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1 The Poisson equation: basics and examples

1.1 Classical and weak Poisson equation

Let n ≥ 2 and let Ω ⊂ Rn be an open set. A twice continuously differentiable function
u : Ω → R and a continuous function f : Ω → R are said to satisfy the classical Poisson
equation if

∆u(x) = f(x)

for every x ∈ Ω where

∆u =

n∑
i=1

D2
i u

is the Laplace operator.
Given such a pair u and f and φ a smooth function with compact support in Ω, then

(∆u, φ) = (f, φ)

where the bracket (., φ) denotes integrating against the function φ or more generally evalu-
ating a distribution at φ. By partial integration, using the compact support of φ, we obtain
successively

−(Du,Dφ) = (f, φ)

where D denotes the gradient operator and the bracket of two vector fields is the integral
of the inner product, and

(u,∆φ) = (f, φ)

This is the weak Poisson equation with testing function φ.
Conversely, let two functions u, f have regularity as above and satisfy the weak Poisson

equation for every smooth function φ with compact support in Ω. We intend to show u and
f satisfy the classical Poisson equation. By a translation argument it suffices to assume
0 ∈ Ω and show ∆u(0) = f(0). Moreover, it suffices to show for any given ε > 0 that
|∆u(0) − f(0)| ≤ ε. There exists a nonnegative smooth compactly supported function φ
with ∫

Rn

φ(x) dx = 1.

By scaling, that is by considering functions of the form φλ(x) = λnφ(λx) we may assume
φ is supported in the ball Bδ(0) of radius δ about 0 where δ is sufficiently small so that
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|f(x)− f(0)| ≤ ε/2 and |∆u(x)−∆u(0)| ≤ ε/2 for all x ∈ Bδ(0). Then we have

|∆u(0)− f(0)| = |
∫

(∆u(0)− f(0))φ(x) dx|

≤
∫
|f(0)− f(x)|φ(x) dx+ |

∫
(∆u(x)− f(x))φ(x) dx|+

∫
|∆u(x)−∆u(0)|φ(x) dx

The middle term vanishes as we can see by partial integration and the weak Poisson equa-
tion. The other two terms are bounded by ε/2 each. This completes the proof that u and
f satisfy the classical Poisson equation.

We shall therefore not distinguish between weak and classical Poisson equation and say
that two distributions u and f satisfy Poisson’s equation if they satisfy the weak Poisson
equation.

Non-uniqueness of Poisson’s equation

Given a distribution u, there is a unique distribution f satisfying the weak Poisson equation

(u,∆φ) = (f, φ)

Indeed, since ∆ is a continuous map on the space of test functions, the left hand side defines
a distribution

φ→ (u,∆φ)

and this distribution is the unique f satisfying the weak Poisson equation. In fact this
distribution is denoted by ∆u.

Given a distribution f , assume we have two distributions u1 and u2 satisfying the weak
Poisson equation

(u1,∆φ) = (f, φ)

(u2,∆φ) = (f, φ)

Then we have for u = u2 − u1
(u,∆φ) = 0

This is called the weak Laplace equation for u := u1 − u2., It implies (homework) that
u1 − u2 is harmonic and in particular smooth and satisfies the classical Laplace equation

∆u(x) = 0

for every x ∈ Ω. Thus the ambiguity in solving the Poisson equation rests in an undeter-
mined additive harmonic function.

The theory of harmonic functions suggests additional constraints to force the solution
to Poisson’s equation to be unique.

For example, assume f is supported in the ball Br(0) and there exists a continuous
function u on the closed ball Br(0) that satisfies the Poisson equation on the open ball.
Then given any continuous function on the boundary ∂Br(0) there is unique continuous
function v on the closed ball satisfying the Poisson equation in the open ball and coinciding
with the specified function on the boundary. This result rests of the existence and uniqueness
of a continuous function on the closed ball which satisfies the Laplace equation in the open
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ball (homework) and coincides with a given continuous function on the boundary of the
ball.

Note that this example of existence and uniqueness shows that a fair amount of regularity
theory is required to achieve existence and uniqueness of solutions.

In the immediate sequel we shall focus on existence and regularity theory for solutions
of Poisson’s equation and put aside uniqueness questions. Since harmonic functions are
very regular, namely infinitely often differentiable and the values of the derivative being
controlled by averages over balls (e.g maximum principle), regularity theory of solutions to
the Poisson equation is in the interior of the domain Ω.

The Poisson equation for the characteristic function of a ball

We seek a solution for the Poisson equation where f is the characteristic function of a ball.
By symmetries we reduce the discussion to the case of the unit ball about the origin.

Elaborating on the symmetries, we define the following symmetries:

1. Translation. If f is a test function and y ∈ Rn, define

Tyf(x) = f(x− y)

If f is a distribution, define
(Tyf, φ) = (f, T−yφ)

2. Dilation of homogeneous degree α ∈ R: If f is a test function and λ > 0, define

Λαλf(x) = λαf(λ−1x)

If f is a distribution, define

(Λαλf, φ) = (f,Λ−n−αλ φ)

3. Rotation: If f is a test function and A and orthogonal n× n, define

OAf(x) = f(ATx)

If f is a distribution, define

(OAf, φ) = (f,OAT φ)

Exercise: Show that uf f is a test function and we identify it with the distribution
φ→ (f, φ), then both definitions of the symmetries coincide.

Note that if u, f satisfy the Poisson equation in a domain Ω, then Tyu and Tyf satisfy
the Poisson equation on the domain {x + y : x ∈ Ω}. Moreover, ũ = Λn−2λ u and f̃ = Λnλf
satisfy the Poisson equation in the domain {λx : x ∈ Ω}. To see the latter, we calculate

∆ũ =
∑
i

DiDiΛ
n−2
λ u

λ−2Λn−2λ

∑
i

DiDiu = Λnλf = f̃
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Finally, ũ = OAu and f̃ = OAf satisfy the Poisson equation on the domain {Ax : x ∈ Ω}.
We leave the verification of this as an exercise.

Using translation and dilation invariance, we may reduce the problem of finding a solu-
tion of the Poisson for f the characteristic function of a ball to the case when the ball has
center at the origin and radius 1. By rotation symmetry, since f is roattion invariant, we
may seek a solution u that is rotationally invariant.

We thus consider f = 1B1(0). To avoid technical bifurcations we assume n ≥ 3. Define
a function

u(x) = −|x|2−n

if |x| ≥ 1 and
u(x) = a+ b|x|2

if x ≤ 1, where we assume that the real numbers a and b are chosen so that both the value
of and the gradient of the two defining functions for u coincide on the sphere |x| = 1. Since
the derivative of −r2−n is (n−2)r1−n and the derivative of br2 is 2br, we see that the choice
b = (n − 2)/2 will assure continuity of the radial derivative across the unit sphere. All
tangential derivatives are zero on the sphere. Since both defining functions are constant on
the sphere, we can choose a to achieve continuity of u across the sphere. We will not need
to explicitly calculate a. We then have for |x| > 1:

∆u(x) = 0

Namely,

Di|x| =
xi
|x|

and
Diu(x) = (n− 2)xi|x|−n

D2
i u(x) = (n− 2)(|x|−n − n|xi|2|x|−n−2)

Summing over i and using
∑

i |xi|2 = |x|2 gives ∆u(x) = 0. Moreover, for |x| < 1

∆u(x) = 2nb = n(n− 2)

since Di|x|2 = 2xi and D2
i |x|2 = 2. Using continuously differentiability of u we obtain by

partial integration

(u,DnDnφ) =

∫
Rn−1

∫
R
−Dnu(x)Dnφ(x) dxn dx

′

where x′ denotes the vector (x1, . . . , xn−1). Since Dnu is piecewise smooth and continuous,
we may do one more partial integration

(u,DnDnφ) =

∫
Rn−1

∫
R
DnDnu(x)φ(x) dxn dx

′

where DnDnu is defined everywhere except at the boundary of B1(0) and the integral is
understood in an L1 sense. Similarly we may argue for the other second partial derivatives
and we obtain

(u,∆φ) =

∫
Rn

∆u(x)φ(x) dx
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with the right hand side in an L1 sense and hence

(u,∆φ) = (n(n− 2)1B1(0), φ)

Dividing by n(n − 2)|B1(0)| shows that 1
n(n−2)|B1(0)|u and 1

B1(0)
1B1(0) satisfy the Poisson

equation.
To obtain the Poisson equation for the ball of radius r about the origin, we apply scaling

as above to consider

fr =
1

|Br(0)|
1Br(0)

and

Γr(x) =
−1

n(n− 2)|B1(0)|
|x|2−n

for |x| ≥ r and

Γr(x) =
1

n(n− 2)|Br(0)|
(ar2 + b|x|2)

for |x| ≤ r. and observe that Γr and fr solve the Poisson equation.
Note that both f and the Hessian DiDjΓr are bounded measurable functions. In the

sequel we will see that even for continuous compactly supported f it is not always true that
the Hessian DiDjΓr is bounded and measurable.

We turn to the case n = 2. The previous calculation does not hold since the degenerate
term n − 2 occurs in the denominator in the calculation. Focusing on the ball B1(0) we
make the ansatz

u(x) = log |x|

for |x| ≥ 1 and
u(x) = a+ b|x|2

for |x| ≤ 1. Since the derivative of log(r) = r−1 we need to set b = 2−1 to obtain continuity
of radial derivatives. Beginning with these observations the further calculations proceed
analoguosly to the above and we obtain the following. If we define

Γr(x) =
1

2|B1(0)|
log |x|

for |x| ≥ r and

Γr(x) =
1

2|Br(0)|
(ar2 + b|x|2)

for |x| ≤ r then Γr and 1
Br(0)

1Br(0) solve the Poisson equation.

The fundamental solution of Poisson’s equation

We again restrict attention first to n ≥ 3. Now let f be in L1(Rn) and assume f vanishes
outside a bounded open set Ω. Define for x 6= 0

Γ(x) =
−1

n(n− 2)|B1(0)|
|x|2−n

5



Then Γ is locally in L1 (that is its restriction to any bounded open set is in L1), in particular
we verify ∫

Br(0)
Γ(x) dx ≤ C

∑
k≥0

∫
2−k−1r≤|x|≤2−kr

(2−kr)2−n dx

≤ C
∑
k≥0

(2−kr)n(2−kr)2−n ≤ Cr2

Here C is some constant depending on n that may change from occurrence to occurrence.
Hence the convolution

Γ ∗ f(x) :=

∫
Γ(x− y)f(y) dy

is defiend almost everywhere and a local L1 function (this is a consequence of Fubini’s
theorem).

Theorem 1 If f ∈ L1(ω) for some bounded open set Ω, then Γ∗f and f satisfy the Poisson
equation on Ω.

Proof: It is natural to compare Γ with Γr. Note that also∫
Br(0)

Γr(x) dx ≤ C(2−kr)−n
∑
k≥0

∫
2−k−1r≤|x|≤2−kr

(r2 + (2−kr)2)dx

≤ Cr2

Moreover Γ − Γr is supported in Br(0). Hence Γr converges to Γ in L1 as r → 0 and we
have

(Γ ∗ f,∆φ) = lim
r→0

(Γr ∗ f,∆φ) = lim
r→0

(f,Γr ∗ (∆φ))

Now to identify the value of the smooth function Γr ∗ (∆φ) we note by symmetry of Γr

Γr ∗ (∆φ)(x) = (TxΓr,∆φ) = (Γr,∆T−xφ)

= (
1

Br(0)
1Br(0), T−xφ) =

1

Br(0)
(1Br(0) ∗ φ)

Now the latter converges uniformly to φ, hence

(Γ ∗ f,∆φ) = lim
r→0

1

|Br(0)|
(f, 1Br(0) ∗ φ)) = (f, φ)

This proves the theorem. 2

Taking the gradient of Γ outside the origin gives

DΓ(x) =
1

n|B1(0)|
x|x|−n

This function is still locally L1, in particular we have

|
∫
Br(0)

∇Γ(x) dx|

≤ C
∑
k≥0

∫
2−k−1r≤|x|≤2−kr

(2−kr)1−n dx ≤ Cr
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Theorem 2 If f ∈ L1(ω) for some bounded open set Ω, then Γ ∗ f is continuously differ-
entiable and equals DΓ ∗ f .

Proof: This is a reprise of the previous argument. We have

|
∫
Br(0)

∇Γr(x) dx| ≤ Cr

and D(Γ − Γr) is supported in Br(0) f ∗ DΓr converges uniformly to f ∗ DΓ. Since f ∗
Γr is continuously differentiable with gradient f ∗ DΓr we see that f ∗ Γ is continuously
differentiable with gradient f ∗DΓ. 2

Note that this argument fails for the Hessian matrix of second partial derivatives, which
is homogeneous of degree −n and hence DiDjΓ is no longer locally in L1.

Indeed, already the Poisson equation ∆u = f suggests that the second partial derivatives
of u need not be continuous if f is merely locally L1.

We leave the modifications of the above calculations in case n = 2 as an exercise.

1.2 The Poisson equation for 1Q

We next discuss the solution u = Γ ∗ 1Q of the Poisson equation for f the characteristic
function of the cube Q = I1 × I2 × . . .× In and we will draw some conclusions.

For specifity we assume each interval is half open of the form [ai, bi) though this choice
will not be of particular importance. We sall be particularly interested in studying the
Hessian of Γ ∗ 1Q.

Set

u(x) =

∫
Q

Γ(x− y) dy

let 3Q the cube with same center as Q but 3 times the sidelength of Q.

Lemma 1 The function u is smooth in Rn \ ∂Q and satisfies for every i, j, k

1. If x ∈ 3Q

DiDju(x) ≤ C(1 + | log(
dist(x, ∂Q)

l(Q)
|)

2. If x 6∈ 3Q

DiDju(x) ≤ C|dist(x,Q)

l(Q)
|−n

3. If x ∈ 3Q, then

DkDiDju(x) ≤ Cl(Q)−1(
dist(x, ∂Q)

l(Q)
)−1

4. If x ∈ 3Q, then

DkDiDju(x) ≤ Cl(Q)−1(
dist(x,Q)

l(Q)
)−n−1
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Proof: We assume n > 2, the case n = 2 merely requiring notational changes. Assume
x 6∈ ∂Q and assume ε is small enough so that B2ε(x) does not intersect Q.

Let φ : R≥0 → R be a smooth function that vanishes in [0, ε/2) and is constant 1
on [ε,∞). Such a function can for example be obtained by integrating a positive smooth
function supported in (ε/2, ε).

We define a smooth variants of the previously defined Γr, for simplicity of notation we
use the same symbol. Thus define Γr(x) = Γ(x)φ(|x|) Note that by rotation symmetry of
Γ we have for the integrable function DnΓ:∫

Br(0)
DnΓ(x) dx = 0

More precisely, we only need reflection symmetry under reflection of the n-the component,
namely

(x1, . . . , xn−1, xn)→ (x1, . . . , xn−1,−xn)

Which leaves Γ invariant but changes sign of DnΓ. Since Br(0) is invariant under the
reflection, the above integral is equal to its negative and thus vanishes. By the same token,
we have for any i: ∫

Br(0)
DiΓr(x) dx = 0

Since 1Q is constant on the ball of radius ε about any point y ∈ Bε(x), we obtain

DnΓ ∗ 1Q(y) = DnΓε ∗ 1Q(y)

But the latter is smooth sine Γε is smooth. (use theorems about differentiation under the
integral sign). Using the corresponding argument for the other partial derivatives gives that
Γ ∗ 1Q is smooth away from ∂Q.

To prove the first estimate, Pick x ∈ 3Q and let ε be half the distance of x to ∂Q. Then

|DiDj(Γ ∗ 1Q)(x)| = |DiDj(Γε ∗ 1Q)(x)| ≤ ‖DiDjΓε‖L1(5Q)

But since DiDjΓ is homogeneous of degree −n we have∫
5Q\B2ε(x)

DiDjΓε(x) dx ≤
∑

ε≤2k≤10l(k)

∫
2k−1≤|x|≤2k

C|x|−n dx

≤
∑

ε≤2k≤10l(k)

C ≤ C(1 + | log(ε/l(Q))|)

Since also ∫
B2ε(x)

|DiDjΓε(x)| dx ≤∫
B2ε(x)\Bε/2(x)

|DiDjΓ(x)η(x)|+ |DiΓ(x)Djη(x)|+ |DjΓ(x)Diη(x)|+ |Γ(x)DiDjη(x)| dx ≤ C

We obtain the first estimate.
To prove the second estimate we simply integrate the estiamte

DiDjΓ(y) ≤ C|y|−n
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and the fact that on the domain of integration for Γ ∗ 1Q(x) the argument of DiDjΓl(Q)/2

is approximately dist(x,Q).
To prove the third and foruth estimate we proceed similarly, using that

DiDjDkΓ

is homogeneous of degree −n− 1. 2

The estimate near the boundary of the cube can be improved. Recall that ∂Q is the set
of all points in the closed cube for which at last one coordinate xi is in the boundary of Ii.
Let ∂∂Q denote the set of points in ∂Q for which at least two coordinates xi, xj are in the
boundary of Ii and Ij respectively. Then

Lemma 2 The function u satisfies for every i, j, k.

1. If x ∈ 3Q

DiDju(x) ≤ C(1 + | log(
dist(x, ∂∂Q)

l(Q)
)|)

2. If x ∈ 3Q

DiDjDku(x) ≤ Cl(Q)−1(
dist(x, ∂∂Q)

l(Q)
)−1

The improvement rests in a stronger use of the full rotation symmetry of the kernel
Γ. Assume that dist(xj , ∂Ij) is minimzed for j = n. Let x′ = (x1, . . . , xn−1) and Q′ =
I1 × . . .× In−1 and let ε be half the distance from x′ to ∂Q′. Then ε is comparable to the
distance x to ∂∂Q. We write for i 6= n∫

DiΓ(y)1Q(x− y) dy

=

∫
R

∫
Rn−1

DiΓ(y)1Q(x− y) dy′dyn

Now the stroger use of the symmetry is that if i is not equal to n, then for fixed yn the
functions Γ and Γε are symmetric under changing sign of the i-th component of x′. Thus
we obtain ∫

R

∫
Rn−1

DiΓ(y)1Q(x− y) dy′dyn∫
R

∫
Rn−1

DiΓε(y)1Q(x− y) dy′dyn

Note that ε may be much larger than the distance xn to ∂In. Now if either i or j is different
from n, since the partial derivatives commute, we may argue as in the proof of the previosu
lemma to obtain the new inequalities of the present lemma. If i = j = n we do not have
the same argument, but we may deduce the estimates using that ∆u is equal to 1Q away
from the boundary of Q and ∆Γ =

∑n
i=1DiDiΓ and we already know that all but the terms

DiDiΓ for i 6= n on the right hand side satisfy the desired estimates.
We now note that the above estimate can not further be much improved:

Lemma 3 There are points arbitrarily close to any point in ∂∂Q such that

maxi,j |DiDju(x)| ≥ c(1 + | log(
dist(x, (∂∂Q)

l(Q)
)|)
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Proof: By translation and scaling assume that Ii = [0, 1) for all i and consider the points
xi = xj = 0 in ∂∂Q. Note that

DiDjΓ(y) = C
yiyj
|y|n+2

is positive in the set yi ≤ 0 and yj ≤ 0. Hence for xi ≤ 0 and xj ≤ 0 the integral

DiDjΓ ∗ 1Q(x) =

∫
DiDjΓ(y)1Q(x− y) dy

has a nonnegative integrand, and hence the estimates in the previous lemmata are sharp.
2

Note that despite f being bounded, the second partials of u = Γ∗f are not bounded. By
an application of the unform boudnedness principle, Banach Steinhaus, assuming continuity
of f does not help.

Note first that if Q is a cube as in the previous lemma and fε is a continuous approxima-
tion to 1Q, say positive and bounded by 1 that coincides with 1Q outside an ε neighborhood
of ∂Q, then DiDjG ∗ fε) tends to DiDjΓ ∗ 1Q at every point x with xi, xj < 0. Hence there
is no C such that for any x with xi, xj < 0 we have

DiDjG ∗ fε(x) ≤ C

for all ε > 0.

Lemma 4 There exists a continuous compactly supported function f and i, j such that Γ∗f
is not twice continuosuly differentiable.

Assume to get a contradiction that Γ ∗ f is twice continuously differentiable for every
continuous f supported in Q = [0, 1]n satisfying ‖f‖∞ ≤ 1. Note that this set of functions
f is a complete metric space unde the distance function d(f, g) = supx |f(x)− g(x)|. Then
since Γ ∗ f decays outside 3Q, by an estimate as in the above lemmata, and hence it
does attain its maximum and thus is bounded. Thus the collection of linear functionals
Λy : f → DiDjΓ ∗ f(y) for every y ∈ Rn has the property that for each f we have Λyf is
bounded as y varies. By Banach Steinhaus, Λyf is uniformly bounded, hence there is C
such that

‖DiDjΓ ∗ f‖∞ ≤ C

But this contradicts the observation discussed above. 2

2 Dyadic cubes

Unless explicitly stated otherwise, all intervals in this section are of the form [a, b) with
a < b, thus they contain the left boundary point a but not the right boundary point b.

Definition 1 The set of all intervals of the form [2km, 2k(m + 1)) is called the standard
dyadic grid. An interval in the standard dyadic grid is called a standard dyadic interval.

The length l(I) of a standard dyadic interval I is an integer power of 2, namely 2k. The
number k is called the scale of the standard dyadic interval.
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Lemma 5 1. The class of standard dyadic intervals is invariant under the dilation x→
2x of the real line, more specifically,

[a, b)→ [2a, 2b)

is a self-bijection of the set of standard dyadic intervals.

2. The translation x→ x+ 1 on the real line, i.e.

[a, b)→ [a+ 1, b+ 1)

is a bijection of the set of standard dyadic intervals of scale at most 0.

3. For every k ∈ Z and every x ∈ R, x is contained in a unique standard dyadic interval
of scale k.

4. For every standard dyadic interval I, the left and right halves defined by

Il = [a,
a+ b

2
), Ir = [

a+ b

2
, b) .

are again standard dyadic intervals and called the children of the (parent) interval I.

5. If I and J are two standard dyadic intervals, then either I ∩ J = ∅ or one of the two
intervals is contained in the other.

6. Let I be some collection of standard dyadic intervals with scale bounded above,

sup
I∈I

l(I) <∞ ,

and let Imax be the collection of maximal intervals in I with respect to set inclusion.
Then the intervals in Imax are pairwise disjoint and cover the union of all intervals
in I.

Proof:
1) This bijection amounts to the obvious bijection (translation)

(k, n)→ (k + 1, n)

in the parameter range Z2 of dyadic intervals.
2) This transformation amonts to the obvious bijection (nonlinear shearing)

(k, n)→ (k, n+ 2−k)

of the parameter space Z× Z≤0 of dyadic intervals of scale at most 0.
3) By 1), it suffices to prove this for k = 0. Let n be the greatest integer smaller or

equal to x (this exists by the archimedean principle and is unique by the total order of the
integers) then n ≤ x < n+ 1 and n is the only integer satisfying these two inequalities.

4) By 1) and 2) it suffices to prove this for I = [0, 1), where it follows from direct
inspection.

5) Without loss of generality we may assume |I| ≥ |J |. If I and J have the same
scale, the claim follows from 3). Inductively, assume the claim is proven for |I| = 2k|J |
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and consider a pair of intervals with |I| = 2k+1|J |. We need to show that if there exists
x ∈ J ∩ I. then J ⊂ I. Let x ∈ J ∩ I. Let Ĩ be child of I that contains x. By induction
J ⊂ Ĩ and hence J ⊂ I. This completes the proof.

6) Given any two different intervals in Imax, since neither is contained in the other by
maximality, they are disjoint by 5). For each point in the union of intervals in I, there is a
maximal dyadic interval containing this point (use the upper bound on the scale). Hence
the point is in the union of elements in Imax.

2

Definition 2 A collection D of intervals is called a (not necessarily standard) dyadic grid
if it satisfies the following properties

1. For each x ∈ R and k ∈ Z the point x is contained in some interval of length 2k of
the collection.

2. Any two intervals of the collection are disjoint or one is contained in the other.

Given a dyadic grid, an interval of the grid is called a dyadic interval.

Note that one can sharpen the first statement in this definition. Namely, every point x
is contained in exactly one interval of length 2k. To see this, consider two intervals of the
same length containing x. By the second property, one of the intervals is contained in the
other, and since the intervals have the same length they are equal.

For each interval [a, b) in a grid both children are in the grid as well. Namely, let I be
the interval in the grid of half the length of [a, b) that contains the point a and is guaranteed
to exists by the first property. By the second property we have I ⊂ [a, b). Hence I does not
contain any points less than a and thus a is the left endpoint of I. Hence I is of the from
[a, (a+ b)/2) and thus the left child of [a, b). Now let J be the interval of the same length
as I that contains (a+ b)/2. Then J has to be disjoint from I by the second property, and
hence (a+ b)/2 is the left endpoint of J . Hence J is the right child of I.

Note that in a dyadic grid every interval is the child of some parent. Namely, let I be
an interval in the grid and pick x ∈ I. Then x is contained in a unique interval of length
2l(I), Since I intersects at least one of the children of that interval, it must be equal to that
child.

Lemma 6 For every interval [a, b) and every sequence dn : N0 → {1,−1} there is a unique
dyadic grid containing the interval [a, b) and having the property that if [a0, b0) = [a, b) and
[an+1, bn+1) denotes the parent of [an, bn) then [an, bn) is the left child of [an+1, bn+1) if
dn = −1 and it is the right child of [an+1, bn+1) if dn = 1. The dyadic grid is a translate of
the standard dyadic grid if and only if dn = dn+1 for all n larger than some n0.

Proof: Exercise 2

Since each dyadic grid contains exactly one interval of length 1 containing 0, we may
parameterize all dyadic grids by data (a, d0, d1, . . .) where a ∈ (−1, 0] is the left endpoint of
that interval and dn ∈ {−1, 1} is the sequence relative to the interval [a, a+ 1) as described
in the above lemma.

Lemma 7 For every point x there is a dyadic grid such that x is in the closed middle third
of every dyadic interval containing x. For any two points x 6= y there is a dyadic grid such
that every dyadic interval of length larger than 6|x− y| contains both x and y in its middle
half.

12



Proof: For the first part, pick the interval [x − 2/3, x + 1/3) and pick dn = (−1)n.
Then the grid described by the previous lemma satisfies the desired properties. Namely,
the interval of length 2k in the grid containing x is of the form

[x− (2/3)2k, x+ (1/3)2k)

for even k and of the form
[x− (1/3)2k, x+ (2/3)2k)

for odd k, and one verifies immediately that for two consecutive k the corresponding intervals
have a common endpoint and thus are related as parent and child.

For the second part, pick the point z the midpoint of x and y and consider the grid
constructed in the first part with respect to z. 2

Definition 3 A dyadic grid in Rn consists of an n-tuple (D1, . . . ,Dn) of dyadic grids of
the real line. A dyadic cube with respect to this grid is a cube of the form I1× . . .× In with
Ij ∈ Dj We define l(Q) = l(Ii) where the right hand side is independent of i, and we define
|Q| = l(Q)n.

Lemma 8 Given a dyadic grid in Rn, we have the following properties:

1. Every point of Rn is contained in exactly one cube of the grid of any given sidelength
2k.

2. Given any two dyadic cubes, either they are disjoint or one is contained in the other.

3. Each dyadic cube is the union of 2n pairwise disjoint dyadic cubes of half the side-
length. These are called the children of the cube. Moreover, each dyadic cube has a
parent.

4. Given any collection Q of dyadic cubes with sidelength uniformly bounded above, then
the set Qmax of maximal dyadic cubes in Q with respect to set inclusion consists of
pairwise disjoint cubes and covers the same set as the original collection Q of cubes.

2.1 Remarks on Lebesgue measure in Rn in terms of dyadic cubes

Fix a dyadic grid in Rn

Exercise 1 Given a dyadic cube Q0 and some collection Q of dyadic cubes covering Q0,
i.e.

Q0 ⊂
⋃
Q∈Q

Q

then
|Q0| ≤

∑
Q∈Q
|Q|

Hint: consider first the easier case that there exists a k such that 2k|Q| ≥ |Q0| for every
Q ∈ Q. This case can be settled by induction on k. To pass to the general case, use a
compactness argument.

13



Definition 4 The Lebesgue outer measure of a set E ⊂ Rn is defined to be

µ(E) := inf
Q

∑
Q∈Q
|Q|

where the infimum is taken over oll coverings of E by dyadic cubes, that is over all collections
Q of dyadic cubes such that E ⊂

⋃
Q∈QQ.

Note that Lebesgue outer measure is countably subadditive: If

E =
n⋃
n=0

En

then

µ(E) ≤
n∑
n=0

µ(En)

This ultimately rests on the observation that given a covering for each En, then the union
of these coverings is a covering of E.

Note further that for any k,

µ(E) := inf
∑
Q∈Q
|Q|

where the infimum is take over all collections Q such that l(Q) ≤ 2k for all Q ∈ Q.
Only the case of finite measure µ(E) is interesting, and by dilation by a power of 2

(possibly changing the grid) one may assume µ(E) ≤ 1: Then we can prove the above by
induction: if k = 0 the statement is trivial and if the statement is true for k then replacing
each cube in Q by its children proves the statement for k + 1.

Definition 5 A set E is measurable in Rn if for every set A we have that

µ(A) = µ(E ∩A) + µ(Ec ∩A)

Note that a dyadic cube Q is measurable. Namely, let A be a close to optimal covering
of A we may assume all cubes in the covering have sidelength less than l(Q). Then the
covering falls into two parts, thos cubes contained in Q and those disjoint from Q. These
are two coverings of A ∩Q and A ∩Qc.

Clearly the collection of measurable sets is closed under taking complements (by defini-
tion) and countable unions (easy exercise) and hence is a sigma algebra.

To see that open sets are measurable, we introduce the concept of Whitney decomposi-
tion, that is also of independent interest.

Definition 6 (Whitney decomposition) Let D be a dyadic grid in Rn and let Ω be an
open set in Rn. The Whitney decomposition of Ω consists of the collection Qmax of all
maximal dyadic cubes in Q, where Q is the set of dyadic cubes Q ∈ D such that 3Q ⊂ Ω.

Each Whitney cube is contained in Ω, hence the Whitney cubes cover a subset of Ω.
They cover all of Ω, since each point in Ω has an ε ball about it in Ω, and thus any dyadic
cube of sidelength 2k with 2kn < ε containing x satisfies 3Q ⊂ Ω and thus Q covers Ω and
thus Qmax covers Ω. Moreover, Qmax is a disjoint cover of Ω.

In particular, open sets are measurable.
Whitney decompositions have further nice properties:

14



Lemma 9 If Q,Q′ are two adjacent cubes in a Whitney decomposition, then the ratio of
sidelength of Q and Q′ is at most 2.

Proof: If Q and Q′ are adjacent and |Q′| < |Q|, then 3Q′ ⊂ 3Q. If the ratio of sidelength
of Q and Q′ is more than 2, then there is a distinct cube Q′′ adjacent to Q with Q′ ⊂ Q′′

and also 3Q′′ ⊂ Ω. By maximality, Q′ cannot be in the Whitney decomposition. 2

Exercise 2 If Q is a Whitney cube, then the distance from any point of Q to the complement
of Ω is between l(Q) and

√
nl(Q).

If one introduces Lebesgue measure via dyadic grids as above, it is a natural task to
show that the Lebesgue measure does not depend on the choice of dyadic grid. To do so,
one observes that for some fixed grid, every (non-dyadic) cube Q is a measurable set and
has measure equal to l(Q)n. From there one deduces that the definition of outer measure
is independent of the grid.

2.2 Remarks on L∞(Rn), L1(Rn), M1(Rn) via dyadic cubes/martingales

Fix a dyadic grid in Rn and let D denote the set of all dyadic cubes in the grid.
We consider functions

f : D→ R

Note that the set D is countable, so the space of functions on R has the same cardinality
as the space R itself, and stricly smaller cardinality than the space of functions from Rn to
R.

If x ∈ Rn is a point, we have for each k ∈ Z a unique cube Qk,x of sidelength 2k

containing x, and we may consider the limit

lim
k→−∞

f(Qk,x)

if it exists. If this limit exists for every x, then we obtain a function on Rn. However by
the above remarks on cardinality only relatively few functions can be generated in this way.

While we will not in general ask that this limit at x exists for every x, we do have
the intuition that the functions f : D → R are trying to describe functions or generalized
functions on R. The value f(Q) is then some approximation, or some average to the value
of f inside the cube. It is thus natural to make a consistency assumption on f , namely that
f(Q) is the average of f(Q′) where Q′ runs over the children of f .

Definition 7 (Martingale) Given a grid D, A function f : D→ R is called a martingale
if for every cube Q ∈ D we have

f(Q)|Q| =
∑

Q′⊂Q:2l(Q′)=l(Q)

f(Q′)|Q′|

Note that the condition in this definition can also be written as

f(Q) = 2−n
∑

Q′⊂Q:2l(Q′)=l(Q)

f(Q′) ,

which makes it plain that f(Q) is the average of f(Q′) as Q′ runs through the 2n children
of Q.

15



Exercise 3 (Truncation) Let f be a martingale and let Q be some collection of pairwise
disjoint cubes in D. Then we can define the truncation fQ of f as

1. If Q ⊂ Q′ for some Q′ ∈ Q, then this Q′ is unique and

fQ(Q) := f(Q′)

2. If Q 6⊂ Q′ for any Q′ ∈ Q, then

fQ(Q) := f(Q)

Prove that this truncation is a martingale.

Given a martingale f and a scale k ∈ Z, we let fk or Ekf be the truncated martingale
with respect to the collection

Dk := {Q ∈ D : l(Q) = 2k}

.

Definition 8 The space L∞(D) is the space of all martingales f for which there exists
M > 0 such that ‖f‖∞ := supQ∈Q |f(Q)| <∞.

Exercise 4 The space L∞(D) is a Banach space space (complete normed space).

We will see below that there is a natural identification of the space L∞(D) with the
classical space L∞(R) as martingales.

We also aim to obtain descriptions of the classical spaces L1(Rn). The definitions are
somewhat more subtle in this situation, we begin with:

Definition 9 The space Md(D) is the space of all martingales f such that

‖f‖1 := sup
Q

∑
Q∈Q
|fQ||Q| <∞

where the supremum runs over all collections Q of pairwise disjoint dyadic cubes.

The following exercise shows that it suffices to test the collections of cubes of fixed scale

Exercise 5 For any martingale f we have

‖f‖1 := sup
k

∑
Q:l(Q)=2k

|f(Q)||Q|

Note also that the quantity ∑
Q:l(Q)=2k

|f(Q)||Q|

is monotone in k, because∑
Q:l(Q)=2k

|f(Q)||Q| =
∑

Q:l(Q)=2k

|
∑

Q′⊂Q,2l(Q′)=l(Q)

f(Q′)|Q′||

≤
∑

Q:l(Q)=2k

∑
Q′⊂Q,2l(Q′)=l(Q)

|f(Q′)||Q′| =
∑

Q:l(Q)=2k−1

|f(Q′)||Q′|
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Lemma 10 The space Md(D) is a complete normed linear space with the norm ‖f‖1.

Proof: If f and g are martingales in Md(D) and c is a real number, then f + g and cf
are martingales in Md(D) and one observes ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1 and ‖cf‖1 = |c|‖f‖1.
If ‖f‖1 = 0 then we have for every dyadic cube Q, viewed as a disjoint collection by itself,
|f(Q)||Q| ≤ ‖f‖1 = 0 and hence f(Q) = 0. This makes Md(D) a normed space.

To see completeness, we proceed as follows. If f (n) is a Cauchy sequence of martingales,
then for every Q the sequence f (n)(Q) is Cauchy and thus has a limit f(Q). The data f(Q)
in itself defines a martingale, since finite averages commute with the limit.

To see that f is itself in Md(D), choose a subsequence of f (nm) such that ‖f (nm+1) −
f (nm)‖1 ≤ 2−m. Then for finite disjoint collections Q of cubes

∑
Q∈Q
|f(Q)||Q| =

∑
Q∈Q

lim
M→∞

|f (0)(Q) +
M∑
m=0

(f (nm+1)(Q)− f (nm)(Q))|

≤ ‖fn0‖1 +
∑
m

‖f (nm+1) − f (nm)‖1 ≤ C <∞

Similarly one sees that f (n) converges to f in norm. 2

Note that for any finite Borel measure ν in Rn we may define a martingale f ∈Md(D)
by f(Q) = ν(Q)/|Q| Many elements, but not every element in Md(D) is of this form.
For example cosndier the standard dyadic grid and the Diac mearure at the origin and
let f be defined as above. Then the cube [0, 1)n satisfies f(Q) = 1 while all other cubes
Q′ of sidelength 1 whose boundary contains 0 to the origin satisfy f(Q′) = 0. Obviously
this assignment is very particular to our chose of half open cubes. One cans ee that the
martingale defined by

f(
n∏
i=1

[ai, bi)) = ν(
n∏
i=1

(ai, bi])/
n∏
i=1

|bi − ai|

for ν the Dirac measure at the origin is not of the form ν(Q)/|Q| for any Borel measure ν.
This suggests the following definition

Definition 10 The space M(D) is the space of all martingales f ∈ Md(D) such that for
each ε > 0 and dyadic cube Q there exists δ > 0 such that for every collection Q of pairwise
disjoint dyadic cubes contained in Q with ∂(Q′) 6⊂ Q for all Q′ ∈ Q with∑

Q∈Q
|Q| ≤ δ

we have ∑
Q∈Q
|f(Q)||Q| ≤ ε

The idea behind this definition is that no mass is put on the bad boundary, as represented
by the bad cubes Q′ ⊂ Q with ∂(Q′) 6⊂ Q.

A related and more drastic definition is to avoid mass on any set of zero Lebesgue
measure.
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Definition 11 The space L1(D) is the space of all martingales f ∈ M(D) such that for
every ε > 0 there is a δ > 0 such that for every collection Q of pairwise disjoint dyadic
cubes with ∑

Q∈Q
|Q| ≤ δ

we have ∑
Q∈Q
|f(Q)||Q| ≤ ε

In classical terms, L1(D) are the measures that are absolutely continuous with respect
to Lebesgue measure.

Clearly L1(D) is a subspace of M(D).

Lemma 11 The spaces M(D) and L1 are closed subspaces of Md(D).

Proof: We elaborate the proof in case L1(D), the case M(D) being very similar.
Let f (n) be a sequence of martingales in L1(D) and assume that the sequence converegs

to an element f in Md(R
n). We need to prove that f ∈ L1(D).

For given ε we may choose an n so that

‖f (n) − f‖1 ≤ ε/2

We may then choose a δ so that for every disjoint collection Q of dyadic cubes with∑
Q∈Q
|Q| ≤ δ

we have ∑
Q∈Q
|f (n)(Q)||Q| ≤ ε/2

But then we also have∑
Q∈Q
|f(Q)||Q| ≤

∑
Q∈Q
|f(Q)− f (n)||Q|+

∑
Q∈Q
|f (n)(Q)||Q| ≤ ε/2 + ε/2 = ε

2

We need some auxiliary observations to simplify future calculations.

Exercise 6 Let f be a martingale, let Q be a collection of pairwise disjoint cubes. Then
the truncation fQ satisfies

‖fQ‖∞ ≤ ‖f‖∞
‖fQ‖1 ≤ ‖f‖1

Moreover, if f is in L1(D) or M(D), then so is fQ.

All of the above depended on a grid D. In what follows we shall relate likewise spaces
for different grids, and see that these spaces have a meaning independent of the grid.
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Lemma 12 If f is a martingale in M(Rn), then the set of all x for which

lim
k→∞

f(Qk,x)

does not converge has Lebesgue measure zero. Here Qk,x is the cube of sidelength k which
contains x.

When the limit as in this lemma converges, we call x a Lebesgue point of f . The lemma
states that almost every point of Rn is a Lebesgue point of f .

Proof: First we argue that f(Qk,x) is bounded above for almost every x. Pick M > 0 and
consider the set of x such that f(Qk,x) is not bounded above by M . This set is contained
in the set of all cubes Q such that f(Q) > M . Let Q be the collection of maximal such
cubes and let E be the set covered by Q. Then

µ(E) =
∑
|Q| ≤M−1

∑
Q

|f(Q)||Q| ≤M−1‖f‖1

Hence the measure of this set is bounded by M−1‖f‖1. By intersection the set of x such
that f(Qk,x) is not bounded above by any positive number has measure 0.

Likewise the set where f(Qk,x)) is not bounded below by any number has measure zero,
and hence this sequence is bounded fopr almost every x.

It then suffices to show that on the set where f(Qk,x) is bounded above and below by M
and −M the sequence f(Qk,x) converges almost everywhere. Note that a bounded sequence
s is convergent if and only if for any pair of rational numbers a < b there are at most finitely
many crossings from a to b, i.e. there are only finite sequences k0, k1, k2, . . . with s(i) ≤ a
for odd i and s(i) ≥ b for even i.

Let −M ≤ a < b ≤ M . There are two cases to consider, a < 0 or b > 0. W.l.o.g. we
assume b > 0, the other case being similar.

Let Q0 be the set of maximal dyadic cubes with f(Q) > b and we do not have |f(Q′)| >
M for any Q′ containing Q, and let E0 be the union of these cubes. The set E0 is finite
since ∑

Q∈Q0

|Q| ≤ b−1
∑
Q∈Q0

|f(Q)||Q| ≤ b−1‖f‖1

Recursively define Qm+1 to be the set of maximal dyadic cubes Q inside Em such that

1. if n is odd, then f(Q) > b and we do not have |f(Q′)| > M for any Q′ larger than M

2. if n is even then f(Q) > b and we do not have |f(Q′)| > M for any Q′ containing Q.

Let Em+1 be the union of the cubes in Qn+1. The sets Em are clearly nested. Clearly
infinite sequences of crossings between a and b can only occur in the intersection of all sets
Em or in the union of cubes satisfying |fQ| ≥M . We thus have to show that the intersection
of sets Em has measure zero.

We show that the measure of these sets is bounded by a geometric decreasing sequence.
For this it suffices to prove that for odd m and each Q ∈ Qm we have∑

Q′∈Qm+1:Q′⊂Q
|Q′| ≤ (1− c)|Q|
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for some c > 0 depending only on M , b and a. Cover the set

Q \
⋃

Q′∈Qm+1:Q′⊂Q
Q′

by a collection Q′ of cubes such that∑
Q′∈Qm+1:Q′⊂Q

|Q′|+
∑
Q′∈Q′

|Q′| ≤ |Q|ε

This can be done by measurability of the union of Qm+1. Let F be the set covered by Q′,
we may assume that Q′ is the set of maximal dyadic cubes contained in F .

Consider a parent Q′′ of a cube Q′ ∈ Q′. The cube Q′′ contains a cube in Qm+1 and
thus satisfies |f(Q′′)| > −M . The same holds for all those children of Q′′ which are not in
Q′. Since by the martingale property

f(Q′′)|Q′′| =
∑

Q′ child of Q′′

f(Q′)|Q′|

we have ∑
Q′ child of Q′′,Q′∈Q′

f(Q′)|Q′| = f(Q′′)|Q′′| −
∑

Q′ child of Q′′,Q′ 6∈Q′
f(Q′)|Q′|

≥ −CM
∑

Q′ child of Q′′,Q′∈Q′
|Q′|

where C may depend on the dimension n
We have by the martingale property:

0 =
∑

Q′⊂Q,l(Q′)=2k

(f(Q′)− f(Q))|Q′|

Using the martingale property again to pass to larger cubes gives

0 =
∑

Q′⊂Q:Q′∈Qm+1

(f(Q′)− f(Q))|Q′|+
∑
Q′∈Q′

(fQ′ − fQ)|Q′|

≥ (b− a)
∑

Q′⊂Q:Q′∈Qm+1

|Q′| − CM
∑
Q′∈Q′

|Q′|

Hence
(b− a)

∑
Q′⊂Q:Q′∈Qm+1

|Q′| ≤ 2M
∑
Q′∈Q′

|Q′|

(b− a)|Q| ≤ [2M + (b− a)]
∑
Q′∈Q′

|Q′|

b− a
2M + (b− a)

|Q| ≤
∑
Q′∈Q′

|Q′|
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And then

(1− b− a
2M + (b− a)

)|Q| ≥
∑

Q′⊂Q:Q′∈Qm+1

|Q′|

This is what we planned to show. Hence |Em| shrinks to zero, hence the sequence f(Qk,x)
converges almost everywhere in the set where f(Qk,x) is bounded by |M | This proves the
lemma. 2

Lemma 13 Let f ∈ L1(R) and let C be some constant. Then the following are equivalent:

1. f(Q) ≤M for all Q

2. We have limk→∞ f(Qk,x) ≤ M for every Lebesgue point x of f except possibly a set
of measure zero.

Proof: It is clear that 1) implies 2), we therefore turn attention to the converse. Assume
we have f(Q) > M + ε for some Q. Since almost every point in Q is a Lebesgue point, and
each Lebesgue point in Q is contained in a cube Q′ ⊂ Q with f(Q′) < M + ε/2, we find a
finite collection Q of such cubes Q′ ⊂ Q which cover a set E of measure at least (1− δ)|Q|.
Let Q′ be the collection of maximal dyadic cubes contained in Q\E, by finiteness of Q this
set is finite and covers Q \ E. We then have by the martingale property∑

Q′∈Q
f(Q′)|Q′|+

∑
Q′∈Q′

f(Q′)|Q′| = f(Q)|Q|

∑
Q′∈Q′

f(Q′)|Q′| =
∑
Q′∈Q′

f(Q)|Q′|+
∑
Q′∈Q

(f(Q)− f(Q′))|Q′|

≥M
∑
Q′∈Q′

|Q′|+ (ε/2)
∑
Q′∈Q

|Q′|

Now for δ small enough the first term on the right hand side is negligible compared to the
second, hence ∑

Q′∈Q′
f(Q′)|Q′| ≥ (ε/4)

∑
Q′∈Q

|Q′| ≥ (ε/8)|Q|

However ∑
Q′∈Q′

|Q′| ≤ δ|Q|

which is a contradiction to the L1 property for δ small enough. 2

Note that this lemma does not hold with L1(D) replaced by M(D), and neither does
the following corollary:

Lemma 14 Assume we have two martingales f , g in L1(D), such that we have the limit
limk→0 f(Qk,x) = limk→0 g(Qk,x) on almost every common Lebesgue point. Then f = g.

Proof: Consider f − g, then by assumption limk→0(f − g)(Qk,x) = 0 on almost every
common Lebesgue point, and hence by the previous Lemma with M = 0 we have (f −
g)(Q) = 0 for all Q. 2.
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Lemma 15 Let E be a measurable set of finite measure. Then

f(Q) := µ(E ∩Q)|Q|−1

defines a martingale f in L1(Rn). We have

‖f‖1 = µ(E)

and on almost every Lebesgue point x the limit limk→−∞ f(Qk,x) is equal to 1E(x) .

Proof: Clearly for any disjoint collection Q of dyadic cubes we have∑
Q∈Q
|f(Q)||Q|−1 =

∑
Q∈Q

µ(E ∩Q) ≤ µ(E)

and hence ‖f‖1 ≤ µ(E). Similarly,∑
Q∈Q
|f(Q)||Q|−1 =

∑
Q∈Q

µ(E ∩Q) ≤
∑
Q∈Q
|Q|

and hence f ∈ L1(D). Next we show that limk→−∞ f(Qk,x) = 1 for almost every Lebesgue
point x in E. Since f(Q) ≤ 1 for every Q, it suffices to show that for every b < 1 the
set F of Lebesgue points in E where limk→−∞ f(Qk,x) < b has measure 0. Cover E by a
collection Q of cubes Q such that

∑
Q∈Q |Q| ≤ |E| + ε and let E′ =

⋃
Q∈QQ. Let Q′ be

some finite collection of cubes Q′ contained in E′ such that f(Q) < b. And let Q′′ be the
maximal cubes contained in E′ but disjoint from all cubes in Q′. Then

µ(E) + ε ≥
∑
Q∈Q
|Q| =

∑
Q′∈Q′

|Q′|+
∑

Q′′∈Q′′
|Q′′|

≥
∑
Q′∈Q′

(1− b)|Q′|+
∑
Q′∈Q′

f(Q′)|Q′|+
∑

Q′′∈Q′′
f(Q′′)|Q′′|

=
∑
Q′∈Q′

(1− b)|Q′|+
∑
Q∈Q

f(Q)|Q| =
∑
Q′∈Q′

(1− b)|Q′|+ µ(E)

Hence ∑
Q′∈Q′

|Q′| ≤ ε/(1− b)

Hence we also have ∑
Q′⊂E′:f(Q)<b′

|Q′| ≤ ε/(1− b)

which shows that the set of Lebesgue points in E with limit at most b has measure at most
ε/(1− b). Since ε was arbitrary, we have µ(F ) = 0.

Similarly we show that the limit on almost all Lebesgue points outside E is 0.
2
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Exercise 7 Let F denote the set of finite linear combinations

n∑
m=1

am1Em

with measurable sets Em and real numbers am. Define the martingale

fQ =
n∑

m=1

amµ(Q ∩ Em)|Q|−1

Then the martingale converges almost everywhere to
∑n

m=1 am1Em, in particular if two
formal linear combinations coincide almost everywhere, then they yield the same martingale.

Lemma 16 The finite linear combinations of characteristic functions of sets of finite mea-
sure are dense in L1(D).

Proof: We use that the set of bounded functions is dense in L1(D) (exercise). Let
f ∈ L1(D). Pick small ε and let Em be the set of Lebesgue points of f with

εm < lim
k→−∞

f(Qk,x) ≤ ε(m+ 1)

This set is measurable (exercise) Let

gε =
∑
m

εm1Em

since f is bounded, all but finitely many summands in this formally infinite sum vanish.
We then have limε→0 ‖f − gε‖1 = 0 (exercise) This proves the lemma.

2

Note that the lemma identifies a dense subclass in L1(Rn) that can be characterized as
functions almost everywhere independently of the grid. This can be used to identify dense
subspaces of L1(D) and L1(D′) for two different grids and show that these subspaces are
canonically isomorphic. Hence L1(D) and L1(D′) are canonically isomorphic.

3 Haar basis

Fix a dyadic grid in Rn. Let Q be a dyadic cube and let QQ denote the set of its children,
there are 2n cubes in QQ.

Consider the space HQ of all martingales f such that f(Q′) = 0 if Q 6⊂ Q or Q′ = Q
and f(Q′) = f(Q′′) if Q′ ⊂ Q′′ and Q′′ ∈ QQ. It is clear that this martingale is determined
by the 2n values f(Q′′) with Q′′ ∈ QQ. Moreover, by the martingale property for the cube
Q, we have a one dimensional constraint∑

Q′′∈QQ

f(Q′′) = 0

and hence HQ is at most 2n − 1 dimensional.
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It is not hard to see that HQ is exactly 2n−1 dimensional. We construct a specific basis
for this space. We parameterize the children

Q′ = I ′1 × . . .× I ′n

of
Q = I1 × In

by tuples q = (q1, . . . , qn) where qj = 0 if I ′j is the left child of Ij and qJ = 1 if I ′j is the
right child of Ij . Then for each further tuple i = (i1, . . . , in) we define the Haar martingale
hQ,i ⊂ HQ by

hQ,i(Q
′) =

n∏
j=1

(−1)ijqj

provided the tuple h is not constant equal to 0.
We have the following identity∑

Q′∈QQ

hQ,i(Q
′)hQ,i′(Q

′) = 0

if i 6= i′ and ∑
Q′∈QQ

hQ,i(Q
′)hQ,i′(Q

′) = 0

Exercise 8 Let f be a martingale which is a finite linear combination of haar martingales

f =
∑
Q∈Q

∑
i

fQ,ihQ,i

Then
fQ,i|Q| =

∑
Q′∈QQ

f(Q′)hQ,i(Q
′)|Q′|

The corefficient fQ,i in the above lemma is called the Haar coefficient of f . It is defined
for every martingale f by

fQ,i|Q| =
∑

Q′∈QQ

f(Q′)hQ,i(Q
′)|Q′|

Note that for a Haar martingale hQ,i evfery point is a Lebesgue point. We may thus
identify the Haar martimngale with a function that is defined everywhere, and called a Haar
function.

4 Hölder continuity

Definition 12 A function f ∈ L1(R) is called α-Hölder continuous if there is a constant
C such that for every dyadic grid and avere Q in the grid we have

‖f − f{Q}‖1 ≤ C|Q|l(Q)α

Here f{Q} denotes the truncation of f with respect to the set {Q}.
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Note that if we interpret f as function almost every where, then ‖f − f{(Q)‖1 is equal to∫
Q
|f(x)− (

1

|Q|

∫
Q
f(y) dy)| dx

Lemma 17 The following are equivalent for a function f ∈ L1(D)

1. The function f is α- Hölder

2. There exists a C such that for every dyadic grid and every Haar coefficient

|fi(Q)| ≤ Cl(Q)α

3. Every point is a Lebesgue point of f and for any x, y ∈ Rn we have

|f(x)− f(y)| ≤ C|x− y|α

There exists a C such that for every dyadic grid and every dyadic cube

‖f − f{(Q)}‖∞ ≤ Cl(Q)α

Proof: We have
fQ,i|Q| =

∑
Q′∈QQ

f(Q′)hQ,i(Q
′)|Q′|

≤
∑

Q′∈QQ

|f(Q′)||Q′| =
∑

Q′∈QQ

|(f − f{Q})(Q′)||Q′| ≤ ‖f − f{(Q)}‖1

This proves that 1) implies 2) Next we have for Q′ ⊂ Q

|f(Q′)− f(Q)| = |
∑

Q′⊂6=Q′′⊂Q
fQ,ihQ,i(Q

′)|

≤
∑

Q′⊂6=Q′′⊂Q
|fQ,i| ≤

∑
l(Q′)<2k≤l(Q)

C ′2αk ≤ Cl(Q)α

This proves that f(Qk,x) is a Cauchy sequence and hence every point is a Lebesgue point.
Let x, y be two points and choose a grid such that there is a cube Q containing x and y
with l(Q) ≤ 2|x− y|. Then applying the above argument and takign a limit we obtain

|f(x)− f(y)| ≤ |f(x)− f(Q)|+ |f(Q)− f(y)| ≤ Cl(Q)α ≤ 2C|x− y|α

This shows that 2) implies 3). Since by 3) we have

|f(x)− f(y)| ≤ Cl(Q)α

we also have
|f(x)− f(Q)| ≤ Cl(Q)α

sicne f(Q) is in teh convex hull of all f(y) with y ∈ Q. Hence 3) implies 4). That 4) implies
1) follows by the triangle inequality. 2

25



Definition 13 A function f ∈ L1(Rn) is called an α- Hölder atom on the cube Q if

f{Q} = 0

and for every dyadic grid and every Q′ in the dyadic grid we have

‖f − f{Q′}‖1 ≤ |Q|(
l(Q′)

l(Q)
)α

Note the following observations (exercise): Hölder atoms are Hölder functions, they are
supported on Q, the satisfy ‖f‖1 ≤ Cα for some universal constant Cα depending only on
α and they have vanishing integral

∫
Rn f(x) dx = 0.

In any grid containing a cube Q′′ with Q ⊂ Q′′ the function has an absolutely convergent
expansion

f =
∑

Q′⊂Q′′

∑
i

fQ′,ihQ,i

5 The Poisson equation for Hölder atoms

Let ∆u = f and assume f is an α-Hölder atom. the purpose of this section is to show that
the entries of the Hessian of u are again (locally) Hölder continuous. As will turn out there
is a particular L1(R) solution u (which by the maximum principle is unique), and we will
establish that this solution is α-Hölder in the definition of the previous section.

Since f can be written as convergent series of linear combinations of Haar functions,
the crucial step is to consider f a Haar function. Sicne each Haar function itself is a linear
combination of characteristic functions of cubes, our previous calculations for cubes will get
us a long ways.

We will analyse DiDju by calculating its Haar coefficients.

Lemma 18 Let Q be some cube and g : DiDjΓ ∗ hQ,i. Then

1. For x 6∈ 10Q, we have

g(x) ≤ C(
dist(Q, x)

l(Q)
)−n−1

2.
‖g‖1 ≤ C|Q|

3. If Q′ is a cube, not necessarily from the same dyadic grid as Q, such that l(Q) < l(Q′)
and

dist(Q, ∂Q′′) ≥ l(Q′)/10

for every child Q′′ of Q′, then

gQ′,i′ ≤ C
l(Q)

l(Q′)
(
dist(Q,∪Q′′∂Q′′)

l(Q′)
)−n−1

where the union runs over the children Q′′ of Q′.
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Proof: Since each Haar function is a linear combination of functions of the form

1Q′ − 1Q′′

with two adjacent cchildren Q′ and Q′′ of Q, it suffies to prove the first two estimates with
the function g replaced by 1Q′ − 1Q′′ . Write Q′′ = Ty(Q

′) where y is a multiple of length
l(Q) of a standard basis vector of Rn, say the k-th basis vector. Then we have for x 6∈ 10Q

DiDjΓ ∗ (1Q′ − 1Q′′)(x)

= (DiDjΓ ∗ 1Q′)(x)− Ty(DiDjΓ ∗ 1Q′)(x)

= |y|
∫ 1

0
Dk(DiDjΓ ∗ 1Q′)(x+ ty) dt

By the estimates on the thrid partials of Γ ∗ 1Q′ we have (noting the distance from x to Q
and from +ty to Q are the same within a factor of 2)

|DiDjΓ ∗ (1Q′ − 1Q′′)(x)| ≤ |y|
∫ 1

0
Cl(Q)−1(

dist(Q, x)

l(Q)
)−n−1 dt

= C(
dist(Q, x)

l(Q)
)−n−1

This proves the first estimate.
Since the pointwise estimate outside 10Q that is established in the frist inequality in-

tegrates to C|Q|, it suffices to estimate the L1 norm of g restricted to 10Q. But the L1

norm on 10Q of DiDjΓ ∗ 1Q′ for any child Q′ of Q is bounded by C|Q| given the estimates
estbalished before, hence the second estimate follows.

To see the third estimate, we note that

(DiDjΓ ∗ hQ,i, hQ′,i′) = −(hQ,i, DiDjΓ ∗ hQ′,i′)

by antisymmetry of the kernel (and some technical arguments since the kernel is not inte-
grable), it suffices to estimate

(hQ,i, DiDjΓ ∗ 1Q′′)

for every childQ′′ ofQ′. Writing again hQ,i as linear combination of differences of characetris-
tic functions of neighboring cubes as before, and unsing esrtimates for the derivativeDkDiDjΓ∗
1Q′ establishes the third estimate.

2

Now let f be an α-Hölder atom on a cube Q0. We plan to estimate the Haar coefficient

(DiDjΓ ∗ f)Q,i

Choose a grid such that both Q and Q0 are contaiend in the middle 90 percent of cubes of
six times the sidelength, this is possible (exercise). let Q1 be that cube containing Q0.

Write f as an expansion ∑
Q′⊂Q1

fQ′,ihQ′,i
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We split this into three terms. The first term is∑
Q′⊂Q1:Q′⊂100Q

fQ′,ihQ′,i

We then have
|(DiDjΓ ∗

∑
Q′⊂Q1:Q′⊂100Q

fQ′,ihQ′,i, hQ,i)|

≤ ‖DiDjΓ ∗
∑

Q′⊂Q1:Q′⊂100Q
fQ′,ihQ′,i‖1

≤
∑

Q′⊂Q1:Q′⊂100Q
|fQ′,i|‖DiDjΓ ∗ hQ′,i‖1

≤
∑

Q′⊂Q1:Q′⊂100Q
|fQ′,i||Q′|

≤
∑
k<10

∑
Q′⊂Q1:Q′⊂100Q:2kl(Q′)=l(Q)

C2αk(
l(Q)

l(Q0)
)α|Q′|

≤ C
∑
k<10

2αk(
l(Q)

l(Q0)
)α|Q|

≤ C(
l(Q)

l(Q0)
)α|Q|

This is the desired estimate for the first term.
The next term is the sum over the set

Q′ ⊂ Q1 : l(Q′) ≤ l(Q), Q′ 6⊂ 100Q

We split this set further by a parameter m ≥ 0 into sets

Qm = Q′ ⊂ Q1 : l(Q′) ≤ l(Q), Q′ ⊂ 2m+1Q,Q′ 6⊂ 2m100Q

It suffices to consider these sets separately, proving an estimate that decays geometrically
in m. We have

|(DiDjΓ ∗
∑

Q′∈Qm

fQ′,ihQ′,i, hQ,i)|

= |(
∑

Q′∈Qm

fQ′,ihQ′,i, DiDjΓ ∗ hQ,i)|

≤ ‖
∑

Q′∈Qm

fQ′,ihQ′,i‖12−m(n+1)

where we use the pointwise bound of

DiDjΓ ∗ hQ,i

on Q′. Now the L1 norm is estimate by the estimates of the Hölder atom,

≤
∑

Q′∈Qm

|fQ′,i||Q′|2−m(n+1)
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≤ C
∑
k<10

2kα(
l(Q)

l(Q0)
)α

∑
Q′∈Qm,2kl(Q′)=l(Q)

|Q′|2−m(n+1)

≤ C
∑
k<10

2kα(
l(Q)

l(Q0)
)α2nm|Q|2−m(n+1)

≤ C2−m(
l(Q)

l(Q0)
)α|Q|

Finally we consider the sum

(DiDjΓ ∗
∑

Q′:l(Q′)>10l(Q)

fQ′,i′hQ′,i′ , hQ,i)

≤
∑

Q′:l(Q′)>10l(Q)

C|Q|( l(Q
′)

l(Q0)
)α
l(Q)

l(Q′)
(
dist(Q,∪Q′′∂Q′′)

l(Q′)
)−n−1

≤
∑
k>10

∑
Q′:l(Q′)=2kl(Q)

C|Q|2−k2αk( l(Q)

l(Q0)
)α(1 +

dist(Q,Q′)

l(Q′)
)−n−1

Here we have used that Q is not close to the boundary of any of the children of Q′. Using
α < 1 the last display is then bounded by

≤
∑
k>10

C|Q|2−k+αk( l(Q)

l(Q0)
)α ≤ C|Q|( l(Q)

l(Q0)
)α

The condition α < 1 is used here but not crucial, a modification of the argument, using
that f is an atom, will give the result without this assumption.
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