precise meaning to the exponential of
the two-dimensional Gaussian free field on the circle. Following Bacry and
Muzy [4], the restriction of the free field onto the circle is represented by a
white noise decomposition, bringing a transparent geometric interpretation
for the correlation structure of the field.

It simplifies the notation to make the identification T ∼= R/Z ∼= [0, 1)
and define a periodic Gaussian process on R. Let λ(dx dy) = dx dy

y2
denote

the hyperbolic area measure on the upper half plane and let w denote the
white noise on [0, 1) × R+ with the control measure λ. This means that
w = (w(A)) is a centered Gaussian process indexed by those Borel sets
contained in [0, 1) × R+ that satisfy λ(A) < ∞, whose covariance structure
is given by

Ew(A)w(B) = λ(A ∩B) for A,B ⊂ [0, 1)× R+ s.t. λ(A), λ(B) <∞.

To define a periodic white noise on the upper half-plane, first extend w(A) =
w (A ∩ ([0, 1)× R+)) and then set W (A) =

∑
n∈Zw(A + n) for Borel sets
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A ⊂ H such that λ(A) <∞. Define the set

H =

{
(x, y) ∈ H : −1

2
< x <

1

2
and y >

2

π
tan |πx|

}
.

By computation, formally we have

EW (H + x)W (H ′ + x) = 2 log 2 + log
1

2 sinπ|x− x′|
for all x, x′ ∈ R. (1)

The hyperbolic area of the set H is itself not finite, so to get well-defined
processes in the usual sense one regularizes by defining

Hε(x) = W ((H + x) ∩ {y ≥ ε})

for x ∈ R and ε ∈ (0, 1). As ε↘ 0 the covariance of the process Hε converges
to that given by (1).

From (1) we have

lim
ε↘0

EHε(x)Hε(x
′) = 2 log 2 + log

1

|e2πix − e2πix′|
.

Up to a random scalar, the limit of the processes (Hε(x))x∈R as ε↘ 0 is the
restriction of the Gaussian free field on the circle T ∼= [0, 1) in the sense that
is has the same covariance structure. While the convergence also holds in
the sense of distributions, the exponential may be defined without reference
to the distributional limit by setting, for a parameter β > 0,

τβ,ε(dx) = τε(dx) = eβHε(x)−β
2

2
EHε(x)2dx

and taking the limit ε ↘ 0. From the construction it follows that for any

given x ∈ R the density eβHε(x)−β
2

2
EHε(x)2 is a martingale. By the martingale

convergence theorem, the almost sure weak limit

τ(dx) = lim
ε↘0

τε(dx)

exists.
This kind of construction of a random measure is known as Gaussian mul-

tiplicative chaos. Kahane [6] and later work on the measures have established
the following basic properties of the random limit measure τ = τβ.
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Theorem 2. 1. For β2 < 2, almost surely τβ satisfies τβ(I) > 0 for any
interval I ⊂ R. Further Eτ(I) = |I|.

2. For β2 < 2 and −∞ < p < 2/β2, Eτβ(I)p <∞ for any interval I ⊂ R.

3. For β2 < 2, the measure τβ almost surely has no atoms.

4. For β2 ≥ 2, τβ ≡ 0 almost surely.

The integral of the exponentiated two-dimensional Gaussian free field
restricted to the unit circle, i.e. the homeomorphism for which the welding
problem is to be solved, is defined as

hβ(x) = h(x) =

´ x
0
τ(dx)

τ([0, 1))
for x ∈ R. (2)

By the properties of τ given in Theorem 2, h : R → R is an increasing
homeomorphism which is periodic in the sense that h(x + 1) = h(x) + 1 for
all x ∈ R. Explicitly on the circle, the corresponding homeomorphism is

φβ(e2πix) = φ(e2πix) = exp (2πih(x)) . (3)

12.3 Welding problem and the Beltrami equation

The theory of the Beltrami equation provides an effective tool for solving
the welding problem. To briefly explain this approach, let φ : T → T be a
homeomorphism. Suppose φ may be extended to a homeomorphism f : D̄→
D̄ which is locally quasiconformal, i.e. satisfies f ∈ W 1,1

loc and the Beltrami
equation

fz̄(z) = µ(z)fz(z) for a.e. z ∈ D (4)

with supz∈K |µ(z)| < 1 for all compact K ⊂ D. Further suppose one may
find a homeomorphic solution F : C→ C to the equation

Fz̄(z) = χD(z)µ(z)fz(z) for a.e. z ∈ C, (5)

where the dilatation µ is the same as in (4). Since F is a homeomorphism,
the image Γ = F (T) is a Jordan curve and moreover by (5) the restriction
f− = F |D∞ is a conformal mapping of D∞ onto Ω− = F (D∞).

The existence of a solution to the welding problem is thus assured once one
finds a conformal map of D onto Ω+ = F (D). One of the fundamental results
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of the theory of quasiconformal mappings is that in the case ||µ||∞ < 1 the
solutions to (4) are unique up to postcomposition with a conformal mapping.
Thus in this case, since both f and F solve (4), one may define f+ = F ◦ f−1

and obtain the desired conformal map f+ : D→ Ω+. But by the assumption
that f is locally quasiconformal and the fact that conformality is a local
property, the same definition in fact gives a conformal mapping also in the
general case.

The method of using the Beltrami equation thus reduces the conformal
welding problem to finding the locally quasiconformal extension f : D → D
and finding the homeomorphic solution F to the equation (5).

12.4 Beurling–Ahlfors extension

The extension of the random homeomorphism φ : T → T as constructed in
(3) is effected by the Beurling–Ahlfors extension. The formula is simpler to
write down on the upper half-plane H. By the conformal map z 7→ 1

2πi
log z

we obtain a one-to-one correspondence between homeomorphisms of the circle
and homeomorphisms h : R→ R that satisfy h(x+ 1) = h(x) + 1. For x ∈ R
and 0 < y < 1 such a homeomorphism h is extended as

Φ(x+iy) =


1
2

´ 1

0

(
h(x+ ty) + h(x− ty)

)
dt+ i

´ 1

0

(
h(x+ ty)− h(x− ty)

)
dt, 0 < y < 1

x+ iy + (2− y)c0, 1 ≤ y < 2

x+ iy, 2 ≤ y

with c0 =
´ 1

0
h(t)dt − 1

2
. It is easy to check that this definition gives a con-

tinuously differentiable homeomorphism Φ : H → H. The desired extension
of φ is thus obtained as

f(z) = exp

(
2πiΦ

(
1

2πi
log z

))
. (6)

The essential property of the Beurling–Ahlfors extension is that it admits
the following estimate for the distortion function of the extension in terms
of the original boundary homeomorphism. Consider the Whitney decompo-
sition {CI} of H close to the boundary. Explicitly, let D denote the dyadic
subintervals of [0, 1] and denote CI = I × [|I|, 2|I|]. Suppose h is obtained
from a measure τ as in (2). Then for I ∈ D the distortion function satisfies

KΦ(z) ≤ CKτ (I) = C
∑
J,J ′

τ(J)

τ(J ′)
for all z ∈ CI , (7)
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where the sum runs over dyadic intervals of length 2−4|I| that are contained
in I or its dyadic neighbors of the same length.

12.5 Lehto’s method

The existence of a solution to the Beltrami equation (5) is proved by using a
condition due to Lehto [7]. For a function K ∈ L1

loc(C) such that K(z) ≥ 1
for a.e. z ∈ C, define the Lehto integral by

L(z, r, R) = LK(z, r, R) =

ˆ R

r

1´ 2π

0
K(z + ρeiθ)dθ

dρ

ρ
.

In geometric terms, the importance of Lehto integrals is that they may
be used to control the distortion of annuli under a locally quasiconformal
mapping F with the given distortion function K. The bound eventually
used to obtain Hölder continuity for the random welding curves is

diam
(
F (B(z, r))

)
≤ 16 exp

(
−2π2LK(z, r, R)

)
diam

(
F (B(z, R))

)
. (8)

It is this kind of geometric control of the distortion of annuli that leads
to the following theorem of Lehto, a condition for the existence of a homeo-
morphic solution to the Beltrami equation.

Theorem 3. Let µ : C → C have compact support and satisfy |µ(z)| < 1
for almost every z ∈ C. Suppose the associated distortion function K(z) =
1+|µ(z)|
1−|µ(z)| satisfies K ∈ L1

loc(C) and

lim
r↘0

LK(z, r, 1) =∞ for a.e. z ∈ C.

Then the Beltrami equation

Fz̄(z) = µ(z)Fz(z) for a.e. z ∈ C

admits a homeomorphic W 1,1
loc (C)-solution F .

Remark. The assumptions of Lehto’s theorem are too weak guarantee the
uniqueness of the solution.
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12.6 Distortion estimates for the random mappings

The technical core of the article [3] consists of obtaining strong enough prob-
abilistic estimates for the distortion function Kf of the Beurling–Ahlfors
extension f (recall (6)) of the random homeomorphism φ obtained by inte-
gration of the Gaussian free field on the circle. The main estimate is the
following theorem.

Theorem 4. The Lehto integrals of the Beurling–Ahlfors extension f of the
random homeomorphism φ : T→ T satisfy, for z0 ∈ T,

P
(
LKf (z0, 2

−N , 1) ≤ δN
)
≤ 2−(1+b)N

for some b > 0, for all N large enough.

By (7) the proof of this estimate reduces to estimating the measure τ ,
which is in turn effected through the white noise decomposition. Essentially,
the white noise decomposition gives a multi-scale decomposition of the mea-
sure τ , which allows one to decompose the Lehto integral to a sum of nearly
independent terms.

12.7 Existence and uniqueness of the random weldings

From Theorem 4 one would like to show that almost surely, for z ∈ T one
has

LKf (z, r, 1) ≥ a log
1

r
for r ∈ (0, 1)

for some (random) constant a > 0. Theorem 3 would then give the existence
of the solution to the Beltrami equation (5) and thus, by the argument of
Section 12.3, the existence part of Theorem 1. On its own Theorem 4 implies
slightly less than this. By a Borel–Cantelli argument one obtains the almost
sure existence of a set {zn,k : n ∈ N, k = 1, 2, . . . , Nn}, where Nn ' 2(1+b/2)n,
such that

LKf (zn,k, 2
−n, 1) ≥ a log

1

2−n
for all n, k.

Carefully retracing the steps in the proof of Theorem 4 (as given e.g. in
[1]), this turns out to be enough to prove the existence part of Theorem 1.
Applying the estimate (8) also gives the claim on Hölder continuity.

Uniqueness of the welding curve is proven by appealing to conformal re-
movability of Hölder continuous Jordan curves, which is a result due to Jones
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and Smirnov [5]. Suppose there are two solutions to the welding problem,
i.e. two pairs of conformal maps f+, f− and g+, g− that solve the welding
problem for the homeomorphism φ. One may then define the map

Ψ(z) =

{
g+ ◦ f−1

+ (z) , z ∈ f+(D)

g− ◦ f−1
− (z) , z ∈ f−(D∞)

and observe that it is a well-defined homeomorphism C → C which is con-
formal off f+(T) = f−(T). As the Jordan curve f+(T) is Hölder continuous
by the proven parts of Theorem 1, the theorem of Jones and Smirnov implies
that Ψ is a conformal homeomorphism of C→ C i.e. a Möbius transforma-
tion. This is the desired uniqueness statement.
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13 Stochastic Loewner evolution, part 1

after M. Zinsmeister [1] (chapters 1 – 3)
A summary written by Eveliina Peltola

Abstract

We give an introduction to the Loewner differential equation, orig-
inally discovered by Charles Loewner1 in 1923 while studying the
Bieberbach conjecture. Solutions of this equation, called Loewner
chains, arise as well in the theory of stochastic Loewner evolutions
(SLEs), invented by Oded Schramm2 in 1999.

13.1 Preliminaries in complex analysis

In this section, we introduce the half–plane capacity which can be thought of
as a way of measuring the size of a compact subset of the upper half plane.

A subset Ω ⊂ C is called a domain if it is nonempty, open and connected.
If also Ĉ\Ω is connected, Ω is simply connected. For example, the upper half
plane H and the open unit disc D are simply connected domains. We call a
holomorphic bijection f : Ω → f(Ω) a conformal isomorphism. Recall that,
by the Riemann mapping theorem, there exists a conformal isomorphism
between any two proper simply connected subdomains of C.

Let us now investigate subsets of H. A bounded set K ⊂ H is called a
compact hull if K = K ∩H and the complement H \K is simply connected.
A crucial property of hulls is the following, proved in [1], for instance.

Lemma 1. Let K ⊂ H be a compact hull. Then there exists a unique con-

formal isomorphism gK : H \K → H such that limz→∞

(
gK(z)− z

)
= 0.

The map gK is called the hydrodynamically normalized conformal isomor-
phism associated to K. The half–plane capacity of K is defined by

hcap(K) := lim
z→∞

(
gK(z)− z

)
z.

One can show that hcap(K) > 0, unless K = ∅, in which case hcap(∅) = 0.
We also have a bunch of nice properties [1], summarized in the next lemma.

1Loewner, C., Untersuchungen über schlichte konforme Abbildungen des Einheit-
skreises, I. Math. Ann., 89 (1923), pp. 103–121.

2Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees.
Israel J. Math., 118 (2000), pp. 221–288.
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Lemma 2. The conformal map gK : H\K → H and the half–plane capacity
hcap(K) satisfy the following properties.

(a) Monotonicity: If K ⊂ K ′ ⊂ H are two compact hulls, then

hcap(K ′) = hcap(K) + hcap(gK(K ′ \K)).

In particular, the map · 7→ hcap(·) is strictly increasing.

(b) Continuity: If ε > 0 and K ⊂ K ′ ⊂ H are two compact hulls such that
dist(z,K)< ε for any z ∈ ∂K ′, then there exists C ≥ 0 such that

hcap(K ′) ≤ hcap(K) + Cε1/3diam(K ′).

(c) Homogeneity: hcap(·) is invariant under translations of H , and for
any λ > 0, under the scaling z 7→ λz we have hcap(λ ·) = λ2 hcap(·).

(d) For any z ∈ H \K, we have |gK(z)− z| ≤ 3 rad(K).

(e) There exists c ≥ 0 so that for any |z| ≥ rad(K) we have

|z − gK(z) +
hcap(K)

z
| ≤ c

rad(K) hcap(K)

|z|2
.

13.2 Loewner differential equation

In this section, we introduce Loewner chains and the Loewner equation. In
general, a Loewner chain in a simply connected domain Ω is a collection
of conformal maps (gt)t≥0 – or equivalently, a growing family of compact
hulls (Kt)t≥0 in Ω. The characterizing property of Loewner chains is that,
for a fixed z, the maps t 7→ gt(z) satisfy the Loewner differential equation.
The explicit form of the equation depends on Ω, but it has nice conformal
transformation properties, presented in [2]. We may thus let Ω to be H or D.

13.2.1 Chordal Loewner equation

For simplicity, let us first consider slit domains which are complements of
hulls Kt = γ(0, t] for an injective curve γ in the upper half plane H. In the
chordal case, the starting and end points of γ lie on the boundary of H,
whereas, if instead the end point of γ is an interior point, the process is
called radial. In 13.2.2, we shall briefly describe radial Loewner chains in D.

We will also later generalize the special case of slit domains to apply for
curves with self–touchings, as well as more general simply connected domains
arising from families of hulls which satisfy a certain local growth condition.

82



Slit domains. Let γ : [0,∞) → H be a continuous injective curve such
that γ(0) = 0, γ(0,∞) ⊂ H and limt→∞ γ(t) = ∞. Denote by Kt = γ(0, t]
and Ht = H\Kt. The sets Kt are compact hulls generated by the curve γ and
they are growing the sense that Ks ⊂ Kt for s < t. Let gt = gKt : Ht → H
be the conformal map given by Lemma 1, so that around z =∞,

gt(z) = z +
b(t)

z
+O(|z|−2), (1)

where b(t) = hcap(Kt) > 0. By Lemma 2(a & b), b is continuous and strictly
increasing in [0,∞). In particular, by a time reparametrization, we may as-
sume that b ∈ C1[0,∞). In the literature, the choice b(t) = 2t is often used.

Theorem 3. For any t ∈ [0,∞), the limit Ut := limzn→γ(t) gt(zn) along any
sequence (zn)n∈N converging to γ(t) in Ht exists and it defines a continuous
function t 7→ Ut in [0,∞). Moreover, for any z ∈ Ht, the process t 7→ gt(z)
satisfies the chordal Loewner differential equation

∂

∂t
gt(z) =

d
dt
b(t)

gt(z)− Ut
(2)

with the initial condition g0(z) = z. The solution is defined up to the lifetime
Tz = inf{t ≥ 0 | z ∈ Kt} ∈ [0,∞].

Proof. By the general theory of boundary behaviour of conformal maps, since
∂Ht is locally connected, g−1

t : H→ Ht extends continuously to H, and since
γ(t) is not a cut point of ∂Ht, there exists Ut ∈ R such that g−1

t (Ut) = γ(t).
By techniques related to prime ends, the limit Ut can be seen to exist [3].

Using Lemma 2(d) for the hull Kt,t+δ = gt(γ(t, t+δ]) and the observation
that gKt,t+δ ◦ gt = gt+δ, we have

|gt+δ(z)− gt(z)| = |gKt,t+δ(gt(z))− gt(z)| ≤ 3 rad(Kt,t+δ)

uniformly for all z ∈ Ht. By continuity of γ and the Beurling estimate, one
can show [2] that rad(Kt,t+δ) ≤ c ϕ(δ) for an increasing function ϕ such that
limδ→0+ ϕ(δ) = 0. Continuity of t 7→ Ut follows from taking z → γ(t).

Similarly, gKt,t+δ−Ut(gt(z)− Ut) = gt+δ(z)− Ut and, by Lemma 2(a & c),
hcap(Kt,t+δ − Ut) = b(t+ δ)− b(t). Thus, we obtain for δ > 0 small enough

gt+δ(z)− gt(z) =
b(t+ δ)− b(t)
gt(z)− Ut

+ ϕ(δ) (b(t+ δ)− b(t))O
(
|gt(z)− Ut|−2

)
,

by 2(e). Dividing both sides by δ and taking the limit δ → 0 gives (2).
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General Loewner chains. Let now t 7→ Ut be a given continuous real
valued function on [0,∞) and b ∈ C1[0,∞) an increasing function. By the
theory of ODEs, (2) has a unique solution t 7→ gt(z) with g0(z) = z which is
called a chordal Loewner chain associated to the driving function U.

We shall next describe what kind of a local growth property is needed
to construct general Loewner chains. A family (Kt)t≥0 of compact hulls is

called right continuous at t ∈ [0,∞) if
⋂
δ>0 gt(Kt+δ \Kt) = ξt ∈ R is a sin-

gle point. If (Kt)t≥0 is right continuous at all t ∈ [0,∞), we define its driving
function by t 7→ ξt. If, moreover, ξ is continuous and hcap(Kt) is increasing
and belongs to C1[0,∞), we say that (Kt)t≥0 is a continuously growing fam-
ily of hulls. The following theorem states that continuously growing hulls
correspond one–to–one to Loewner chains with continuous driving functions.

Theorem 4. Let (gt)t≥0 be a chordal Loewner chain. Then z 7→ gt(z) is
the unique hydrodynamically normalized conformal isomorphism from the do-
main Ht := {z ∈ H | Tz > t} onto H, with the expansion (1) around z =∞.
Moreover, the sets Kt := H \Ht form a continuously growing family of hulls.

Conversely, let (Kt)t≥0 be a continuously growing family of hulls. Then
the hydrodynamically normalized conformal maps gt : H \ Kt → H define
a chordal Loewner chain with b(t) = hcap(Kt) and the driving function ξ.

Proof. Let (gt)t≥0 be a chordal Loewner chain. Using (2), we can solve

=m(gt(z)) = =m(z) exp
{
−
ˆ t

0

ds
d
ds
b(s)

|gs(z)− Us|2
}
> 0

which shows in particular that gt(Ht) ⊂ H. Similarly, for z, w ∈ Ht we have

gt(z)− gt(w) = (z − w) exp
{
−
´ t

0
ds

d
ds
b(s)

(gs(z)−Us)(gs(w)−Us)

}
and hence,

d

dz
gt(z) = lim

w→z

gt(z)− gt(w)

z − w
= exp

{
−
ˆ t

0

ds
d
ds
b(s)

(gs(z)− Us)2

}
.

This shows that z 7→ gt(z) is holomorphic and injective in Ht. To show that
gt(Ht) = H, we use the reverse Loewner equation, defined for 0 ≤ s ≤ t by

∂

∂s
hs(w) =

− d
ds
b(s)

hs(w)− Ut−s
(3)
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with the initial condition h0(w) = w. This equation admits a unique solution
for all w ∈ H because the map s 7→ =m(hs(w)) > 0 is strictly increasing, by
a similar calculation as above. Now, gs(z) = ht−s(w) is a solution of (2) with
the initial condition ht(w) = z, so that by uniqueness, gt(z) = h0(w) = w.

Let now t ≤ τ := inf{0 ≤ s < Tz | |gs(z) − z| = R} ∧ T and suppose

|z − U0| ≥ 4
(

sup0≤s≤T |Us − U0| ∨
√

T
2

sup0≤s≤T | ddsb(s)|
)
. Then we have

|gt(z)− Ut| ≥ |z − U0| − |U0 − Ut| − |gt(z)− z| ≥ 2R and hence by (2),

|gt(z)− z| ≤
ˆ t

0

ds
| d
ds
b(s)|

|gs(z)− Us|
≤ t

2R
sup

0≤s≤t

∣∣∣ d
ds
b(s)

∣∣∣. (4)

Now T = τ because if τ < T, equation (4) gives a contradiction. In partic-
ular, it follows that KT ⊂ B(U0, 4R) since by the above, gt(z) is bounded
away from Ut for all t ≤ T and |z − U0| ≥ 4R. Thus, KT is a compact hull.

The same estimate applies to show that for any t ≥ 0 and δ > 0 we have

gt(Kt+δ \Kt) ⊂ B
(
Ut, 4 max

{
sup

0≤s≤δ
|Ut+s − Ut|,

√
δ

2
sup

0≤s≤δ

∣∣∣ d
ds
b(s)

∣∣∣})
because the map ggt(Kt+δ\Kt) is a Loewner chain associated to the driving
function δ 7→ Ut+δ (this is a kind of a Markovian property). Taking δ → 0
we obtain right continuity of the hulls (Kt)t≥0, by continuity of U.

The expansion (1) can be proved by the uniqueness part of Lemma 1,
observing that when z →∞, taking also T,R→∞ we obtain |gt(z)−z| → 0.

The proof of the converse is a straightforward generalization of the proof
of Theorem 3. For more details, the reader may look at [1] or [2]. We also
recommend the lecture notes [3], which have a slightly different approach.

If we relax the condition of continuity of ξ, we still obtain a solution of (2)
but the Loewner chain will be branching. For hulls generated by curves with
self–intersections, there is no branching but ”jumps” in discontinuities of ξ.
However, curves having only self–touchings generate continuously growing
families of hulls – such processes occur in particular in the theory of SLEs.
In turn, Lévy–Loewner evolution (LLE) is a branching generalization of SLE.

In view of the case of slit domains, it is natural to ask whether the hulls of
a Loewner chain are generated by a curve γ, in the sense that for each t ≥ 0,
the domain Ht of gt is given by the unbounded component of H \ γ(0, t]. In
[1] it is proved that this is the case exactly when Kt are locally connected for
each t ≥ 0. In particular, not all Loewner chains are generated by curves.
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13.2.2 Radial Loewner equation

In this section, we outline the main results concerning the radial Loewner
equation in D, in analogy with the chordal case – see [1] or [2] for details.

As in the chordal case, for a continuous injective curve γ from 1 to 0 in
D, there exists a unique conformal isomorphism gt : D\γ(0, t]→ D such that

gt(z) = eb(t)z +O(|z|2)

around z = 0. The coefficient eb(t) is the logarithmic capacity of Kt. With the
customary parametrization b(t) = t, the radial Loewner equation reads

∂

∂t
gt(z) = −gt(z)

gt(z) + eiUt

gt(z)− eiUt
, (5)

in analogy with Theorem 3. One can also show that a local growth condition
for a family of hulls in D corresponds to continuity of the driving function U
(Theorem 4). Similarly to (3), the reverse radial equation is defined by

∂

∂s
hs(w) = hs(w)

hs(w) + eiUt−s

hs(w)− eiUt−s

for 0 ≤ s ≤ t and the solution with the initial condition h0(w) = w is a well
defined map hs : D→ Ds in the whole unit disc.

Finally, we mention that the Loewner equation can also be defined in the
whole complex plane, describing conformal maps associated to hulls evolving
from the origin towards infinity. There is no essential difference between this
and the radial case – the whole plane equation is (5), started from t = −∞.

References
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14 Conformal welding and Koebe’s theorem.

Christopher J. Bishop [1]
A summary written by Larissa Richards.

Abstract

We will present several results stating that every orientation pre-
serving homeomorphism of the circle is “almost” a conformal welding
in some precise way. In addition, we will prove one, possibly two, of
these results. As the proofs rely on applying Koebe’s circle domain
theorem, we will demonstrate the usefulness of this approach by prov-
ing the classical result that every quasisymmetric map is a conformal
welding.

14.1 Introduction

Consider glueing two disks in C by an orientation preserving homeomorphism
between their boundaries. By the celebrated Moore’s theorem, the resulting
surface is a topological copy of the Riemann sphere along with an embedded
curve in it. Can we make it a conformal sphere? The answer is not always in
the affirmative. If it is, then the glueing homeomorphism is called a conformal
welding. We can also approach this question from another direction. Let
D be the open unit disk, D∗ = S2\D̄ and T = ∂D = ∂D∗ be the unit
circle. Consider a closed Jordan curve Γ. By the Jordan curve theorem,
S2\Γ = Ω∪Ω∗ where Ω is the bounded component and Ω∗ is the unbounded
component. Applying the Riemann mapping theorem to the interior, Ω,
and exterior, Ω∗, of Γ, we have conformal maps f : D → Ω, g : D∗ →
Ω∗ which extend continuously to their boundary T. Thus, they induce a
homeomorphism h = g ◦f−1 of the unit circle to itself. Any homeomorphism
arising in this manner is a conformal welding. For a given curve, h is unique
up to a Mobius transformation.

A natural question arises: given a circle homeomorphism h, can we con-
struct a closed Jordan curve Γ of the plane? In other words, is the map
Γ → h of closed curves to circle homeomorphisms (up to Mobius transfor-
mations) 1 − 1? Is it onto? For general curves, it is well known that it is
neither 1−1 nor onto. That is, we know that not every orientation preserving
homeomorphism of the circle to itself is a conformal welding.
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Example 1 (Circle homeomorphism which is NOT a conformal welding).
Let K be the closure of the graph of sin( 1

x
). We know that the graph of sin( 1

x
)

oscillates more and more frequently between y = ±i, that is, over the small
interval

1

2π(n+ 1)
≤ x ≤ 1

2πn

it goes through an entire wave. This divides the plane into a pair of simply
connected domains Ω, Ω∗. Let F : Ω → D and G : Ω∗ → D∗ be the corre-
sponding conformal maps. These maps extend continuously to T except at one
point where the radial limit both exist and equal 0. Then h = G◦F−1 : T→ T
is well-defined, continuous, and 1 − 1 except at one point {b}. Thus h is a
homeomorphism of the circle.
Claim. h is not a conformal welding.
Suppose h = g−1 ◦ f for some closed Jordan curve Γ. As conformality is
preserved through composition, f ◦ F and g ◦ G are conformal off K and
continuous except on the line segment [−i, i]. Then as sin( 1

x
) is an analytic

curve f ◦F and g ◦G are conformal on Ĉ\[−i, i]. By Morera’s theorem, they
extend to conformal maps on Ĉ\{b}. This is a contradiction to Liouville’s
theorem.

Throughout our talk, we will discuss several results stating that the map
Γ → h of closed curves to circle homeomorphisms is almost onto. We will
show that every circle homeomorphism is close to a conformal welding in
some precise way. Our proofs will rely on Koebe’s circle domain theorem.

Theorem 2 (Koebe’s Circle Domain Theorem).
Any finitely connected plane domain can be conformally mapped to a domain
whose boundary components are all circles and points.

We will demonstrate the usefulness of Koebe’s theorem to conformal weld-
ings by presenting an almost elementary, geometric proof of the classical
theorem of conformal weldings.

Theorem 3 (Classical Theorem of Conformal Weldings).
Every quasisymmetric map is a conformal welding.

A homeomorphism h is quasisymmetric if there is an M <∞ such that

1

M
≤ |h(I)|
|h(J)|

≤M

for any adjacent arcs I, J ⊂ T of equal length.
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14.2 Main Results

Definition 4. Let E ⊂ T. Suppose f : D → Ω, g : D∗ → Ω∗ are conformal
maps onto disjoint domains such that f has radial limits on E, g has radial
limits on h(E), and h = g−1 ◦ f on E. Then h is a generalized conformal
welding.

A homeomorphism being a generalized conformal welding is a weaker
condition than being a conformal welding. For instance, consider the setting
in Example 1 that is the closure of the graph sin( 1

x
) denoted by K. Take E =

T\{1} We saw that K divides the plane into two simply connected domains
Ω,Ω∗ and gives corresponding conformal maps F : Ω → D, G : Ω∗ → D∗
which induces a circle homeomorphism h = G ◦ F−1. This h is indeed a
generalized conformal welding everywhere on T\{1}. However, we showed
that it is not a conformal welding.

Theorem 5 (“almost” onto).
Given any orientation preserving homeomorphism h : T → T and any ε >
0, there is a set E ⊂ T with |E| + |h(E)| < ε and a conformal welding
homeomorphism H : T → T such that h(x) = H(x) for all x ∈ T\E. In
particular, every such h is a generalized welding on a set E with Lebesgue
measure as close to 1 as we wish.

In other words, every orientation preserving homeomorphism h : T → T
agrees with a conformal welding homeomorphism H, except on a set of small
Lebesgue measure. The proof of Bishop’s “almost” onto theorem relies on
two main results.

Theorem 6. Any orientation preserving homeomorphism h : T → T is a
generalized conformal welding on T\F where F = F1 ∪ F2 and both F1 and
h(F2) have log capacity zero.

We will notice that this theorem gives us no information when h is log-
singular, i.e. there is a Borel set E such that both E and h(T\E) have
zero log capacity. That is, in the set-up of the theorem F1 and h(F2) have
zero log capacity by definition of h being log-singular. Hence, the result is
redundant. However, with a different approach, we can show that such a
map is indeed a conformal welding but in this case our homeomorphism h is
not well-behaved.

Definition 7. A closed Jordan curve γ is flexible if:
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1. For all closed Jordan curves γ′ and for all ε > 0, there exists a homeo-
morphism H : S2 → S2 such that H is conformal off γ and maps γ to
within ε of γ′ in the Hausdorff metric.

2. Given z1, z2 in each component of S2\γ and w1, w2 in each component
of S2\γ′. We can choose H as in 1. such that H(z1) = w1 and H(z2) =
w2.

Notice that γ and H(γ) generate the same conformal welding homeomor-
phism h. These h’s are dense in the set of all closed curves (in the Hausdorff
metric). Hence, we have nonuniquness of closed Jordan curves γ.

Theorem 8 (not 1− 1).
Suppose h is an orientation preserving homeomorphism of the circle. Then
h is a conformal welding of a flexible curve if and only if it is log-singular.

Therefore, we know that h is a conformal welding if it is either “good”
enough (quasisymmetric) by the classical theorem of conformal weldings or
“wild” enough (log-singular) by the above theorem. As we have seen, gen-
eralized conformal welding is a weaker condition than conformal welding.
Hence, in order to use Theorem 6 and Theorem 8 to prove Bishop’s “almost”
onto theorem, we need to extend our homeomorphism from a generalized
conformal welding to a conformal welding.

Theorem 9. Suppose f : D→ Ω and g : D∗ → Ω∗ are conformal maps onto
disjoint Jordan domains and let E = f−1(∂Ω∩∂Ω∗). On E define h = g−1◦f .
Then h can be extended from E to a conformal welding homeomorphism of
T to itself.

The idea behind proving Theorem 9 is to use Koebe’s circle domain the-
orem to build a conformal welding. Given a set of equidistributed points
{xk}n1 along the unit circle T. Instead of considering a circle homeomor-
phism, suppose that h is a homeomorphism from T to 2T = {z : |z| = 2}.
Connect the points xk ∈ T and h(xk) ∈ 2T by a smooth curve γk in the
annulus A = {z : 1 < |z| < 2}. For instance, we can take γk to be the
hyperbolic geodesic in A. Define the domain Ωn,ε to be the union of D, 2D∗,
and an ε-neighbourhood of each γk where ε is small enough such that these
neighbourhoods are pairwise disjoint. By Koebe’s circle domain theorem, we
can conformally map our domain Ωn,ε to a domain whose complementary
components are all disks.
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Definition 10. A circle chain C is a finite union of closed disks {Dk}n1 in
R2 which have pairwise disjoint interiors such that:

• Dk is tangent to Dk+1 for k = 1, · · · , n− 1

• Dn is tangent to D1

• and there are no other tangencies.

Notice that a circle chain divides the plane into two disjoint Jordan do-
mains Ω,Ω∗ which are the bounded and unbounded components, respec-
tively. This induces a pair of Riemann maps (f, g) where f : D → Ω and
g : D∗ → Ω∗ called a circle chain pair. By taking ε→ 0 in our domain given
by Koebe’s theorem, we obtain a circle chain. Hence, it divides the plane
into two domains Ωn and Ω∗n inducing a circle chain pair (fn, gn). Suppose
that there exists an R < ∞ such that the circle chain is contained in the
annulus {z : 1 ≤ |z| ≤ R} independently of n. Then as we take n to infinity,
at most (R

ε
)2 disks remain larger than ε. That is, most of the disks in our

circle chain collapse into points implying that |fn(x)− gn(h(x))| → 0 for all
x ∈ T except on a set of countably many points. In order to show that it
is possible to find such an R, we need to place another assumption on our
homeomorphism h.

Theorem 11. Suppose h : T → T is an orientation preserving homeomor-
phism which is not log-singular. Then there are sequences of conformal maps
{fn} on D and {gn} on D∗ such that

1. fn(0) = 0, gn(∞) =∞.

2. Ωn = fn(D) and Ω∗n = gn(D∗) are disjoint Jordan domains.

3. There is an R < ∞ such that S2\(Ωn ∪ Ω∗n) ⊂ {z : 1 ≤ |z| ≤ R}
independently of n.

4. There is a countable set E ⊂ T such that limn→∞ |fn(x)−gn(h(x))| = 0
for all x ∈ T\E.

We can extend Theorem 11 to prove Theorem 9 using extremal length
methods. Although we may want to go directly from Theorem 11 to Theorem
9, we cannot pass the sequences of functions {fn, gn} in Theorem 11 to their
limits. The problem is that we can have functions such that the lim fn(x) =

91



f(x), lim gn(x) = g(x), and fn(x) = gn(h(x)) for all n but still have that
f(x) 6= g(x). Thus, in the proof of Theorem 9, we pass to a subsequence such
that fn → g and gn → g converge uniformly on compact sets. Unfortunately,
we may not get convergence of boundary values off a set of zero log capacity
and so we still need to use properties of our maps to complete the proof.

14.3 Plan of Talk

The breakdown of our talk is as follows:

• Discuss several results stating that the map Γ→ h of closed curves to
circle homeomorphisms is almost onto in some precise way.

• Demonstrate the usefulness of applying Koebe’s circle domain theorem
to conformal weldings through a new proof of the classical theorem of
conformal weldings.

• Prove Theorem 11.

• If time permits, prove Theorem 9.
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15 Recurrence on planar graph limits

after O. Gurevich and A. Nachmias
A summary written by Martin Tassy

Abstract

We prove that any distributional limit of finite planar graphs in
which the degree of the root has an exponential tail is almost surely
recurrent. As a corollary, we obtain that the uniform infinite pla-
nar triangulation and quadrangulation (UIPT and UIPQ) are almost
surely recurrent. We also show that in any bounded degree, finite
planar graph the probability that the simple random walk started at
a uniform random vertex avoids its initial location for T steps is at
most C

log T .

15.1 Introduction

A distributional limit of finite graphs Gn is a random rooted infinite graph
(U, ρ) such that eighborhoods of Gn around a random vertex converge in
distribution to neighborhoods of U around ρ. As such the random infinite
planar triangulation can be defined as the distributional limit of uniform
triangulation of the sphere with n vertices. The purpose of this article from
Asaf Nachmias and Ori Gurel-Gurevich is to prove that this limiting random
graph is almost surely recurrent that is a random walk starting from ρ would
almost surely come back to the root. The Paper proves proves in fact more
a general theorem

Theorem 1. Let (U, ρ) be a distributional limit of planar graphs such that
the degree of ρ has an exponential tail. Then U is almost surely recurrent.

The result on UIPT is a direct consequence of this theorem since in this
case the root has exponential tail [see unifrom infinite planar triangulation]
Another noteworthy consequence of this theorem is that uniform infinite
planar quadriangulation (UIPQ) is also recurrent.

The first step of the proof is to show the recurrence in the case of dis-
tributional limit of planar graph with bounded degrees. In fact we prove a
sharper result which gives us a upper bound at which the probability to leave
the root growth. This is a consequence of the following theorem for finite
graphs. If G is a finite graph and we consider a random walk (Xt)t ≥ 0 we
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can define φ(T,G) the probability that Xt 6= X0 for all t = 1, . . . , T . For any
D ≥ 1 define

φD(T ) = sup
{
φ(T,G) : G is planar with degrees bounded by D

}
then we have:

Theorem 2. For any D ≥ 1 there exists C <∞ such that for any T ≥ 2

φD(T ) ≤ C

log T
.

The second step of the proof of Theorem 1 is to expand the recurrence
to graphs with exponential tails. In order to do that we introduce a graph
transformation called the star-tree transform.

15.2 Preliminaries

15.2.1 Electrical networks

Many results on random walks on graph can be translated in terms of elec-
trical networks. In this section we will present the one that are useful for our
demonstration.

Let G = (V,E) be a finite graph with non-negative edge weights {ce}e∈E.
We call these weights conductances and their inverses, Re = c−1

e , are called
resistances (by convention 0−1 = ∞). For any two vertices a 6= z define
the effective resistance Reff (a← z; {Re}) between a and z as the minimum
energy E(θ) =

∑
e∈E Re[θ(e)]

2 of any unit flow θ from a to z. The unit flow
attaining this minimum is called the unit current flow. We write Reff (a← z)
when all the conductances are 1.

Given two disjoint sets of verticesA and Z, the effective resistanceReff (A←
Z; {Re}) between A and Z is the effective resistance between the two corre-
sponding vertices in the graph obtained from G by contracting the sets A and
Z into single vertices and retaining the same resistances on the remaining
edges. If either A or Z are empty sets, then Reff (A ← Z; {Re}) = ∞. To
define effective resistances on infinite graphs, we will only compute effective
resistances between disjoint sets A and Z such that V \ (A ∪ Z) is finite.
When G is infinite we define the effective resistance from a to ∞ as

Reff (a←∞; {Re}) = lim
n→∞

Reff (a← G \Bn; {Re}) ,
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where {Bn} is any sequence of finite vertex sets which exhaust G. This limit
does not depend on the choice of exhausting sequence.

For a function g : V → R, the Dirichlet energy is defined as

E(g) =
∑

e=(x,y)∈E

ce
[
g(x)− g(y)

]2
.

We will use the dual definition of effective resistance, that is, the discrete
Dirichlet principle (see Exercise 2.13 of [3]) stating that

1

Reff (A← Z; {Re})
= min

{
E(g) : g : V → R, g|A = 0, g|Z = 1

}
. (1)

Consider the network random walk (Xn)n≥0 on G with transition prob-
abilities p(x, y) = c(x,y)[

∑
y:(x,y)∈E c(x,y)]

−1 and write Px for the probability
measure of a network random walk started at X0 = x. Write τ for the stop-
ping time τ = min{n ≥ 1 : Xn ∈ {a, z}}. It is classical (stemming from
the fact that the minimizer of (1) is the unique harmonic function with the
corresponding boundary values, see [3]) that

Reff (a← z; {Re}) =
1

Pa(Xτ = z)
∑

y:(a,y)∈E

c(a,y)

. (2)

This gives a useful electrical interpretation of recurrence. An infinite network
(G; {Re}) is recurrent if and only if Reff (a←∞; {Re}) =∞.

It is not too hard to see that this implies the following two useful criteria
for recurrence/transience. First, an infinite graph is G is recurrent if and
only if for some vertex a there exists c > 0 such that for any integer m ≥ 0
there exists a finite vertex set B such that

Reff (BG(a,m)← G \B; {Re}) ≥ c , (3)

Secondly, a network is recurrent if and only if there exists a unit flow from
some vertex a to ∞ with finite energy.

Finally, we will use the following bound.

Lemma 3. Let G = (V,E) be a finite network with resistances {Re} and two
vertices a and z. Let A ⊂ V such that a ∈ A and z 6∈ A and define RA

e = Re

for each edge e that has both endpoints in A and RA
e =∞ otherwise. Then

Reff (a← z; {Re}) ≤ Reff (A← z; {Re}) + max
v∈A

Reff (a← v; {RA
e }) .

95



15.2.2 Circle packings

Another key concept for the demonstration is theory of circle packing [3].
A circle packing is a collection of circles in the plane with disjoint interiors.
The tangency graph of a circle packing is a planar graph G = (V,E) in which
the vertex set V is the set of circles and two circles are neighbors if they are
tangent in the packing. The degree of a circle in the packing is its degree in
the tangency graph. The Koebe-Andreev-Thurston Circle Packing Theorem
asserts that for any finite planar graph G = (V,E) there exists a circle pack-
ing in the plane which has tangency graph isomorphic to G. Furthermore,
if G is a triangulation, then this packing is unique up to Möbius transfor-
mations of the plane and reflections along lines. The Ring Lemma assets
that if a circle C is completely surrounded by D other circles C0, . . . , CD−1

(that is, Ci is tangent to Ci+1 mod D and to C), then the ratio r/ri between
the radius of C and Ci is bounded above by a constant depending only on
D. Thus, in a circle packing of a bounded degree triangulation (every inner
circle is completely surrounded) the ratio of radii of every two tangent circles
is bounded above and below by a constant depending only on D, with the
possible exception of the three boundary circles.

15.3 Demonstration

In this section we give the different steps which lead to the proof of Theorem
1 and Theorem 2.

Given a circle packing P = {Cv : v ∈ G} of a graph G = (V,E) and
given a domain D ⊂ R2 we write VD ⊂ V for the set of vertices such that
their corresponding circles have centers in D. We also write Beuc(p, r) for
the Euclidean ball of radius r around p. The first step of our demonstration
is to prove the folowing lemma which gives a lower bound on the resistance
between two euclidian ball around the root which ration is greator than 1

Lemma 4. Let P = {Cv : v ∈ G} be a circle packing of a finite graph
G = (V,E) such that the ratio of radii of two tangent circles is bounded by
K. Then for any α > 1 there exists c = c(K,α) > 0 such that for all r > 0
and all p ∈ R2

Reff

(
VBeuc(p,r) ↔ VR2\Beuc(p,αr)

)
≥ c ,

provided that both sets VBeuc(p,r) and VR2\Beuc(p,αr) are nonempty.
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Proof. The proof works by building a function f on the vertices of the graph
whose total energy is bounded by a constant

As a corollary of this lemma we can show that a lower bound for the
growth rate of the effective resistance.

Lemma 5. Let P be a finite circle packing in R2 such that the ratio of radii
of two tangent circles is bounded by K and such that there exists a circle in
P entirely contained in Beuc(0, 1). Then there exists a constant c = c(K) > 0
such that for all radii r ≥ 2 we have

Reff

(
VBeuc(0,1) ↔ VR2\Beuc(0,r)

)
≥ c log r ,

provided that VR2\Beuc(0,r) is nonempty.

Proof. This is a consequence of Lemma 4 and the series law for electrical
networks.

The next result which we will admit in this lecture is an upper bound for
the probability of the set VBeuc(0,r)\Beuc(p,r−1) to be large.

Lemma 6. Let G be a finite planar triangulation and P = {Cv : v ∈ G} be
an arbitrary circle packing of G. Let ρ be a random uniform vertex of G and
let P̂ = {Ĉv : v ∈ G} be the circle packing obtained from P by translating

and dilating so that Ĉρ has radius 1 and is centered around the origin. Then
there exists a universal constant A > 0 such that for any r ≥ 2 and any s ≥ 2

P
(
∀p ∈ R2 |VBeuc(0,r)\Beuc(p,r−1)| ≥ s

)
≤ Ar2 log r

s
.

We can now prove the following Lemma

Lemma 7. Let G = (V,E) be a finite planar graph with degrees at most D
and let ρ be a random uniform vertex. Then there exists c = c(D) > 0 such
that for all k ≥ 1

P
(
∃B ⊂ V with |B| ≤ c−1kReff(ρ↔ V \B) ≥ c log k

)
≥ 1− c−1k−1/3 log k ,

where we interpret Reff(ρ↔ V \B) =∞ when B = V .
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Proof. If G is a triangulation we can always dilate and translate our circle
packing to obtain the circle packing P̂ of Lemma 6. We can now consider
separetely the two cases |VBeuc(p,r−1)| ≤ 1 and |VBeuc(p,r−1)| > 1. In the first
case we set B = VBeuc(0,r) and use Lemma 4, in the second case we set
B = VBeuc(0,r)\Beuc(p,r−1) and use Lemma 4 again. To extend our result to the
case where G is no more a triangulation but a finite graph with bounded
degree, we use a graph transformation described in [2] and proves that this
does not changes the result.

If we set k = T then Theorem 2 becomes a Corollary of 6. Now we
consider the events

Ak =
{
∃B ⊂ U with |B| ≤ c−1kReff(ρ↔ U \B) ≥ c log k

}
.

and apply Borel cantelli we obtain the following result for graphs with bounded
degrees.

Theorem 8. Let (U, ρ) be the distributional limit of finite planar graphs
of bounded degree. Then (U, ρ) almost surely satisfies the following. There
exists c > 0 such that for any k ≥ 0 there exists a finite set Bk ⊂ U with
|Bk| ≤ c−1k and

Reff(ρ↔ U \Bk) ≥ c log k .

The rest of the lecture is dedicated to extend Theorem 8 to graphs with
exponential tails. In order do that we will consider the following transforma-
tion

15.3.1 The star-tree transform

Let G be a graph. We define the star-tree transform G∗ of G as the graph of
maximal degree at most 3 obtained by the following operations

1. We subdivide each edge e of G by adding a new vertex we of degree 2.
Denote the resulting intermediate graph by G′.

2. Replace each vertex v of G and its incident edges in G′ by a balanced
binary tree Tv with deg(v) leaves which we identify with v’s neighbors
in G′. When G is planar we choose this identification so as to preserve
planarity, otherwise, this is an arbitrary identification. We denote by
wv the root of Tv. Denote the resulting graph by G∗.
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As mentionned in the introduction we prove that the star tree transform
has he following three properties

1. Each vertix is of degree at most 3

2. If G∗ is recurrent then G is recurrent

3. (U∗, ρ∗) is the distributional limit of (G∗n, ρ
∗
n)

Using those we show how to complete the proof of Theorem 1.
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16 The Loewner equation and Lipschitz graphs

after S. Rohde, H. Tran, and M. Zinsmeister [1]
A summary written by Ömer Faruk Tekin

Abstract

We give an elementary proof of the fact that chordal Loewner
equation when fed with a function of Hölder-1/2 norm less than 4
generates simple curves. Our work is based on the analysis of the
ODE of the upward flow generated by the chordal Loewner equation.

16.1 Introduction

Let γ : (0, T ] → H be a simple curve with γ0 = 0. By reparametrizing γ,
there exists a unique conformal map gt : H \ γ[0, t] → H with the following
normalization:

gt(z) = z +
2t

z
+O

(
1

z2

)
as z →∞.

Then, the function t 7→ gt(z) satisfies (downward) chordal Loewner equation:

∂tgt(z) =
2

gt(z)− λt
, g0(z) = z, (1)

where λ is a contiuous function on the real line with gt(γt) = λt.
Conversely, one can start with a continuous function λt defined on some

interval [0, T ], and consider the following initial value problem for each z ∈ H:

∂tgt(z) =
2

gt(z)− λt
, g(0, z) = z,

to obtain a t-parametrized family of simply connected subdomains of the
upper half plane. Specifically, one can define

Tz = sup{s ∈ [0, T ] : g(t, z) exists on [0, s)},

Ht = {z ∈ H : Tz > t}.

Then, Ht is a simply connected subdomain of H, and gt(·) = g(t, ·) is the
unique conformal map mapping Ht onto H, with the normalization
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gt(z) = z +
2t

z
+O

(
1

z2

)
as z →∞.

The driving function λ is said to generate a curve if there exists a curve
γ such that Ht is the unbounded component of H \ γ[0, t].

This note verifies the following theorem by studying the quantitative be-
haviour of the ODE (1):

Theorem 1. If the driving function λ has Hölder-1/2 norm less than 4, then
the chordal Loewner equation generates a simple curve γ.

16.2 Preliminaries

16.2.1 Criteria for simple curve generation

We will employ the following theorem (See Theorem 4.1 in [4], Proposition
2.19 in [3] and Proposition 3.11 in [2]) to prove Theorem 1:

Theorem 2. Let λt be the driving function for the Loewner chain (gt). Then,
one of the following statements guarantee that the Loewner chain generates
a curve

1. The limit

lim
y→0+

g−1
t (λt + iy)

exists, and is continuous in t.

2. The quantity

v(t, ε) :=

ˆ ε

0

|(g−1
t )′(λt + iy)|dy

converges to zero as ε→ 0, uniformly in t.

Note: We will prove the second statement above throughout this note.
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16.2.2 ODE associated to the upward flow

For convenience, we will work with the upward Loewner equation:

∂tft(z) = − 2

ft(z)− ξt
, f0(z) = z, (2)

for z ∈ H, and ξ is a continuous function on the real line. The imaginary part
of ft(z) is strictly increasing in t, so the solution to (2) exists for all t ≥ 0.
Moreover, if (gs)0≤s≤t is the solution to the downward Loewner equation
with driving term λ, then the solution (fs)0≤s≤t to the upward equation with
ξs = λt−s satisfy

ft(z) = g−1
t (z).

The (upward) flow zt starting at z ∈ H will be defined by

zt = xt + iyt := ft(z)− ξt,

so that we will have the system

∂t(xt + ξt) =
−2xt
x2
t + y2

t

, (3)

∂t(yt) =
2yt

x2
t + y2

t

. (4)

16.2.3 Computation of f ′t in terms of the flow

Since

f ′t(z) = elog f ′t(z) = e
´ t
0 ∂s log f ′s(z)ds

and

∂s log f ′s(z) =
∂sf

′
s(z)

f ′s(z)
,

we compute

|f ′t(z)| = exp

(
2

ˆ t

0

x2
s − y2

s

(x2
s + y2

s)
2
ds

)
. (5)
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16.3 Proof of Theorem 1

16.3.1 Cone condition

Notice that the differential equation (4) implies

∂ty
2
t =

4y2
t

x2
t + y2

t

=
4

1 +
(
xt
yt

)2 . (6)

Therefore, it is crucial to analyze the quantity |xt|
yt

, and hence the cones

Ac = {x+ iy : |x| ≤ cy}.

Whenever zt ∈ Ac, by trivial estimates, (6) implies

4t

1 + c2
+ y2

0 ≤ y2
t ≤ y2

0 + 4t. (7)

Our main theorem for this section is the following, which verifies that zt
indeed lies inside Ac for some c:

Theorem 3. Let ξ be a function with Hölder-1/2 norm σ < 4. Consider the
flow zt with z0 = iy, and zt = ft(z0 + ξ0)− ξt. Then, there exists a constant
cσ such that zt stays in the cone Acσ . Moreover, cσ ≤ σ/

√
4− σ2 for σ < 2.

Note: A sketch of the proof of Theorem 3 is given in appendix.

16.3.2 Estimating v(t, ε)

By (5), (7) and Theorem 3, we compute

|f ′t(ξ0 + iy)| ≤ exp

ˆ t

0

c2
σ − 1

c2
σ + 1

2ds

x2
s + y2

s

≤
(
yt
y

) c2−1

c2+1

≤ (4t+ y2)
1−α
2 yα−1, (8)

where α = min{1− c2−1
c2+1

, 1} ∈ (0, 1].
Now, let λ be the driving term for the Loewner chain gs, with Hölder-1/2

norm less than 4. Let ξs = λt−s be the driving term for the upward Loewner
chain fs, so that g−1

t = ft. Hence by (8)

|(g−1
t )′(λt + iy)| = |f ′t(ξ0 + iy)| ≤ (4t+ y2)

1−α
2 yα−1.
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Integrating the above estimate we obtain

v(t, ε) =

ˆ ε

0

|(g−1
t )′(λt + iy)|dy ≤ (4t+ ε2)

1−α
2

α
εα.

The above estimate yields that v(t, ε) converges to zero as ε→ 0, uniformly
in t. Hence by Theorem 2, the Loewner chain generate a curve, proving
Theorem 1.

16.4 Appendix

16.4.1 A useful lemma

Lemma 4. Let ξ be an arbitrary continuous function.

1. If xs ≥ 0 for all 0 ≤ s ≤ t, then xt ≤ x0 + ξ0 − ξt.

2. In general, |xt| ≤ |x0|+M ξ
0,t, where M ξ

0,t = sup{|ξr − ξt| : r ∈ [0, t]}.

The above lemma establishes that Hölder norm of x is controlled by the
Hölder norm of ξ as long as x does not switch its sign.

16.4.2 Sketch of Proof of Theorem 3

We are interested in estimates of the form

|xt| ≤ A
√
t, (9)

yt ≥ B
√
t, (10)

as (9)-(10) would imply the cone condition

|xt|
yt
≤ A
√
t

B
√
t

=
A

B
.

By Lemma 4, (9) is satisfied with A = σ, where σ is the Hölder-1/2 norm of
ξ. To obtain (10), we would like to prove that y2

t /t is bounded. Note that

∂t
y2
t

t
=

2tytẏt − y2
t

t2
=
y2
t

t2

(
4t

x2
t + y2

t

− 1

)
.

Therefore, at the critical points of y2
t /t, we have

x2
t + y2

t = 4t.
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Hence, if σ < 2, as |xt| ≤ σ
√
t, we get yt ≥

√
4− σ2

√
t. Therefore, the

harder part is to push the bound on σ to 2 < σ < 4. In [1], the authors
verify (9) for some A < 2, via a bootstrapping argument for large values of
t, so that the above critical value analysis is still applicable.

References

[1] Rohde, S., Tran, H. and Zinsmeister, M., The Loewner equation and
Lipschitz graphs. preprint, 2013;

[2] Viklund, F. and Lawler, G. Optimal Hölder exponent for the SLE path.,
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