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Abstract. A new approach to Wittwer’s inequality is given, resulting in a new version
with arbitrary and in particular non-doubling reference measure. The approach combines
embeddings into outer measure spaces with a core concavity argument. Specifically, we prove
that finiteness of the quantity Q = supJ 〈w〉J〈w−1〉J , defined through averages 〈.〉J relative
to the reference measure ν, implies that each martingale transform relative to ν is bounded
in L2(w dν).

1. Notations and results

Following [12], by Wittwer’s inequality we mean an inequality of the form∑
I∈D

|(f, hI)(g, hI)| ≤ A(sup
I∈D

[w]I [w
−1]I)‖f‖w−1‖g‖w .

Here the interval I runs through the set D of all dyadic intervals of some dyadic lattice on
R, the function hI is the L2(R) normalized Haar function on I, and the brackets (, ) denote
the inner product in L2(R). On the right-hand-side of the inequality appears a weight w,
a measurable function such that w and w−1 are locally integrable. The average of w over
an interval I is denoted by [w]I . We let dν be Lebesgue measure and identify w with the
measure wdν. We denote by ‖f‖w the norm in the weighted Hilbert space L2(w) defined by
‖f‖2w =

´
|f(x)|2w(x) dν(x). The constant A is absolute. By the duality relation

‖h‖w = sup
‖f‖w−1=1

|(f, h)| ,

Wittwer’s inequality is the dual form of an L2(w) norm bound of an arbitrary Haar multiplier
operator with bounded coefficients, also called zero-shift operator or martingale transform
operator for the dyadic martingale. Hence Wittwer’s inequality states that the norm of
such an operator is at most proportional to the A2 constant supI∈D [w]I [w

−1]I of the weight.
The present paper originates from an attempt to understand and possibly simplify the well
known proof of Wittwer’s inequality using the language of Lp theory for outer measure spaces
delevoped in [1]. As a result of these efforts, we found a generalization of Wittwer’s inequality
relative to arbitrary and in particular in general non-doubling reference measures ν, see
Theorem 1.1 below. This level of generality of Wittwer’s inequality came as a surprise to us.
We describe the general setup in detail. Let ν be a locally finite positive measure on R. We
shall make the qualitative assumption ν(I) > 0 for each dyadic interval I, so that all our
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expressions are well defined. Starting from arbitrary ν one might consider the measure ν + ε
for a small constant ε to obtain strict positivity of the new measure on all I. Since none
of our estimates will depend on ε, one may consider ε tending to zero whenever one applies
our main theorem in a setting that is well defined for arbitrary ν. Hence our qualitative
assumption is not very restrictive. We consider the Hilbert space L2(dν), the Hilbert space
whose norm can be defined by ‖f‖2ν =

´
|f |2 dν. We write (f, g)ν for the inner product in

this Hilbert space. We introduce a new bracket for averages with respect to the measure ν:

〈w〉I =
1

ν(I)

ˆ
I
w(x) dν(x) .

The Haar system with respect to ν is the orthonormal basis in L2(dν) consisting of functions
hνI parameterized by the dyadic intervals I, supported on this interval and constant on each
of the two dyadic children of this interval. We will no longer be explicity concerned with the
special case of ν being the Lebesgue measure, hence we will identify w with the measure wdν
and w−1 with the measure w−1dν for the general measure ν.

Theorem 1.1. We have for every weight function w such that w and w−1 are measurable and
absolutely continuous with respect to ν and locally integrable with respect to ν the inequality

(1.1)
∑
I∈D

|(f, hνI )ν(g, hνI )ν | ≤ A(sup
I∈D
〈w〉I〈w−1〉I)‖f‖w−1‖g‖w

for some absolute constant A. Moreover, we have for each dyadic interval I the local inequality

(1.2) |〈g〉I〈f〉I | ν(I) +
∑

J∈D(I)

|(f, hνJ)ν(g, hνJ)ν | ≤ A( sup
J∈D(I)

〈w〉J〈w−1〉J)‖f1I‖w−1‖g1I‖w ,

where D(I) denotes the collection of dyadic intervals contained in I.

The number supI∈D〈w〉I〈w−1〉I may be called the relative A2 constant of w with respect to
the reference measure ν. Note that the global inequality follows from the local inequality by a
limiting argument, approximating f and g by functions of bounded support. Our proof of the
theorem will then only be concerned with the local inequality. Note further that the first term
in the local inequality, the martingale average term, is easily estimated by Cauchy–Schwarz:

|〈g〉I〈f〉I | ν(I) ≤ A(〈w〉I〈w−1〉I)1/2‖f1I‖w‖g1I‖w−1 .

Since the A2 constant is always bounded below by 1 by another Cauchy–Schwarz,

1 = ν(J)−1
ˆ
J
w1/2w−1/2dν ≤ (〈w〉J〈w−1〉J)1/2 ,

the square root on the right-hand-side of the previous display can be ignored and one obtains
the desired bound for the martingale average term. It will then suffice to estimate the
martingale difference term on the left hand side of (1.2). Note further that the theorem can
be interpreted on any martingale which is equivalent to the real line or a dyadic interval.
Consider the family of martingale transform operators on an interval I:

g → ε〈g〉I1I +
∑

J∈D(I)

εJ(g, hνJ)νh
ν
J , ε, εJ = ±1 .

The local Wittwer inequality (1.2) means precisely that the martingale transform operators
are bounded in L2(w) uniformly over the choices of ε, εJ , with norm at most the relative
A2 constant. Conversely, if for fixed w the martingale operators are uniformly bounded in
L2(w) by some constant C, then we can easily conclude that the A2 constant of w relative
to ν on the interval I is finite and bounded by C2. Namely, for any subinterval J ⊂ I there
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is a martingale transform operator T which averages functions relative to ν on subintervals
of length |J |, so that

T (g1J) = 〈g〉J1J .

Then we have
〈w〉J〈w−1〉J = (T (w1J), w−1)νν(J)−1

≤ C‖w1J‖w−1‖w−11J‖wν(J)−1 = C(〈w〉J〈w−1〉J)1/2 .

Dividing the inequality by the square root term appearing on the right-hand-side and squaring
the resulting inequality proves the claim.

Corollary 1.2. The condition that the relative A2 constant is finite is equivalent to uniform
boundedness in L2(w) of all martingale transform operators on I relative to ν.

While our simple necessity argument leaves a discrepancy in power dependence on the
A2 constant between the sufficient an necessary condition, it is well known that in the case
of ν being Lebesgue measure the first power in the A2 constant in Wittwer’s inequality is
sharp. This can be seen by testing similar functions as above but supported on sibling dyadic
intervals.

We outline the proof of the generalized Wittwer inequality. We consider the Haar system
hwI relative to L2(w) and expand the Haar function hνI as

hνI = αwI h
w
I + ρwI χ

w
I ,

where χwI is a multiple of the indicator function of I, normalized in L2(w). Similarly we
proceed with w−1 in place of w. The martingale difference term in Wittwer’s inequality
involves a tensor product of two Haar functions, which we expand as

hνI ⊗ hνI = I + II + III + IV =

αwI α
w−1

I hwI ⊗ hw
−1

I + αwI ρ
w−1

I hwI ⊗ χw
−1

I + ρwI α
w−1

I χwI ⊗ hw
−1

I + ρwI ρ
w−1

I χwI ⊗ χw
−1

I .

By the triangle inequality we reduce Wittwer’s inequality to four inequalities along the above
decomposition. The first inequality is easiest and estimated by an l∞×l2×l2 Hölder inequality∑

J∈D(I)

|αwJ αw
−1

J (f, hwJ )ν(g, hw
−1

J )ν |

≤ sup
J∈D(I)

|αwJ αw
−1

J |

 ∑
J∈D(I)

|(f, hwJ )ν |2
1/2 ∑

J∈D(I)

|(g, hw−1

J )ν |2
1/2

.

Using the trivial but elucidating identification (f, hwJ )ν = (fw−1, hwJ )w and analoguously for
g, and using orthonormality of the respective Haar systems, we estimate term I by

≤ ( sup
J∈D(I)

|αwI αw
−1

I |)‖fw−11I‖w‖gw1I‖w−1 = ( sup
J∈D(I)

|αwI αw
−1

I |)‖f1I‖w−1‖g1I‖w .

The explicit calculation of the α-s in (2.6) below reveals that

sup
J∈D(I)

|αwI αw
−1

I | ≤ sup
J∈D(I)

〈w〉J〈w−1〉J

and concludes the proof for term I. The remaining terms, of which by symmetry we only
need to estimate III and IV , will be done in analogous but more involved steps. We can
write the above Hölder inequality as∑

J∈D(I)

|αwJ αw
−1

J (f, hwJ )ν(g, hw
−1

J )ν | ≤ ‖αwJ ρw
−1

J ‖l∞ × ‖(f, hwJ )ν‖l2 × ‖(g, hw
−1

J )ν‖l2 .
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We will replace the norms on the right-hand-side by more elaborate outer Lp norms as
introduced in [1]. The estimation by such norms will use a successive combination of Cauchy–
Schwarz and outer measure space Hölder inequalities, and has the effect of separating the
contributions from the function f , the function g, and the factor involving α-s and ρ-s. We
will review the important definitions and facts about outer Lp theory in the present paper.
The use of orthogonality of the Haar systems above can be summarized as

‖(fw−1, hwJ )w‖l2 ≤ C‖fw−1‖w ,

an inequality whose more involved pendants in outer Lp theory we will call embedding the-
orems. Somewhat at the heart of the matter will then be the control of the terms involving
the coefficients α and ρ, these terms depends only on the weight w and the measure ν, but
not on the functions f or g. In the above case I, the relevant embedding theorem turns out
quite trivial and reads as

‖αwJ αw
−1

J ‖l∞ ≤ C sup
J⊂I
〈w〉J〈w−1〉J .

This inequality initially may seem as a bilinear embedding theorem in the functions w and
w−1. However, the right-hand-side is not merely a product of two norms, one measuring w
and the other measuring w−1, but it is an intermingled expression which at each interval J
separately multiplies quantities involving w and w−1. Ultimately one needs to incorporate
the nonlinear dependence of w and w−1 at every interval J . Thus the latter embedding
theorem is of more nonlinear type. In cases III and IV we will use concavity arguments, that
is arguments of Bellmann function type, to prove these nonlinear embedding theorems. A
specialty in case IV occurs, where we do not separate the functions f and g from each other,
but prove directly a bilinear embedding theorem for these two functions. The reason is that
one has to again use the interplay between w and w−1 at every scale.

We comment a bit on the history of the subject. Wittwer’s inequality, especially linearity in
the A2 constant, proved in [12] for ν = dx, was a quite non-trivial fit. The proof was heavily
based on a rather difficult two weight estimate of [6], prompting us to seek a simpler proof.
The sharp dependence on the A2 constant was later used very essentially by Petermichl–
Volberg [8] to find a sharp weighted estimate for the Ahlfors–Beurling operator. In turn their
result on the Ahlfors–Beurling operator applies to give sharp regularity estimates for the
Beltrami euqtion and solve the Astala–Iwaniec–Saksman problem. For the Hilbert transform
the linear estimate in terms of the A2 characteristic was done later by Petermichl in [9]. The
full generality of the A2 conjecture, that is the linear–in–A2 bound for all Calderón–Zygmund
operators, was done by Hytönen in [2]. More recently there were different proofs, e. g. in
[3] and in Lerner’s work [4]. All this has been done with respect to underlying Lebesgue
measure and was later adopted to the case of doubling underlying measure. Recently Treil–
Volberg [10] proved a result about weighted singular shifts in the non-homogeneous situation.
In this paper the authors asked specifically about the conditions on the boundedness of the
martingale transform for arbitrary ν. We answer this question here.

For the unweighted case of the boundedness of martingale transform in Lp(ν) for arbitrary
ν one can consult the celebrated series of papers by Burkholder. A very interesting approach
to other dyadic singular operators and their boundedness in unweighted Lp(ν) one can find
in [?].

The authros are grateful to Carlos Pérez for organizing an inspiring Summer School in
Santander, Spain, where the research on this paper was initiated.
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2. Boundedness of term III

This section is devoted to proving the desired bound for term III, that is∑
J∈D(I)

|ρwJ αw
−1

J (f, χwJ )ν(g, hw
−1

J )ν | ≤ A( sup
J∈D(I)

〈w〉J〈w−1〉J)‖f1I‖w−1‖g1I‖w .

We denote

(2.1) Q := sup
J∈D(I)

〈w〉J〈w−1〉J .

We begin with applying the Cauchy–Schwarz inequality, estimating the left-hand-side of the
desired inequality by ∑

J∈D(I)

|ρwJ αw
−1

J (f, χwJ )ν |2
1/2 ∑

J∈D(I)

|(g, hw−1

J )ν |2
1/2

.

The second factor is estimated as in the considerations for term I by ‖g1I‖w. It then remains
to prove

(2.2)

 ∑
J∈D(I)

|ρwJ αw
−1

J (f, χwJ )ν |2
1/2

≤ AQ‖f1I‖w−1dν .

We intend to further separate f from the product of α and ρ. This will be done by an outer
Hölder inequality. We first review the relevant notions from [1]. We consider the collection
D(I) of dyadic intervals as an outer measure space. The outer measure of an arbitrary subset
K of D(I) is defined by coverings of K by collections D(J). Precisely, define the outer measure

µν(K) := inf
K⊂

⋃
J∈J D(J)

(∑
J∈J

ν(J)

)
.

We also define an outer measure relative to w:

µw(K) = inf
K⊂

⋃
J∈J D(J)

(∑
J∈J

w(J)

)
.

and similarly for w−1. Given a function H : D(I) → C we define the following sizes of this
function

Spν(H,D(J)) :=

 1

ν(J)

∑
K∈D(J)

|H(K)|pν(K)

1/p

,

Spw(H,D(J)) :=

 1

w(J)

∑
K∈D(J)

|H(K)|pw(K)

1/p

,

and
S∞(H,D(J)) := sup

K∈D(J)
|H(K)| ,

where the last definition is independent of the underlying measure ν or w. We define analogous
sizes for w−1. For S any of the above sizes, we define the outer L∞ norm

‖H‖L∞(D(I),ν,S) := sup
J∈D(I)

S(H,D(J)) .
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Moreover, define for λ > 0 and any of the sizes S the super level measure

µν(S(H) > λ) := inf
K⊂D(I):‖H1D(I)\K‖L∞(D(I),ν,S)<λ

µν(K) .

This is a generalization of the usual outer measure of the set of all J with H(J) > λ, but in
general it is an abstract version of this notion which only coincides with the classical case if S
is the S∞ size. Finally we define the outer Lp norm with respect to the size S for 1 < p <∞
by the Choquet integral

‖H‖Lp(D(I),ν,S) =

(ˆ ∞
0

λp−1µν(S(H) > λ) dλ

)1/p

.

Again we define similar notions with the measure ν replaced by w or w−1 throughout. By
the Radon–Nikodym lemma of [1], which we will sketch in the appendix, we can estimate the
left-hand-side of (2.2) as ∑

J∈D(I)

|ρwJ αw
−1

J (f, χwJ )νw(J)−1/2|2w(J)

1/2

≤ ‖ρwJ αw
−1

J (f, χwJ )νw(J)−1/2‖L2(D(I),w,S2
w)
.

This is a generalization of the fact that a square sum is - or at least is controlled by - an L2

norm. By the outer Hölder inequality of [1], which we will also sketch in the appendix, the
right-hand-side of the last display can be estimated by

‖ρwJ αw
−1

J ‖L∞(D(I),w,S2
w)
× ‖(f, χwJ )νw(J)−1/2‖L2(D(I),w,S∞) .

For the reader unfamiliar with the notion of outer measure spaces, we highlight that such an
outer Hölder inequality has two levels, one Hölder type inequality at the level of sizes, here
with exponents 2 × ∞ → 2, and one at the level of outer Lp norms, here with exponents
∞ × 2 → 2. The term involving f is estimated by the following lemma, which essentially
encodes boundedness of the w-Hardy Littlewood maximal operator in the space L2(w).

Lemma 2.1. Consider the embedding map h→ H given by H(J) = w(J)−1/2(h, χwJ )w. Then
this is a bounded operator from the standard L2(w) into the outer L2(D(I), w, S∞).

Proof. Fix λ > 0 and consider the maximal intervals J ∈ D(I) such that

H(J) > λ.

Call the family of such intervals Hλ. Since H(J) is the average of h on the interval J
with respect to the measure w, we observe with Md

w denoting the dyadic Hardy–Littlewood
operator relative to the measure w, that for any J ∈ Hλ and x ∈ J

λ < H(J) ≤ (Md
wh)(x) .

Hence

w{∪J∈HλJ} ≤ w{x : Md
wh(x) > λ}.

If we consider the new function in D(I), call it K, which is equal to H(J) in D(I)\∪J∈HλD(J)
and zero in ∪J∈HλD(J), we readily see that ‖K‖L∞(D(I),w,S∞) ≤ λ. Therefore, by the defini-

tion of the outer measure space L1(D(I), w, S∞) we have

µw(S∞(H) > λ) ≤ w{∪J∈HλJ} ≤ w{x : Md
wh(x) > λ}.
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Now taking the Choquet integral on both sides gives

‖H‖2L2(D(I),w,S∞) ≤‖M
d
wh‖2w ≤ A‖h‖2w.

�

Applying this lemma with h = fw−1 estimates

‖(f, χwJ )νw(J)−1/2‖L2(X,µw,S∞) ≤ ‖f1I‖L2(w−1) .

It then remains to show that

‖ρwJ αw
−1

J ‖L∞(X,µw,S2
w)
≤ AQ .

This inequality means that for all J ⊂ I we have to prove

(2.3)

 ∑
K∈D(J)

|ρwKαw
−1

K |2w(K)

1/2

≤ AQ(w(J))1/2 .

By the Radon–Nikodym lemma as above we may estimate the left-hand-side as ∑
K∈D(J)

|ρwKαw
−1

K 〈w〉1/2K |
2ν(K)

1/2

≤
∥∥∥ρwKαw−1

K 〈w〉1/2K

∥∥∥
L2(D(J),ν,S2

ν)

=

∥∥∥∥∥ρwKαw−1

K 〈w〉1/2K 〈w
−1〉1/2K

1

〈w−1〉1/2K

∥∥∥∥∥
L2(D(J),ν,S2

ν)

.

Using an outer Hölder’ inequality we may estimate this by∥∥∥ρwKαw−1

K 〈w〉1/2K 〈w
−1〉1/2K

∥∥∥
L∞(D(J),ν,S2

ν)

∥∥∥∥∥ 1

〈w−1〉1/2K

∥∥∥∥∥
L2(D(J),ν,S∞ν )

.

Now we have the following nonlinear embedding theorem.

Lemma 2.2. Let h be a positive function on R, h, h−1 ∈ L1(R, dν). Consider the function
H on D(J) given by the formula H(K) = 1

〈h−1〉1/2K

for K ∈ D(J). Then H ∈ L2(D(J), ν, S∞)

with norm bounded by 2‖h‖ν .

Proof. Again we fix λ > 0 and denote by Hλ the collection of maximal dyadic intervals K ⊂ J
such that H(K) > λ. For such K we define

EK := {x ∈ K : h−1(x) ≤ 2〈h−1〉K} .

Then ν(EK) ≥ 1
2ν(K). On the other hand, on our maximal K, we have

x ∈ EK ⇒ λ2 <
1

〈h−1〉K
≤ 2h(x) .

This inequality implies

µν(S∞(H) > λ2) ≤ ν(∪K∈HλK) ≤ 2
∑
K∈Hλ

ν(EK) = 2ν(∪K∈HλEK) ≤ 2ν{x : h(x) ≥ λ2/2} .

Taking the Choquet integral on both sides proves the lemma. �
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Applying the lemma, we have reduced (2.3) to showing∥∥∥ρwKαw−1

K 〈w〉1/2K 〈w
−1〉1/2K

∥∥∥
L∞(D(J),ν,S2

ν)
≤ AQ .

This means that we need to show for any subinterval K of J

(2.4)
∑

L∈D(K)

(ρwLα
w−1

L )2〈w〉L〈w−1〉Lν(L) ≤ AQν(K) .

We calculate the α-s and ρ-s. For any I ∈ D we denote by I+ the left child and by I− the
right child. We observe that with the quantities

(2.5) hνI (x) =


√

ν(I−)
ν(I+)ν(I) if x ∈ I+

−
√

ν(I+)
ν(I−)ν(I)

, if x ∈ I−

the collection hνI is indeed an orthonormal set in L2(dν). Note further that χνI = 1Iν(I)−1/2.
By taking inner products we calculate

αwI = (hνI , h
w
I )w =

√
ν(I−)w(I−)

ν(I+)ν(I)w(I+)w(I)
w(I+) +

√
ν(I+)w(I+)

ν(I−)ν(I)w(I−)w(I)
w(I−)

=
ν(I−) + ν(I+)

ν(I)

√
w(I+)w(I−)ν(I)

ν(I+)ν(I−)w(I)
= 〈w〉1/2I+

〈w〉1/2I−
〈w〉−1/2I ,

ρwI = (hνI , χ
w
I )w =

√
ν(I−)

ν(I+)ν(I)w(I)
w(I+)−

√
ν(I+)

ν(I−)ν(I)w(I)
w(I−)

=

(
ν(I+)ν(I−)

ν(I)ν(I)

)1/2 (
〈w〉I+ − 〈w〉I−

)
〈w〉−1/2I .

Analogous identities hold for w−1. With these calculations we pause to complete the proof
of case I by the observation that 〈w〉I〈w−1〉I ≥ 1 and thus

(2.6) αwI α
w−1

I ≤
(
〈w〉I+〈w−1〉I+〈w〉I−〈w−1〉I−

〈w〉I〈w−1〉I

)1/2

≤ Q .

Continuing with term III, we calculate

(ρwLα
w−1

L )2〈w〉L〈w−1〉L =

(
ν(I+)ν(I−)

ν(I)ν(I)

)
〈w−1〉I+〈w−1〉I−

(
〈w〉I+ − 〈w〉I−

)2
.

To proceed further, we need to find a suitable concave function. Define

B1(u, v) := (uv)1/2

B2(u, v) := −(uv)2

and

B(u, v) := CQ3/2B1(u, v) +B2(u, v)

for sufficiently large absolute constant C to be determined later. The crucial point of this
function B is the following uniform concavity property on the domain

ΩQ = {(u, v) : 0 < u, 0 < v, uv ≤ Q} .
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Lemma 2.3. Let α+, α− be positive with α+ + α− = 1. For any triple

x = (u, v), x+ = (u+, v+), x− = (u−, v−)

of points in ΩQ with

x = α+x
+ + α−x−

we have

α−α+v
+v−(u+ − u−)2 ≤ C(B(u, v)− α+B(u+, v+)− α−B(u−, v−)) .

Before we prove this lemma, we will indicate how it finishes the estimate of term III. We
apply the lemma for each L ⊂ K with α+ = ν(L+)/ν(L) and α− = ν−(L)/ν(L) and

(u, v) = (〈w〉L, 〈w−1〉L) ,

(u+, v+) = (〈w〉L+ , 〈w−1〉L+) ,

(u−, v−) = (〈w〉L− , 〈w−1〉L−) .

Notice that indeed

〈w〉I = α+(I)〈w〉I+ + α+(I)〈w〉I−
and likewise for w−1. Multiplying the inequality obtained by the lemma by ν(L) yields

〈w−1〉L+〈w−1〉L−(〈w〉L+)− 〈w〉L−)2
ν(L+)ν(L−)

ν(L)ν(L)
ν(L)

≤ C
(
B(u, v)ν(L)−B(u+, v+)ν(L+)−B(u−, v−)ν(L−)

)
.

Adding over all the inequalities obtained, noting cancellation of most terms on the right hand
side since all intervals other than K appear once as parent and once as child yields formally∑

L∈D(K)

ρwLα
w−1

L 〈w〉1/2L 〈w
−1〉1/2L ν(L) ≤ B(〈w〉K〈w−1〉K)ν(K) ≤ AQ2ν(K) .

This formal sum is infinite, however rigorous justification is easily done by truncating the
sum at some small scale |L| and using positivitiy of the function B to obtain the inequality
for the truncated sum. Since the sum has only positive summands, the limit inequality is
readily seen. This shows (2.3) and thus completes the proof of case III, save for the proof of
the above lemma which we now present.

Proof. We note that B1(u, v) is concave in the quadrant u > 0, v > 0 in the sense that for
any triple as in the lemma

B1(u, v)− α−B1(u
−, v−)− α+B1(u

+, v+) ≥ 0 .

To see this, it suffices to observe that the Hessian of B1 is negative semi–definite in this
quadrant, namely

d2(
√
uv) =

−
1

4

√
v

u3
1

4
√
uv

1

4
√
uv

−1

4

√
u

v3

 ,

and this matrix has determinant zero and is therefore is negative semi–definite since the
entries on the diagonal are negative in the given quadrant. We also note that B∗(u, v) =
1
2CQ

3/2B1(u, v) + B2(u, v) is concave in ΩQ. To see this, let ∆u := u+ − u−,∆v = v+ − v−
so that

u+ = u+ α−∆u, u
− = u− α+∆u; v+ = v + α−∆v, v

− = v − α+∆v .
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We calculate, using convexity of x→ x2

(2.7) B2(u, v)− α−B2(u
−, v−)− α+B2(u

+, v+)

≥ −(uv)2 + (α−u
−v− + α+u

+v+)2

= −(uv)2 + (uv + α−α+∆u∆v)
2

= 2α−α+uv∆u∆v + α−α+(∆u∆v)
2

≥ 2α−α+uv∆u∆v .

If ∆u∆v ≥ 0 then the concavity property of B∗ follows from this calculation and concavity of
B1. Consider ∆u∆v < 0, then we need to more carefully invoke the term B1. Using concavity
of x→

√
x we calculate

B1(u, v)− α−B1(u
−, v−)− α+B1(u

+, v+)

≥
√
uv −

√
α−u−v− + α+u+v+

=
√
uv −

√
uv + α−α+∆u∆v

≥ − 1

2
√
uv
α−α+∆u∆v .

This together with uv ≤ Q shows that for sufficiently large C we have concavity of B∗ in
case ∆u∆v < 0. Collecting cases, we have even more shown that for sufficiently large C and
arbitrary sign of ∆u∆v:

(2.8) B(u, v)− α−B(u−, v−)− α+B(u+, v+) ≥ cuvα−α+|∆u∆v| .
We pause our main line of reasoning to observe for later purpose that the same arguments
work for a modified function B̃ with linear rather than quadratic term in uv. Namely, set
B̃2(u, v) = −uv and

B̃(u, v) = CQ1/2B1(u, v) + B̃2(u, v) .

Then we have

(2.9) B̃(u, v)− α−B̃(u−, v−)− α+B̃(u+, v+) ≥ cuvα−α+|∆u∆v| ,
which follows the same way as above by expanding in lieu of (2.7)

B̃2(u, v)− α−B̃2(u
−, v−)− α+B̃2(u

+, v+) = uvα−α+∆u∆v .

We continue the main line of reasoning for the proof of the lemma and claim :

Lemma 2.4. For triples in the domain ΩQ we have that

B(u, v)− α−B(u−, v−)− α+B(u+, v+) ≥ cα−α+v
+v−∆2

u

(2.10) B(u, v)− α−B(u−, v−)− α+B(u+, v+) ≥ cα−α+u
+u−∆2

v

for sufficiently small absolute c.

We prove Lemma (2.4). By symmetry, it suffices to prove (2.10). By invariance of the
inequality under the scaling u → λu and v → λ−1v we may assume throughout that u = v.
We split into several cases.

Case 1: We consider |∆u| > Nu for some large constant N .
Case 1a: We consider in addition |∆v| > Nv. Then expanding B2 we obtain

B2(u, v)− α−B2(u
−, v−)− α+B2(u

+, v+)

= −(uv)2 + α−(u−v−)2 + α+(u+v+)2 =

−(uv)2 + α−(uv − α+u∆v − α+∆uv + α2
+∆u∆v)

2 + α+(uv + α−u∆v + α−∆uv + α2
−∆u∆v)

2
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= α+α−(α3
+ + α3

−)(∆u∆v)
2(1 +O(N−1))

≥ 1

8
α+α−(∆u∆v)

2

for sufficiently large N . But we have under the given case assumptions u+ ≤ 2|∆u| and
u− ≤ 2|∆u| and hence

1

8
α+α−(∆u∆v)

2 ≥ cα−α+u
+u−∆2

v .

Together with concavity of B1 this completes the proof in Case 1a.
Case 1b: We now consider |∆v| ≤ Nv, still in addition to |∆u| > Nu. Then we simply

have
u−u+ ≤ min(u−, u+)(u+ |∆u|)| ≤ 2u|∆u|

and hence
cα−α+u

−u+∆2
v ≤ 2cNα−α+uv|∆u∆v| .

The desired inequality (2.10) now follows from (2.8) for small c depending on N . This
completes the Case 1b.

Case 2: |∆u| ≤ Nu. We consider first
Case 2a: |∆v| > N2v. Then we have with u+v+ ≤ Q and u−v− ≤ Q and max(u−, u+) ≤

2Nu
u−u+ max(v+, v−) ≤ max(u−, u+)Q ≤ 2NuQ ,

and hence with |∆v| ≤ max(v+, v−)

cα−α+u
−u+∆2

v ≤ 2cNQα−α+u|∆v| .
By concavity of B∗ it suffices to show for some appropriate c

cNα−α+u|∆v| ≤ Q1/2(B1(u, v)− α−B1(u
−, v−)− α+B1(u

+, v+)) .

Using Q > uv = u2 it suffices to show

cNα−α+|∆v| ≤ B1(u, v)− α−B1(u
−, v−)− α+B1(u

+, v+) .

Assume without loss of generality v− < v < v+. So ∆v > 0. Then we have

B1(u, v)− α−B1(u
−, v−)− α+B1(u

+, v+)

= (B1(u, v)−B1(u
−, v−)) + α+(B1(u

−, v−)−B1(u
+, v+)) .

We will establish that the first term dominates the second. To estimate the second term from
above we note

α+(|B1(u
−, v−)|+ |B1(u

+, v+)|) ≤ 2α+

√
(u+ |∆u|)(v + |∆v|)

≤ 2α+

√
(v +Nv)2|∆v| ≤ 2α+

√
4(|∆v|/N)|∆v|

≤ 4α+N
−1/2∆v .

Now we estimate the first term. By the mean value theorem we have for m a certain value
between uv and u−v−.

B1(u, v)−B1(u
−, v−) =

√
uv −

√
u−v−

=
uv − u−v−

2
√
m

=
u(v − v−)− (u− − u)v−

2
√
m

.

The first summand in the numerator dominates the second. Namely, since the vector x+−x−
has the same direction and x− x−, we have |u− u−| < N−1|v − v−| and

|u− u−|v− < |u− u−|v = |u− u−|u ≤ N−1u|v − v−| .
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Hence
|B1(u, v)−B1(u

−, v−)| ≥
u|v − v−|

4
√
m

=
uα+∆v

4
√
m

Since the direction x− x− is facing nearly north, we have u−v− < uv and hence m < uv and
hence with u = v

|B1(u, v)−B1(u
−, v−)| ≥ (1/4)α+∆v .

This is the desired lower bound on the first term. We may therefore estimate for large N

B1(u, v)− α−B1(u
−, v−)− α+B1(u

+, v+) ≥ cα+∆v ,

where we have used that the left-hand-side is positive. This finishes Case 2a with appropriate
choice of c depending on N .

Case 2b: |∆v| ≤ N2v, still in addition to |∆u| ≤ Nu. We make a further case distinction
into four subcases i, ii , iii, iv, depending on the angle of the vector (∆u,∆v), which might be
either almost vertical or almost horizontal or in Northwest/Southeast or Northeast/Southwest
direction. Assume first

Case 2bi: ∆u∆v > 0 and the vector ∆u,∆v has angle at least N−5 from each the horizontal
and vertical direction. We shall prove

B2(u, v)− α−B2(u
−, v−)− α+B2(u

+, v+) ≥ cα−α+u
+u−∆2

v ,

which will clearly finish this case. Note that the second derivative of B2 at (x, y) in the first
quadrant in direction of a unit vector (a, b) with ab > 0 is given by

(2.11) 2a2y2 + 8abxy + 2b2x2 ≥ 2a2y2 + 2b2x2 .

Note that
B2(u, v)− α−B2(u

−, v−)− α+B2(u
+, v+)

is dominated below by a constant times the integral over the line segment from midpoint of
(u−, v−) and (u, v) to midpoint of (u, v) and (u+, v+) of the second partial of B in direction
of the line segment. Namely:

B2(u, v)− α−B2(u
−, v−)− α+B2(u

+, v+)

= α−[B2(u, v)−B2(u
−, v−)]− α+[B2(u

+, v+)−B2(u, v)]

= α−

ˆ (u,v)

(u−,v−)
∂(α,β)B2ds− α+

ˆ (u+,v+)

(u,v)
∂(α,β)B2ds

= α−α+

√
∆2
u + ∆2

v

ˆ 1

0
∂(α,β)B2(u

− + t(u− u−), v− + t(v − v−))dt

−α+α−
√

∆2
u + ∆2

v

ˆ 1

0
∂(α,β)B2(u+ t(u+ − u), v + t(v+ − v))dt

= α+α−
√

∆2
u + ∆2

v

ˆ 1

0

ˆ (u+t(u+−u),v+t(v+−v))

(u−+t(u−u−),v−+t(v−v−))
∂2(α,β)B2dsdt

Now assume the second partial is positive in the domain of question and the partial derivative
is bounded from below by m on the line segment from (u− + (u − u−)/2, v− + (u − u−)/2)
to (u+ (u+ − u)/2, v+ t(v+ − v)/2). Then the double integral can be estimated below using
Fubini by

≥ cα+α−
√

∆2
u + ∆2

v

[ˆ (u,v)

(u−+(u−u−)/2,v−+(v−v−)/2)

ˆ 1/2

0
mdtds
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+

ˆ (u+(u+−u)/2,v+t(v+−v)/2)

(u,v)

ˆ 1

1/2
mdtds

]
≥ cmα+α−(∆2

u + ∆2
v) .

On this line segment, the second derivative (2.11) is bounded below by cuv. Hence

B2(u, v)− α−B2(u
−, v−)− α+B2(u

+, v+) ≥ cα+α−uv(∆2
u + ∆2

v) .

This proves the desired inequality in this case 2bi.
Now consider case 2bii which is the direction of ∆u∆v < 0 and again the angle between

the vector (∆u,∆v) to x-axis is at least N−5. We proceed similarly as before, but now with
the function B1. Note that the second derivative of B1 in direction (a, b), a > 0, b < 0, is

c(
v1/4

u3/4
a− u1/4

v3/4
b)2

and in particular is positive. Moreover, since the mixed term in the expansion of the square
has favourable sign, the last display is bounded from below as

c(
v1/4

u3/4
a− u1/4

v3/4
b)2 ≥ c(v

1/2

u3/2
a2 +

u1/2

v3/2
b2) .

Using the arithmetic/geometric mean inequality we bound the latter from below by

c
1√
uv
|ab| ≥ c

Q3/2
uv|ab| ≥ c′

Q3/2
uv(a2 + b2)

on the line segment in question, where in the last inequality we have used that the entries
of (a, b) are bounded below depending on N and that the coordinates of points of our line
segment are comparable with u and v correspondingly (with constants depending on N only).
This completes the proof in this case in analogy to the previous case.

Now we consider case 2biii where the vector (∆u,∆v) has small angle (less than N−5) to
the y-axis, that is ∆u ≤ N−5∆v. We shall prove in this case

B2(u, v)− α−B2(u
−, v−)− α+B2(u

+, v+) ≥ cα+α−u
−u+∆2

v ,

which suffices by concavity of B1. We compare with a vertical line segment and thus write

B2(u, v)− α−B2(u
−, v−)− α+B2(u

+, v+)

= B2(u, v)− α−B2(u, v
−)− α+B2(u, v

+)

+α−(B2(u, v
−)−B2(u

−, v−)) + α+(B2(u, v
+)−B2(u

+, v+))

= α−α+u
2∆2

v + α−(B2(u, v
−)−B2(u

−, v−)) + α+(B2(u, v
+)−B2(u

+, v+)) ,

where we have simply expanded B2 to evaluate the terms on the vertical segment. The
remaining terms we consider as error terms and observe

α−(B2(u, v
−)−B2(u

−, v−)) + α+(B2(u, v
+)−B2(u

+, v+))

= α−(u− u−)(u+ u−)(v−)2 + α+(u− u+)(u+ u+)(v+)2

= α−α+∆u[(2u− α+∆u)(v − α+∆v)
2 − (2u+ α−∆u)(v + α−∆v)

2] .

Expanding we notice that the terms independent of the vector (∆u,∆v) inside the bracket
cancel. Thus we obtain , using |∆u| ≤ |∆v| and |∆v| ≤ N2u that the terms in the bracket
are bounded by 100N4|∆v|u2. Hence we can estimate

|α−(B(u, v−)−B(u−, v−)) + α+(B(u, v+)−B(u+, v))|

≤ 100α−α+N
4u2|∆u∆v|
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≤ 100α−α+N
−1u2∆2

v .

For large enough N this is dominated by the above main term and thus

B2(u, v)− α−B2(u
−, v−)− α+B2(u

+, v+) ≥ cα−α+u
2∆2

v .

This completes the proof in Case 2biii.
Now we consider case 2biv where the vector (∆u,∆v) has small angle (less than N−5) to

x-axis. We proceed in symmetric fashion (B2 is symmetric under the exchange of u and v)
to the previous case to obtain

B2(u, v)− α−B2(u
−, v−)− α+B2(u

+, v+) ≥ cα−α+v
2∆2

u .

Using u = v and ∆v ≤ ∆u gives

B2(u, v)− α−B2(u
−, v−)− α+B2(u

+, v+) ≥ cα−α+u
2∆2

v .

This completes the proof in this case. �

3. Boundedness of term IV

This section is devoted to proving the desired bound for term IV, that is∑
J∈D(I)

|ρwJ ρw
−1

J (f, χwJ )ν(g, χw
−1

J )ν | ≤ AQ‖f1I‖w−1‖g1I‖w ,

where Q is as in (2.1). We use outer measure spaces as in the previous section. Applying the
Radon-Nikodym property estimates the left-hand-side by

‖ρwJ ρw
−1

J (f, χwJ )ν(g, χw
−1

J )νν(J)−1‖L1(D(I),ν,S1
ν)
.

Applying the outer Hölder inequality estimates we get the bound

‖ρwJ ρw
−1

J 〈w〉1/2J 〈w
−1〉1/2J ‖L∞(D(I),ν,S1

ν)

×‖(f, χwJ )ν(g, χw
−1

I )ν〈w〉−1/2J 〈w−1〉−1/2J ν(J)−1‖L1(D(I),ν,S∞) .

To estimate the first factor by Q we identify the required estimate as∑
K⊂J

ρwKρ
w−1

K 〈w〉1/2K 〈w
−1〉1/2K ν(K) ≤ CQν(J)

for every J ⊂ I. Applying the formulae for ρ-s we obtain

ρwLρ
w−1

L 〈w〉1/2L 〈w
−1〉1/2L =

(
ν(I+)ν(I−)

ν(I)ν(I)

)1/2 (
〈w〉I+ − 〈w〉I−

)(
〈w−1〉I+ − 〈w−1〉I−

)
.

The desired estimate is then proved analogously to the estimate (2.3) using the function B̃
and the remarks near inequality (2.9). It remains to prove

‖(f, χwJ )ν(g, χw
−1

J )ν〈w〉−1/2J 〈w−1〉−1/2J ν(J)−1‖L1(D(I),ν,S∞) ≤ ‖f1I‖w−1dν‖g1I‖wdν .

With the usual identification (f, χwJ )ν = (fw−1, χwJ )w and similarly for g, this will follow from
the following bilinear embedding theorem.

Theorem 3.1. Denote

Fw(J) = w(J)−1
ˆ
J
fwdν, Gw−1(J) = w−1(J)−1

ˆ
J
gw−1dν .

The operator f × g → FwGw−1 is bounded from L2(w)× L2(w−1) into L1(D(I), ν, S∞).
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It suffices to prove this for positive functions f and g. Let us consider the collection Jλ of
all maximal dyadic intervals J such that

Fw(J)Gw−1(J) > λ .

This implies that any such J and any x, y ∈ J :

(Md
wf)(x)(Md

w−1g)(y) ≥ Fw(J)Gw−1(J) > λ .

Hence, if J ∈ Jλ
inf
J

(
Md
wf ·Md

w−1g
)
≥ inf

J
Md
wf · inf

J
Md
w−1g > λ .

Denote Φ := Md
wf ·Md

w−1g, then we have seen

µν(S∞(FwGw−1) > λ) ≤
∑
J∈Jλ

ν(J) = ν(∪J∈JλJ) ≤ ν{x ∈ R : Φ(x) > λ} .

Applying the Choquet integral on both sides, we are reduced to estimating the classical
L1(R, dν) norm of Φ. But this follows from the general Hardy–Littlewood maximal theorem
with respect to the weights w and w−1:ˆ

Φdν =

ˆ
(Md

wf ·Md
w−1g)dν =

ˆ
(Md

wf)w1/2(Md
w−1g)w−1/2dν

≤
( ˆ

(Md
wf)2wdν

)1/2(ˆ
(Md

w−1g)2w−1dν

)1/2

≤ A‖f‖w‖g‖w−1 .

This completes the proof of Theorem 3.1.

4. Appendix on outer measures

We recall two inequalities for outer Lp spaces from [1]. We first prove an exemplary form
of an inequality which is referred to several times as Radon–Nikodym property in this paper,

(4.1)

 ∑
J∈D(I)

|F (J)|2ν(J)

1/2

≤ C‖F‖L2(D(I),ν,S2
ν)
.

It is used as well with an exponent 1 in place of the exponent 2 everywhere, and it is used
with weights w or w−1 in place of ν. All these generalizations are straightforward. The
name Radon–Nikodym stems from [1], where this inequality in case of exponents 1 is based
on the interpretation that a standard measure entering on the left-hand-side has bounded
Radon–Nikodym derivative relative to an outer measure on the right-hand-side. Fix 2k = λ
and consider a set K with the property that for every J ∈ D(I) we have

S2
ν(F1D(I)\K,D(J)) ≤ λ

and we have
µν(K) ≤ 2µν(S2

ν(F ) > λ) .

That is, K is almost an extremizer for the infimum in the definition of the super level measure.
Now pick a collection J of dyadic intervals such that

K ⊂
⋃
J∈J

D(J)

and ∑
J∈J

ν(J) ≤ 2µν(K) .
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That is, J is almost an extremizer of the infimum in the definition of the outer measure.
Now write Kk := K and Jk := J and let k vary. Then we have

∑
H∈D(I)

|F (H)|2ν(H) ≤
∑
k

 ∑
H∈Kk\

⋃
l>k Kl

|F (H)|2ν(H)



≤
∑
k

∑
J∈Jk

 ∑
H∈D(J)\

⋃
l>k Kl

|F (H)|2ν(H)


≤
∑
k

∑
J∈Jk

S2
ν(F1D(I)\

⋃
l>k Kl ,D(J))2ν(J)


≤
∑
k

C22k

∑
J∈Jk

ν(J)

 ≤∑
k

C22kµν(S2
ν(F ) > 2k) ≤ C‖F‖2L2(D(I),ν,S2

ν)
.

In the last line we have used a standard argument to compare the Choquet integral with a
sum. This completes the proof of (4.1). We next prove the frequently used outer Hölder’s
inequality in the examplary form

(4.2) ‖FG‖L2(D(I),ν,S2
ν)
≤ C‖F‖L2(D(I),ν,S∞ν ) × ‖G‖L∞(D(I),ν,S2

ν)
.

Again this inequality is also used with measures w and w−1 in place of ν, and with the
exponent 2 replaced by 1, generalizations that are straightforward. Consider a set Lλ such
that

sup
J∈D(I)\Lλ

S∞ν (F,D(J)) ≤ λ

and

µν(Lλ) ≤ (1 + ε)µν(S∞ν (F ) > λ) ,

which means that Lλ is an almost extremizer of the infimum in the definition of the super
level measure. For J ∈ D(I) \ Lλ we have from the definitions of the sizes

S2
ν(FG,D(J)) ≤ S∞ν (F,D(J))× S2

ν(G,D(J) .

Note that this is a classical Hölder inequality. We obtain

S2
ν(FG,D(J)) ≤ S∞ν (F,D(J))‖G‖L∞(D(I),ν,S2

ν)

by the definition of the outer L∞ norm. Setting λ̃ = λ‖G‖L∞(D(I),ν,S2
ν)

we obtain

µ(S2
ν(FG) > λ̃) ≤ (1 + ε)µν(S∞ν (F ) > λ) .

Since ε was arbitrary, ˆ ∞
0

λ̃µ(S2
ν(FG) > λ̃)dλ̃

≤ C
ˆ ∞
0

λ̃µ(S∞ν (F ) > λ)dλ̃

≤ C‖G‖2L∞(D(I),ν,S2
ν)

ˆ ∞
0

λµ(S∞ν (F ) > λ)dλ .

This proves (4.2) by the definition of the outer L2 norm.
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