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1 Stability in the anisotropic isoperimetric

inequality

after A. Figalli, F. Maggi and A. Pratelli [1]
A summary written by Marcos Charalambides

Abstract

We characterize near-minimizers for the anisotropic isoperimetric
inequality. As an application, we obtain a sharp, stable version of the
Brunn-Minkowski inequality for convex bodies.

1.1 The anisotropic isoperimetric inequality

Fix a dimension n ≥ 2 and let K be an open, bounded, convex subset of Rn

which contains the origin. The anisotropic perimeter of a ’nice’ (open with
smooth boundary, say) set E ⊂ Rn with outer unit normal vector νE is

PK(E) :=

ˆ
∂E

‖νE‖∗dHn−1 (1)

where Hn−1 is (n − 1)-dimensional Hausdorff measure and, for ν ∈ Sn−1,
‖ν‖∗ denotes the support function

‖ν‖∗ := sup{x · ν : x ∈ K}. (2)

In the case when K is the unit ball centered at the origin, this notion of
perimeter agrees with the Euclidean perimeter.

In general, we have the scaling law

PK(λE) = λn−1PK(E), λ > 0 (3)

but, by contrast with the Euclidean perimeter, the anisotropic perimeter is
not invariant under the action of SO(Rn).

We have the following isoperimetric inequality which generalizes the clas-
sical Euclidean one.

Theorem 1. Let K and E be as above. Then,

PK(E) ≥ n|K|
1
n |E|

n−1
n . (4)
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This may be deduced from the Brunn-Minkowski inequality. Indeed, for
ε > 0,

|E + εK| − |E|
ε

≥ (|E| 1n + ε|K| 1n )n − |E|
ε

(5)

and, as ε→ 0+, the inequality converges to (4) (provided E is nice enough).
An alternative proof of Theorem 1 based on mass transport techniques,

was given by Gromov [2]. By using Gromov’s argument as a starting point,
the authors prove a stable version of the anisotropic isoperimetric inequality,
i.e. they show that sets E for which PK(E) is close to optimal are actually
close to K (up to translation and scaling).

Theorem 2. Let K and E be as above with 0 < |E| <∞. If

PK(E) ≤ (1 + δ)n|K|
1
n |E|

n−1
n , (6)

then there exists x0 ∈ Rn such that, for r > 0 defined by rn|K| = |E|,

|E 4 (x0 + rK)| ≤ Cnδ
1
2 |E|. (7)

This result substantially improves the previously best known bound [3]
which has a worse exponent for δ of around n−2 and a constant Cn which, in
addition to depending on n, also depends on K.

As an application, the authors obtain a sharp stable version of the Brunn-
Minkowski inequality for convex bodies; this is discussed in Section 1.4.

The proof of Theorem 2 begins by applying Gromov’s argument with a
different transport map than the Knothe map considered by Gromov. In-
stead, the Brenier map [4] is used, which allows for a more direct argument
classifying minimizers in the isoperimetric inequality. Combining the argu-
ment with a stable version of the arithmetic-geometric mean inequality and
an appropriate Sobolev-Poincaré inequality then gives good control for the
near-minimal case.

1.2 Gromov’s proof revisited

Given a smooth bounded set E ⊂ Rn, the Brenier-McCann Theorem [4],
[5] implies that there is a convex function φ : Rn → R whose gradient
T = ∇φ (the Brenier transport map) pushes forward the probability measure
|E|−11E(x)dx to the probabilty measure |K|−11K(x)dx.

In this section, we sketch Gromov’s argument applied to this transport
map. We assume, by rescaling if necessary, that |E| = |K|.

6



Remark 3. We will assume, in particular, that T is smooth whenever conve-
nient. To make the proof rigorous, we can use results on functions of bounded
variation; this is done in full detail in [1].

From the measure transportation property we may deduce, in particular,
that T maps E into K and, for x ∈ E,

det∇T (x) = 1. (8)

Since φ is convex, ∇T is positive definite and symmetric so we may di-
agonalize it. Writing λ1(x) ≤ . . . ≤ λn(x) for the (measurable) eigenvalues,
it follows that det∇T =

∏n
j=1 λj and div T =

∑n
j=1 λj.

By the arithmetic-geometric mean inequality, we deduce that

(det∇T )
1
n ≤ div T

n
. (9)

We define
‖x‖ := inf{r > 0 : r−1x ∈ K}. (10)

Then ‖x‖ ≤ 1 if and only if x lies in the closure of K. We immediately
deduce the inequality

x · y ≤ ‖x‖‖y‖∗. (11)

Combining (11), (8), (9), the Divergence Theorem and the fact that
‖T (x)‖ ≤ 1 for x ∈ ∂E, we obtain

n|K|
1
n |E|

n−1
n =

ˆ
E

n(det∇T )
1
n (12)

≤
ˆ
E

div T

=

ˆ
∂E

T · νE dHn−1

≤
ˆ
∂E

‖T‖‖νE‖∗ dHn−1

≤ PK(E),

which proves Theorem 1.
Using the Brenier map, it is (formally) easy to characterize the minimizers

of the inequality. Indeed, equality implies that n(det∇T )
1
n = div T on E.

Thus, we have equality in the arithmetic-geometric mean inequality which
in turn imples that λ1 = . . . = λn on E. By (8), we deduce that ∇T = Id.
Consequently, E must be a translate of K.
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1.3 From equality to near-equality

By (12), if E satisfies PK(E) ≤ (1 + δ)n|K| 1n |E|n−1
n for small δ > 0, then

ˆ
∂E

(1− ‖T‖)‖νE‖∗dHn−1. (13)

Furthermore, ∇T ≈ Id and we have the following quantitative bound:
ˆ
E

|∇T − Id| ≤ Cn2|K|δ
1
2 . (14)

Here, we have endowed the space of n × n matrices with the trace norm
|S| = (tr(STS))

1
2 . The bound is a consequence of the following stable version

of the arithmetic-geometric mean inequality.

Lemma 4. Suppose that 0 < λ1 ≤ . . . ≤ λn and let λA and λG denote the
arithmetic and geometric mean of {λ1, . . . , λn} respectively. Then there exists
C > 0 such that

1

λn

∑
j

(λj − λG)2 ≤ Cn2(λA − λG). (15)

Armed with this lemma, we calculate

(

ˆ
E

|∇T − Id|)2 =

ˆ
E

√∑
j

(λj − 1)2

2

≤ ‖λn‖L1(E)

(ˆ
E

∑
j

(λj − λG)2

λn

)

≤ ‖λn‖L1(E)

ˆ
E

Cn2(λA − λG)

= Cn2‖λn‖L1(E)

ˆ
E

divT

n
− (det∇T )

1
n

≤ Cn2‖λn‖L1(E)δ|K|.

Furthermore, |λn − 1| ≤ |∇T − Id| so ‖λn‖L1(E) ≤ |K| +
´
E
|∇T − Id| from

which we may bound ‖λn‖L1(E) by Cn2|K| and deduce (14).
The idea now is to apply a Sobolev-Poincaré inequality on E to control

an appropriate norm of T − Id which would in turn control |E∆K|. But
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E may not be connected or regular enough for this to work. Nonetheless,
the authors prove that, for sufficiently small δ, there is a large subset of E
for which a Sobolev-Poincaré inequality does hold and it is then a simple
reduction to replace E by this subset.

Remark 5. One difficulty now is that this subset may not inherit much of
the smoothness of E. As a consequence, all of the inequalities need to be
generalized to the setting of sets of finite perimeter using more sophisticated
geometric measure theory. Full details may be found in [1].

With this reduction, the Sobolev-Poincare inequality takes the form

‖ − ∇f‖∗(E) ≥ Cn,K inf
c

ˆ
∂E

‖f − c‖‖νE‖∗dHn−1. (16)

Applying this to f = T − Id and using inequality (14) yieldsˆ
∂E

‖T − Id‖‖νE‖∗dHn−1 ≤ Cn,Kδ
1
2 (17)

up to translation of E.
By (13), (17) and the triangle inequality,ˆ

∂E

|1− ‖x‖|‖νE‖∗dHn−1(x) ≤ Cn,Kδ
1
2 . (18)

It is not difficult to see that the left hand side controls |E∆K|; see [1, Lemma
3.5]. The proof is then completed by using a renormalization argument to
show that, in fact, Cn,K can be chosen to be independent of K.

1.4 Stability in the Brunn-Minkowski inequality

Suppose that E and F are open, bounded, convex subsets of Rn containing
the origin.

Observe that, for nice G,

PE+F (G) = PE(G) + PF (G). (19)

Therefore, by Theorem 1,

n|E + F | = PE+F (E + F ) (20)

= PE(E + F ) + PF (E + F )

≥ n|E + F |1−
1
n (|E|

1
n + |F |

1
n )
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which gives another proof of the Brunn-Minkowski inequality. The character-
ization of minimizers for the anisotropic isoperimetric inequality immediately
implies that equality in the Brunn-Minkowski inequality holds if and only if
E and F are homothetic.

If we apply Theorem 2 on PE(E + F ) and PF (E + F ), a straightforward
argument then yields the following stable version.

Theorem 6. Let E and F be as above and suppose that

|E + F |
1
n ≤ (1 + δ)(|E|

1
n + |F |

1
n ). (21)

Then there exists x0 ∈ Rn such that, for r > 0 defined by |E| = rn|F | and
σ = max{|E|/|F |, |F |/|E|},

|E∆(x0 + rF )| ≤ Cnδ
1
2σ

1
2n |E|. (22)

The exponents of δ and σ in this inequality are sharp. For σ, this can be
seen by taking E to be the unit cube and F to be a sequence of balls whose
radius tends to zero. For δ, one can take E to be the unit ball and F to be a
sequence of ellipsoids approximating E. See [1, Section 4] for more details.
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2 Hölder regularity of optimal transport maps,

and underlying inequalities from convex ge-

ometry

after L. Caffarelli [3], N. Guillen and J. Kitagawa [6]
A summary written by Nicholas Cook

Abstract

In [2], Caffarelli considers convex solutions to the Monge-Ampère
equation, and uses the method of barriers to prove estimates on their
growth away from a supporting hyperplane. He then uses these esti-
mates to establish localization and regularity properties of solutions.
Here we describe an route to Caffarelli’s estimates which goes through
convex geometry rather than the method of barriers. This is carried
out in [6] for general costs; in these notes we simplify the exposition
by focusing on the quadratic cost function.

2.1 Introduction

Given subsets Ω, Ω̃ ⊂ Rd with measures dµ = ρdx, dµ̃ = ρ̃dx absolutely
continuous with respect to Lebesgue measure, and a cost funtion c : Ω× Ω̃→
R, the optimal transport problem seeks a measurable map T : Ω → Ω̃ such
that T#µ = µ̃, andˆ

Ω

c(x, T (x))dµ(x) = inf
S#µ=µ̃

ˆ
Ω

c(x, S(x))dµ(x). (1)

For the quadratic cost function c(x, x̃) = −x · x̃ it was shown by Brenier that
there exists a unique solution T = Du which is the gradient of some convex
potential function u (see [1]). This result was extended to more general cost
functions by Gangbo and McCann [4].

Due to the characterization T = Du, it can be seen that solutions to (1)
satisfy an equation of Monge-Ampère type:

det(D2u(x) +D2
x,x̃c(x, T (x))) = | detD2

x,x̃c(x, T (x))|ρ(x)/ρ̃(T (x)). (2)

For the case of the quadratic cost function this reduces to the classical Monge-
Ampère equation

det(D2u) = ρ(x)/ρ̃(Du(x)). (3)
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With the assumption that the marginals µ, µ̃ satisfy

λ ≤ ρ(x)

ρ̃(x̃)
≤ Λ (4)

for a.e. (x, x̃) ∈ sptρ×sptρ̃, and some constants 0 < λ ≤ Λ <∞, we concern
ourselves with solutions to the inequalities

λ ≤ det(D2u) ≤ Λ. (5)

In [2], Caffarelli introduced a geometric approach to show that weak so-
lutions to (5) in fact possess C1,α regularity (and hence an optimal transport
map T is α-Hölder continuous). At the core of his proofs are two lemmas
providing upper and lower bounds for the growth of a convex solution u away
from an affine function ` that slices the graph of u.

Lemma 1. Suppose u is convex in Ω and detD2u ≤ Λ <∞. Then for any
affine function ` we have

`(x)− u(x)�Λ,n |{u ≤ `}|2/nd(x,Π)2/n (6)

where Π is any supporting hyperplane to the sublevel set {u ≤ `}.

(Here and in the sequel, f(x)�p g(x) means f(x) ≤ C(p)g(x).)

Lemma 2. Suppose that u is convex in Ω and detD2u ≥ λ > 0. Then for
any affine function ` we have

sup
{u≤`}

`− u�λ,n |{u ≤ `}|2/n. (7)

Combining these lemmas we have

Corollary 3. Let u be a convex solution of λ ≤ detD2u ≤ Λ in Ω, and let `
be an affine function. Fix some δ ∈ (0, 1). Then for any point x0 ∈ {u ≤ `}
such that

u(x0)− `(x0) ≤ δ inf
{u≤`}

u− ` (8)

and any hyperplane Π supporting the convex set {u ≤ `}, we have

d(x0,Π)�δ,λ,Λ,n 1. (9)
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Caffarelli goes on to establish 1) that convex solutions u to (5) are either
strictly convex, or else their contact set with some affine function crosses the
domain; 2) at each point in the domain, a strictly convex solution will have a
unique supporting hyperplane; 3) strictly convex solutions are in C1,α. The
proofs proceed by contradiction, showing how the negation of any of these
implies the existence of a family of affine functions `ε and supporting hyper-
planes Πε to {u ≤ `ε}, as well as points on the interior xε satisfying (8) for
which d(xε,Π) can be made arbitrarily small, contradicting (9); see [3] for
details.

Caffarelli established Lemmas 1 and 2 by using the affine invariance of
the Monge-Ampère equation and the method of barriers. Affine invariance
is not available when dealing with the equation (2) for general cost function
c, which motivates searching for an alternative approach. In [6] it was noted
that these lemmas in fact follow from basic inequalities from convex geome-
try, and analogous lemmas were obtained for the case of general cost function.

The purpose of these notes is to describe the convex geometric approach
to the above lemmas, for the simplest case of the quadratic cost function.
We will actually establish a variant of Lemma 1, which is still sufficient to
obtain Corollary 3:

Lemma 4. Suppose u is convex in Ω and detD2u ≤ Λ <∞. Then for any
affine function ` we have

`(x)− u(x)�Λ,n |{u ≤ `}|2/n
(
d(x,Π+ ∪ Π−)

d(Π+,Π−)

)1/n

(10)

where Π+,Π− are parallel supporting hyperplanes to the sublevel set {u ≤ `}.

2.2 Geometric approach to Lemmas 1 and 4

Let A be an origin-symmetric convex body in Rn, i.e. a compact convex set
with non-empty interior. We define its polar body by

Ao := {ξ ∈ Rn : |〈ξ, x〉| ≤ 1 for all x ∈ A}.

Denote by Bp the unit ball in `np . One can verify with Hölder’s inequality
that Bo

p = Bp′ , where p′ is the dual exponent to p.
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An alternative description of the polar body is as follows. For a convex
body A, define the cone over A with height h > 0, and center x0 ∈ K by

KA,x0,h(x) := sup `(x)

where the supremum is taken over all affine functions such that `(x0) ≤ h
and `(x)) ≤ 0 on ∂A. Then for A origin symmetric, we have

Ao = ∂KA,0,1 (11)

where ∂f denotes the subdifferential of f . This motivates extending the
definition of polar body for non-origin symmetric convex bodies:

Aox0,h
= ∂KA,x0,h. (12)

An important affine-invariant of an origin-symmetric convex body is the
Mahler volume

M(A) := |A||Ao|.

It was proven by Santaló in [8] that the Mahler volume is maximized by
the euclidean unit ball (and hence all ellipsoids). The Mahler conjecture is
that it is minimized by the cube, i.e. the unit ball in `∞n (and hence also
by its dual, the cross-polytope). Lower bounds on the Mahler volume are
known as reverse-Santaló inequalities. For generalized polar bodies we have
the following inequality of reverse-Santaló type:

Lemma 5. Let A be a convex subset of Rn and let Π+,Π− denote parallel
supporting hyperplanes to A. Then for x ∈ A, h > 0 we have

|A||Aox,h| ≥ n−nλn
d(Π+,Π−)

d(x,Π+ ∪ Π−)
. (13)

Lemma 5 quickly implies Lemma 4. Indeed, taking A = {u ≤ `} and
h = `(x)− u(x), we have

`(x)− u(x) ≤ n

(
d(x,Π+ ∪ Π−)

d(Π+,Π−)

)1/n

|{u ≤ `}|1/n|∂KA,x,`(x)−u(x)}|1/n (14)

where we have used (12). Now from convexity of u it follows that

∂KA,x,`(x)−u(x)}(x) = ∂KA,x,`(x)−u(x)}(A) ⊂ ∂u(A) (15)
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where ∂u(A) := ∪x∈A∂u(x). Now since u weakly solves (5), ∂u(A) ≤ Λ|A|.
Combining this with (15) and (14) proves (10).

Lemma 1 can similarly be established using an inequality of Santaló type
− see [6] for details. We briefly remark on the proof of Lemma 5. Recall the
following useful theorem of Fritz John [7]:

Theorem 6. Let A be a convex body in Rn. Then there is an ellipsoid E
with center at the origin and a point p ∈ Rn such that

p+ E ⊂ A ⊂ p+ nE .

This allows one to reduce to the case that B(0, 1) ⊂ A ⊂ B(0, n). Then
if we let S(Π+,Π−) denote the slab bounded by Π+,Π−, the containment
A ⊂ B(0, n) ∩ S(Π+,Π−) allows one to locate a sufficiently large subset of
Aox,h, leading to the estimate (13).
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3 A convexity theory for interacting gases

and equilibrium crystals

after R. J. McCann [1]
A summary written by Mat́ıas G. Delgadino

Abstract

The notion of displacement interpolation is defined for probabilities
in Rd. Using this, the class of displacement convex functionals is
defined. The stictly displacement convex functional have a unique
minimizer in the space of probabilities, just as in the classical case .

3.1 Introduction

The notion of convexity is elemental and central in several areas in Mathe-
matics. In [1], McCann was able to generalize this notion to some functionals
defined in the space of probabilities in Rd. Using a classical result by Brennier
[2], he was able to define curves interpolating probabilities, which in fact are
geodesics. This curves act as the straight segments in the case of functions
defined in Rd. Displacement convexity is proven for some particular func-
tionals that model internal, potential and interaction energy of a gas or fluid.
Using a convexity argument, existence and uniqueness of energy minimizers
is shown.

3.2 Interpolation of Probability Measures

To begin defining interpolation on P(Rd), we need to define how a measurable
map acts on measures.

Definition 1. Given X and Y measure spaces, with a map T : X → Y
measurable. Then, if ω measure in X, then T induces a measure T#ω in Y ,
by the following action

T#ω[A] = ω[T−1(A)].

T#ω is called the push-forward of ω through T ; it is a probability measure if
ω is.

One of the first question that naturally arises is, if given ρ0, ρ1 ∈ P(Rd),
can we find a transformation that pushes ρ0 onto ρ1. And the follow up,
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if there is more than one of these maps, can we find one of them that has
particular properties under mild assumptions on ρ0. This was answered by
Brennier [2] and expanded by McCann [1].

Theorem 2. Let ρ0 ∈ Pac(Rd) and ρ1 ∈ P(Rd). There is a convex function
ψ, whose gradient ∇ψ pushes forward ρ0 to ρ1. Moreover, ∇ψ is uniquely
determined ρ0-almost everywhere.

With Theorem 2 we are able to give the following definition of an inter-
polant between two probability measures.

Definition 3. Given ρ0, ρ1 ∈ P(Rd), with ρ0 absolutely continuous. At
time t ∈ [0, 1], the displacement interpolant ρt ∈ P(Rd) between ρ0 and ρ1 is
defined by

ρt = [(1− t)I + t∇ψ]#ρ0, (1)

where I is the identity map and ∇ψ is uniquely determined by Theorem 2.

Remark 4. A displacement interpolant may still be defined even if neither
of the end points ρ0 and ρ1 are absolutely continuous, though the interpolant
might not be unique anymore. We can do this by considering p ∈ P(Rd×Rd)
with cyclically monotone support having ρ0 and ρ1 as its marginals. We can
always find such a p by solving the Kantorovich’s problem with quadratic cost.
Let t ∈ [0, 1] and define

Πt(x, y) = (1− t)x+ ty,

on Rd × Rd. Then,
ρt = Πt#p. (2)

This definition coincides with the latter one, due to the characterization of
cyclically monotone sets as graphs of convex functions. For further reference
see Chapter 2 [3].

Lets see what are the properties of the displacement interpolant.

Proposition 5. Let ρ0, ρ1 ∈ P(Rd) be probability measures with ρ0 ∈ Pac(Rd).

For t ∈ [0, 1], the displacement interpolant ρt = ρ0
t→ ρ1 satisfies:

1. ρt is uniquely determined;

2. ρt is absolutely continuous for t < 1;
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3. ρ0
t→ ρ1 = ρ1

1−t→ ρ0;

4. If t, t′ ∈ [0, 1], then ρt
s→ ρt′=ρ0

(1−s)t+st′→ ρ1.

Remark 6. Calculating explicitly, W2(ρ0, ρt) = tW2(ρ0, ρ1). Together with
the previous properties, we see that the displacement interpolant is a constant
speed geodesics in Pac(Rd) with the W2 distance.

Remark 7. Item 3. can be interpreted as Pac(Rd) is a displacement convex
subset of P(Rd), and the remaining measures lie on its boundary.

3.3 Displacement Convexity

Now we are able to give a new notion of convexity:

Definition 8. Given a map J : P(Rd) → R, we will call it displacement
convex, if for every ρ0, ρ1 ∈ Pac(Rd), J(ρt) is a convex function of t on [0, 1],
where ρt is the displacement interpolant between ρ0 and ρ1.

We are going to consider three basic examples:

• Internal Energy

U(ρ) =

ˆ
Rd
U(ρ(x))dx, U : R+ → R ∪ {+∞} measurable; (3)

• Potential Energy

V(ρ) =

ˆ
Rd
V (x)dρ(x), V : Rd → R ∪ {+∞} measurable; (4)

• Interaction Energy

W(ρ) =
1

2

ˆ
Rd×Rd

W (x−y)dρ(x)dρ(y), W : Rd → R∪{+∞} measurable;

(5)

Theorem 9. Let P be a displacement convex subset of P(Rd), on which U ,
V and W are well-defined with values in R ∪ {+∞}. Then,
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(i) If U satisfies U(0) = 0 and

Ψ : r → rnU(r−n) is convex nonincresing on (0,+∞), (6)

then U is displacement convex on P. Conversely, if Ψ is nonincresing
and U is displacement convex on Pac(Rd), then Ψ is convex.

(ii) If V is convex, then V is displacement convex on P. Conversely, if V
is displacement convex on P2(Rd), then V is convex.

(iii) If W is convex, then W is displacement convex on P. If W is strictly-
convex, then for all m ∈ Rd W is strictly-displacement convex on Pm,
the subset of P with prescribed mean m. Conversely, if W is displace-
ment convex on P2(Rd), then W is convex.

Remark 10. Condition (6) can be interpreted as U being displacement con-
vex under dilations. Moreover, if U is differentiable we can reformulate the
condition in terms of the thermodynamical pressure (P (ρ) = ρU ′(ρ)− U(ρ))
by,

ρ→ P (ρ)

ρ1− 1
n

is nondecreasing. (7)

Remark 11. For items (ii) and (iii), we can exchange convexity in V and
W by strictly convex, semi-convexity and λ-uniformly convex, obtaining re-
spective convexity properties for the Energies.

3.3.1 Applications of Convexity

Using this new notion of convexity, we can prove existence and uniqueness
of minimizers to the functionals assuming strict convexity, similarly to the
case when we try to minimize a strictly convex function in R.

Theorem 12. Take F = V+W+U , such that V, W and U are displacement
convex in Pac, and either V orW is strictly displacement convex. Then, there
is a unique minimizer ρ0 ∈ Pac of F(ρ), up to translation, if V is not strictly
convex.

The proof of the theorem uses displacement convexity both for proving
existence and uniqueness of the minimizer.

Remark 13. Open Problem:
Is there another examples of displacement convex functionals, that are not

of the form U , V or W? For example, any functional that depends on the
derivatives of the measure?
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4 Differential equations methods for the Monge-

Kantorovich mass transfer problem

after L.C. Evans and W. Gangbo [3]
A summary written by Taryn C. Flock

Abstract

The authors of [3] construct a solution to the classical Monge-
Kantorovich Problem by studying the p-Laplacian equation in the
limit as p→∞. We summarize their results.

4.1 Introduction

4.1.1 The Monge problem

At issue is Monge’s optimal transport problem with the cost function |x− y|
for measures which are absolutely continuous with respect to Lebesgue mea-
sure. Given are two nonnegative L1 functions f+, f−, satisfying

´
Rn f

+dx =´
Rn f

−dy. Let µ+ = f+dx and µ− = f−dy. The goal is to find a function s
which transports µ+ to µ− optimally. More precisely, a measurable function
r is said to transport µ+ to µ− if

ˆ
h(x)f+(x)dx =

ˆ
h(r(x))f−(r(x))dx ∀ continuous functions h(x).

Such functions r will be referred to as mass transfer maps and the set of
all mass transfer maps will be referred to by A. A mass transfer map s is
optimal if

ˆ
|x− s(x)|f+(x)dx = inf

r∈A

ˆ
|x− r(x)|f+(x)dx.

4.1.2 The Monge-Kantorovich problem

Kantorovich in [4],[5] proposed the following relaxation of the problem which
has led to many advances in the subject. Let

M = {probablity measures q on Rn×Rn such that projxq = µ+ and projyq = µ−}
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We now seek p ∈M which is optimal in the sense that
ˆ
Rn

ˆ
Rn
|x− y|dp(x, y) = min

q∈M

ˆ
Rn

ˆ
Rn
|x− y|dq(x, y).

The Monge-Kantorovich problem is a relaxation of the original Monge prob-
lem because for each r ∈ A, qr(E) =

´
x|(x,r(x))∈E f

+(x)dx ∈M.

Among the advantages of Monge-Kantorovich problem is the existence of
a dual maximization problem.

4.1.3 The Monge-Kantorovich dual problem

We give the statement of the dual problem presented in [3]. Let

L = {w : Rn → Rn : sup
x,y

w(x)− w(y)

|x− y|
≤ 1}.

We seek u ∈ L which is optimal in the sense that
ˆ
Rn
u
(
f+ − f−

)
dz = max

w∈L

ˆ
Rn
w(f+ − f−)dz.

This problem is dual to the original in the sense that

max
w∈L

ˆ
Rn
w(f+ − f−)dz = min

q∈M

ˆ
Rn

ˆ
Rn
|x− y|dq(x, y). (1)

4.1.4 Solving the Monge problem

Monge determined that if an optimal mass transfer map s exists, then there
also exists a scalar potential function u such that

s(x)− x
|s(x)− x|

= −Du(x)

i.e. u determines the direction the optimal transport map should move x. A
solution u of the Monge-Kantorovich dual problem can be interpreted as this
potential u. We could build a solution to the Monge problem from a solution
u of the dual problem by simply solving for s, if in addition to u, we knew
|s(x)− x|, the distance s moves x, for all x.

The insight of Evans and Gangbo in [3] is that this information can be
found and used to construct a solution s by studying the p-Laplician.
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4.2 The p-Laplacian

The p-Laplacian PDE is

−div(|Dup|p−2Dup) = f (n+ 1 ≤ p <∞).

It arises as the Euler-Lagrange equation for the problem of minimizingˆ
Rn

1

p
|Dw|p − wfdx.

The connection to the Monge-Kantorovich dual problem is that if there exists
u, satisfying up → u as p→∞ for {up} the weak solutions of the p-Laplacian
PDE, then u ∈ L and u maximizes

´
Rwfdz. Thus taking the initial data

to be f = f+ − f−, u constructed in this manner is optimal for the Monge-
Kantorovich dual problem. Further, u solves

−div(aDu) = f+ − f−,

where a is determined by |Dup|p−2Dup ⇀ aDu. This function a, known as
the transport density, contains the information |s(x)− x| for all x.

4.3 Sketch of the construction in [3]

For technical reasons, several further restrictions are placed on the Monge
problem: f+, f− are required to be Lipschitz functions with compact support.
Setting X = supp(f+) and Y = supp(f−), these supports are required to
be disjoint, contained in a large ball B(0,R), and have smooth boundaries.
Finally, f+ and f− are required to be strictly positive on the interior of their
supports.

Making use of previous work showing existence of and (uniform) bounds
for solutions of the p-Laplacian PDE, [3] shows for some S > R to be speci-
fied:

Theorem 1. There exists a function u, which is Lipschitz on B(0,S) and
function a ∈ L∞(B(0, S)) such that

−div(aDu) = f+ − f− in the weak sense on B(0,S)

|Du| ≤ 1 a.e and a ≥ 0 a.e.

for a.e. z a(z) > 0 implies |Du| = 1

And further u is maximal for the Monge-Kantorovich dual problem.
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This function u is used to construct the transport set: T = {z ∈ Rn :
∃x ∈ X, y ∈ Y such that u(x)−u(z) = |x−z| and u(z)−u(y) = |z−y|}. As
u ∈ L, |x− z|+ |z − y| = u(x)− u(y) ≤ |x− y|, and hence the points x, y, z
are colinear. In fact, the transport set can be decomposed into families of
colinear points. For z0 ∈ T , define the transport ray through z0, by Rz0 :

Rz0 = {z ∈ Rn : |u(z0)− u(z)| = |z − z0|}

Rz0 is the set containing z0 along which u changes at the maximum rate 1.

Lemma 2. Properties of the transport set

1. X ∪ Y ⊆ T .

2. For almost every z0 ∈ T , there exists a unique transport ray Rz0 through
z0 with an upper endpoint a0 ∈ X and lower endpoint b0 ∈ Y along
which u decreases at rate 1.

3. |Du| = 1 a.e. on T.

By optimality of u and the duality principle (1), if s is a mass transfer
map such that for each x ∈ X, s(x) ∈ Y ∩Rx then s is optimal.

Lemma 3. Relation of a to the transport set

1. supp(a) ⊆ T

2. a vanishes at the endpoints of transport rays

The idea of [3] is to define an optimal map s by s(x) = z(1, x) where
z(t, z0) is a solution to the ODE (cf. Dacorogna-Moser [2])

ż(t) =
−a(z(t))

tf−(z) + (1− t)f+(z(t))
Du(z(t)) z(0) = z0.

Intuitively, because |Du| = 1 on T , a is supported on T , and a vanishes at
the endpoints of transport rays, for almost every x ∈ X, s(x) ∈ Y ∩ Rx.
Hence if s transfers µ+ to µ−, then it is optimal.

Proving this rigorously and showing that s is a mass transfer map is
done by an approximation argument. Let aε be the mollification a by ηε
(chosen carefully in [3]). Define νε so that aενε is the mollficiation of −(aDu).
Moreover, let f+

ε and f−ε be the mollifications of f+ and f−. Define the
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approximate mass transfer map sε,δ by sε,δ(z0) = zε,δ(1, z0) where zε,δ(t, z0) is
a solution to the ODE

żε,δ(t) =
−aε(z(t))

tf−ε (z) + (1− t)f+
ε (z(t)) + δ

νε(z(t)) zε,δ(0) = z0.

Lemma 4. sε,δ is an approximate mass transfer map

f+
ε (z) + δ = (f−ε (sε,δ(z)) + δ) det Dsε,δ(z).

This is proved following the method of Dacorogna-Moser [2], and requires
the smoothness introduced by the mollification. The main step is proving
that

∂

∂t

[
(tf−ε + (1− t)f+

ε + δ) det Dsε,δ
]

= 0.

It then remains to check that the approximate mass transfer maps con-
verge almost everywhere. This is rather subtle because a and Du are in not
in general continuous. A key observation is that a and u are well behaved
when restricted to transport rays. In particular for almost every z0 ∈ T a|Rz0
is locally Lipschitz along Rz0 and

Proposition 5. For almost every transport ray R, for every σ > 0, there
exists C > 0 and a tubular neighborhood N of Rσ (the set of points in R which
are distance at least σ from an endpoint) such that for each point z ∈ N ∩ T
where D(u) exists

|Du(z)−Du(ẑ)| ≤ C|z − ẑ|
where ẑ is the projection of z onto R.

By studying the behavior of the approximate mass transfer maps along
transport rays, these estimates provide sufficient control to show that ap-
proximations do in fact converge almost everywhere.

4.4 Historical Remark

[3] was the first to show existence of an optimal transport in Rn for n ≥ 3.
Later works construct optimal transport maps in greater generality, using
approximate transport maps coming from solutions of the Monge problem
with the strictly convex costs |x− y|p for p > 1 and then showing that these
maps also converge to an optimal mass transport map by studying their
behavior along transport rays. ([1], [6]).
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5 Benamou-Brenier’s approach for OTT

after J.D. Benamou and Y. Brenier [2]
A summary written by Augusto Gerolin

Abstract

In this survey, we are going to expose the main ideas around the
Benamou-Brenier Formula, which is a dynamical formulation of Opti-
mal Transportation Theory (OTT). First, we introduce the main ar-
guments of Benamou-Brenier’s paper [2] and we summarize the main
steps of the proof of the general case. The last section, we will be de-
voted for a theoretical view on the numerical aspects of that problem.

5.1 Introduction

Let Ω ⊂ Rd be an open set and p ≥ 1. We denote by Pp(Ω), the space
of probability measures with finite pth moment. We know that Pp(Ω) is
naturally endowed by the so-called Wasserstein1 distance Wp,

Wp(µ, ν)p = inf

ˆ
|T (x)− x|pdµ (1)

which the infimum is taken among all maps T transporting µ to ν. When
the minimum is achieved by some map T , we say that T is an optimal map
and solves the Lp Monge-Kantorovich Problem (MKP).

Roughly speaking, Benamou-Brenier [2] discover, for the case p = 2, that
the Optimal Transport Problem

min
{ˆ

Rd

ˆ
Rd
|x− y|pdγ(x, y) : γ ∈ Π(µ, ν)

}
(2)

where the set Π(µ, ν) is the set of transport plans having µ and ν as maginals,
is equivalent to (see Theorem 10)

inf
{ˆ 1

0

ˆ
Ω

‖vt‖pLpdµtdt : ∂tµt +∇ · (vtµt) = 0, µ0 = µ, µ1 = ν
}

(3)

1The name “Wasserstein/Vasershtein distance” was coined by R. L. Dobrushin in 1970,
after the Russian mathematician Leonid Nasonovich Vasershtein who introduced the con-
cept in 1969.
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where the infimum is taken among all weakly continuous distributional solu-
tions of the continuity equation having µ0 = µ and µ1 = ν.

The expression (3) can be interpreted as a dynamical formulation of Op-
timal Transportation Theory: many trajectories of transportation given by
velocity fields are admissible. That can be seen as an Eulerian point of view
of OTT. While the Kantorovich formulation (2) is static, depending only on
the optimal coupling of (µ, ν).

5.2 Two Motivations

1. More powerful numerical methods: In Benamou-Brenier’s paper
([2]) there a mention about the needed the development of new numerical
methods relate to the MKP. Let us recall the argument here. Given two
compact supported probabily densities ρ0 and ρ1 on a domain Ω ⊂ Rn, there
is an unique optimal transport map T from the support of ρ0 to ρ1 which
can be written as the gradient of some convex funcion ψ, T (x) = ∇ψ(x).
In addition, if ψ is - for instance - an Alexandrov’s solution of the Monge-
Ampére Equation2,

det(Hψ(x))ρ1(∇ψ(x)) = ρ0(x) (4)

where Hψ represents the Hessian matrix of ψ, then ψ inherits the smooth-
ness of both dentisities ρ0 and ρ1 under some additional hypothesis (see [4]).

From the Optimal Transportation Theory, the equation (4) is the natural
computation solution of Monge-Kantorovich Problem in L2. Unfortunately,
by one hand, the equation (4) is fully non-linear second order elliptic equation
and, by the other hand, the mass transportation problem involving (4) is not
a standard boundary value problem even in the case when the density ρ0

vanishes along a smooth subset of Rn [4]. Benamou-Brenier introduced an
alternative numerical method for the Monge-Kantorovich Problem in L2.

2. Non-linear Evolution Models: Several mass transportation prob-
lems comes from diffusion PDEs of the type

∂tµ+∇ · (h(µ)v) = 0

where µ = ρ(x)Ln is a measure and h(µ) is a convex or concave function.
That kind of equation was widely explored in the literature in applied models
as crowd motion, traffic congestion, swarming models ([3], [6]).

2for a complete explanation about this subject see [5].

29



5.3 Heuristics

We are going to argue heuristically in order to give some reasons why the
equivalence in between (2) and (3) can be true. In our notes, we are going to
follow the ideas of [2]. Finally, for simplifying the notation, we will identify
absolutely continuous measures µ on Rn with their respective densities ρ.

Consider measures ρ0(x) and ρ1(y). Thanks to Brenier’s Theorem there
exits an optimal transport map T and a convex function ψ such that T = ∇ψ,
T]ν = µ. Moreover, we can define a curve ρt which solves the continuity
equation

∂tρt +∇ · (ρtvt) = 0

when v is smooth, this equation captures the evolution of the spatial distri-
bution of particles that are initially distributed according to ρ0 and whose
velocity is v. In other words, ρt = Xt](ρ0) where Xt is a velocity field defined
by

X0(x) = x and ∂tXt(x) = v(t,Xt(x))

We are going to prove that W 2
2 (ρ0, ρ1) =

´ 1

0

´
Ω
|v(t, x)|2ρt(x)dxdt. Con-

sider a pair (ρ, v) satisfying the constraint of (3) with v being as smooth as
we need, and let Xt be a velocity flow define above. We have

B(ρ0, v) =

ˆ 1

0

ˆ
Ω

|v(t, x)|2ρt(x)dxdt =

ˆ 1

0

ˆ
Ω

|v(t,Xt(x))|2ρ0(x)dxdt

First we proof that the B(ρ0, v) ≥ W (ρ0, ρ1).

B(ρ0, v) =

ˆ 1

0

ˆ
Ω

|v(t,Xt(x))|2ρ0(x)dxdt (5)

=

ˆ
Ω

ˆ 1

0

|∂tXt(x)|2dtρ0(x)dx (Fubbini’s Theorem) (6)

=

ˆ
Ω

∣∣∣ˆ 1

0

∂tXt(x)dt
∣∣∣2ρ0(x)dx (Jensen’s Inequality) (7)

=

ˆ
Ω

|X1(x)− x|2ρ0(x)dx ≥ W2(ρ0, ρ1)2 (8)

since X1(x) is a transport map from ρ0 to ρ1. Now, we are going to show
that the equality in (8) can be archived. Consider the Brenier’s map ∇ψ and
the McCann’s interpolation map given by

Yt(x) = (1− t)x+ t∇ψ = ∇((1− t)|x|2 + tψ)
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hence ρt = Yt]ρ0 . If we write ψt = (1 − t)|x|2 + tψ, then the associated
vector field is ∂tYt(x) = ∇ψ − x = v(t, Yt(x)) = v(t,∇ψt(x)). Since ∇ψt is
gradient of a convex function, it can be - at least formally! - inverted and its
inverse is ∇ψ∗t . Thus, v(t, x) = ∇(∇ψ∗t (x))−∇ψ∗t (x).

By construction (ρ, v) is an admissible couple for the Benamou-Brenier
problem and verify

E(ρ, v) =

ˆ
Ω

|∇φ(x)− x|2ρ0(x)dx = W2(ρ0, ρ1)2

5.4 Euler Equation and Optimal Transport

From this section Ω will denote a convex set in Rn. The mail goal in the
next two sections is to identify Lipschitz curves in (Pp(Ω),Wp) with solutions
of the continuity equation with Lp vector fields vt, and to connect the Lp norm
of vt with the metric derivative |µ′|(t).

Definition 1. Let (X, d) be a metric space and ω : [0, 1]→ X be a curve on
X. We define the metric derivative of ω at time t, denoted by |ω′|(t) through

|ω′|(t) = lim
h→0

d(ω(t+ h), ω(t))

|h|

provided this limit exits.

We can garantee the existence of metric derivative for Lipschitz curves.

Proposition 2. Suppose that ω :→ X is a Lipschitz continuous, then the
metric derivative |ω′|(t) exists for almost every t ∈ [0, 1] and we have

d(ω(t), ω(s)) ≤
ˆ s

t

|ω′|(τ)dτ, for t < s

The next theorem relates Lipschitz curves in Pp with the continuity equa-
tion.

Theorem 3. Let (µt)t∈[0,1] be a Lipschitz curve for the distance Wp, (p > 1).
Then for almost every t ∈ [0, 1] there exists a vector field vt ∈ Lp(µt,Rn)
such that

(i) the continuity equation ∂tµt + ∇ · (vtµt) = 0 is satisfied in the weak
sense
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(ii) for almost every t, we have ‖vt‖Lp(µt) ≤ |µ′|(t).

Conversely, if (µt)t∈[0,1] is a family of measures in Pp(Ω) and for each t we
have a vector field vt ∈ Lp(µt,Rn) with ‖vt‖Lp(µt) ≤ C then (µt)t∈[0,1] is a
Lipschitz curve for the Wp distance and for almost everywhere t,|µ′|(t) ≤
‖vt‖Lp(µt)

Under natural hypothesis on the regularity of the family of vector fields
vt, we can show also the uniqueness of solutions in continuity equation.

5.5 Geodesic Spaces

Definition 4 (Geodesics). Given two points x0, x1 ∈ X. We say that a curve
ω : [0, 1] → X is a geodesic in between x0 and x1 if it minimizes the lenght
amoung all curves such that ω(0) = x0 and ω(1) = x1.

A metric space (X, d) is said to be a lenght space if for all x, y ∈ X

d(x, y) = inf{Lenght(ω) : ω ∈ Lip, ω(0) = x, ω(1) = y}.

A metric space is said to be a geodesic space if it is a lenght space and
there exist geodesics between arbitrary points.

Remark 5. Remind the lenght of a curve ω in a metric space is defined as

Lenght(ω) = sup
{ n−1∑
k=0

d(ω(tk), ω(tk+1) : n ≥ 1, 0 = t0 < t1 < · · · < tn = 1
}

Definition 6 (Constant speed geodesics). Let is (X, d) be a lenght space, a
curve ω : [0, 1]→ X is said to be a constant speed geodesics between ω(0) ∈ X
and ω(1) ∈ X if it satisfies

d(ω(t), ω(s)) = |t− s|d(ω(0), ω(1)), for all t, s ∈ [0, 1]

Example 7. (Pp(Ω),Wp) is a geodesic space (p ≥ 1)3. In fact, consider
µ, ν ∈ (Pp(Ω,Wp) and γ an optimal transport plan in Π(ν, µ) for the cost
|x − y|p. Define πt : Ω × Ω → Ω through πt(x, y) = (1 − t)x + ty. We
can verify that the curve µt = (πt)]µ is a constant speed geodesic in Pp(Ω)
connecting µ0 = µ to µ1 = ν.

In the case where µ is absolutely continuous with respect to Lebesgue mea-
sure, every constant speed geodesic is obtained as ((1 − t)Id + tT )]µ, where
T denotes the OT map from µ to ν which the p-distance cost.

3Notice that here holds the case p=1

32



The next proposition gives a kind of converse of the last example. It
states that from geodesics it is possible to reconstruct the optimal transport.

Proposition 8. Let µt be a constant speed geodesic between µ and ν, and
suppose p > 1. Then there exists an optimal plan γ ∈ Π(µ, ν) such that, for
every t, we have µt = (πt)]γ.

Now, we give the last ingredient for the prove of Benamou-Brenier For-
mula. In fact, in the particular case of Pp spaces, constant speed geodesics
may be found by minimizing

´
|µ′|p(t)dt.

Proposition 9. Let is (X, d) be a lenght space and ω : [0, 1] → X a curve
connecting two points x0, x1 ∈ X. For a p > 1 fixed, the following facts are
equivalent

1. ω is a constant speed geodesic,

2. |ω′|(t) = d(ω(0), ω(1)) almost everywhere,

3. ω solves min{
´ 1

0
|ω′|pdt : ω(0) = x0, ω(1) = x1}

Using the notations of the example (7) and knowing that for a Wasserstein
space, |µ′|p(t) =

´
|vt|pdµt, we have

Theorem 10 (Benamou-Brenier formula for (Pp,Wp) spaces). Let Ω ⊂ Rn

be a convex domain, p > 1, µ, ν ∈ Pp(Ω) compacted support measures and µt
a constant speed geodesic conecting µ and ν as defined in (7). Then,

Wp(µ, ν)p = min
{ˆ 1

0

ˆ
Ω

‖vt‖pdµtdt : ∂tµt +∇ · (vtµt) = 0, µ0 = µ, µ1 = ν
}

(9)

5.6 Convex Reformulation of Benamou-Brenier

This section is widely inspired in a lecture notes witten by Filippo San-
tambrogio [8]. Notice that the minimization problem in the Theorem 10 in
the variables (µt, vt) has non-linear constraints (due the product vtµt) and
the functional is non-convex (since (t, x) 7→ t|x|p is not convex). However,
it’s possible to transform it into a convex problem. Indeed, we need just
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to switch variables, from (µt, vt) into (µt, Et) where Et = vtµt. Then, we
introduce a function

fp(x, y) =


1
p
|y|px1−p, if x > 0

0, if (x, y) = (0, 0)

∞, otherwise

and the minimization problem (9) becomes

min
{ˆ ˆ

Ω

fp(µt, Et)dt : ∂tµt +∇ · Et = 0, µ0 = µ, µ1 = ν
}

(10)

In the equation (10), the constrains are linear, the functional is convex4

and lower semi-continuous. Benamou-Brenier used a dual convex formu-
lation of (10) in order to develop a numerical method, called “augmented
Lagrangians”, in the framework of Uzawa-type Algorithm.

5.6.1 Dual Formulation

We write the constrains of (10) in the weak form

min
µ,E

ˆ 1

0

dt

ˆ
Ω

fp(µt, Et) + sup
φ
−
ˆ 1

0

ˆ
Ω

∂tφdµtdt+

ˆ 1

0

ˆ
Ω

∇φdEtdt+G(φ)

where G(φ) =
´

Ω
φ(1, x)dν(x) −

´
Ω
φ(0, x)dµ(x), and we notice that the

quantity fp in this variational problem may be expressed as a sup

fp(x, y) = sup{a · x+ b · y : a, b ∈ Rn, |a|+ 1

q
|b|q ≤ 0}

and hence we solve

min
µ,E

sup
q∈K,φ

ˆ
Ω

a(x)dµtdt+

ˆ
Ω

b(x).dEtdt−
ˆ 1

0

ˆ
Ω

∂tφdµtdt−
ˆ 1

0

ˆ
Ω

∇φ·dEtdt+G(φ)

where K = {q(t, x) = (a(t, x), b(t, x)) : a(t, x) + 1
q
|b|q ≤ 0, (t, x)}. We can

now exchange the min sup by sup min using the Legendre-Frenchel conjugate

4The functional is not that convex becuase is 1-homogeneous and, hence non-stricly
convex. This reduces the efficiency of any gradient descent algorithm in order to solve the
problem.
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f ∗p (see [7]). In this way we have the following equivalence

1

p
Wp(µ0, µ1) = min

{ˆ 1

0

ˆ
Ω

1

p

|φ|p

µp−1
dt : ∂tµt +∇ · (vtµt) = 0, µ0 = µ, µ1 = ν

}
= sup

{ˆ
Ω

φ(1, x)dν(x)−
ˆ

Ω

φ(0, x)dµ(x) : ∂tφ+
1

q
|∇φ|q ≤ 0

}
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[1] Ambrosio L., Gigli, N. and Savaré G., Gradient flows in metric spaces
and in the spaces of probability measures. Birkhauser, 2005;

[2] Benamou, J.D. and Brenier, Y., A computational fluid mechanics so-
lution to the Monge-Kantorovich mass transfer problem. Numerische
Mathematik January 2000, Volume 84, Issue 3, pp 375-393;

[3] Buttazzo G., Jimenez C., Oudet E., An optimization problem for mass
transportation with congested dynamics. SIAM J. Control Optim., 48.

[4] Caffarelli L., Boundary regularity of maps with convex poentials. Ann.
of Math. (2) 144 1996, no. 3, 453-496.

[5] De Phillips G., Regularity of optimal transport maps and applications.
Birkhauser Mathematics, Publications of the SNS, 2013.

[6] Maury B., Roudneff-Chupin A., Santambrogio F., A macroscopic crowd
motion model of the gradient flow type Math. Models Methods Appl.
Sci., 20 (10) (2010).

[7] Rockafellar, R. T., Convex Analysis Princeton University Press. ISBN
0-691-01586-4 (1996).

[8] Santambrogio F., Lecture notes on Optimal Transportation available in
http://www.math.u-psud.fr/∼santambr/teaching.html (Sep, 2013).

Augusto Gerolin, Università? di Pisa
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6 Polar Factorization and Monotone Rear-

rangment of Vector-Valued Functions

after Y. Brenier [1]
A summary written by Jordan Greenblatt

Abstract

Given an arbitrary u ∈ Lp(X,µ) for a probability space (X,µ)
isomorphic to the unit interval (in a sense to be formalized below), it
is well known that there is an essentially unique non-decreasing rear-
rangement u# ∈ Lp([0, 1], dx). We generalize this result to show that
for any bounded and connected open domain Ω ⊂ Rd with Lebesgue
negligible boundary, Borel probability measure β on Ω equivalent to
Lebesgue measure, and u ∈ Lp(X,µ;Rd), u has an essentially unique
rearrangement of the form ∇ψ with ψ ∈ W 1,p(Ω, dβ) convex on Ω.
Additionally, if u does not map any positive measure sets in X to
negligible sets in Rd, there exists an essentially unique measure pre-
serveing map s : (X,µ)→ (Ω, β) such that u = ∇ψ ◦ s µ-a.e. and the
maps sending u to ψ and s are continuous in the appropriate sense.
Moreover, the theorem unifies seemingly distinct classical results.

6.1 Introduction

A few definitions are necessary to clarify the abstract and summarize the
proof. Here (X,µ) and (Y, ν) are probability spaces.

Definition 1 (Measure preserving map). A map s : X → Y is called measure
preserving if, for all measurable E ⊂ Y , s−1(E) is measureable in X and
ν(E) = µ(s−1(E)). If there exists an injective measure preserving map from
X to Y , the two spaces are said to be isomorphic.

Definition 2 (Lp rearrangment). For any u ∈ Lp(X,µ;Rd), a function v ∈
Lp(Y, ν;Rd) is called an Lp rearrangement (or simply rearrangment based on
context) if for all f ∈ C(Rd) such that |f(x)| . (1+ |x|p) (all functions called
f will be of this type unless otherwise stated),

´
X
f ◦u(x) dµ =

´
Y
f ◦v(y) dν.

Although not all of these assumptions will used overtly, we will assume
for the remainder of the summary that β(∂Ω) = 0 and that β is represented
by a non-negative function also called β bounded away from 0 on all com-
pact sets. All Lp and Sobolev spaces will values in Rd. We will further
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assume that all measures are Borel and W 1,p(Ω, β) embeds compactly into
Lp(Ω, β). Also, K ⊂ Lp(Ω, β) will denote {∇ψ : ψ ∈ W 1,p(Ω, β), ψ convex}
and uniqueness will describe uniqueness up to a set of measure 0 where the
measure is determined by context.

Theorem 3 (Rearrangement and polar factorization). For any u ∈ Lp(X,µ),
there exists a unique rearrangement u# of u in the set K and the map u 7→ u#

is continuous from Lp(X,µ) to Lp(Ω, β). If u is non-degenerate in the sense
that it does not map any positive measure sets in X to negligible sets in Rd,
there is a unique measure preserveing map s : (X,µ) → (Rd, β) such that
u = ∇ψ ◦ s. Also, s is the unique maximizer among measure preserving
maps of the functional s̃ 7→

´
X
u(x) · s̃(x) dµ. Finally the mapping u 7→ s is

continuous from the non-degenerate elements of Lp(X,µ) to Lq(X,µ) for all
q ∈ [1,∞).

The existence, uniqueness, and continuity of rearrangments in K will
come as a corollary of the following more general result.

Theorem 4. For any probability measure α on Rd such that
´

(1+ |y|p) dα <
∞, there is a unique u# = ∇ψ ∈ K such that for all f ,

´
f(y) dα =

´
f ◦

u#(z) dβ. Moreover, if {αn} is a sequence of probability measures on Rd

such that
´
f(y) dαn →

´
f(y) dα for all f , ψn → ψ in W 1,p(Ω, β) up to an

additive constant.

Setting α to be the measure given by α(E) := µ(u−1(E)), the existence,
uniqueness, and continuity of u 7→ u# follow quickly.

Theorem 3 generalizes a few a priori unrelated classical results. The
standard non-decreacing rearrangement on [0, 1] is simply the case where
(Ω, β) is (0, 1) with Lebesgue measure. This illustrates that on intervals in
R, K coincides with the set of non-decreasing functions. The matrix polar
factorization on GLd(R) given by A = RU for R,U ∈ GLd(R) positive and
orthogonal respectively matches the polar factorization in theorem 3. In
this application, (X,µ) and (Ω, β) are both the unit ball with normalized
Lebesgue measure and u(x) := Ax. Moreover, the non-degeneracy condition
on A in the matrix factorization theorem (i.e. det(A) 6= 0) that forces U to
be unique is easily seen to match the measure non-degeneracy condition on
u in theorem 3 that has the same effect.

The Helmholtz decomposition theorem says the following: Let z ∈ C∞(Ω;Rd)
for Ω ⊂ Rd open, bounded, connected, and having smooth boundary. Then
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z can be written as z(x) = w(x) + ∇p(x) where p is a smooth real val-
ued function and w is a smooth divergence free vector field parallel to ∂Ω
with w unique and p unique up to an additive constant (the uniqueness is
clear). To view the existence of the decomposition as an example of theo-
rem 3, let uε := x + εz(x) and write ψε(x) = |x|2/2 + εp(x) + ε2eψ(x, ε) and
sε(x) = x+ εw(x) + ε2es(x, ε). Evaluating ∂ε[ψε ◦ sε]ε=0 provides the decom-
position and applying

´
Ω
f ◦ s(x) dx =

´
Ω
f(x) dx to arbitrary f ∈ C∞(Ω)

provides the divergence and boundary conditions on w.

6.2 Monge-Kantorovich problems

The basic strategy for proving Theorem 4 is to reduce it to common Monge-
Kantorovich problems whose solutions can be described more precisely. Given
a probability space (Rd, α) with

´
(1 + |y|p) dα <∞, the three relevant prob-

lems are as follows:
Primal MKP: Find φ ∈ C(Rd) ∩ Lp(Rd, α) and ψ ∈ C(Ω) ∩ Lp(Ω, β)

minimizing
´
φ dα subject to the constraints that

´
ψ dβ = 0 and φ(y) +

ψ(z) ≥ y · z for all (y, z) ∈ Rd × Ω.
Dual MKP: Find a probability measure m with marginals α and β on

Rd × Ω that maximizes
´
y · z dm(y, z).

Mixed MKP: Find φ ∈ C(Rd) ∩ Lp(Rd, α) and ψ ∈ C(Ω) ∩ Lp(Ω, β)
and a probability measure m with marginals α and β on Rd × Ω such that
φ(y) + ψ(z) ≥ y · z for all (y, z) ∈ Rd × Ω,

´
ψ dβ = 0, and

´
φ dα ≤´

y · z dm(y, x).
The thrust of the proof is showing that the mixed MKP has a unique

solution and finding necessary conditions on it. These are mostly straight-
forward or classical and will therefore be taken as black boxes. Before listing
the conditions we need the following definition:

Definition 5 (Legendre or Legendre-Frenchel Transform). For any θ : Ω→
R, its Legendre transform θ∗ : Rd → R is given by θ∗(y) := supz∈Ω[y ·z−θ(z)].

Lemma 6. The following hold for any solution (φ, ψ,m) to the mixed MKP:

1. (φ, ψ) and m are the unique solutions to the primal and dual MKPs.

2. ψ and φ are convex and φ = ψ∗, ψ = φ∗ α- and β-a.e. Moreover
ψ ∈ W 1,p(Ω, β) and dm(y, z) = δ[y −∇ψ(z)] dβ(z).
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3. Let {αn} be a sequence of probability measures on Rd such that for
any f ,

´
f(y) dαn →

´
f(y) dα. If (φn, ψn,mn) are solutions to the

respective MKPs, then φn → φ uniformly on compact subsets of Rd,
ψn → ψ in W 1,p, and

´
f(y, z) dmn →

´
f(y, z) dm for all f .

4. If α is absolutely continuous, then ∇φ and ∇ψ are inverses α- and
β-a.e. and dm(y, z) = δ[z −∇φ(y)] dα(y).

Then, assuming the MKP has a solution, we show that theorem 4 follows:
By lemma 6, if (φ, ψ,m) solves the MKP, dm = δ[y−∇ψ(z)] β(z) solves the
dual MKP so for any f ,

´
f(y) dα =

´
f(y) dm(y, z) =

´
f(∇ψ(z))dβ with

ψ ∈ W 1,p convex. Setting u# = ∇ψ ∈ K proves the first portion of the
theorem. The continuity statement in the theorem follows directly from the
third item of lemma 6.

6.3 Existence and uniqueness of solutions to the mixed
MKP

Uniqueness follows directly from the first item in lemma 6. For existence,
we initially assume that the support of α is contained in BR and will then
extend to arbitrary α. More precisely, given such an α, let αn be the normal-
ized restriction to En ⊂ Rd where {En} is an increasing exhaustion of Rd.
Then the weak convergence of {αn} to α in conjunction with the continuity
property in lemma 6 gives the desired result.

We will use as a black box the classical convex analysis result that there
exists a probability measure m with marginals α and β such that

´
y ·

z dm(y, z) attains the infemum of the set{ˆ
φ dα+

ˆ
ψ dβ : φ ∈ C(BR), ψ ∈ C(Ω), φ(y)+ψ(z) ≥ y·z ∀(y, z) ∈ BR×Ω

}
Based on this result, if the infemum above is attained by some pair

(φ, ψ) and m is the solution measure, (φ, ψ,m) satisfies the mixed MKP.
In order to find this minimizing pair, first let {(φn, ψn)} be an infemizing
sequence. Without loss of generality we can substract a constant from
φn and add it to ψn to enforce minx∈BR φn(x) = 0 for all n. Then let

ψ̃n(z) := supy∈BR{y · z − φn(y)} and φ̃n(y) := supz∈Ω{y · z − ψ̃n(z)}. A

simple calculation shows ψ̃n(0) = 0, Lip(ψ̃n) ≤ R, and ψ̃n(z) ≤ ψn(z) for
all n. In particular, this means the sequence {ψ̃n} is uniformly bounded,
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uniformly Lipschitz, and dominated by {ψn}. Similar calculations reveal the
same about {φ̃n} (replacing {ψn} with {φn} and R with r where Ω ⊂ Br).

Then, by the Arzela-Ascoli theorem, passing to a subsequence there is a
pair (φ, ψ) ∈ C(BR) × C(Ω) such that φ̃n → φ and ψ̃n → ψ uniformly. As
{φ̃n, ψ̃n} is an infemizing sequence for the functional (g, h) 7→

´
g dα+

´
h dβ

and both measures are finite, this uniform convergence shows that (φ, ψ) is
indeed a minimizing pair and thus the mixed MKP has a solution.

6.4 Proof of polar factorization theorem

Letting α be the measure on Rd given by α(E) = µ(u−1(E)), the non-
degeneracy condition on u is equivalent to α being absolutely continuous.
Then, if (φ, ψ,m) is the solution to the mixed MKP associated with α,
the map s := ∇φ ◦ u preserves measure (this can be checked directly).
Also by lemma 6, ∇ψ ◦ ∇φ(y) = y α-a.e. so, by the definition of α,
∇ψ ◦ s(x) = (∇ψ ◦ ∇φ) ◦ u(x) = u(x) µ-a.e. As ∇ψ ∈ K, this com-
pletes the existence proof. The following lemma for the uniqueness proof
is straightforward and will be taken as a black box:

Lemma 7. If u# ∈ K is an Lp rearrangement of u and ψ is the function in
W 1,p(Ω, dβ) such that

´
ψ dβ = 0 and u# = ∇ψ, then (φ, ψ,m) is the solution

to the mixed MKP where φ = ψ∗ and dm(y, z) = δ[y −∇ψ(z)] dβ(z).

This lemma implies that if ∇ψ ◦s and ∇ψ̃ ◦ s̃ are two polar factorizations
of u, then ∇ψ = ∇ψ̃ β-a.e. Thus s = ∇φ ◦ u = (∇φ ◦ ∇ψ) ◦ s̃ = s̃ µ-a.e. by
lemma 6 and the non-degeneracy of s̃.

The next part of theorem 3 is that the map u 7→ s is continuous for
non-degenerate u from Lp(X,µ) to Lq(X,µ) for all q ∈ [1,∞). Letting
{un}, u be non-degenerate in Lp(X,µ) such that un → u in Lp, by theorem
4, ∇ψn → ∇ψ in Lp. Thus, for any f ∈ Cc(Rd × Ω),

´
f(un(x), sn(x)) dµ =´

f(∇ψn(z), z) dβ →
´
f(∇ψ(z), z) dβ =

´
f(u(x), s(x)) dµ.

Using the boundedness and uniform continuity of f , the finitude of µ(X),
and a decomposition of X based on Chebyshev’s inequality, it can be shown
that

´
|f(un(x), sn(x))−f(u(x), sn(x))| dµ→ 0 and in particular

´
f(u(x), sn(x)) dµ→´

f(u(x), s(x)) dµ. This limit can be extended to f(y, z) of the form g(y)·h(z)
where g ∈ L1(Rd, α), h ∈ C(Ω) by a density argument. Note that f(y, z) :=
∇φ(y) · z is one such function as ∇φ maps the probability space (Rd, α) into
Ω, i.e. is a bounded function on a finite measure set and is thus integrable.
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The limit statement then becomes
´
∇φ ◦ u(x) · sn(x) dµ→

´
∇φ ◦ u(x) ·

s(x) dµ or
´
s(x) · sn(x) dµ →

´
s(x) · s(x) dµ. Moreover, by the measure

preserving property,
´
|sn(x)|2 dµ =

´
|z|2 dβ =

´
|s(x)|2 dµ for all n. The

conclusion of these calculations is that
´
|sn(x) − s(x)|2 dµ → 0 so sn → s

in L2(X,µ). However, because the ’sn’s are essentially bounded uniformly
by maxΩ |z| < ∞, the sequence converges in Lq for q ∈ (2,∞) and because
(X,µ) is a probability space, it also converges in Lq for q ∈ [1, 2).

To see that s is a maximzer for the functional s̃ 7→
´
u · s̃ dµ among

measure preserving maps from (X,µ) to (Ω, β), let s′ be another such map.
Note that the convexity inequality ψ(s′(x)) ≥ ψ(s(x)) +∇ψ(s(x)) · (s′(x)−
s(x)) holds µ-a.e. by the non-degeneracy of s. Because ∇ψ ◦ s = u µ-a.e.,
rearranging and integrating the inequality over (X,µ) yields

´
u(x) · (s′(x)−

s(x)) dµ ≤
´
ψ ◦ s′(x) dµ −

´
ψ ◦ s(x) dµ. However, because s and s′ are

measure preserving, the two integrals are both equal to
´
ψ(z) dβ so the

right side of the inequality is 0, thus showing that s is indeed a maximizer.
To see that s is unique, let s′ be a maximizer of the functional among

measure preserving maps and let m′ be the probability measure on Rd × Ω
defined for any f by

´
f(y, z) dm′ =

´
f(u(x), s′(x)) dµ. It is straightforward

to verify that m′ has marginals α and β and solves the dual MKP. Thus
m′ = δ[y −∇ψ(z)] dβ(z). Therefore

´
f(u(x), s′(x)) dµ =

´
f(u(x), s(x)) dµ

for all f ∈ Cc(Rd,Ω) and, as before, this can be extended to f(y, z) = ∇φ(y)·z
to show that

´
s(x) · s′(x) dµ =

´
s(x) · s(x) dµ. As ‖s′‖L2(dµ) = ‖s‖L2(dµ),

this shows that s = s′ in the L2(X,µ) sense (i.e. µ-a.e.) so s is unique.
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7 An Elementary Introduction to Monotone

Transportation

after K. Ball [3]
A summary written by Paata Ivanisvili

Abstract

We outline existence of the Brenier map. As an application we
present simple proofs of the multiplicative form of the Brunn–Minkowski
inequality and the Marton–Talagrand inequality.

7.1 Introduction

Given any two probability measures µ and ν on the Euclidian space Rn we
say that a map T : Rn → Rn transports µ to ν if for each measurable set
A ⊆ Rn we have

µ(T−1(A)) = ν(A). (1)

Condition (1) is equivalent to the following one: for any bounded continuous
real-valued function f we have

ˆ
Rn
f(T (x))dµ(x) =

ˆ
Rn
f(x)dν(x). (2)

It is worth mentioning that such map does not exist for arbitrary prob-
ability measures µ and ν. For example, if µ is one point mass and ν is
supported on two different points then we can easily see that condition (1)
can not be fulfilled.

Problem of mass transportation at first time was like this: for the given
two probability measures µ and ν we need to minimize functional

ˆ
‖x− Tx‖dµ(x) (3)

over all possible choices of T which transports µ to ν. The norm ‖·‖ represents
usual Euclidian distance in Rn.

One can easily see that such optimal map T which minimizes (3) is not
unique in general. The problem of mass transportation itself is very difficult,
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for example, because of requirement (1). In order to avoid such strong re-
quirement one can consider the following mass transportation problem: given
two probability measures µ and ν we need to minimize the functional

ˆ
‖x− y‖dγ(x, y) (4)

over all possible choices of the measure γ on the product Rn ×Rn such that
for all measurable sets A,B ⊆ Rn we have

γ(A× Rn) =µ(A), (5)

γ(Rn ×B) =ν(B). (6)

We should mention that in the case when both of the measures µ and ν
are discrete, then the problem of minimizing (4) with conditions (5),(6) and
the fact that both of the measures ν, µ are probability measures is nothing
more than just a problem of linear programming. So the existence of measure
γ in this particular case follows immediately.

From the point of view of linear programming it is quite natural to replace
the integrand in (4) by some arbitrary real-valued function c(x, y) . In this
general case we can treat the value c(x, y) as a cost of moving the point x to
y.

Henceforth, we will pay attention to the optimal transportation map T
which transports µ to ν (see (1)) and minimizes

ˆ
c(x, Tx)dµ(x).

It is known that if c is a strictly convex function of the distance ‖x−y‖ then
the optimal transportation T is unique. In [2], Brenier explained that for
c(x, y) = ‖x− y‖2 the optimal map T is a gradient of some convex function
ϕ : Rn → R and vice versa, if φ is convex function and ∇φ transports µ to ν
then T = ∇φ is optimal transportation. Such a map T will be called Brenier
map. The property T = ∇ϕ allows us to use Brenier map for a wide range
of applicatons (see subsections 7.3,7.4)

7.2 A construction of the Brenier Map

In the next theorem Brenier map will be constructed for some special mea-
sures.
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Theorem 1. If µ and ν are probability measures on Rn, ν has compact
support and µ assigns no mass to any set of Hausdorff dimension (n − 1)
then there is a convex function ϕ : Rn → R, so that T = ∇ϕ transports µ to
ν.

We sketch the proof of the theorem. First we consider the case when the
measure ν is atomic i.e.

ν =
n∑
1

αjδuj

For such a measure we find a convex function of the form ϕ(x) = maxj{〈x, uj〉−
sj} with some apropriate nambers sj, such that it satisfyes the required prop-
erty. In general, we approximate measure ν weakly by atomic measures vk.
It turns out that we can choose coresponding convex functions ϕk so that
they converge locally uniformly to some convex function ϕ, moreover

∇ϕk → ∇ϕ

except for some set. Finally, by standart weak limit arguments we can see
that the map ∇ϕ transports the measure µ to ν.

Having this theorem, it is worth mentioning the following relation between
the measures µ and ν. Since T = ∇ϕ, therefore, derivative of T i.e. Hessian
of ϕ is positive semi-definite symmetric map. This means that T is essentialy
1-1. So, if µ and ν have densities f and g rspectively, then one can easily see
that condition (1) turns into the following one

f(x) = g(Tx) det(T ′(x)). (7)

This relation will be useful for our applications.

7.3 The Brunn–Minkowski Inequality

Classical Brunn-Minkovski inequality estimates the volume of the convex
sum of nonempty sets in the Euclidian space from below. Namely, let A and
B be non-measurable subset of Rn. For λ ∈ (0, 1) we define

(1− λ)A+ λB = {(1− λ)a+ λb : a ∈ A, b ∈ B}.
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Then

|(1− λ)A+ λB|1/n ≥ (1− λ)|A|1/n + λ|B|1/n (8)

where |A| denotes the n dimensional Lebesgue measure (volume) of the set
A.

The first applications of Brenier map in proving Brunn–Minkowski in-
equality was found by McCann [4]. Barthe [1] used the Brenier map and
gave a very clear proof of the Brascamp-Lieb inequality.

We restrict ourselves to a weak version of inequality (8), the so called
multiplicative form of Brunn–Minkowski inequality, namely

|(1− λ)A+ λB| ≥ |A|1−λ|B|λ. (9)

The idea of using Brenier map in proving inequality (9) is the following:
we consider the Brenier map T for the probability measures χA/|A| and
χB/|B|. Then the image of the map Tλ = (1−λ)x+λT (x) lies in (1−λ)A+
λB. So, using (7), one can see that inequality (9) follows from the estimate

det((1− λ)I + λT ′(x)) ≥ (detT ′(x))λ

which is true for every positive semi-definite symmetric matrix T ′(x).

7.4 The Marton–Talagrand Inequality

In this subsection we present Marton–Talagrand inequality which was firstly
observed by Marton [5]. The idea of proving this inequality is based on the
existence of Brenier map.

Let γ be the standard Gaussian measure on Rn with density

g(x) =
1

(2π)n/2
e−|x|

2/2.

For a density f on Rn we define the relative entropy of f to be

Ent(f ||γ) =

ˆ
Rn
f log(f/g)dx.

The cost of transporting measure γ to the measure with density f is defined
as

C(g, f) =

ˆ
|x− T (x)|2dγ,

T is the Brenier map transporting γ to the measure with density f .
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Theorem 2. With the notation above

1

2
C(g, f) ≤ Ent(f ||γ).

One of the important corollaries of the Marton–Talagrand inequality are
probabilistic deviation inequalities. Consider measurable set A ⊂ Rn. Let Aε
be a ε neighborhood of A. Set B = Rn \ Aε.

Then we have

γ(B) ≤ e−γ(A)ε2 .

Indeed, take f = χBg(x)/γ(B). Then the relative entropy of f will be
− log γ(B). By Marton–Talagrand inequality we have C(g, f) ≤ −2 log γ(B).
However,

C(g, f) =

ˆ
Rn
‖x− T (x)‖2dγ ≥

ˆ
A

‖x− T (x)‖2dγ ≥ ε2γ(A)

So we obtain the desired result.
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8 A Priori Estimates and the Geometry of

the Monge-Ampère Equation

after L. Caffarelli
A summary written by Sajjad Lakzian

Abstract

We will very briefly touch on Caffarelli’s regularity theory for fully
nonlinear PDE and the geometry and regularity of the Monge-Ampère
equation.

8.1 Introduction

The well known regularity results for small perturbation of linear equations
are as follows:

(I) [Cordes-Nienberg Type Estimates]. Let 0 < α < 1 and u a
bounded solution on B1 of Lu = aijDiju = f , |aij − δij| ≤ δ0(α) small
enough, and f bounded; then,

||u||C1,α(B1/2) ≤ C
(
||u||L∞(B1) + ||f ||L∞

)
. (1)

(II) [Calderon-Zygmund]. if f ∈ Lp for some 1 < p < ∞ and δ0(p)
small enough, then

||u||W 2,p(B1/2) ≤ C
(
||u||L∞(B1) + ||f ||Lp

)
. (2)

(III) [Schauder]. If aij and f are of class Cα then,

||u||C2,α(B1/2) ≤ C
(
||u||L∞(B1) + ||f ||Cα

)
. (3)

Caffarelli [1] has generalized these type of estimates to Fully nonlinear
uniformly elliptic PDEs.

8.2 Fully Nonlinear Uniformly Elliptic PDE

The equation is of the form

F (D2u, x) = f(x) (4)

Uniform ellipticity in D2 of equation 4 means that there exist λ and Λ
such that for any matrix N ∈Mn×n and any N ∈ S+ we have

0 < λ||M || < F (N +M,x)− F (N, x) ≤ Λ||M || (5)
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Definition 1 (Viscosity Solution). The continuous function u is called a
C2-viscosity solution of (4) if for any C2−subsolution (resp. supersolution)
φ, u− φ cannot have an interior minimum (resp. maximum).

Let S denote the symmetric matrices then, β(x), the oscillation of F in
the variable x is given by:

β(x) = sup
M∈S

F (M,x)− F (M, 0)

||M ||
(6)

Caffarelli’s results are as follows:

8.3 Caffrelli’s Main Results

Theorem 2 (W 2,p Regularity). Let u be a bounded viscosity solution of
F (D2u, x) = f(x) in B1 and assume that solutions ω of the Dirichlet problem

f(x) =

{
F (D2u, x) = 0 in Br

ω = ω0 in ∂Br

satisfy he interior apriori estimate

||ω||C1,1(Br/2) ≤ Cr−2||ω||L∞(∂Br) (7)

Let n < p <∞ and assume that f ∈ Lp and for some θ = θ(p) suficiently
small

sup
B1

β(x) ≤ θ(p) (8)

Then u|B1/2
is in W 2,p and

||u||W 2,p(B1/2) ≤ C

(
sup
∂B1

|u|+ ||f ||Lp
)
. (9)

Theorem 3 (C1,α Regularity). Assume that solutions ω to the equation

F (D2u, ω) = 0 (10)

in Br satisfy the a priori estimate

||ω||C1,ᾱ(Br/2) ≤ Cr−(1+ᾱ)||ω||L∞(Br) (11)
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Then for any 0 < α < ᾱ there exists θ = θ(α) so that if

 
Br

βn(x)dx ≤ θ (12)

and  
Br

|f(x)|ndx ≤ C1r
(α−1)n (13)

then any bounded solution u of

F (D2u, x) = f(x) (14)

in Br0 is C1,α at the origin. That is, there exist a linear function l such that
for r < r0

|u− l| ≤ C2r
1+α (15)

and
||l||C1 ≤ C3 (16)

with
C2, C3 ≤ C(α)r

−(1+α)
0 sup

Br0

|u|+ C
1/n
1 (17)

Theorem 4 (C2,α Regularity). Assume the existence of C2,ᾱ interior a priori
estimates for solutions of

F (D2ω +M, 0) = 0 (18)

for any M satisfying
F (M, 0) = F (0, 0) = 0. (19)

Then if 0 < α < ᾱ,  
Br

βndx ≤ Crαn, (20)

 
Br

|f(x)|ndx ≤ Crαn (21)

and u is a solution of F (D2u, x) = f(x), then, u is C2,α at the origin (in the
same sense as above).

These regularity results are proven by exploring Alexander-Bakelman-
Pucci maximum principle and Krylov-Safanov Harnack’s Inequality.
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8.4 Monge-Ampère Equation

We will discuss the solutions to the Monge-Ampère equation, detDiju = f
and 0 < λ1 ≤ f ≤ λ2 < ∞ on a convex set Ω. MA equation is perhaps the
most famous example of non-uniformly elliptic PDE.

8.5 Geometric Properties, Alexandrov Solutions and
Localization

Solutions to the MA quation are invariant under affine transformations with
the proper renormalization; i.e. if u is a solution and TX = AX + B is an
affine transformation, then

w =
1

(detT )2/n
u(TX) (22)

is also a solution. This means that one may produce new solutions by
”stretching” the graph of u in some directions and ”squeezing” it in other di-
rections (in a way that keeps the Jacobian of ∇u fixed) and hence producing
singular solutions.

This fact also tells us that the estimates on the solutions are inevitably
dependent on the geometry of the domain of the definition.

Definition 5 (Generalized (Alexandrov) Solutions). Let ν be a Borel mea-
sure on Ω, an open and convex subset of Rn. The convex function u ∈ C(Ω)
is a generalized solution or Alexandrov solution to the MA equation

detD2u = ν (23)

if the MA measure Mu equals ν. Mu is defined as follows:

Mu(E) = |∂u(E)| (24)

Remark 6. For the MA equation detD2u = f , we take ν = fL (L : Lebesque
measure.)

Proposition 7. if f is continuous then every Alexandrov solution u is also
a viscosity solution.

Lemma 8. If u, v ∈ C(Ω̄), u|∂Ω = v∂Ω and v ≥ u in Ω, then,

∂v(Ω) ⊂ ∂u(Ω) (25)
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Consequences of Lemma 8:

Theorem 9 (Alexandrov Maximum Principle). u : Ω → R convex and
u|∂u = 0 then,

|u(x)|n ≤ Cn(diamΩ)n−1dist(x, ∂Ω)|∂Ω| ∀x ∈ Ω (26)

Lemma 10 (Comparison Principle). Let u, v convex functions on open bounded
convex Ω and u ≥ v on ∂Ω. If detD2u ≤ detD2v (in the MA measure sense)
then,

u ≥ v in Ω (27)

One key tool in studying MA equation is John’s Lemma:

Lemma 11 (John’s Lemma). For any open bounded convex set O, there exist
an ellipsoid E such that

E ⊂ S ⊂ nE (28)

hence, there exist an invertible orientation preserving affine transformation
T : Rn → Rn such that T (S) is normalized i.e. B1 ⊂ T (S) ⊂ Bn

One immediate consequence is the following: Let u is a strictly convex
solution of MA inequality on Ω then for any x ∈ Ω′ ⊂⊂ Ω and t sufficiently
small; Then, if T normalizes the section S(x, p, t), then the normalization,
u∗ of u given by:

u∗(y) := (detT )2/n
(
u(T−1(y))− u(x)− p.(T−1(y)− x)− t

)
(29)

solves the MA inequality on T (S(x, p, t)) with boundary condition u∗
∣∣∣
∂T (S(x,p,t))

=

0.

Lemma 12. Let Ω∗ be a normalized open convex set i.e. B1 ⊂ Ω∗ ⊂ Bn and
let u∗ solve

λ1 ≤ detD2u ≤ λ2 u∗|∂Ω∗ = 0 (30)

(we call u∗ a normalized solution) then, there constants c1, c2 depending on
λ1, λ2 such that

0 < c1 ≤
∣∣∣inf

Ω∗
u∗
∣∣∣ ≤ c2 (31)

Proof. Apply Lemma 10 to ω1 = λ1(|x|2− 1)/2 and ω2 = λ2(|x|2−n2)/2
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Another important result is the localization Theorem which will be used
in the proof of compactness theorem and strict convexity of solutions.

Theorem 13 (Localization [2]). Let u be a solution of MA inequality
inside a convex set Ω, and let l(x) is a supporting sloe to u. If the convex

set
W = {u(x) = l(x)} (32)

contains more than one point (hence not strictly convex) then it can not have
an extremal point in Ω (i.e. this set has to exit the domain of the definition
).

As a consequence of Lemmas 13, we get the compactness for normalized
solutions. [1]

The proof of regularity results uses the properties of the sections of the
solutions i.e. the sets

S(x, p, t) := {y ∈ Ω : u(y) ≤ u(x)+p.(y−x)+t} where, p ∈ ∂u(x) and t ≥ 0.
(33)

the modulus of convexity is defined to be

ω(x, u, t) := sup
p∈∂u(x)

diamS(x, p, t) (34)

and
ωΩ′ = sup

x∈Ω′
ω(x, u, t) Ω′ ⊂⊂ Ω (35)

8.6 C1,α Regularity

It is enough to prove the C1,α regularity of renormalized solutions u with
infΩ u = u(x0) and u|∂Ω = 0 . Let Cβ ⊂ Rn−1 be the cone with vertex
(x0, u(x0)) and base {u = (1− β)u(x0)}. Suppose Cα is the graph of hα.

Using the compactness result, one can find a universal δ for which

h1/2 ≤ (1− δ)h1 (36)

After renormalizing the level surface {u = 2−k} and iteration, we get:

h2−k ≤ (1− δ)kh1 (37)
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Since u is Lipschitz we have h1(x) ≤ C|x−x0|+u(x0). Letting 2−α
′
= 1−δ

we get
h2−k(x) ≤ C(2−k)α|x| ≤ C2−k (38)

for |x| ≤ (2−k)(1−α)

By the comparison Lemma 10, we have u(x) ≤ h2−k(x) as long as h2k(x) ≤
(1− 2−k)u(x0). This means that if for every x, we pick k that satisfies

(
−C
u(x0)

)2−(k+1)(1−α′) ≤ |x− x0| ≤ (
−C
u(x0)

)2−k(1−α′) (39)

then,
h2k(x) ≤ (1− 2−k)u(x0) (40)

And direct computation gives:

u(x)− u(x0) ≤ C|x− x0|1+α where, α =
α′

1− α′
(41)

This shows that for all supporting planes lx0 , we have:

sup
B(x0,r)

|u(x)− lx0(x)| ≤ Cr1+α (42)

and this will imply that u is C1,α.

8.7 Sobolev Regularity

Theorem 14 (Caffarelli [1]). Let u be a convex viscosity solution of the MA
equation on a normalized convex set Ω and u|∂Ω = 0 then,

(I) ∀p <∞,∃ε = ε(p) s.t. if

|f − 1| ≤ ε (43)

then,
u ∈ W 2,p

(
B1/2

)
(44)

and
||u||W 2,p(B1/2) ≤ C(ε) (45)

(II) If f > 0 and is continuous, then u ∈ W 2,p
(
B1/2

)
for any p < ∞

and
||u||W 2,p(B1/2) ≤ C(p, σ) (46)

where σ is the modulus of continuity of f .
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A consequence is the following theorem:

Theorem 15. f ∈ Cα =⇒ u ∈ C2,α

Main Ideas of the Proof:
Lets consider a particular case: 1 ≤ detDiju ≤ 1 + ε(p) and we want to

prove that ||u||W 2,p(B1/2) ≤ C(p).

Step 1 Take the section Sµ,L = {u− L ≤ min(u− L) + µ} and normal-
ize it by Tµ. Then approximate (using an approximation lemma as in [1] )
the normalization of u−L by solutions of detDijω = 1. Notice that ω is C2,α

Step 2 Iterating this approximation at diadic levels µ = 2−k, one can
show that

Tmu = DµT̃mu (47)

where Dmu =
(

1
2µ

)1/2

Id is a dilation and and T̃mu is a transformation of
norm

||T̃µ|| , ||T̃mu−1|| ≤ µ−σ (48)

with σ = σ(ε) is as small as we want.
So far we have a normalized solution u on Tµ(Sµ,L) with the following

properties:
(a) 1 ≤ detDiju ≤ 1+ε. (b) {u = 1} is trapped between B1 and Bn. (c)

u is ε away from the C2,α approximation function ω that solves detDijω = 1
and {ω = 0} = {u = 0}

Step 3

Lemma 16. Let Γ(u− 1
2
ω) be the convex envelope of u− 1

2
ω, then, the contact

set C = {Γ(u− 1
2
ω) = u− 1

2
ω} satisfies:

|B1/2 ∩ C|
|B1/2|

≥ 1− Cε1/2 (49)

in other words, the contact points cover as large a portion of B1/2 as we want.

Corollary 17. At any contact point x0, there exist a plane Lx0 such that in
all of Ω

Lx0(x) ≤ (u− 1

2
ω)(x) and Lx0(x0) = (u− 1

2
ω)(x0) (50)
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which means that for any contact point x0, u has a tangent paraboloid by
below of the form

Lx0 +
1

N
|x− x0|2 (51)

Remark 18. If u has a tangent paraboloid by below u ≥ 1
λ
|x|2 then u has a

tangent paraboloid by above u ≤ λn−1|x|2 because one can see that a paraboloid
from below puts a uniform bound ||T̃µ|| ≤ λ then since det T̃mu = 1, we also
get a bound by below.

Step 4 having controlled tangent paraboloids from above and below =⇒
W 2,p estimates.
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9 Partial differential equations and Monge-

Kantorovich mass transport

after L.C. Evans [1]
A summary written by Tau Shean Lim

Abstract

We survey on Monge-Kantorovich mass transport with given cost
function c(x, y) = 1

2 |x−y|
2 and c(x, y) = |x−y|. We also look at their

applications on some PDE related topics.

9.1 Quick survey on Monge-Kantorovich problem

1. Monge’s optimal transport problem - Given two probability mea-
sures µ± on Rn, define A be the class of functions

A = {s : Rn → Rn : s is m-able, bijective, and s#(µ+) = µ−}. (1)

Define cost density function c : Rn × Rn → R. Corespondent to c,
total cost functional of transfer plan s is given by by

I[s] =

ˆ
Rn
c(x, s(x))dµ+(x). (2)

Optimal mass transfer problem is to determine and study the minimizer
s∗ of total cost functional I among class A.

2. Kantorovich reformulation - Due to its high nonlinearity, Monge’s
problem remains difficulty. To ameliorate this difficulty, Kantorovich
reformulates the problem by introducing its relaxation. Let M be the
class of probability measures

M = {µ-Radon prob. meas. on Rn×Rn : projxµ = µ+, projyµ = µ−},
(3)

The new relaxed cost functional J on the space of Radon measure is
given by

J [µ] =

ˆ
Rn×Rn

c(x, y)dµ(x, y) (4)

The problem is to determine the minimizer µ∗ of J among M.
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3. Duality of Kantorovich problem - One advantage of Kantovorich
formulation is that both subject functional J and constrain M are
linear. So it is a linear programming. More importantly, it provides a
different way of viewing it - the dual problem. Let L be the collection
of following functions

L = {(u, v) : u, v : Cn → Rn, u(x) + v(y) ≤ c(x, y)} (5)

The functional corresponds to dual problem is given by

K[u, v] =

ˆ
Rn
u(x)dµ+(x) +

ˆ
Rn
v(y)dµ−(y) (6)

The dual problem is to find the maximizer pair (u∗, v∗) which max-
imizes functional K. By duality principle in optimization theory, the
optimality of primal and dual problem are equivalent, and

min
µ∈M

J [µ] = max
(u,v)∈L

K[u, v].

If we impose certain condition to cost function c (convexity and coer-
civity), Kantorovich problem has a unique solution.

We will consider two special cases:

1. Uniform convex cost function c(x, y) = 1
2
|x − y|2. In this space case,

the optimal transport plan s∗ exists, is unique, and s∗ = ∇φ∗ for some
convex function φ∗.

2. Nonuniform convex cost function c(x, y) = |x− y|. The optimal trans-
port plan exists, but no longer unique. The problem is harder due to
the lack of uniform convexity.

9.2 Case for c(x, y) = 1
2 |x− y|

2

In this section, we assume dµ± = f±dx (or dy), where f± has compact
support, and supp(f+) = X, supp(f−) = Y . We consider the dual problem
of Kantovorich formulation. Let (u, v) ∈ L as in (5), that is,

u(x) + v(y) ≤ 1

2
|x− y|2 (7)
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Corespondent to (u, v), we define the function pair (φ, ψ) by

φ(x) =
1

2
|x|2 − u(x), ψ(y) =

1

2
|y|2 − v(y) (8)

Then (7) reads

φ(x) + ψ(y) ≥ x · y, (x, y) ∈ X × Y (9)

As it turns out, to minimize functional K over L is equivalent to minimize
the following functional L over the constraint (9).

L[φ, ψ] =

ˆ
X

φ(x)f+dx+

ˆ
Y

ψ(y)f−dy (10)

Lemma 1. 1. There exists minimizer (φ∗, ψ∗) of L subject to constrain
(9).

2. φ∗ and ψ∗ are convex functions, and convex dual of each other.

Sketch of Proof. For any pair of (φ, ψ) which satisfies (9), we may find an-
other pair (φ̂, ψ̂) that satisfies (9) and φ ≤ φ̂, ψ ≤ ψ̂. So L[φ, ψ] ≤ L[φ̂, ψ̂].
Choose a maximizing sequence from dual pairs, which are uniform Lipschitz.
This allows us to construct (φ∗, ψ∗) from uniform limit.

To recover optimal transfer plan s∗, we set

s∗ = ∇φ∗, (11)

Since φ∗ is convex according to lemma 1, so the derivative exists a.e.

Theorem 2. Define s∗ by (11), then

1. s∗ : X 7→ Y is essentially bijective.

2. s∗#µ
+ = µ−, hence s∗ ∈ A.

3. s∗ is the optimal solution of mass transfer problem.

Sketch of Proof. Take h : Rn → R a continous function. To show 2, by
replacing h into −h, it is enough to prove

ˆ
X

h(s∗(x))f+(x)dx ≤
ˆ
Y

h(y)f−(y)dy (12)
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For τ ≥ 0, by taking ψτ (y) = ψ∗(y) + τh(y), φτ (x) be Legendre transform
of ψτ , (φτ , ψτ ) satisfies (9). Then i(τ) = L[φτ , ψτ ] ≥ L[φ∗, ψ∗]. i(τ) achieve
minimum at τ = 0. Hence,

0 ≤ 1

τ
(L[φτ , ψτ ]− L[φ∗, ψ∗])

=

ˆ
X

φτ (x)− φ∗(x)

τ
f+(x)dx+

ˆ
Y

h(y)f−(y)dy (13)

For each x ∈ X, let yτ = yτ,x ∈ Y such that φτ (x) = x · yτ − ψτ (yτ ). Then

φτ (x)− φ∗(x) = x · yτ − ψ(yτ )− τh(yτ )− φ∗(x) ≤ −τh(yτ ) (14)

Lastly, let τ → 0, yτ → ∇φ∗(x) = s∗(x) a.e. Monotone convergence, (13)
and (14) gives (12).

9.2.1 Application: Nonlinear diffusion equation

For f+, f− ∈M, define Wasserstein distance

d2(f+, f−) = inf

{
1

2

ˆ
Rn×Rn

|x− y|2dµ(x, y)

}
(15)

where the infimum is taken over all measure µ that dprojxµ = f+dx and
similar for projection on y. If µ achieve the minimality, then µ is the optimal
solution of Kantorovich problem, and we know it is unique.

Now we define a sequence of uk ∈M (space of Radon probability measure
with density) in following way. Choose h > 0. Let u0 = g ∈ M, and
inductively define uk+1 by the minimizer following functional over M:

Nk(v) =
d2(v, uk)

h
+

ˆ
Rn
β(v)dx (16)

where β is some convex, coercive real function. Also supposeˆ
β(v)dx <∞ (17)

Standard result from calculus of variation guarantees the existence and unique-
ness of minimizer of functional Nk. So {uk} is well-defined.

Finally, we define uh by “linearly gluing {uk} in step size h. More pre-
cisely, uh(kh, ·) = uk(·) for each k ≥ 0, and uh(t, ·) be linear if hk < t <
h(k + 1). The interesting question is what happen as h→ 0.
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Theorem 3. If uh → u in L1
LOC(Rn×R+) as h→ 0, then u is weak solution

of nonlinear diffusion equation:{
ut = 4α(u) (x, t) ∈ Rn × R+

u = g (x, t) ∈ Rn × {t = 0} (18)

where α(v) = β′(v)v − β(v)

A interesting corollary is β(v) = v log v. Then α(v) = v, which in this
case we obtain the solution of linear diffusion equation.

9.3 Case for c(x, y) = |x− y|
The case of nonuniformly convex function c(x, y) = |x−y| is harder than the
previous case. First of all, we again assume dµ± = f±dx. Monge find that if
s∗ is the optimal transport plan, then there exists a function u∗ such that

∇u∗(x) = − x− s∗(x)

|x− s∗(x)|
(19)

In another word, the direction of where the mass moving from x is gradient
of some potential function.

To tackle the existence problem, we consider Kantorovich problem with
c(x, y) = |x− y|. The proof of existence is similar as the previous case.

Lemma 4. There exists (u∗, v∗) solves the dual problem. Moreover, we may
take (u∗, v∗) such that v∗ = −u∗, and

‘|u(x)− u(y)| ≤ |x− y| (x, y) ∈ Rn × Rn (20)

By setting v∗ = −u∗, the optimization problem reduces to finding maxi-
mizer of

K[u] =

ˆ
X

u(f+ − f−)dx = 〈u, f+ − f−〉L2 (21)

over u in certain function space (L2) such that |∇u| ≤ 1 a.e. In the termi-
nology of convex analysis, let K = {v ∈ L2(X) : |∇v| ≤ 1 a.e}, and IK be
the characteristic function of K. That is,

IK[v] =

{
0 v ∈ K
∞ v /∈ K (22)
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Then u∗ maximizes K iff f+ − f− ∈ ∂IK[u∗].
The main difficulty is to construct optimal transfer map s out of u∗.

There are several approach to deal with it, and we will follow a differential-
equation-based method.

Theorem 5. There exists s∗ solves optimal transport problem.

Roughly speaking, we first construct a ∈ L∞ that satisfies

−div(a(x)∇u∗) = f+ − f− (23)

a is constructed as the limit of solution of p-Laplacian equation. Then con-
struct flow z(t, x) (with z(0, x) = x) by ODE related to a, u∗ and f±. The
optimal map s∗(x) = z(1, x)

9.3.1 Application: Sandpile model

Monge transport problem has an application in modeling the evolution of
sandpile. Let f : [0,∞) × Rn → R be the source of the sand, where f(x, t)
record the rate of sand added at any position x ∈ Rn and any time t ∈ [0,∞).
u : [0,∞)×Rn is the height of sand at given position and time. The equation
that model the phenomenon is given by

f − ut ∈ ∂IK[u] (24)

where IK[u] is defined as in (22). To interpret this, u indeed solves Kan-
torovich problem for dµ+ = fdx and dµ− = utdy. In another word, the
sandpile instantly rearrange itself with potential function u (in the way of
Monge-Kantorovich transport) from fdx into utdy. The constrain IK gives
that |∇u| ≤ 1 a.e, which comes from the fact that the sandpile cannot stay
in equilibrium if the slope at a point is larger by π/4.
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10 Generalization of an inequality by Tala-

grand and links with the logarithmic Sobolev

inequality

after F.Otto and C. Villani [1]
A summary written by Javier Morales

Abstract

This paper discusses the relationship between the Wasserstein dis-
tance and the relative entropy.

10.1 Introduction

Let M be a smooth complete Riemannian manifold of dimension n, with
geodesic distance

d(x, y) = inf


√ˆ 1

0

|ẇ(t)|2dt, w ∈ C1((0, 1);M), w(0) = x,w(1) = y


We define the Wasserstein distance, or transportation distance with quadratic

cost, between two probability measure µ and ν on M , by

W (µ, ν) =

√
inf

π∈Π(µ,ν)

ˆ
M×M

d(x, y)2dπ(x, y)

where Π(µ, ν) denotes the set of probability measures on M × M with
marginals µ and ν.

The Wasserstein distance metrizes the weak-* topology on P2(M), the
set of probability measures on M with finite second moments, and is thus
a natural way to measure distance between probability measures in a weak
sense.

Let µ and ν be probability measures on M absolutely continuous w.r.t
the standard volume measure dx. We define their relative entropy by

H(µ | ν) =

ˆ
M

log
dµ

dν
dµ
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We define their relative Fisher information by

I(µ, ν) =

ˆ
M

∣∣∣∣∇ log
dµ

dν

∣∣∣∣2 dµ
The relative entropy has been classically used as a measure of discrimina-

tion between probability measures, it is not a metric since it is not symmetric
nor it satisfies the triangular inequality but it is positive definite.

This paper studies the relationship between these two ways of distinguish-
ing probability measures

A previous result in this direction is an inequality by Talagrand.
Let

dγ(x) =
e−
|x|2

2

(2π)
n
2

dx

then for any probability measure µ on Rn absolutely continuous w.r.t dx

W (µ, γ) 6
√

2H(µ | γ)

The authors generalize this inequality in a very wide class of probability
measures: namely, all the probability measures ν (on a Riemannian manifold
M) satisfying a logarithmic Sobolev inequality involving the relative Fisher
information.

We will say that the probability measure ν satisfies a logarithmic Sobolev
inequality with constant ρ > 0 (in short: LSI(ρ)) if for any probability
measure µ absolutely continuous w.r.t ν,

H(µ | ν) ≤ 1

2ρ
I(µ, ν)

We will say that the probability measure ν satisfies a Talagrand inequal-
ity with constant ρ > 0 (in short: T(ρ)) if for any probability measure µ
absolutely continuous w.r.t ν,with finite moments of order 2

W (µ, ν) ≤

√
2H(µ, ν)

ρ
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10.2 Main Results

The first theorem provides a bound for the relative entropy in terms of
the Wasserstein distance

Theorem 1. Let dν = e−Ψdx be a probability measure with finite moments
of order 2, such that Ψ ∈ C2(M) and D2Ψ + Ric ≥ −CIn,C ∈ R. If ν
satisfies LSI(ρ) for some ρ > 0 then it also satisfies T(ρ)

In the second theorem the authors recall a simple criterion that guarantees
the hypothesis of the previous theorem. This is a result of Bakry and Emery

Theorem 2. Let dν = e−Ψdx be a probability measure on M , such that
Ψ ∈ C2(M) and D2Ψ +Ric ≥ ρIn,ρ > 0. Then ν satisfies LSI(ρ).

Finally, the third theorem provides a bound for the relative entropy in
terms of the Wasserstein distance under suitable hypothesis

Theorem 3. Let dν = e−Ψdx be a probability measure on M , with finite
moments of order 2 such that Ψ ∈ C2(M) , D2Ψ + Ric ≥ KIn, K ∈ R (not
necessarily positive). Then, for any probability measure µ on M , absolutely
continuous w.r.t ν, we have

H(µ | ν) ≤ W (µ, ν)
√
I(µ | ν)− K

2
W (µ, ν)2

The proofs of these theorems are mainly based on partial differential equa-
tions. This last theorem is stated for Rn in the paper but the authors show,
on a later work, that the condition holds as above by using the Hamilton-
Jacobi equation on M .
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10.3 Applications

Theorem 1 can be used to show that probability measures on Riemannian
manifolds satisfying LSI(ρ) are concentrated.

Let B ⊂M be non empty and measurable . For any t > 0 let

Bt = {x ∈M ; d(x,B) ≥ t}

Corollary 4. Under the assumptions of Theorem1, for all measurable set

B ⊂M , and t ≥
√

2
ρ

log 1
ν(B)

we have

ν(Bt) ≥ 1− e−
ρ
2

(
t−

√
2
ρ

log 1
ν(B)

)2

From Theorem 1 and 2 we obtain

Corollary 5. Let dν = e−Ψdx be a probability measure on M with finite
second moments of order 2, such that Ψ ∈ C2(M) and D2Ψ +Ric ≥ ρIn,ρ >
0. Then

W (µ, ν) ≤

√
2H(µ, ν)

ρ

For all µ absolutely continuous w.r.t ν and with finite moments of order 2

Let ν denote the uniform measure on a Riemannian manifold M , with
unit volume: ν(M) = 1. Let us assume that ν satisfies the hypothesis of
Theorem1 for some ρ > 0, and let A be any measurable subset of M , and
f = 1A

νA
, then we have

W (fdν, dν) ≤

√
2
´
f log fdν

ρ
=

√
2

ρ
log

1

ν(A)

The authors use this inequality to give a simplified proof of a theorem
by Ledoux, which establishes a partial converse to the statement (due to
Rothaus) that compact manifolds always satisfy logarithmic Sobolev inequal-
ities, the proof they give also has the advantage that it leads to much simpler
numerical constants
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Theorem 6. (Ledoux). Let M be a smooth complete Riemannian manifold
of dimension n, with uniform measure ν, ν(M) = 1. Assume that ν satisfies
LSI(ρ) some ρ > 0 and that Ric ≥ −RIn, R > 0. Then M has finite diameter
D, with

D ≤ C
√
n max

(
1
√
ρ
,
R

ρ

)
,

where C is numerical
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11 Shannon’s monotonicity problem for free

and classical entropy

after D. Shlyakhtenko and H. Schultz [4]
A summary written by Brent Nelson

Abstract

We give a unified proof, valid in both classical probability the-
ory and Voiculescu’s free probability theory, of the monotonicity of
entropy (resp., free entropy).

11.1 Introduction

For a classical, real valued random variable X with distribution p, its entropy
as defined as

H(X) = −
ˆ
R
p(x) log p(x) dx.

Amongst random variables with E(X) = 0 and E(X2) = 1, entropy is maxi-
mized by the standard Gaussian random variable G with variance 1. Further-
more, if X1, X2, . . . are independent identically distributed random variables
with E(Xj) = 0 and E(X2

j ) = 1 then the classical central limit theorem
states that their central limit sums

ZN =
X1 + · · ·+XN√

N
,

converge in law to G. Moreover, the entropy of this sequence is monotone
nondecreasing; a result due to Artstein, Ball, Barthe, and Naor [1].

Free probability theory (i.e. non-commutative probability theory) offers a
complete parallel with the above classical results. Given a non-commutative
random variable X ∈ (A, τ) with law dµX , its free entropy is defined as

χ(X) =

¨
R2

log |s− t| dµX(s)dµX(t) +
3

4
+

1

2
log 2π.

Amongst non-commutative random variables with τ(X) = 0 and τ(X2) = 1,
free entropy is maximized by the random variable S with the semicircle law
dµS(x) = 1

2π

√
4− t2 dx. Furthermore, if X1, X2, ... are freely independent
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identically distributed random variables with τ(Xj) = 0 and τ(X2
j ) = 1 then

Voiculescu’s free central limit theorem states that their central limit sums
(defined as in the classical case) converge in law to S.

Shlyakhtenko and Schultz in [4] showed that the entropy of this sequence
is also monotone nondecreasing with a proof that is also valid in the clas-
sical case. In fact a more general result was proven replacing single ran-
dom variables with p-tuples of random variables: let Xj = (X

(1)
j , . . . , X

(p)
j ),

j = 1, 2, . . . be freely independent p-tuples of non-commutative random vari-
ables and let ZN = N−1/2(X1 + · · ·XN) be their central limit sum. Then the
free entropy of ZN is a monotone function of N .

11.2 Preliminaries

11.2.1 Free probability

Let H be a Hilbert space and denote by B(H) the set of bounded operators
on H. Let A ⊂ B(H) be a ∗-subalgebra such that 1 ∈ A. Let τ : A → C be
a linear functional such that

1. τ(a∗a) ≥ 0 for all a ∈ A (i.e. τ is positive);

2. τ(ab) = τ(ba) for all a, b ∈ A (i.e. τ is tracial); and

3. τ(1) = 1.

Then (A, τ) is a non-commutative probability space. A non-commutative ran-
dom variable is any element a ∈ A. In analogy with classical probability
theory, τ(a) is the expectation of a and τ(a2) − τ(a)2 is the variance. We
say that a is centered if τ(a) = 0. The law of a non-commutative random
variable a refers to the collection of its moments: {τ(an) : n ∈ N}. It can
also be thought of as a linear functional on polynomials µa : C[t] → C such
that µA(tn) = τ(an) for monomial tn ∈ C[t]. In fact, if a = a∗ is self-adjoint,
then it turns out there exists measure µ on R such that

µa(t
n) =

ˆ
R
tn dµ(t).

For example, recall that dµ(t) = 1
2π

√
4− t2 dt defines the semicircle dis-

tribution of radius 2. We say that a self-adjoint non-commutative random
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variable a has the semicircle law, or is semicircular, if

τ(an) =

ˆ
R
tn

1

2π

√
4− t2 dt =

{
Ck n = 2k;
0 n = 2k + 1,

where {Ck} are the Catalan numbers

Ck =
1

k + 1

(
2k

k

)
.

Given several random variables X1, . . . , Xn one can also consider their
joint law, which can be thought of as a linear functional on non-commutative
polynomials µ : C 〈t1, . . . , tn〉 → C such that

µ(p(t1, . . . , tn)) = τ(p(X1, . . . , Xn))

for p ∈ C 〈t1, . . . , tn〉. In this situation, one no longer has a single moment of
each degree. For example, the second moments of X1, . . . , Xn would be the
values τ(XiXj) for i, j ∈ {1, . . . , n}.

11.2.2 Free independence

The non-commutative replacement for the classical notation of independence
is free independence. Let F1, F2 ⊂ A be two families of non-commutative
random variables. Then we say F1 and F2 are freely independent if

τ(a1 · · · an) = 0

whenever aj ∈ Alg(1, Fi(j)), where i(1) 6= i(2), i(2) 6= i(3), etc., and τ(a1) =
· · · = τ(an) = 0.

Given X1, X2 ∈ A which are freely independent, one is able to compute
moments of their joint law in terms of their individual laws by centering each
varible: X̃j := Xj − τ(Xj). Thus τ(X̃j) = 0 and satisfies the hypothesis in
the above definition. So computing τ(X1X2) proceeds as follows:

τ(X1X2) = τ((X̃1 + τ(X1))(X̃2 + τ(X2))

= τ(X̃1X̃2) + τ(X̃1)τ(X2) + τ(X1)τ(X̃2) + τ(X1)τ(X2)

= τ(X1)τ(X2),

where the first term vanishes due to free independence. While this seems
to agree with the classical notion of independence wherein E(X1X2) =
E(X1)E(X2), this is not the case for longer products: τ(X1X2X1X2) =
τ(X2

1 )τ(X2)2 + τ(X1)2τ(X2
2 ) − τ(X1)2τ(X2)2. Regardless, this is precisely

the notion needed in the free central limit theorem.
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11.2.3 L2(A, τ) and Hilbert space tensor products

Using a standard construction in Operator Algebras (the Gelfand-Naimark-
Segal construction), we can produce a Hilbert space from (A, τ). For a, b ∈ A
consider

〈a, b〉L2(A,τ) := τ(a∗b).

As A is a complex vector space, this defines a sesquilinear form that is com-
plex linear in the second entry. It turns out that N = {a ∈ A : τ(a∗a) = 0}
forms a vector subspace and hence we can consider the vector space A/N ,

for which 〈·, ·〉L2(A,τ) defines an inner product. Thus ‖ā‖L2(A,τ) := τ(a∗a)
1
2 ,

ā ∈ A/N defines a norm. The completion of A/N with respect to this norm
is a Hilbert space which we denote L2(A, τ). Moreover, every element a ∈ A
defines an element of B(L2(A, τ)): a · b̄ = ab for b̄ ∈ A/N . Since

‖ab‖2
L2(A,τ) = τ(b∗a∗ab) ≤ ‖a‖2τ(b∗b) = ‖a‖2‖b̄‖L2(A,τ)

this can be extended to a bounded operator on all of L2(A, τ).

11.2.4 Fock space example

Let H be a Hilbert space, and for k ∈ N let H⊗k denote the k-fold Hilbert
space tensor product of H. Then the full Fock space is defined as

F(H) = CΩ⊕
∞⊕
k=1

H⊗k.

It is linearly spanned by Ω (the vacuum vector) and elements of the form
ξ1 ⊗ · · · ⊗ ξk ∈ H⊗k, and has an inner product defined by

〈ξ1 ⊗ · · · ⊗ ξk, η1 ⊗ · · · ⊗ ηl〉 = δk=l

k∏
j=1

〈ξj, ηj〉 .

Given ξ ∈ H we can define the left creation operator l(ξ) ∈ B(F(H)) by

l(ξ)Ω = ξ and l(ξ)ξ1 ⊗ · · · ⊗ ξk = ξ ⊗ ξ1 ⊗ · · · ⊗ ξk.

Its adjoint (the left annihilation operator) is given by

l(ξ)∗Ω = 0 and l(ξ)∗ξ1 ⊗ · · · ⊗ ξk = 〈ξ, ξ1〉 ξ2 ⊗ · · · ⊗ ξk.
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Denote c(ξ) = l(ξ) + l(ξ)∗. The map a 7→ 〈Ω, aΩ〉 on B(F(H)) defines a
positive linear functional τ . It turns out that c(ξ) has the semicircle law
with respect to τ . Moreover, if η ∈ H is another vector orthogonal to to ξ
then c(η) and c(ξ) are freely independent.

11.2.5 Conjugate variables, free Fisher information, and free en-
tropy

Let X1, . . . , Xn be some non-commutative random variables in an operator
algebra A equipped with a positive tracial linear functional τ : A → C. Let
L2(A, τ) be as above and consider the Hilbert space tensor product of it
with itself: L2(A, τ)⊗̄L2(A, τ). For each j = 1, . . . , n we define a derivation
∂j : Alg(1, X1, . . . , Xn) → L2(A, τ)⊗̄L2(A, τ) by ∂jXk = δj=k1 ⊗ 1 and the
Leibniz rule:

∂j(ab) = ∂j(a) · b+ a · ∂j(b).

When 1⊗1 is in the domain of the adjoint map ∂∗j : L2(A, τ)⊗̄L2(A, τ)→
L2(A, τ) we define the conjugate variables by

ξj = J(Xj : X1, . . . , X̂j, . . . , Xn) = ∂∗j (1⊗ 1), for j = 1, . . . , n.

This implies for η ∈ L2(A, τ) that 〈η, ξj〉L2(A,τ) = 〈∂j(η), 1⊗ 1〉L2(A,τ)⊗̄L2(A,τ).
The free Fisher information is defined as

Φ∗(X1, . . . , Xn) :=
∑
j

‖ξj‖2
L2(A,τ),

and the free entropy of an n-tuple (X1, . . . , Xn) is defined as

χ∗(X1, . . . , Xn) =
1

2

ˆ ∞
0

[
n

1 + t
− Φ∗(X t

1, . . . , X
t
n)

]
dt+

n

2
log 2πe, (1)

where X t
j = Xj +

√
tSj and S1, . . . , Sn are freely iid centered semicircular

random variables of variance 1, freely independent from X1, . . . , Xn.
While (1) appears to be quite different from χ(X), these two quantities

agree for single random variables: χ(X) = χ∗(X).
With this definition in hand we are now prepared to state the main the-

orem.

71



11.3 Montonicity of free entropy

Theorem 1. Let Xj = (X
(1)
j , . . . , X

(p)
j ) be a sequence of p-tuples of ran-

dom variables, so that {(X(1)
j , . . . , X

(p)
j ) : j = 1, 2, . . .} are freely indepen-

dent and are identically distributed and have finite second moments. Let
ZN = N−1/2(X1 + · · · + XN). Then the function N 7→ χ∗(Z

(1)
N , . . . , Z

(p)
N ) is

monotone nondecreasing.

The proof proceeds by first establishing that the Fisher information is
monotone nonincreasing, which will be shown suffices given the formula (1).
This is done by by exploiting the free independence of the random variables
to express τ as a composition of orthogonal projections. This then allows us
to use Lemma 5 from the classical proof [1], which provides the necessary
bound.

Theorem 2. Let Xj = (X
(1)
j , . . . , X

(p)
j ) be a sequence of p-tuples of random

variables, so that {Xj : j = 1, 2 . . .} are freely independent and identically dis-
tributed and have finite second moments. Define ZN = (X1 + · · ·+XN)/

√
N .

Then the function N → Φ∗(Z
(1)
N , . . . , Z

(p)
N ) is monotone nonincreasing.

Proof of Theorem 1. Let Xj and ZN be as in the statement of Theorem 1.

Let {S(k)
j }j,k be freely iid centered semicircular variables of variance 1, which

are freely independent from {X(k)
j }j,k. Define X

(k,t)
j = X

(k)
j +

√
tS

(k)
j and

Z
(k,t)
N = N−1/2(X

(k,t)
1 + · · ·+X

(k,t)
N ). Applying Theorem 2 yields

Φ∗
(
Z

(1,t)
N , . . . , Z

(p,t)
N

)
≥ Φ∗

(
Z

(1,t)
N+1, . . . , Z

(p,t)
N+1

)
.

Note that Z
(k,t)
N = Z

(k)
N +
√
tS(N,k) where for each fixedN , S(N,k) = N−1/2(S

(k)
1 +

· · ·+S(k)
N ), k = 1, . . . , p is a family of centered freely iid semicircular variables,

freely independent from {Z(k)
N }k and having variance 1. So by the definition

of χ∗ above (having replaced Sk with S(N,k)) we obtain

χ∗
(
Z

(1)
N , . . . , Z

(p)
N

)
=

1

2

ˆ ∞
0

[
p

1 + t
− Φ∗

(
Z

(1,t)
N , . . . , Z

(p,t)
N

)]
dt+ cp

≤ 1

2

ˆ ∞
0

[
p

1 + t
− Φ∗

(
Z

(1,t)
N+1, . . . , Z

(p,t)
N+1

)]
dt+ cp

= χ∗
(
Z

(1)
N+1, . . . , Z

(p)
N+1

)
,

where cp = p
2

log 2πe.
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12 An isoperimetric inequality for uniformly

log-concave measures and uniformly con-

vex bodies

after E. Milman and S. Sodin [8]
A summary written by Diogo Oliveira e Silva

Abstract

We study the problem of transferring isoperimetric estimates for
log-concave measures to normalized volume measures on convex bod-
ies, making a conscious effort to highlight the parts of the theory which
are of optimal transport nature.

12.1 Introduction to isoperimetric inequalities

12.1.1 The Euclidean case

Among all simple, closed plane curves of a given length L, the circle of
circumference L encloses maximum area. This property is most succinctly
expressed in terms of the isoperimetric inequality

L2 ≥ 4πA, (1)

where A is the area enclosed by a curve γ of length L, and where equality
holds if and only if γ is a circle. Inequality (1) can be proved in many different
ways, but an especially elegant one is based on an ingenious combination of
Wirtinger’s inequality and Green’s theorem on the plane, see [10]. In two
dimensions the result for convex domains immediately implies the general
result, but matters are quite different in higher dimensions. However, the
following result still holds:

Theorem 1 (Isoperimetric inequality in Rn). Let A ⊂ Rn be a bounded,
open subset, and let B ⊂ Rn be a ball with the same volume as A. Then

m(∂A) ≥ m(∂B).

Since the theorem is stated somewhat informally, a few comments are in or-
der. (i) By “volume” we mean the usual n-dimensional Lebesgue measure,
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henceforth denoted mesn, whereas the boundary measure m should be in-
terpreted as the (n − 1)-dimensional Hausdroff measure. (ii) This is by no
means the most general statement one can aspire to. For instance, if we
merely assume that a given set A ⊂ Rn has finite perimeter on a bounded
region U ⊂ Rn i.e. 1A ∈ BV (U), then the following inequality still holds:

nω1/n
n mesn(A)(n−1)/n ≤ π(∂A),

where ωn is the volume of the unit ball in Rn and π(·) denotes the distribu-
tional perimeter measure, see [5]. (iii) It is by now a well-understood fact
that isoperimetric inequalities are equivalent, in a rather strong sense, to the
ubiquitous Sobolev inequalities from the PDE world, of which the aforemen-
tioned Writinger’s inequality is a special case.

Perhaps surprisingly, Theorem 1 is an immediate consequence of the
Brunn-Minkowski inequality. Let us record here one of its more elementary
versions: if A,B are nonempty, bounded open subsets of Rn, then

mesn(A+B)1/n ≥ mesn(A)1/n + mesn(B)1/n. (2)

This inequality, in turn, is an immediate consequence of another, closely
related inequality of geometric nature which was originally established by
Prékopa and Leindler. Several other proofs of the Brunn-Minkowski inequal-
ity are known, but of special interest to the reader might be one of optimal
transport nature, see [12].

12.1.2 Other variants

Isoperimetric inequalities are known in a variety of other settings. Take, for
instance, a simple closed curve on a 2-dimensional sphere of radius 1. The
spherical isoperimetric inequality states that

L2 ≥ A(4π − A),

and that equality holds if and only if the curve is a circle. This inequality
was proved in 1919 by Lévy, who also extended it to higher dimensions and
more general surfaces. Even more generally, the isoperimetric problem can
be formulated using the notion of isoperimetric profile of a metric measure
space (X, d, µ). Isoperimetric profiles have been studied for Caley graphs
and for special classes of Riemannian manifolds, where usually only regions
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with regular boundary are considered. See [10] and especially the multiple
references therein.

Far reaching generalizations are known to exist in rather different direc-
tions. For the sake of presenting a concrete example, let us take a normed
space V = (Rn, ‖ · ‖), and let µ be a probability measure on V with density
f = exp(−g), for some function g : Rn → R ∪ {∞}. If g is convex, the
function f and the measure µ are called log-concave. Log-concave functions
and measures have been extensively studied. Two of the most prominent
examples include Gaussians and characteristic functions of convex bodies. It
is easy to show that the class of log-concave functions is closed under taking
products and, using the Prékopa-Leindler inequality, one can prove the same
for convolutions. For more examples and many other properties, we refer the
reader to [1, 7]. In this summary, as in [8], we restrict our attention to a
more restricted class of measures. To define it, let δ : R+ → R+ ∪ {∞} and
consider the following condition:

g(x) + g(y)

2
− g
(x+ y

2

)
≥ δ(‖x− y‖). (3)

Assume that the measure µ satisfies (3) with respect to the Euclidean norm
| · | on Rn and δ(t) = t2/8. Then the following inequality holds:5

µ+
|·|(A) ≥ φ(Φ−1(µ(A)∗)), (4)

where µ+
|·|(·) denotes the so-called Minkowski boundary measure associated

to µ, and µ(A)∗ = min{µ(A), 1−µ(A)}. Inequality (4) was proved by Bakry
and Ledoux [2] and is the subject of A. Reznikov’s summary in this volume.
It extends the so-called Gaussian isoperimetric inequality proved by Sudakov
and Tsirelson [11], and independently by Borell [4], which in particular states
that, for fixed Gaussian volume, half-spaces have maximal Gaussian surface.
It also provides the motivation for one of the main results of [8] which is the
subject of the next section.

12.2 The main isoperimetric result

The main result will focus on measures µ satisfying (3) with respect to a
function δ which satisfies

5As usual, φ(t) = 1√
2π
e−t

2/2 denotes the density function of the standard Gaussian,

and Φ(t) =
´ t
−∞ φ(s)ds is the corresponding cumulative distribution function.
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{
δ(t) > 0, t > 0
t 7→ δ(t)/t is nondecreasing.

(5)

Before we state it, let us recall the notion of Minkowski boundary measure
associated to the measure µ and the norm ‖ · ‖. It is defined by

µ+
‖·‖(A) := lim inf

ε→0

µ(Aε,‖·‖)− µ(A)

ε
, A ⊂ Rn,

where Aε,‖·‖ denotes the ε-neighborhood of the set A with respect to the norm
‖ · ‖. Recall that µ(A)∗ = min{µ(A), 1− µ(A)}.

Theorem 2. Suppose µ satisfies conditions (3) and (5). Then

µ+
‖·‖(A) ≥ Cδµ(A)∗γ

(
log

1

µ(A)∗

)
for every A ⊂ Rn, (6)

where γ(t) = t/δ−1(t/2).

A few remarks may help to further orient the reader. (i) The constant Cδ
depends only on the function δ and can be explicitly calculated, see [8, The-
orem 1.1]. (ii) We lose no generality in restricting attention to sets A ⊂ Rn

for which µ(A) ≤ 1/2. (iii) Specializing to the case δ(t) = αtp (for some
α > 0 and p ≥ 2), inequality (6) implies the existence of a universal constant
c > 0 for which

µ+
‖·‖(A) ≥ cα1/pµ(A)∗ log1−1/p

( 1

µ(A)∗

)
.

Theorem 2 can then be easily seen to extend the aforementioned result of
Bakry and Ledoux (up to constants). (iv) The proof of Theorem 2 consists
of a localization lemma in terms of the so-called µ-needles which reduces
matters to the much more tractable one-dimensional situation.

12.3 Applications to convex bodies

This section could have equally well been titled “How to transfer isoperimet-
ric inequalities from log-concave measures to convex bodies”. To understand
why this is not a trivial problem, let V = (Rn, ‖ · ‖) be a normed space as
before. The normalized volume measure λ = λV on the unit ball of V never
satisfies condition (3), no matter what function δ > 0 we choose. Therefore,
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in order to prove an inequality for λ similar to (6), one cannot just appeal
to the results from the previous section. We remedy this by appealing to the
following general principle:6

Lipschitz maps preserve isoperimetric inequalities.

The strategy, very much in the spirit of optimal transport, will be to construct
an auxiliary measure µ on V which does satisfy (3) and a map T : (V, µ)→
(V, λ) which transports µ to λ in the sense that T∗µ = λ. After appropriate
Lipschitz bounds have been established for T , the result will follow from
Theorem 2 together with the general principle mentioned above. All of this
requires careful justification.

As a warm-up model, let us consider the case of p-uniformly convex bodies
(p ≥ 2). Let µ be the probability measure with density given by

f(x) =
exp(−‖x‖p)

Γ(1 + n/p) ·mesn({‖x‖ ≤ 1})
with respect to Lebesgue measure mesn. Bobkov and Ledoux [3] proved the
existence of a map S : V → V which transports µ to λ in the sense described
above, and for which

‖S‖Lip ≤
C

Γ(1 + n/p)1/n
.

This can be combined with (6) to yield an isoperimetric inequality for λ.
We would like to generalize this discussion to arbitrary uniformly convex

spaces V = (Rn, ‖ · ‖). Recall that a normed space V is said to be uniformly
convex if its modulus of convexity7 satisfies δV (ε) > 0 for all ε > 0. An
important property of the modulus of convexity, first observed in the work
of Figiel and Pisier [6], is the following inequality:

‖x‖2 + ‖y‖2

2
−
∥∥∥x+ y

2

∥∥∥2

≥ cδV

(‖x− y‖
4

)
, (7)

6One way to turn this principle into a rigorous statement is via the notion of “isoperi-
metric profile” which we already mentioned (but did not define) in the introduction.

7By definition, this is the function δV : [0, 2]→ [0, 1] defined as

δV (ε) = inf
{

1−
∥∥∥x+ y

2

∥∥∥ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}
.
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valid for all x, y ∈ Rn for which ‖x‖2 + ‖y‖2 ≤ 2. Now, choose µ to be a
probability measure on Rn with density

f(x) =
1

C
exp

(
− n

c
‖4x‖2

)
1{‖x‖≤1/4}(x)

with respect to Lebesgue measure mesn, where C > 0 is a scaling factor.
Inequality (7) clearly implies that µ is uniformly log-concave in the sense of
(3), and so we can apply Theorem 2 to deduce an isoperimetric inequality
for µ. To transfer this inequality to the measure λ, we need to extend the
result of Bobkov and Ledoux mentioned in the previous paragraph.

Let dµ = fdmesn be an even log-concave probability measure. Ball [1]
showed that

Kf =
{
x ∈ Rn : n

ˆ ∞
0

f(rx)rn−1dr ≥ 1
}

defines a symmetric convex body i.e. the unit ball of a certain norm ‖ · ‖Kf .
Moreover, one can easily see that there exists a canonical radial map Tf
transporting µ to the restriction λ of the Lebesgue measure on Kf . The
following theorem contains the Bobkov-Ledoux result as a particular case:

Theorem 3. Let dµ = fdmesn be an even log-concave probability measure
on Rn, let λ denote the restriction of Lebesgue measure to Kf , and let T = Tf
denote the unique radial map such that T∗µ = λ. Then, as a map T : V → V
where V = (Rn, ‖ · ‖), we have that ‖T‖Lip ≤ Cf(0)1/n, for some universal
constant C > 0.

As before, Theorems 2 and 3 conspire together to yield an isoperimetric
inequality for the uniform measure λ = λV on the unit ball of the uniformly
convex space V = (Rn, ‖ · ‖). To wit,

λ+
‖·‖(A) &n,δ

λ(A)∗ log 1
λ(A)∗

δ−1( 1
2n

log 1
λ(A)∗

)
.

The proof of Theorem 3 involves a neat approximation argument, together
with several interesting facts about the geometry of log-concave functions.
Details will be provided upon arrival at the summer school.
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distributions, II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
(LOMI) 41 (1974), 14–24, 165.

[12] Villani, C., Topics in optimal transportation. Graduate Studies in Math-
ematics, 58. American Mathematical Society, 2003.

Diogo Oliveira e Silva, HCM Bonn
email: dosilva@math.uni-bonn.de

80



13 Lévy-Gromov’s isoperimetric inequality for

an infinite dimensional diffusion generator

after D. Bakry and M. Ledoux, [1]
A summary written by Alexander Reznikov

Abstract

Using a semigroup approach, authors establish a certain inequality
for a diffusion generator of infinite dimension and positive curvature.
The definitions of “dimension” and “curvature” are pure algebraic,
but with a strong geometric meaning. Also, the Sobolev logarithmic
inequality is discussed.

13.1 Introduction and main results

Suppose Φ(r) =
ŕ

−∞

1√
2π
e−

x2

2 dx, and φ(r) = Φ′(r). We denote

U = φ ◦ Φ−1.

The main (and almost the only important) property of the function U is the
ODE it satisfies:

U ′′ = − 1

U
. (1)

We start with proving a “baby” version of the main theorem of the paper.
Suppose γ is the Gaussian measure on Rn (i.e., the measure with density

1

(2π)
k
2
e−
|x|2

2 ). Then the following inequality holds.

Theorem 1. Using the above notation, it is true that

U(

ˆ
fdγ) ≤

ˆ √
U(f)2 + |∇f |2dγ.

This inequality is established using the following semigroup:

Pt(f)(x) =

ˆ
f(e−tx+ (1− e−2t)

1
2y)dγ(y).

We are ready consider the general case.
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Let (E, E , µ) be a measure space, and (Pt)t≥0 be a semigroup, continuous
in L2(µ). Let L be a generator associated to Pt. This means that, basically,

d

dt
Ptf = LPtf = PtLf.

In other words, vaguely speaking, Pt = etL.
We assume that there is an algebra of functions A, which is nice enough.

The exact meaning of the word “nice” will be described later. Introduce a
bilinear operator

Γ(f, g) =
1

2
· (L(fg)− fLg − gLf),

and the iterated operator

Γ2(f, g) =
1

2
· (LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)).

We are ready to define the dimension and curvature of the operator L.

Definition 2. We say that the operator L is of dimension n and curvature
R, if for any function f ∈ A the following inequality holds:

Γ2(f, f) ≥ RΓ(f, f) +
1

n
(Lf)2.

We say that the operator L is of infinite dimension and curvature R, if

Γ2(f, f) ≥ RΓ(f, f).

To state the main theorem we need one more definition.

Definition 3. The operator L is called a diffusion operator if for any C∞

function Ψ on Rk, and every finite family F = (f1, . . . , fk) in Ak, the follow-
ing holds:

LΨ(F ) = ∇Ψ(F ) · LF +∇∇Ψ(F ) · Γ(F, F ).

Remark 4. This definition essentially says that L is a second order differ-
ential operator with no constant term.

For the sake of simplicity we denote Γ(f) = Γ(f, f), and Γ2(f) = Γ2(f, f).
We are ready to state the main theorem of the paper.
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Theorem 5. Let L be a diffusion operator, that generates the semigroup Pt.
Let the algebra A be dense in the L2-domain of L, and stable under L, Pt and
action of C∞ functions which are zero at zero. Suppose that L is of infinite
dimension and curvature R. Then, for any f from A with values in [0, 1],
every α ≥ 0, every t ≥ 0 the following inequality holds:√

U(Ptf)2 + αΓ(Ptf) ≤ Pt

(√
U(f)2 + cα(t)Γ(f)

)
,

where

cα(t) =
1− e−2Rt

R
+ αe−2Rt.

13.1.1 Corollaries

It is interesting to play with parameters α and t in the previous theorem.
First, send α→∞. Then we get the following.

Corollary 6. For any t ≥ 0,√
Γ(Ptf) ≤ e−RtPt(

√
Γ(f)).

Sadly, we will need to use this to prove the main theorem. Thus, it
requires another proof.

Next, we put α = 1
R

. Then we have c 1
R

(t) = 1
R

for every t.

Corollary 7. For any t ≥ 0,√
RU(Ptf)2 + Γ(Ptf) ≤ Pt

(√
RU(f)2 + Γ(f)

)
.

In the next corollary we assume that µ is a probability measure and send
t → ∞. We make an additional assumption that P∞f =

´
fdµ. Then we

get the following.

Corollary 8. Under assumptions above, it holds that

√
RU(

ˆ
fdµ) ≤

ˆ (√
RU(f)2 + Γ(f)

)
dµ.

Finally, we set α = 0. Then c0(t) = 1−e−2Rt

R
, and what we get is the

following.

Corollary 9. For any t ≥ 0,

U(Ptf) ≤ Pt

(√
U(f)2 + c0(t)Γ(f)

)
.
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13.2 Remark on the geometry

We feel obligated to state the geometrical meaning of results above. Sup-
pose d(x, y) = esssup|f(x) − f(y)| — a pseudo-metric on the space E. The
supremum here is taken over all functions f ∈ A.

We assume further that Γ(f) is almost the square of modulus of the
gradient of f . More precisely, we assume√

Γ(f) = lim sup
d(x,y)→0

|f(x)− f(y)|
d(x, y)

.

Under these assumptions, when f approximates the indicator function of a
closed set A, the

´ √
Γ(f)dµ approaches the

µs(∂A) = lim inf
r→0

1

r
(µ(Ar)− µ(A)),

where Ar is the r-neighborhood of A. Now we use the Corollary 8. Since
U(1) = 0, the term U(f) disappears. Thus, with R = 1, we can read the
Corollary 8 as follows:

U(µ(A)) ≤ µs(∂A).

This extends the known inequality

U(γ(A)) ≤ γs(∂A)

for the Gaussian measure γ and any Borel set A ∈ Rk.

13.3 Further extensions

Two more results deserve to be stated here. First one is a “multidimensional”
(or, as authors prefer to say, “tensorised”) version of the main theorem. We
assume that there are two spaces E1,2, two semigroups P 1,2 and, thus, two
operators Γ1,2. We suppose that each of them satisfy an inequality from the
main theorem, i.e.√

U(P if)2 + αiΓi(P if) ≤ P i
(√
U(f)2 + βiΓi(f)

)
, i = 1, 2.

Then the following holds.
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Theorem 10. Suppose f : E1 × E2 → [0, 1] is in the domain of Γ1 × Γ2.
Then√
U(P 1P 2f)2 + α1Γ1(P 1P 2f) + α2Γ2(P 1P 2f) ≤

P 1P 2
(√
U(f)2 + β1Γ1(f) + β2Γ2(f)

)
,

The next theorem is a version of the logarithmic Sobolev inequality. In
fact, let

E(f) =

ˆ
f log(f)dµ−

ˆ
fdµ · log(

ˆ
fdµ).

The following theorem holds.

Theorem 11. Suppose that the operator Γ, defined as usual, satisfies

U(

ˆ
fdµ) ≤

ˆ √
U(f)2 + Γ(f)dµ

for every function f ∈ A with values in [0, 1]. Then Γ satisfies the logarithmic
Sobolev inequality:

E(f 2) 6 2

ˆ
Γ(f)dµ

for every f ∈ A.
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14 Resolution of Shannon’s problem on the

monotonicity of entropy

after S. Artstein, K. Ball, F. Barthe, A. Naor [1]
A summary written by Ed Scerbo

Abstract

Let X1, X2, . . . , be a sequence of iid random variables, and let Yn
be defined by Yn = X1+...Xn√

n
. We prove that the entropy of Yn, H(Yn),

is nondecreasing in n by proving a more general statement for sums
of non-identically distrbuted random variables.

14.1 Introduction

Remark 1. Throughout this summary, we adhere to the following conven-
tions:

• log shall always denote natural log,

• 0 log 0 is defined to be 0.

In the 1940s, Shannon [3] introduced the notion of entropy in the infor-
mation theoretic sense:

Definition 2. Let X be a random variable. If X has a density f , the entropy
of X, H(X), is −

´
f log f , assuming the integral exists. If X does not have

a density, we set H(X) = −∞.

To avoid questions of the existence of H(X), we point out that the in-
tegral defining H(X) exists and H(X) < ∞ if X has finite variance. Thus,
henceforth we shall restrict our discussion to random variables with finite
variance.

Some basic properties of H follow:

• H(X) depends only on the distribution of X: H(X) = H(Y ) if X
d
= Y .

• H(X) is translation-invariant: H(X + c) = H(X).

• H(X) is not scale-invariant: H(cX) = H(X) + log |c|.
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• Among all random variables of a given (finite) variance, H is maximized
by Gaussians: If X is a random variable with variance σ2 <∞ and G
is a Gaussian with the same variance, then

H(X) ≤ H(G) =
1

2
log(2πeσ2).

• If X, Y are independent random variables, then H(X + Y ) ≥ H(X).

Let X1, X2, . . . be a sequence of iid random variables with variance σ2 <
∞ and mean µ, and set Yn = X1+...+Xn√

n
. The central limit theorem states that

Yn−
√
nµ converges in distribution to a centered Gaussian G with variance σ2.

In light of this, translation-invariance of H, and the fact that H is maximized
by Gaussians, it is reasonable to wonder about the behavior of H(Yn) as a
function of n: Does it limit to H(G)? Does it do so monotonically?

If each Yn has a distribution with atomic part, then clearly −∞ =
H(Yn) 9 H(G). However, the following theorem of Shannon [3] hints that
the monotonicity of H(Yn) might still be salvageable:

Proposition 3. H(Y2) ≥ H(Y1), and consequently H(Y2k) ≥ H(Y2k−1), for
all k ∈ N.

(In fact, the first rigorous proof of the above Proposition was proved by
Stam [4].) Thus, it was conjectured that the entire sequence H(Yn) was
nondecreasing in n. However, it remained unknown even whether H(Y3) ≥
H(Y2). This conjecture was finally resolved in the affirmative in 2004 [1].
Before we begin our proof, we require the notion of Fisher information.

14.1.1 Fisher information and connection with entropy

Definition 4. If X is a random variable with a density f that is everywhere
differentiable and strictly positive, the Fisher information of X, J(X), is´ (f ′)2

f
. If X does not have a density, we set J(X) =∞.

Remark 5. J(X) can be defined for a more general class of random variables,
but we will have no need for greater generality, so we define J(X) as above.

J(X) enjoys a list of properties which are rather complementary to those
of H(X) given above; we, however, will need but two:
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• J(X) depends only on the distribution of X: J(X) = J(Y ) if X
d
= Y .

• J(X) is not scale-invariant: J(cX) = 1
c2
J(X).

The connection between H and J we require is de Bruijn’s identity (cf.
Barron [2]):

Theorem 6 (de Bruijn’s identity). Let X be a random variable with finite
variance, and let G be an independent standard Gaussian. Then for all t > 0,

d

dt
H(X +

√
tG) =

1

2
J(X +

√
tG).

Combining the properties of H and J above with Theorem 6 and an
application of the chain rule, we arrive at

Corollary 7. Let X,G be as above. Then for all t > 0,

d

dt
H
(√

e−2tX +
√

1− e−2tG
)

= J
(√

e−2tX +
√

1− e−2tG
)
− 1.

Combining this with the Fundamental Theorem of Calculus and an ad
hoc argument to ensure convergence at the endpoints, we obtain the principal
identity we require:

Corollary 8. Let X,G be as above. Then

H(X) =
1

2
log(2πe)−

ˆ ∞
0

[
J
(√

e−2tX +
√

1− e−2tG
)
− 1
]
dt. (1)

Remark 9. The above identities are meaningful because for X,G as above
and a, b > 0, aX + bG has a density that is everywhere differentiable and
strictly postive. In other words, all the Fisher informations in the above
formulas are defined.

We are now ready to state and prove our main theorems.

14.2 Main results

As stated above, the conjecture on monotonicity of H(Yn) has been resolved
affirmatively:
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Theorem 10 (Artstein-Ball-Barthe-Naor, [1]). Let X1, X2, . . . be a sequence
of iid random variables with finite variance. Then

H

(
X1 + . . .+Xn√

n

)
≤ H

(
X1 + . . .+Xn+1√

n+ 1

)
.

Just as there are versions of the central limit theorem for random variables
that are not identically distributed, we have the following version of Theorem
10 for non-identically distributed random variables:

Theorem 11 (Artstein-Ball-Barthe-Naor, [1]). Let X1, . . . , Xn+1 be indepen-
dent random variables, each with finite variance, and let (a1, . . . , an+1) ∈ Sn
be a unit vector with no aj = 1. Then

H

(
n+1∑
i=1

aiXi

)
≥

n+1∑
j=1

1− a2
j

n
·H

 1√
1− a2

j

∑
i 6=j

aiXi

 .

Note that Theorem 10 is a direct consequence of Theorem 11, as seen by

setting each aj = 1√
n+1

and using the fact that H(X) = H(Y ) if X
d
= Y .

We begin the proof of Theorem 11 with a sequence of lemmas:

Lemma 12. Let X1, . . . , Xn be independent random variables, and sup-
pose they have a strictly positive joint density w with mild regularity and
decay properties (precise sufficient conditions are given in [1]). Let a =
(a1, . . . , an) ∈ Sn−1. Then for any vector field p on Rn satisfying its own mild
smoothness and decay properties (again, see [1]) and the additional property
that for each x ∈ Rn, 〈p(x), a〉 = 1, we have

J

(
n∑
i=1

aiXi

)
≤
ˆ
Rn

[
div(pw)

w

]2

w.

Moreover, equality holds for some such p.

We state the above Lemma for dimension n, although in our application
we shall use it variously in dimensions n and n+ 1.

Lemma 13. Let X1, . . . , Xn+1 be independent random variables with finite
variances, and suppose each Xi has density fi. Let w denote the joint den-
sity, w(x1, . . . xn+1) =

∏n+1
j=1 fj(xj), and suppose w is strictly positive and
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satisfies the smoothness and decay properties of Lemma 12. Then for any
a = (a1, . . . , an) ∈ Sn such that no aj = 1, we have

J

(
n+1∑
i=1

aiXi

)
≤

n+1∑
j=1

1− a2
j

n
· J

 1√
1− a2

j

∑
i 6=j

aiXi

 .

Proof. For each j = 1, . . . , n+ 1, set

âj =
1√

1− a2
j

(a1, . . . , aj−1, 0, aj+1, . . . , an+1).

(Note that while aj is the jth component of the unit vector a, âj is itself a
unit vector in Rn+1.) Also, let X denote the random vector (X1, . . . , Xn+1).
Let pj : Rn+1 → Rn+1 be a vector field which realizes J(〈âj, X〉) as in Lemma
12. That is, 〈pj, âj〉 ≡ 1, and

J

 1√
1− a2

j

∑
i 6=j

aiXi

 =

ˆ
Rn+1

[
div(wpj)

w

]2

w.

We may choose pj to not depend on the jth coordinate xj and to have jth

component identically 0: Think of âj as actually a vector in Sn−1 ⊂ Rn by
the obvious projection, and apply Lemma 12 to this new âj and the random
variables (Xi)i 6=j to get a vector field on Rn. (It is simple to check that
the joint density of (Xi)i 6=j inherits the required regularity and decay from
w, so Lemma 12 applies.) We may then artificially reinsert the missing jth

coordinate to construct pj.

Define the vector field p : Rn+1 → Rn+1 by p =
∑n+1

j=1
1
n

√
1− a2

jp
j. p

is a vector field on Rn+1 satisfying the same mild smoothness and decay
properties as the constituent pj’s, and 〈p, a〉 ≡ 1. (This last holds because of
how we constructed the pj’s.) Thus, by Lemma 12,
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J

(
n+1∑
i=1

aiXi

)
≤
ˆ
Rn+1

[
div(wp)

w

]2

w

=

ˆ
Rn+1

n+1∑
j=1

√
1− a2

j

n
· div(wpj)

w

2

w

≤
n+1∑
j=1

1− a2
j

n
·
ˆ
Rn+1

[
div(wpj)

w

]2

w

=
n+1∑
j=1

1− a2
j

n
· J

 1√
1− a2

j

∑
i 6=j

aiXi

 ,

where the second inequality holds by Lemma 14: Take m = n + 1, H =
L2(w) = L2(Rn+1, w dx),

Tjφ(x) =

ˆ
R
φ(x1, . . . , xj−1, u, xj+1, . . . , xn+1)fj(u)du,

and

yj =

√
1− a2

j

n
· div(wpj)

w
.

Lemma 14. Let T1, . . . , Tm be commuting orthogonal projections on a Hilbert
space H, and suppose we have y1, . . . , ym ∈ H such that for each j = 1, . . . ,m,
T1 · · ·Tmyj = 0. Then

||T1y1 + . . . Tmym||2 ≤ (m− 1)
(
||y1||2 + . . .+ ||ym||2

)
.

Thus we are able to improve upon the trivial bound yielded by Cauchy-
Schwarz by using specfic properties satisfied by the objects in question.

The proof of Theorem 11 follows:

Proof of Theorem 11. We may without loss of generality assume that each
Xi has a compactly supported density. Let G1, . . . , Gn+1 be standard Gaus-
sians such that X1, . . . , Xn+1, G1, . . . , Gn+1 are independent. Let G be an-

other standard Gaussian that is independent of
∑n+1

i=1 aiXi, and set X
(t)
i =
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√
e−2tXi +

√
1− e−2tGi for t ≥ 0. Using (1) together with the facts that∑n+1

i=1 aiGi
d
= G and that J depends only on the distribution of its input, we

see that

H

(
n+1∑
i=1

aiXi

)
=

1

2
log(2πe)−

ˆ ∞
0

[
J

(
n+1∑
i=1

aiX
(t)
i

)
− 1

]
dt,

and similarly for H

(
1√

1−a2
j

∑
i 6=j aiXi

)
. Thus, it suffices to show that for

any t > 0,

J

(
n+1∑
i=1

aiX
(t)
i

)
≤

n+1∑
j=1

1− a2
j

n
· J

 1√
1− a2

j

∑
i 6=j

aiX
(t)
i

 .

Since each Xi has compactly supported density, the joint density w(t)

of X
(t)
1 , . . . , X

(t)
n+1 has enough smoothness and decay to apply Lemma 12,

completing the proof.
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15 Wasserstein Gradient Flows and Evolu-

tion Equations

after R. Jordan, D. Kinderlehrer, and F. Otto [1]
A summary written by Chris D. White

Abstract

We begin by discussing the abstract notion of gradient flows in the
space of probability measures equipped with the Wasserstein distance
via a time-discretization scheme. We then use this notion to show that
a large class of evolution equations can be viewed as gradient flows
with respect to the Wasserstein distance for certain convex energy
functionals. This allows us to make precise sense of the folk knowledge
that diffusion maximizes entropy.

15.1 Time Discretized Gradient Flows

The Wasserstein distance of order two between two probability measures on
Rn is defined by

d(µ1, µ2)2 = inf
p∈P(µ1,µ2)

ˆ
Rn×Rn

|x− y|2 p(dxdy)

where P(µ1, µ2) is the set of all probability measures whose first marginal is
µ1 and whose second marginal is µ2. On the space of probability measures
with finite second moment, the Wasserstein distance is in fact a metric and
this space is complete with respect to this metric. In order to discuss the
notion of gradient flow on such a space with no inner product, we need to
first introduce some concepts.

Let F : H → R be a strictly convex functional on a Hilbert space (H, 〈·〉).
We know from basic theory that the gradient flow

∂ρ
∂t

= −∇F (ρ(t))

ρ(0) = ρ0

(1)

for F will always converge to a unique stationary state, F ∗, independently of
the initial condition; moreover this stationary state is the unique minimizer
of F . A simple time-discretization of (1), called the backward Euler method
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in the ODE literature, proceeds as follows. Let ρ̃0 := ρ0, and iteratively
define ρ̃k+1 implicitly via

ρ̃k+1 − ρ̃k

h
= −∇F (ρ̃k+1). (2)

Proposition 1. The solution ρ̃k+1 to equation (2) is given by

arg min
u∈H

F (u) +
1

2h
d(u, ρ̃k)2 (3)

Proof. u minimizes (3) if and only if

0 = ∇F (u) +
1

h
(u− ρ̃k)

which is precisely the solution to (2).

Remark 2. The operator defined by proxF (ρ̃) := arg minu∈H F (u)+ 1
2h
d(u, ρ̃k)2

is called the proximal operator of F in the convex optimization literature.

Proposition (1) allows us to consider the iterative scheme (2) in the more
general setting of metric spaces (without referencing gradients). For the
purposes of this paper, then, if the time discretized solutions to (3) converge
as h ↓ 0 we will call the resulting limit the gradient flow for F with respect
to the metric d.

15.2 Fokker-Planck equations

Now we consider the general class of Fokker-Planck equations

∂ρ

∂t
= div(∇Ψ(x)ρ) + β−1∆ρ, ρ(x, 0) = ρ0(x) (4)

where we assume the potential satisfies

Ψ ∈ C∞(Rn)

Ψ(x) ≥ 0

|∇Ψ(x)| ≤ C(Ψ(x) + 1).

(5)

It is well known that equation (4) has a unique stationary distribution given
by

ρs(x) ∝ exp(−βψ(x))

94



which is easily seen to be the unique minimizer of the following free energy
functional over the space of probability densities on Rn:

F (ρ) =

ˆ
Rn

Ψρ dx+ β−1

ˆ
Rn
ρ log ρ dx.

However, it is not immediately obvious by what path the Fokker-Plank equa-
tion minimizes F . Surprisingly, our main result states that (4) follows the
gradient flow of F with respect to the Wasserstein metric.

Following the discussion in Section §15.1, we consider the semi-discrete
scheme (3) for approximating the Fokker-Planck dynamics; namely for a
given time step h > 0 we solve

ρ
(k+1)
h = arg min

ρ∈K
F (ρ) +

1

2h
d(ρ, ρ

(k)
h )2 (6)

where d is the Wasserstein metric with respect to quadratic cost. Define the
admissible class of probability densities on Rn to be

K :=
{
ρ : Rn → [0,∞) measurable :

ˆ
Rn
ρ(x)dx = 1,

ˆ
Rn
|x|2ρ(x)dx <∞

}
.

We can now state the main result.

Theorem 3. [1]

Let ρ0 ∈ K satisfy F (ρ0) < ∞, and for given h > 0, let {ρ(k)
h }k∈N be the

solution of (6). Define the interpolation ρh : (0,∞)× R→ [0,∞) by

ρh(t) = ρ
(k)
h for t ∈ [k, (k + 1)/h) and k ∈ N ∪ {0}.

Then as h ↓ 0,

ρh(t) ⇀ ρ(t) weakly in L1(Rn) for all t ∈ (0,∞),

where ρ ∈ C∞((0,∞)× Rn) is the unique solution of

∂ρ

∂t
= div(ρ∇Ψ) + β−1∆ρ,

with initial condition

ρ(t) ⇀ ρ0 strongly in L1(Rn) for t ↓ 0

and
M(ρ), E(ρ) ∈ L∞((0, T )) for all T <∞.
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Proof (Sketch). We first must verify that the functional defined by (6) is well-
defined. As the functional is strictly convex, it has at most one minimizer.
Appealing to the entropy bound

ˆ
Rn
ρ log ρ dx ≥ −C(

ˆ
Rn
|x|2ρ(x)dx+ 1)α

and the inequality
ˆ
Rn
|x|2ρ1(x)dx ≤ 2

ˆ
Rn
|x|2ρ0(x)dx+ 2d(ρ0, ρ1)2 for all ρ0, ρ1 ∈ K

one can show that (6) is in fact bounded below, and can then construct a
minimizing sequence which can be shown to converge.

After establishing uniform bounds on the second moments of the se-
quence, the negative entropy, and the expectation E

ρ
(N)
h

(Ψ) one can show

that (after possibly passing to a subsequence),

ρh(t) ⇀ ρ ∈ K weakly in L1((0, T )× Rn) for all T <∞.

One of the more technical aspects of the proof consists in establishing the
bound ∣∣ˆ

Rn
{1

h
(ρ(k) − ρ(k−1))ξ + (∇Ψ · ∇ξ −∆ξ)ρ(k)} dy

∣∣
≤ 1

2
sup
Rn
|∇2ξ|1

h
d(ρ(k−1), ρ(k))2

for all ξ ∈ C∞0 (Rn), from which it follows that the limiting ρ satisfies the
equation (4) in a weak sense. We then proceed via classical regularity theory
arguments to establish that ρ is in fact a smooth solution.

Remark 4. The interpolation scheme used in Theorem 3 is sometimes called
a Minimum Movement Curve; generalities about such curves can be found in
[2].

Remark 5. An interesting consequence of Theorem 3 comes from taking
Ψ ≡ 0 and β = 1, in which case (4) reduces to the standard heat equation.
The result then states that the heat equation follows the Wasserstein gradient
flow of negative entropy.

A very similar set of arguments can be used to show the following similar
result.
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Theorem 6. Let β : Rn → R be a convex function with super linear growth,
and suppose ˆ

Rn
β(u0) dx <∞

for some u0. Define uk+1 by the rule (6) with F (u) :=
´
Rn β(u) dx. Then

using the same interpolation scheme as in Theorem 3 we have

uh → u strongly in L1
loc(Rn × (0,∞)),

where u is a weak solution of the diffusion problem

∂u

∂t
= ∆α(u), u(0) = u0

with α(z) = β
′
(z)z − β(z).
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16 On Sobolev Regularity of Mass Transport

and Transportation Inequalities

after Alexander V. Kolesnikov [1]
A summary written by Shuangjian Zhang

Abstract

This paper provided Sobolev a priori estimates for optimal trans-
portation T = ∇Φ between probability measure µ = e−V dx and
ν = e−Wdx on Rd. With uniform convexity of potential W , it showed
that

´
‖D2Φ‖2HSdν is bounded above by

´
|∇V |2dµ. Besides, sim-

ilar estimate for the Lp(µ)−norms and some Lp−generalizations of
the well-known Caffarelli contraction theorem were also shown in this
paper. At last, it presented some operator norm estimates for D2Φ.

16.1 Introduction

Let µ = e−V dx and ν = e−Wdx be probability measures on Rd and let
T = ∇Φ be the optimal transportation mapping such that T#µ = ν. Assume
that W is uniformly convex (D2W ≥ K · Id, whereK > 0). It will be shown
that

Iµ :=

ˆ
|∇V |2dµ ≥ K

ˆ
‖D2Φ‖2

HSdµ

More generally it will be shown that for every unit e ∈ Rd and p ≥ 1

p+ 1

2
‖V 2

e ‖Lp(µ) ≥ K‖Φ2
ee‖Lp(µ)

These results can be considered as (global, dimension-free) Sobolev a priori
estimates for the following Monge-Ampère equation

e−V = e−W (∇Φ)detD2Φ

In subsection 3, it will be provided that

ˆ
(V (x+ e)− V (x))dµ ≥ K

2

ˆ
|∇Φ(x+ e)−∇Φ(x)|2dµ
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In Subsection 4, let µ = g · γ(with smooth g) and ν = γ, then

Iγg = 2Entγg − 2

ˆ
log det2(D2Φ− Id)gdγ

+

ˆ
‖D2Φ− Id ‖2

HSgdγ +
d∑

k=1

ˆ
Tr[(D2Φ)−1D2Φxk ]

2gdγ

where Iγg =
´ |∇g|2

g
dγ (relative information), det2(D2Φ − Id) = detD2Φ ·

exp(d − ∆Φ) (the Fredholm-Carleman determinant of D2Φ − Id). In par-
ticular, this identity implies the following stronger version of log-Sobolev
inequality

Iγg ≥ 2Entγg −
ˆ

log det2(D2Φ)2gdγ

and

Iγg ≥
ˆ
‖D2Φ− Id ‖2

HSgdγ

In addition, the paper prove some dimension-free results for general log-
concave reference measure.

In subsection 5, there are several Lp-generalizations of the main result.
For every fixed unit vector e and p ≥ 1 one has

K‖Φ2
ee‖Lp(µ) ≤ ‖(Vee)+‖Lp(µ)

K‖Φ2
ee‖Lp(µ) ≤

p+ 1

2
‖V 2

e ‖Lp(µ)

Note that the contraction theorem follows from these estimates and this is
exactly the case when p =∞.

In Subsection 6, it was proven that

K(

ˆ
‖D2Φ‖2pdµ)

1
p ≤ (

ˆ
‖(D2V )+‖pdµ)

1
p

16.2 Main Result

Theorem 1. Assume that Iµ <∞, µ admits the finite second moment, and
W satisfies D2W ≥ K · Id for some K > 0. Then Φ ∈ W 2,2(µ) and

Iµ ≥ K

ˆ
‖D2Φ‖2

HSdµ
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Remark 2. Note that some global bounds on the third derivatives of Φ are
also available. Indeed if Φ is sufficiently smooth and
ˆ
V 2
xi
dµ =

ˆ
< D2Φ·D2W (∇Φ)·D2Φ·ei, ei > dµ+

ˆ
Tr([(D2Φ)−1D2Φxi ]

2)dµ

holds, then ˆ
|∇V |2dµ ≥ 2

√
K

ˆ
[
d∑
i=1

‖D2Φxi‖2
HS]

1
2dµ

Remark 3. Some results of triangular mappings were also provided. For
T = (T1(x1), T2(x1, x2), · · ·, Td(x1, · · ·, xd)), where every Ti is increasing in xi,
one has

ˆ
V 2
xi
dµ =

ˆ
< D2W (T ) · ∂xiT, ∂xiT > dµ+

d∑
k=i

ˆ
(
∂xixkTk
∂xkTk

)2dµ

Iµ =

ˆ
Tr[DT ·D2W (T ) · (DT )∗]dµ+

d∑
k=1

ˆ
|∇ ln ∂xkTk|2dµ

16.3 Transportation Inequalities

Remark 4. The Talagrand inequality
ˆ
ρ log ρdν ≥ K

2

ˆ
|T (x)− x|2ρdν

holds for any reasonable transportation mapping T sending ρ · ν onto ν and
satisfying

div(T−1)− d− log detD(T−1) ≥ 0

Let f ·ν, g ·ν be probability measures, ν = e−Wdx with D2W ≥ K · Id, K > 0.
Let Tf (Tg) be the optimal transportation mapping pushing forward f · ν(g · ν)
onto ν. With setting

ρ =
f

g
◦ (T−1

g ), T = Tf ◦ T−1
g ,

one can get the following inequality
ˆ
f log

f

g
dν ≥ K

2

ˆ
|Tf − Tg|2fdν
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from Talagrand inequality. Let f(x) = e−V (x)+W (x) and g(x) = e−V (x+e)+W (x)

(here e is a fixed vector), then Tf = ∇Φ and Tg = ∇Φ(x+ e). Thus, one can
obtain ˆ

(V (x+ e)− V (x))dµ ≥ K

2

ˆ
|∇Φ(x+ e)−∇Φ(x)|2dµ

Lemma 5. Let φ : A → R, ψ : B → R be convex functions on convex sets
A,B. Assume that ∇ψ(B) ⊂ A. Then

div(∇φ ◦ ∇ψ) ≥ Tr[D2
aφ(∇ψ) ·D2

a(ψ)]dx ≥ 0

where div is the distributional derivative.

Theorem 6. Assume that W is K-uniformly convex. Then for every e ∈ Rd

ˆ
(V (x+ e)− V (x))dµ ≥ K

2

ˆ
|∇Φ(x+ e)−∇Φ(x)|2dµ

Proposition 7. The inequality

ˆ
(V (x+ e)− V (x))dµ ≥ K

2

ˆ
|∇Φ(x+ e)−∇Φ(x)|2dµ

implies inequality ˆ
|∇V |2dµ ≥ K

ˆ
‖D2Φ‖2

HSdµ

16.4 Dimension-free Inequalities

16.4.1 Gaussian case

Let γ be the standard Gaussian measure on Rd, let µ = g · γ, ν = γ and
∇Φ be the corresponding optimal transport, where g is smooth, bounded,
strictly positive, Iγg <∞ and −D2 log g ≤ c · Id. Then one has

Iγg = 2Entγg − 2

ˆ
log det2(D2Φ− Id)gdγ

+

ˆ
‖D2Φ− Id ‖2

HSgdγ +
d∑

k=1

ˆ
Tr[(D2Φ)−1D2Φxk ]

2gdγ
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16.4.2 Log-concave case

Theorem 8. Let µ = ge−Wdx, ν = e−Wdx. Assume that for some K > 0,
D2W ≥ K · Id and

W (x)− < ∇W (y), x− y > −W (y) ≥ K

2
|∇W (x)−∇W (y)|2

Then
K

2

ˆ
‖D2Φ− Id ‖2

HSgdµ ≤
2

K

ˆ
g log gdµ+

ˆ
|∇g|2

g
dµ

In particular, the estimate holds for some K > 0 if C1 · Id ≤ D2W ≤ C2 · Id.

16.5 the Caffarelli’s Theorem

Theorem 9. Assume that D2W ≥ K · Id. Then for every unit vector e,
p ≥ 0, and r = p+2

2
, one has

K‖Φ2
ee‖Lr(µ) ≤ ‖(Vee)+‖Lr(µ)

K‖Φ2
ee‖Lr(µ) ≤

p+ 4

4
‖V 2

e ‖Lr(µ)

Corollary 10. In the limit p → ∞ we obtain the contraction theorem of
Caffarelli

K‖Φee‖2
L∞(µ) ≤ ‖(Vee)+‖L∞(µ)

16.6 Operator Norm Estimates

Lemma 11. Assume that Φ is smooth. Then for every smooth vector field
v and every nonnegative test function η the following inequality holds

ˆ
< D2V v, v > ηdµ ≥ K

ˆ
‖D2Φ · v‖2ηdµ+

ˆ
< (D2Φ)v · v, (D2Φ)−1∇η > dµ

+2

ˆ
Tr((D2Φ)v ·Dv · (D2Φ)−1)ηdµ+

ˆ
Tr([(D2Φ)−1(D2Φ)v]

2)ηdµ

Lemma 12. Assume that Φ is convex and twice continuously differentiable.
For every ε > 0 there exists a matrix Qε ≥ 0 such that ‖Qε‖ ≤ ε and
D2Φ +Qε has no multiple eigenvalues almost everywhere.
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Theorem 13. Assume that D2W ≥ K · Id and (D2V )+ ∈ L1(µ). Then the
following inequality holds

ˆ
‖(D2V )+‖dµ ≥ K

ˆ
‖D2Φ‖2dµ

Theorem 14. Assume that D2W ≥ K · Id. Then for every r ≥ 1 one has

K(

ˆ
‖D2Φ‖2rdµ)

1
r ≤ (

ˆ
‖(D2V )+‖rdµ)

1
r
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