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Part B2: The scientific proposal

Section a. State-of-the-art and objectives

The formalization of mathematics, often situated within computer science departments, has evolved
as a field that largely operates independently of traditional research mathematics. This separation has
been challenged by recent developments, such as the Lean Carleson project, which showed that real-
time formalization of research in harmonic analysis is now within reach. This development surprised
both the harmonic analysis and Lean communities. Having witnessed firsthand the transformative
potential of collaboration between harmonic analysis and formalization for both disciplines, we aim
to leverage these groundbreaking synergies through HALF. Our goal is to accelerate the formalization
of mathematical research and thereby open new pathways for computer-aided discovery.

We divide HALF into five areas, each with a major fundamental challenge. These challenges are
not part of HALF’s deliverables, but we aim to solve at least one of them. For each challenge, we will
make substantial progress by addressing two objectives. As detailed in Section b, each objective will
result in multiple publications and may evolve through new discoveries, mitigating the risk that our
predictions are either too optimistic or too conservative.

a.1. Formalizing research mathematics in Lean

Just as chess consists of a board that represents the state of the game and players who make decisions
respecting established rules, mathematics comprises a status quo that reflects past discoveries and
researchers determining the next steps. AI, in the form of deep neural networks, presents itself as
a new player in the field of mathematics. However, the vast status quo of mathematics is primarily
documented too informally for reliable autonomous AI applications. Human effort is still needed to
formalize this status quo in mathematics before we can fully harness AI for further discoveries.

Now is an opportune time to invest in formalization, as significant advancements in AI for finding
and writing mathematical proofs promise rewards from this investment in the near future. In July
2024, Google DeepMind published a blog post about their program, AlphaProof [At24]. AlphaProof
successfully solved multiple problems at the level of the International Mathematics Olympiad, which is
a highly challenging competition for high school students. However, advancements of these technologies
at the research level in mathematics are still lacking due to the much sparser training material available.

The proof assistant Lean serves as a mathematical counterpart to a chessboard. It rigorously
accepts and checks coded mathematics while assisting with the encoding process. Since its launch in
2013, Lean has developed a wide ecosystem of users. Amazon Web Services utilizes Lean for software
verification, notably for verifying cryptographic protocols. The company Harmonic aims to integrate
large language models with Lean to advance the state of the art in AI.

In 2017, a community of mathematicians initiated a collaborative project to create a large-scale,
unified open-source library of mathematical definitions and proofs in Lean, called Mathlib [mat20].
This library has been developed and maintained by mathematicians such as Jeremy Avigad, Kevin
Buzzard, Sébastien Gouëzel, Patrick Massot, and van Doorn, and it serves as the standard mathemat-
ical library for Lean. In total, there are 27 maintainers overseeing design decisions and approving new
contributions, supported by 21 additional reviewers. Among these reviewers are two postdocs at Bonn,
Maŕıa Inés de Frutos Fernández and Michael Rothgang, making Bonn the university with the largest
group of Lean reviewers in the European Union. Van Doorn has formalized results in a variety of ar-
eas, including spectral sequences in algebraic topology, the independence of the continuum hypothesis
from the Zermelo–Fraenkel axioms and the axiom of choice [HvD20], the existence and uniqueness of
Haar measures in functional analysis [vD21], and Gromov’s h-principle for open and ample differential
relations in differential geometry [vDMN23]. Several theorems were formalized in Lean shortly after a
preprint containing the proof was made public [DHL19, CT+22, Met23, T+23, Blo24, T+24]. With a
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few exceptions, all of these results pertained to combinatorics, suggesting that Mathlib provides suf-
ficient material to facilitate the formalization of some arguments in current research in combinatorics.

In 2023, Thiele and van Doorn initiated the Lean Carleson project to formalize a new theorem
in harmonic analysis [BvDJ+24]. This theorem includes as a special case a renowned result from
1966 [Car66] by Lennart Carleson regarding the convergence of Fourier series, which had not been
previously formalized. Carleson’s theorem asserts that for almost every x ∈ [0, 1] one has

lim
N→∞

N(x)∑
n=−N

f̂ne
2πinx = f(x) , (1)

where f̂n is the n-th Fourier coefficients of a continuous one-periodic function f on R. Notable
alternative proofs of this theorem were provided in [Fef73] and [LT00]. More recent generalizations
include, but are not limited to, results concerning maximal multiplier norms [DLTT08], variation norms
[OST+12], polynomial phases [Lie20], polynomials in higher dimensions [ZK21], phase unwinding
[Mna22], and Radon transforms [Bec24]. These modern approaches interpret Carleson’s theorem as
estimates for the Carleson operator, which is expressed using a principal value singular integral as

Cf(x) := sup
N

∣∣∣ ∫
R
f(x− y)eiNy 1

y
dy
∣∣∣ . (2)

The preprint [BvDJ+24] generalizes this operator to doubling metric measure spaces, which consist of
a space X along with a metric ρ and a compatible measure µ. The modulation functions are selected
from a suitably defined class Θ. The generalized Carleson operator is then expressed as

sup
θ∈Θ

∣∣∣ ∫
X
f(x, y)eiθ(y)K(y) dµ(y)

∣∣∣ (3)

with K is a singular integral kernel. An axiomatic approach to both doubling metric measure spaces
and the class of modulation functions makes this generalization particularly suitable for formalization.

In May 2024, the Lean Carleson project went public [vD+] to solicit volunteers from the Lean
community for the coding of the formalization. This event was accompanied by a post from Terence
Tao on his Mathstodon blog. Tao also helped alleviate programmers’ concerns about formalizing an
unpublished and unreviewed result, which could contain critical errors. Indeed, Tao assured:

Thiele is one of the leading world experts in the subject and has not to my knowledge
published anything with major errors in it.

By September 2024, a milestone was reached in which half of the lemmas in the blueprint [BvDJ+24]
had a fully formalized proof in Lean. As this milestone was celebrated on the Zulip channel coordi-
nating the project, Kevin Buzzard commented:

This is amazing progress. I had no idea until recently that the project was going so quickly!
To be honest, after having talked to Hairer about the nature of hard analysis, I was a bit
scared that formalizing hard analysis might be a fair bit trickier than formalizing hard
commutative algebra and that this project would be a great test to see if this were true.

The Lean Carleson project continues to make steady progress, although at a slower pace. Current
estimates suggest completion in 2025. This slowdown is partly due to competition for volunteers from
other formalization projects in the Lean community.

The timeline for the Lean Carleson project should be compared to the more than eight years it
took from the initial posting of the related polynomial Carleson result by V. Lie until its publication
[Lie20] in the Annals of Mathematics. While formalization currently requires about ten times more
human resources, it is approaching a level where it can compete with the refereeing process.

Challenge I. Shift the culture in mathematics to make it routine to accompany new results with
computer verification prior to submission to a reviewing process.

The Lean Carleson project shows that harmonic analysis is a good area to work on Challenge I.
This is the first objective of HALF.
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Objective 1. Assemble a team of harmonic analysts and formalization experts who can generate
new results in harmonic analysis and formalize these findings within a reasonable timeframe before
submitting the research paper.

The process of formalization also leads to new ideas in harmonic analysis by offering a structured
approach to optimizing proofs and concepts. This occurred during the Lean Carleson project, where
the overall theorem was improved twice due to feedback from the formalization process, resulting in
a much more general statement that also encompasses a variant of the classical Carleson theorem in
finite characteristic. The next objective is designed to utilize this effect.

Objective 2. Formalize the paper [DST24] on quantitative norm convergence for ergodic averages for
three commuting transformations.

This technical paper allows for generalizations, one of which is stated as Objective 8 of HALF. We
will address Objective 8 by utilizing the expertise gained from Objective 2.

a.2. Libraries and tactics for harmonic analysis

The formalization of mathematical theorems requires considerable effort. Key challenges include the
extensive training needed to master proof assistants like Lean, the numerous prerequisites referenced
in standard proofs that may not yet be formalized, and the many tedious but straightforward steps
often omitted in conventional proofs. Our focus will be on addressing these issues in the field of
harmonic analysis, with the following challenge as our ultimate goal.

Challenge II. Reduce the effort needed to formalize a new theorem in harmonic analysis to be less
than that required to find and prove it.

As of October 2024, Mathlib has formalized over 170,000 lemmas and theorems with proofs,
created 85,000 definitions, and consists of more than 1.5 million lines of code organized into over 5,000
files.All submissions to Mathlib undergo a review process to ensure they meet high-quality standards
and that the lemmas are proven generally enough for reuse in various contexts. These standards also
promote the unification of equivalent definitions and consistent notation and terminology throughout
the library. Mathlib stands out as a coherent mathematical library for Lean, unlike other proof
assistants such as Coq, which has multiple incompatible analysis libraries [Aff24, BLM15], and Isabelle,
which features several libraries for algebra and category theory [BPL22, Section 2].

The Mathlib library encompasses nearly all topics found in a typical undergraduate curriculum,
including abstract algebra, linear algebra, multivariable analysis, measure theory, and many advanced
subjects. It includes significant material for harmonic analysis, such as Lebesgue Lp spaces, basic
Fourier analysis theory like the Riemann–Lebesgue lemma and the Fourier inversion theorem, and
integral inequalities like Hölder’s inequality. Van Doorn has advanced the formalization of Sobolev
spaces by proving the Sobolev inequality and has established the existence and uniqueness of Haar
measures for locally compact groups. However, many commonly used concepts in harmonic analysis
are still not included in Mathlib.

Objective 3. Build a corpus of prerequisites for modern harmonic analysis and incorporate their
formalization in Mathlib.

In addition to recording mathematical data such as definitions, theorems, and proofs, the Mathlib

library includes tactics—programs that assist in writing proofs by automating repetitive reasoning.
Currently, tactics primarily utilize “good old-fashioned AI,” which follows prescribed instructions to
achieve specific goals.

One tactic in Lean is the simp tactic, which simplifies mathematical statements using over 30,000
tagged simplification rules from Mathlib. It employs an efficient data structure known as discrimina-
tion trees [SUdM20] to focus only on relevant rules for the statement being simplified. Introduced in
Lean 4, discrimination trees significantly speed up tactics compared to Lean 3. An extension of simp
is the aesop tactic, which performs limited reasoning on top of simp [LF23]. Another tactic is ring,
used to simplify algebraic expressions based on commutative ring axioms, transforming expressions
into a specified normal form. It provides a complete decision procedure for equations in a commuta-
tive ring, solving them by turning both sides to normal form. While ring works exhaustively with
commutativity and associativity, it is not extensible like simp.
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In formalization, identical mathematical concepts often arise in different contexts and notations.
For instance, group laws may be presented in either additive or multiplicative forms. Van Doorn has
developed the tactic to additive, which converts lemmas about groups or monoids in multiplicative
notation into their additive counterparts. This command maintains a dictionary mapping between
these structures, enabling it to automatically translate the statements and proofs. It intelligently
avoids translating multiplication in fixed groups like N and R into addition, preventing nonsensical
statements. For example, the statement

xnm = (xn)m, (4)

where x is the element of some group and n,m ∈ N, is translated into

nm · x = m · (n · x) , (5)

leaving the multiplication nm unchanged. Another common challenge in formalization is that natural
numbers are defined as an inductive type, but they also exist as subsets of the integers, rationals, reals,
and complex numbers, each with separate definitions. To facilitate transitions between these contexts
in proofs, Van Doorn has created the tactic lift.

In HALF, we will identify repetitive tasks related to harmonic analysis and address them with
tailored tactics, using specifically the expertise of van Doorn. These tactics will be applied to the
formalization objectives of HALF.

Objective 4. Develop tactics to automate routine steps that occur in proofs in harmonic analysis.

Other proof assistants, especially Isabelle, also have powerful automation tools. In particular the
Sledgehammer tool [BBP13] is popular, and an implementation in Lean which extends it to dependent
type theory is currently under development.

a.3. Multilinear singular integrals

The Brascamp–Lieb inequalities are a fundamental class of multilinear inequalities of the form∫
Rm

[ n∏
j=1

fj(Πjx)
]
dx ≤ C

n∏
j=1

∥f∥pj (6)

with linear surjections Πj and suitable Lebesgue-norm exponents pj . These inequalities generalize
classical cases known as the Hölder, Hausdorff–Young, and Loomis–Whitney inequalities. The condi-
tions on the parameters Πj and pj required for the validity of a Brascamp–Lieb inequality are now
well understood [BCCT08].

However, general criteria for the validity of singular Brascamp–Lieb inequalities are not yet known.
Singular Brascamp–Lieb inequalities, as defined by Durcik and Thiele in [DT21], take the form∫

Rm

[ n∏
j=1

fj(Πjx)
]
K(Πx)dx ≤ C

n∏
j=1

∥f∥pj (7)

with a Calderón-Zygmund singular integral kernel K and a further linear surjection Π.
Even for given parameters n, m, and ranks of Πj and Π, the relative positioning of the projections

affects both the validity and, if known, the nature of the proof for the corresponding Brascamp–Lieb
inequality. Algebraically, describing these relative positions of projections is a version of the (n+ 1)-
subspace problem, which is tame for n ≤ 3 and wild for n ≥ 4. Generally, the inequalities are more
challenging to prove when the rank of Π is small relative to the sum of the ranks of the Πj .

At the one extreme of largest possible rank of Π, the singular Brascamp–Lieb integrals can be
identified with Coifman–Meyer paraproducts [MC97] and their estimates are well understood. At the
other extreme, one finds the simplex Hilbert forms

Λ(f1, . . . , fm) :=

∫
Rm

[ m∏
j=1

fj(x1, . . . , x̂j , . . . xm)
] 1

x1 + · · · + xm
dx (8)

with x̂j denoting omission of the variable xj . The conjecture is that simplex Hilbert forms satisfy
Brascamp–Lieb inequalities with pj = 1

m for all m. This conjecture is only known to hold in the trivial
case n = 1 and in the classical case n = 2 of the Hilbert transform. The case n = 3, known as the
triangular Hilbert form, remains the most fundamental open problem in the field.

4



Thiele Part B2 HALF

Challenge III. Prove for Λ defined in (8) with m = 3, some universal C, and all test tuples f1, f2,
f3,

Λ(f1, f2, f3) ≤
3∏

j=1

C∥fj∥3 . (9)

A series of past results represents partial progress towards this conjecture. By specializing the three
input functions to elementary tensors in suitable variables and integrating in one direction trivially,
the conjectural bounds for the triangle Hilbert form imply bounds for the dual of the so-called bilinear
Hilbert transform, ∫

f1(x+ α1t)f1(x+ α2t, )f1(x+ α3t)
1

t
dt (10)

for a generic vector α = (α1, α2, α3). Thus, the bounds on the bilinear Hilbert transform by Lacey and
Thiele [LT97, LT99], and even more so the uniform bounds in the parameter α investigated in a series
of papers [Thi02, GL04, UW22, FST24b] by Thiele and others, represent partial progress towards
Challenge III. Specializing all three functions in a different way, using expressions such as

f(x, y) = f(x)eiN(x)y (11)

allows one to deduce estimates for Carleson’s operator from the triangle Hilbert form. In [KTZK15]
by Thiele and coauthors, bounds are provided for a dyadic model of the triangle Hilbert form when
specializing only one function to an elementary tensor. The methods in [KTZK15] strongly suggest
that any future solution of Challenge III will require estimates on singular Brascamp–Lieb forms with
cubical structure as a tool.

Further progress towards Challenge III, from a different perspective, was achieved in [ZK17] and in
[DKT19] by Thiele and coauthors, who estimated truncations of the singular kernel to a finite number
N of scales. Since bounds for each scale are trivial, estimates of the truncated form with growth O(N)
follow by the triangle inequality, while estimates of the order O(1) are equivalent to Challenge III. Any
intermediate growth between these two orders is referred to as a cancellation estimate and represents
progress toward the challenge. Building on ideas from [Tao16] and streamlining the approach, the
paper [ZK17] proves cancellation estimates of the form o(N), while [DKT19] establishes cancellation

estimates with growth O(N
1
2 ). Both papers extend their results to the general simplex Hilbert forms,

albeit with weaker growth estimates.
Roughly halfway between the above extremes of singular Brascamp–Lieb inequalities, in terms of

a count of dimensions, is a remarkable class of forms known as cubical singular Brascamp–Lieb forms
[DT20, DT21, DST22].∫

R2k

∏
j:{1,...,k}→{0,1}

fj(x1,j(1), . . . , xk,j(k))K(x1,0 − x1,1, . . . , xk,0 − xk,1)dx, (12)

where the product is taken over the set of functions from 1, . . . , k to 0, 1, which can be identified
with the corners of a cube. Thanks to the symmetries of the cube and the techniques of Gowers
box norms, there is a satisfactory theory of estimates for these cubical forms. The cubical forms
have found applications in the norm convergence of multiple ergodic means [DKŠT19, DST24] and in
Ramsey-type density problems [DK22].

A distinguishing feature of the cubical singular Brascamp–Lieb forms is that, despite the non-
existence of linear projections on doubling metric measure spaces, one can formulate these forms on
doubling metric measure spaces. Namely, the only algebraic operations in (12) are differences, which
can be interpreted as distances. One objective is to extend the theory of cubical forms to the setting
of doubling metric measure spaces.

Objective 5. For a metric space X with doubling measure µ, prove a priori Lp estimates for cubical
singular Brascamp–Lieb forms∫

X2k

∏
j:{1,...,k}→{0,1}

fj(x1,j(1), . . . , xk,j(k))K((x1,0, . . . xk,0), (x1,1, . . . , k, 1))dµ2k, (13)

where K : Xk ×Xk → R is a singular integral kernel in the sense of doubling metric measure spaces
relative to the k fold Cartesian product of X with itself.
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The cubic singular integrals do not require time-frequency analysis and thus do not imply bounds
for objects such as the bilinear Hilbert transform or Carleson’s operator. To make progress on multi-
linear singular integrals in the realm of time-frequency analysis, we propose:

Objective 6. Prove bounds for the simplex Hilbert form with some additional structural properties
on the input functions.

Here, the first goal will be to prove the continuous analogue of the dyadic model for the triangle
Hilbert form in [KTZK15]. The second step will be to identify suitable assumptions on the input
functions for higher simplex Hilbert forms.

a.4. Convergence of ergodic averages

The Calderón transference principle allows for the use of estimates in harmonic analysis to prove
quantitative results on ergodic means. Questions in ergodic theory thus provide motivation to inves-
tigate specific types of results in harmonic analysis, many of which are closely related to multilinear
singular integrals. The relevant results in harmonic analysis also include estimates on generalizations
of Carleson’s operator. Such a generalization was used by Thiele and coauthors [DLTT08] to extend
the parameter range for return times theorems.

Let X be a probability space, and let T be a measure-preserving transformation on X that we
assume to be bijective for simplicity. The classical ergodic averages of a bounded measurable function
f on X with respect to the transformation T are given by

1

N

N∑
n=1

f(Tnx). (14)

A result by von Neumann shows the convergence of these averages in the sense of L2(X) as N
tends to infinity, while Birkhoff’s stronger theorem provides pointwise convergence almost everywhere.
Both theorems come with improvements regarding variation norm bounds, as elaborated in [JOR96].

In [KMT22], a far-reaching generalization of Birkhoff’s theorem has been referred to as the
Furstenberg–Bergelson–Leibman conjecture, which was first promoted in person by Furstenberg and
later published by Bergelson and Leibman in [BL02]. This conjecture concerns averages of the form

1

N

N∑
n=1

k∏
j=1

fj(T
pj,1(n)
1 . . . T

pj,d(n)
d x) (15)

with k functions fj on X, d transformations T1, . . . , Td that span a nilpotent group of actions on X,
and kd polynomials pj,1, . . . , pj,d. The conjecture asks for pointwise almost everywhere convergence of
the averages (15). Much progress has been made recently on these averages in the case where at least
some of the polynomials are not linear. Such higher-degree polynomials allow for curvature-related
tools in harmonic analysis; see, for example, [KMT22, IMMS23a, IMMS23b].

The case of all polynomials being linear is substantially different and, in fact, more difficult because
it does not allow for any curvature-related methods. Even one of the most basic questions regarding
linear polynomials remains a celebrated open problem.

Challenge IV. Given two commuting transformations T1 and T2, prove pointwise almost everywhere
convergence of the ergodic means

1

N

N∑
n=1

f1(T
n
1 x)f2(T

n
2 x) . (16)

Questions on averages (15) with only linear polynomials are closely related to multilinear Brascamp–
Lieb integrals, as discussed in the previous section. Only a special case in Challenge IV, with T1 and
T2 being powers of the same transformation, is known due to Bourgain [Bou90]. This result was
improved quantitatively in [Lac00, DOP17] in work related to the bilinear Hilbert transform.

A more approachable problem arises when one averages with additional parameters. This was
proposed in [DS18], where qualitative almost everywhere convergence for such extended averages
for commuting transformations T1 and T2 was shown. We propose to generalize these results to more
transformations while simultaneously establishing quantitative improvements. We state one interesting
example as an objective.
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Objective 7. Let T1, T2, T3 be commuting or span the Heisenberg group. Prove quantitative almost
everywhere convergence results for ergodic averages of the form

1

N4

N∑
n1,n2,n3,j=1

f0(T
n1
1 Tn2

2 Tn3
3 x)f1(T

n1+j
1 Tn2

2 Tn3
3 x)f2(T

n1
1 Tn2+j

2 Tn3
3 x)f3(T

n1
1 Tn2

2 Tn3+j
3 x) . (17)

Reducing the number of averaging parameters in this last objective will result in more difficult
problems and provide partial targets toward the goal of a single averaging parameter.

Returning to the ergodic averages with a single averaging parameter, as in the Furstenberg–
Bergelson–Leibman conjecture, a simpler task than pointwise convergence is convergence in the Hilbert
space norm. For two commuting transformations, such norm convergence results trace back to influ-
ential work in ergodic theory in the 1970s. In the case of more than two commuting transformations,
this was pioneered by Host and Kra [HK05] for powers of a single transformation and by Tao [Tao08]
for general commuting transformations, with more ergodic theoretic and structure theoretic proofs
found in [Hos09, Aus10]. A far-reaching generalization to transformations spanning a nilpotent group
was proved by Walsh [Wal12].

The question of stronger quantitative norm convergence bounds, such as variation norm bounds,
was raised in [AR15]. For two and three commuting transformations, such quantitative norm con-
vergence bounds were demonstrated by Thiele and coauthors in [DKŠT19, DST24]. We propose to
generalize the latter to three transformations spanning the Heisenberg group, a specific instance of
the theorem in [Wal12].

Objective 8. Given three transformations T1, T2, T3 that generate an action of the discrete Heisenberg
group on a measure space X, prove that for any sequence N0 < N1 < · · · < NJ the following holds:

J∑
j=1

∥MNj (f1, f2, f3) −MNj−1(f1, f2, f3)∥22 ≤ CJ
3
4

3∏
i=1

∥fi∥∞ , (18)

where

MN (f1, f2, f3)(x) =
1

N

N∑
n=1

f1(T
n
1 x)f2(T

n
2 x)f3(T

n
3 x) . (19)

The natural but challenging generalization to four or more commuting transformations of the result
in [DST24] is project C06 by Thiele in a CRC grant proposal, albeit without formalization. Therefore,
this will not be part of HALF if the CRC project is funded.

a.5 Nonlinear Fourier analysis

The partial Fourier integral of an integrable function f on the real line is given by

S(ξ, x) :=

∫ x

−∞
f(t)e−2πitξdt . (20)

When x is equal to −∞, this partial Fourier integral vanishes, while at x = ∞, it represents the actual
Fourier transform. Taking the exponential of the partial Fourier integral (20),

G(ξ, x) := eS(ξ,x) , (21)

turns it into an infinitesimal product, which is described by the ordinary differential equation

∂xG(ξ, x) = G(ξ, x)f(x)e−2πixξ (22)

with the initial condition of being constant at 1 when x equals −∞, and being the exponential of the
Fourier transform at ∞. The multiplicative interpretation allows for matrix-valued generalizations.
Since matrix multiplication is not commutative, these generalizations can no longer be expressed as
the exponential of a linear Fourier integral, resulting in genuinely nonlinear Fourier transforms.

These matrix differential equations evolve on Lie groups and depend on a suitable embedding of
the complex driving force in (22) into the Lie algebra. Prominent examples are the simple groups
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SU(2) and SU(1, 1), the latter of which is isomorphic to Sl2(R). These two notable models can be
expressed as

d

dx

(
a(ξ, x) b(ξ, x)

±b(ξ, x) a(ξ, x)

)
=

(
a(ξ, x) b(ξ, x)

±b(ξ, x) a(ξ, x)

)(
0 f(x)e−2πixξ

±f(x)e2πixξ 0

)
, (23)

with the upper sign corresponding to the SU(1, 1) model and the lower sign corresponding to the
SU(2) model. The basic analysis of the SU(1, 1) model is surveyed in the Park City lecture notes by
Tao and Thiele [TT12], and that of the SU(2) model is covered in the thesis of Thiele’s former PhD
student, Ya-Ju Tsai.

In first-order approximation, the function b becomes the partial Fourier integral. It has many
properties analogous to those of the Fourier integral. In particular, it satisfies a nonlinear Plancherel
identity, which in the SU(1, 1) model reads as∫

R
log(1 + |b(ξ,∞)|2) dξ =

∫
R
|f(x)|2 dx . (24)

Nonlinear analogues of estimates for functions f in L1, such as the Riemann–Lebesgue theorem, are
basic. In contrast, for f in Lp with 1 < p < 2, nonlinear analogues of the Hausdorff–Young inequality
and the Menshov–Paley–Zygmund inequality are much harder to prove and are established in [CK01],
with an alternative proof provided by Thiele and coauthors in [OST+12]. The paper [MTT03b] by
Thiele and coauthors demonstrates that the approach in [CK01] cannot be extended to the endpoint
where p = 2, and, in particular, cannot yield uniform bounds for the Hausdorff–Young inequality as p
approaches 2.

The paper [MTT03a] by Thiele and coauthors proves a nonlinear analogue of Carleson’s theorem
in a model on fields with finite characteristic, while a series of papers culminating in [DMT17] by
Thiele and coauthors proves an easier nonlinear analogue of Carleson’s theorem for some nonlinear
Fourier transforms on nilpotent Lie groups. The paper [DMT17] utilizes the theory of outer Lp spaces
developed by Do and Thiele [DT15], which, in its fundamental nature, is a good target for formalization
in Lean and incorporation into Mathlib. The question of a generalization of Carleson’s theorem that
would be strictly stronger than Carleson’s original theorem remains open, despite the most recent
progress by Poltoratski in [Pol24] on a weak form of a nonlinear Carleson’s theorem.

Challenge V. Generalize Carleson’s theorem to the nonlinear Fourier transforms (23).

The differential equation (23) has a discrete analogue in the form of the recursion equation(
a(z, n) b(z, n)

±b(z, n) a(z, n)

)
=

(
a(z, n− 1) b(z, n− 1)

±b(z, n− 1) a(z, n− 1)

)
1√

1 ∓ |f(n)|2

(
1 f(n)zn

±f(n)zn 0

)
(25)

for summable sequences f , producing Lie group-valued functions on the unit circle. This is a nonlinear
analogue of Fourier series. A reordering of the product, analogous to the repeated application of the
distributive law to the Fourier series,

anz
n + an−1z

n−1 + an−2z
n−2 + · · · + a0 = (. . . ((anz + an−1)z + an−2)z + . . . )z + a0 , (26)

essentially turns the recursion (25) into a product ordered by increasing n. In the SU(2) case, it is:

∏
n

(
z

1
2 0

0 z−
1
2

)
1√

1 + |f(n)|2

(
1 f(n)

−f(n) 0

)
. (27)

This product, after changing to variables typical for quantum computing, identifies the nonlinear
Fourier series with an important algorithm called quantum signal processing [DLNW22]. The algo-
rithm alternates the application of gates taken from a sequence of tuning parameters, here fn, with
the application of a fixed gate depending on the input signal, here z, in order to compute the desired
output signal, here b(z). This recent and surprising observation by Thiele and coauthors [AMT24]
that quantum signal processing and the SU(2) model of nonlinear Fourier series are essentially the
same has led to a transfer of ideas between harmonic analysis and quantum computing. It resulted in
the first provably stable algorithm [ALM+24] by Thiele and coauthors to compute the tuning param-
eters of quantum signal processing in polynomial time for general signals consistent with (24). This
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algorithm was accelerated by Ni and Ying [NY24] using fast Toeplitz solvers to quadratic time in the
number of parameters.

The focus on the signal b(z) in quantum computing allows for the artificial selection of a(z) as
an outer function. This choice gives the unique set of minimal tuning parameters. Additionally, this
choice gives rise to new types of questions regarding nonlinear Fourier series.

Objective 9. Understand analytic properties of the nonlinear Fourier transform under an outerness
assumption on a.

Higher-dimensional variants of quantum signal processing are of interest, both in terms of the
number of input parameters [RC22] and in the dimension of the output variable [GSLW19].

Objective 10. Develop a higher-dimensional theory of the nonlinear Fourier transform and relate it
to quantum signal processing.

The discovery of the connection between nonlinear Fourier analysis and quantum signal processing
has inspired an Oberwolfach Arbeitsgemeinschaft in October 2024, specifically devoted to this connec-
tion and bringing together many young researchers from harmonic analysis and quantum computing.

Section b. Methodology

b.1. Formalizing research mathematics in Lean

Objective 1 of HALF is to build a team that combines harmonic analysts led by Thiele with formaliza-
tion experts led by van Doorn. This team will collaborate closely, as we will describe in this section.
Each of the Objectives 5–10 will be implemented in four stages. These stages have been tested in
the pilot Lean Carleson project, showcasing the synergistic nature of the HALF collaboration. As of
October 2024, Stage 3 of the pilot project is over halfway completed, and materials for Stage 4 are
taking shape. Each stage will include its own dissemination materials, potentially with different lists
of authors.

Stage 1, Prove: The expected theorem in harmonic analysis will be proven and elaborated upon
in a standard research paper. This stage will be primarily led by experts in harmonic analysis, although
the insights gained from formalizing previous results will be beneficial. For instance, the experience
with doubling metric measure spaces—a key element of the Lean Carleson project—will be useful for
Objectives 5, 6, 7, and 8. The research paper will be published through conventional channels for
harmonic analysis, starting with a preprint on arXiv for open access, followed by publication in a
peer-reviewed journal. However, the journal publication will be postponed until after the completion
of the computer verification, as one of the goals of HALF is to shift the responsibility of checking for
correctness from the standard referee to in-house formalization. The reviewer in harmonic analysis
will only need to assess the significance and relevance of the results.

Stage 2, Blueprint: The harmonic analysis team produces a second document known as a
blueprint. This blueprint provides a more detailed proof of the same result, maintaining standard
mathematical language. It breaks down the formalization into individual lemmas that very explicitly
state their assumptions and conclusions, allowing contributors to work on each part independently.
The logical dependencies among the lemmas are illustrated in another document called the dependency
graph, which is generated by a computer tool developed by Patrick Massot.

Both the blueprint and the dependency graph are not typically found in traditional mathematical
research, but have proven themselves to be useful tools within the standard mathematics community.
In the Lean Carleson project, the blueprint spans approximately 150 pages, compared to about 30
pages for the standard proof, while the dependency graph contains nearly 200 individual lemmas.

Close cooperation between the harmonic analysis and formalization teams is essential for adjusting
the blueprint to align with the design decisions of Mathlib. The best practices learned from the
blueprint will be an output of HALF. The blueprint will first be published on the open-access server
arXiv and subsequently in appropriate peer-reviewed outlets, such as the newly established journal
Annals of Formalized Mathematics.

Stage 3, Formalize: To formalize the blueprint, the first step is to write the definitions and
statements for all theorems and lemmas in Lean. The choice of formulation of these definitions
significantly impacts the difficulty of formalizing the proofs, so this step should be managed by an

9



Thiele Part B2 HALF

expert team leader, either van Doorn or an experienced postdoc. This leader must have advanced
skills, and it is essential for HALF that van Doorn is a world-leading expert in this field.

Once the definitions are established, the proof of each lemma or theorem can be addressed by the
rest of the team. Task assignments and coordination among the various team members, including
research student assistants, occur through GitHub projects and a Zulip chat channel, with the on-
going formalization shared via GitHub. Throughout this process, numerous questions will inevitably
arise, including mathematical ones related to minor inaccuracies in the blueprint. Some of these can
be answered by van Doorn, while others will need to be directed to the harmonic analysis group,
requiring prompt collaboration to maintain momentum. For the Lean Carleson project, our group
took great care to output a high quality blueprint, enabling local corrections without necessitating
major revisions.

The outcome of this stage will be open-source code available through GitHub and the database
bonndata established by the University of Bonn.

Stage 4, Refactor: Code developed for one of the harmonic analysis objectives in HALF does not
need to adhere to the usability and generality coding standards required for inclusion in the Mathlib

library. For the purpose of verifying research results, it is sufficient for the code to compile. This is
crucial for optimizing human resource scalability within HALF.

The final stage will involve incorporating new material that can be reused in future formalization
projects into Mathlib. During this stage, we will leverage the experience gained from formalization in
Stage 3 to identify material that can be rewritten to meet higher coding standards and pinpoint tasks
that could be automated through a tactic, subsequently developing those tactics. This stage will be
reflected in the Mathlib library, and we will also write a paper discussing the new theories, tactics,
and insights we have gathered throughout the formalization process.

The anticipated global timeline for HALF’s work is shown in the figure below. Later phases may
be adjusted based on new developments and insights.

Carleson

2

5, 10

6, 9

5, 7, 10

6, 8

5, 7, 9

6, 8

7, 9

2023

2024

2025

2026

2027

2028

2029

2030

2031

Math
Prove

Math
Prove

Math
Prove

Math
Prove

Team 4

Math
Prove

Team 3

Math
Prove

Team 4

Math
Prove

Team 3

Math
Prove

Team 4

Math
Prove

Team 3

Blueprint

Blueprint

Blueprint

Team 3

Blueprint

Team 4

Blueprint

Team 3

Blueprint

Team 4

Blueprint

Team 3

Blueprint

Team 4

Formalize

Formalize

Team 2

Formalize

Team 1

Formalize

Team 2

Formalize

Team 1

Formalize

Team 2

Formalize

Team 1

Refactor

Team 1

Refactor

Team 2

Refactor

Team 1

Refactor

Team 2

Refactor

Team 1

Refactor

Team 2

To optimize lab processes, we will work concurrently on all four stages outlined above, with each
year’s work shown in a row. The columns represent one or more mathematical results progressing
through these stages.

HALF’s scientific staff will be organized into four teams, each typically composed of a postdoc and a
PhD student. Teams 1 and 2 will focus on formalization under van Doorn’s supervision, while Teams
3 and 4 will specialize in harmonic analysis under Thiele’s guidance. Additionally, four part-time
student research assistants will work on formalizing the objective currently in Stage 3.

The objectives listed in the figure outline those to be explored in Stage 1. When an objective
appears multiple times, it denotes distinct natural steps, as explained in the methodology sections.
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In Stage 2, we will select particularly promising results for formalization and draft blueprints. In
the final years of HALF, as Mathlib expands, we may produce multiple blueprints for simultaneous
formalization. This formalization will occur in Stage 3, where external Lean community volunteers
may still contribute, though our reliance on them will decrease over time. In Stage 4, we will integrate
reusable results into Mathlib and develop relevant tactics.

This workflow is tailored to the needs and availability of HALF’s early-career personnel. Each
PhD student and postdoc will engage in both traditional work and HALF’s novel research approach.
Given typical appointment durations, the staged approach outlined here provides a suitable rhythm
for their involvement. Ensuring each stage has adequate staffing is crucial for success.

Objective 1 requires expertise to be housed in Bonn to conduct the formalization previously man-
aged by a global community in the Lean Carleson project. We have started training young researchers
in this area, with Van Doorn offering an annual practical course on Lean for bachelor and master
students. This initiative has already led to significant contributions from a bachelor student, Leo
Diedering, to the Lean Carleson project. Beginning in Fall 2025, Thiele and van Doorn will co-teach
the Analysis sequence for incoming Bachelor students, which will include a small Lean component
based on successful teaching projects worldwide. These efforts will ensure the availability of necessary
human resources for HALF. The risk of temporary shortage can be mitigated by temporary shifts in
the vertical structure such as replacing a PhD student by a postdoc or vive versa.

Objective 2 is a formalization objective of a result that has already appeared on arXiv, so Stage 1
is already completed. The writing of the blueprint, Stage 2 for this objective, is underway and should
be ready for Stage 3 at the start of HALF.

b.2. Libraries and tactics for harmonic analysis

The formalization of mathematical results in Stage 3 will result in identification of material for the
Mathlib library, Objective 3 and for tactics to be developed, Objective 4. These two objectives are
the focus of Stage 4.

The Lean Carleson project already suggests the first step towards Objective 3. Most prominently,
the Hardy–Littlewood maximal function and its boundedness in Lp spaces is used in almost all in-
dividual chapters of the blueprint, and will be incorporated into Mathlib. Furthermore, real and
complex interpolation theory were developed as part of the Carleson project, and will also be ported
to Mathlib and thus be made generally reusable. Finally, Calderón-Zygmund theory as for example
in the first four chapters of Stein’s book [Ste93] and done in the generality of doubling metric measure
spaces presents suitable material for Mathlib.

The next formalization goal after Lean Carleson, Objective 2, suggests foremost the Calderón
transference principle as a suitable item for Mathlib. In fact, being a principle rather than a specific
theorem may lend itself to a combination of theorems and tactics to be used more generally.

Nonlinear Fourier analysis is a fundamental theory that is used in many areas of mathematics,
such as bounded analytic functions, Riemann–Hilbert problems, orthogonal polynomials, scattering
theory, operator theory and quantum computing. Including this theory into Mathlib will be beneficial
for all of these applications. Some complex mathematical tools as presented in Garnett’s book [Gar07]
will be among the first targets, such as Hardy spaces and factorization of bounded analytic functions
into inner and outer factors.

Turning to Objective 4, we plan to write tactics using so-called “good old-fashioned AI”: pro-
grams that have a well-defined scope and will solve problems in that scope by explicit human-written
algorithms. These tools can be quick and reliable, which is important for formalization.

In Mathlib there are tactics that can automatically prove that functions are measurable, continuous
or differentiable by decomposing the function into simpler components. This is crucial in harmonic
analysis, because they often show up as side conditions when applying theorems. These tactics are
still limited, and often not directly applicable in actual formalizations. A first step of Objective 4 is
to extend these tactics to apply in all common use cases and to have a similar tactic that can deal
with the integrability of functions. Moreover, we want to extend the integrability-tactic to encompass
reasoning that goes beyond merely decomposing the function into simpler components, allowing us to
consider the behavior of the entire function as well. A common feature of many proofs in harmonic
analysis is the occurrence of a constant in estimation whose specific value is often not interesting
for the purpose of the estimation. For the proof, the exact interdependence of these constants is
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important, but usually dealt with very implicitly in standard mathematical papers. We will work on
an improved implementation of the Landau asymptotic notation as well as a tactic that easily handles
the dependencies in this asymptotic notation. The library Mathlib can already work with statements
of the form f = O(g), but in mathematics one often wants to write this asymptotic notation inside a
formula, like f = exp(O(g)) +O(h), which Mathlib cannot conveniently express yet.

We will additionally work on a suite of tactics that help with manipulating finite sums, infinite
sums and integrals. We currently do calculations involving these by invoking specific lemmas from the
library. For example, we can invoke the specific lemma that we can reindex a sum or integral, which
requires proving that the function is a bijection or a measure-preserving equivalence. Instead, we will
write a tactic reindex that will automatically find the correct function with which to reindex and will
prove these side conditions. Similarly, we will write tactics that push operations (like addition and
multiplying by a constant) outside the sum or integral, or reorder multiple sums or integrals.

Another target is a tactic that can automatically apply common integral inequalities, such as the
Cauchy–Schwarz, Hölder, Minkowski, and Jensen’s inequalities.

We will identify more objectives that we want to solve automatically by these tactics by comparing
the paper proofs with the proofs in Lean and looking for proofs that are significantly longer in the
formal proof because of routine proof steps that are omitted on paper.

During HALF, we will not directly develop any neural AI. However, the tactics we write will
synergize with the continued development of neural AI. Neural AI, like AlphaProof, learns to write
mathematical proofs by combining tactics, and expanding the capabilities of such tactics will also
expand the capabilities of neural AI.

While neural AI cannot solve many mathematical problems autonomously, they can already be
used to solve certain simple problems. An example is Github Copilot [Fri21], which can automatically
give code suggestions while you are typing. During the project we will carefully track the progress in
the field of neural AI, and we will incorporate state-of-the-art neural AI tools in our workflow when
they become available and useful for us.

b.3. Multilinear singular integrals

Many existing results for multilinear singular integrals come in pairs: one for a dyadic model that
operates in a field of characteristic two, and one for a continuous model in Euclidean space. The Lean
Carleson project [BvDJ+24] introduces a new framework within doubling metric measure spaces.
Indeed, this new setting encompasses both of the previous cases as special instances. Therefore,
[BvDJ+24] is the first theorem to unify Carleson’s theorem in the classical continuous setting [Car66]
and the dyadic setting [Bil67].

Work on Objective 5 will utilize both the dyadic work [KT13] by Kovač and Thiele and the
continuous work [DST22] by Thiele and his coauthors as a basis for generalizations to doubling metric
measure spaces. However, there are questions that must be addressed in the full generality of doubling
metric measure spaces, and neither the dyadic nor the Euclidean setting directly provides the answers.

One pair of ingredients in the theory of cubical Brascamp–Lieb forms that is difficult to extend
to doubling metric measure spaces is the use of exact martingale identities in the dyadic setting and,
correspondingly, the use of heat kernels, specifically Gaussians, in the Euclidean setting. The attempt
to use diffusion semigroups on doubling metric measure spaces as substitutes for Gaussian heat kernels
appears to fall short. Although such diffusion semigroups have been extensively studied [AMS19] in
recent years, they typically require additional assumptions on the doubling metric measure space,
such as some mild form of differentiability structure. Adding such differentiability conditions is one
approach toward Objective 5, but we aspire to work in full generality. Thus, we propose to work with
compositions of operators of the form

Pt =
∏
2k<t

Ak (28)

with averaging operators Ak at scale 2k in place of diffusion semigroups.
A second difficulty in doubling metric measure spaces is the absence of a translation structure,

which is heavily utilized in the dyadic and Euclidean settings. We will require assumptions on singular
kernels that are independent of any translation structure. Our objective is to establish T (1) and T (b)
type testing assumptions, which come in various forms with increasing levels of generality. Part of the
work on Objective 5 will be to clarify the theory of T (1) and T (b) theorems for singular Brascamp–Lieb
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forms. Multilinear T (1) theorems have been studied in the dyadic setting of cubical Brascamp–Lieb
forms [KT13], but corresponding theorems in the Euclidean setting are still lacking and surprisingly
challenging. We aim to achieve such generalizations. In the more complex realm of multilinear T (b)
theorems, there remain open questions in the Euclidean setting even for Coifman–Meyer paraproducts,
such as a Euclidean analogue of the dyadic result [MT17] by Mirek and Thiele. We aspire to establish
such an analogue and further generalizations to doubling metric measure spaces. The exact formulation
of the results in Objective 5 may be adjusted based on the findings from the investigations into T (1)
and T (b) theorems.

The first step towards Objective 6 also involves extending a dyadic result [KTZK15] to the Eu-
clidean setting. This dyadic result provides a roadmap towards the objective. Unlike Objective 5,
Objective 6 requires the use of time-frequency analysis, as the proposed result is strong enough to
yield uniform bounds for the bilinear Hilbert transform. We will employ the approach of Thiele and
coauthors [MTT02] in the refined version of [FST24b] regarding uniform bounds in time-frequency
analysis, utilizing phase plane projections as described in [FST24a] by Thiele and coauthors.

Time-frequency analysis decomposes the object of interest into components called trees. It is
necessary to estimate each individual tree, which is less singular than the overall object, and to obtain
good bounds on the number of trees. While the trees of the bilinear Hilbert transform represent
elements of classical Calderón-Zygmund theory, the trees of the simplex Hilbert form will involve
cubical singular Brascamp–Lieb integrals, and even the bounds for an individual tree will be new.
The counting and organization of the trees will involve generalizations of the phase plane projections
as in [FST24a].

Following this initial step toward Objective 6, we will further explore generalizations of [KTZK15]
from the dyadic and Euclidean settings to doubling metric measure spaces. Currently, there is no
suitable general formulation of a bilinear Hilbert transform applicable to doubling metric measure
spaces. The ideas presented in [CHL24], which focus on Lipschitz singularities, represent progress in
this direction. Since the Euclidean version of [KTZK15] also implies Carleson’s theorem, the theory
developed in the Lean Carleson project is another step toward generalizations of [KTZK15] for doubling
metric measure spaces, particularly regarding certain ways of specializing one function.

Objective 6 will extend to investigate higher-order simplices. As the algebraic structure of the
projections becomes more complex, there is currently a lack of overview regarding the possible spe-
cializations of the functions. It is evident that at least two new phenomena will arise even for the
three-dimensional simplex. Specifically, specializing all functions entirely into elementary tensors may
lead to the trilinear Hilbert transform, which cannot currently be estimated with existing technology.
Additionally, certain specializations will require some additive combinatorics alongside time-frequency
analysis, as discussed in [DPT10] by Thiele and coauthors. Jianghao Zhang, a student of Thiele, is
currently working to further clarify this phenomenon.

b.4. Convergence of ergodic averages

According to the Calderón transference principle, quantitative estimates for the ergodic means (16)
can be derived from quantitative estimates for the following averages of planar functions:

MT (f1, f2)(x, y) =
1

T

∫ T

0
f1(x+ t, y)f2(x, y + t) dt . (29)

The quantitative convergence of these averages in the norm, measured by the 2-variation, requires the
estimation of sums

J∑
j=1

∥MTj (f1, f2) −MTj−1(f1, f2)∥22 (30)

=

J∑
j=1

∫
R4

f1(x+ t, y)f2(x, y + t)ψj(t)f1(x+ s, y)f2(x, y + s)ψj(s) dxdydtds , (31)

where ψj is the difference between two successive L1-normalized indicator functions of intervals, as
implied in (29) and (30). A critical change of variables with u = x + y + t and v = x + y + s, along
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with the shearing of each function fi into a new function gi, transforms this expression into

J∑
j=1

∫
R4

g1(u, y)g2(x, u)g1(v, y)g2(x, v)ψj(u− x− y)ψj(v − x− y) dxdydtds . (32)

The arguments of the functions g1 and g2 exhibit the structure of cubical multilinear singular integrals
as described in (12). The bump functions ψ combine to form a multiscale object that is essentially
a singular integral kernel, albeit one with a Marcinkiewicz-type multiparameter structure. The ar-
guments of the bump functions display a somewhat skewed projection, as extensively investigated
by Thiele and coauthors in [DT20, DST22]. Therefore, estimates for the expression (32) fall within
the scope of cubical multilinear singular integrals, with particular features of the kernel relevant to
specific questions in ergodic theory. This has been employed by Thiele and coauthors in [DKŠT19]
and similarly for three commuting transformations in [DST24].

Objective 8 necessitates estimating analogous expressions for three transformations that span a
Heisenberg group. The shearing of variables mentioned above can be adapted to the Heisenberg group.
Apart from this shearing, the Heisenberg group can be viewed as a doubling metric measure, allowing
the application of the theory of singular Brascamp–Lieb integrals on doubling metric measure spaces,
as developed in Objective 5. Since the Heisenberg group has a differentiable structure, an additional
option is to utilize heat kernels defined on the Heisenberg group.

Pointwise estimates for two commuting transformations, as in Challenge IV, would require esti-
mates on a larger variant of (30), with the variation norm applied before the Hilbert space norm. For
some r > 2, this would look like:

∥ sup
T0<T1<···<TJ

(
J∑

j=1

|MTj (f1, f2) −MTj−1(f1, f2)|r)1/r∥2 . (33)

Estimating (33) for the averages given in (29) appears out of reach with current technology, even
considering that analogous bounds have been obtained [Lac00, DOP17] in the collinear case:

MT (f1, f2)(x) =
1

T

∫ T

0
f1(x+ t)f2(x+ 2t) dt (34)

related for the bilinear Hilbert transform.
Further averaging the ergodic means over orbits of several actions, as in (17), produces smoother

objects and more coherent truncations of cubical singular integrals that are amenable to techniques
such as martingale stopping times and their continuous analogues, as discussed in [DMT12]. Elaborat-
ing on these ideas in the setting of cubical multilinear singular integrals will be crucial to Objective 7.
This will initially be done for commuting transformations and subsequently for transformations span-
ning a Heisenberg group. Further investigation will focus on reducing the number of orbit averages,
which will address intermediate problems between Objective 7 and Challenge IV.

b.5 Nonlinear Fourier analysis

The starting point for Objective 9 is the theory developed in [ALM+24]. By restricting the nonlinear
Fourier series (25) to sequences f supported only on either the positive or negative integers, a homeo-
morphism is formed [TT12] between square-integrable sequences and a corresponding nonlinear space
that preserves the Plancherel identity (24).

For sequences on the full line, the forward nonlinear Fourier series then becomes the product of the
Fourier series of f restricted to the negative and positive half-lines. Applying homeomorphisms on each
half-line, inverting the nonlinear Fourier series becomes equivalent to performing a Riemann–Hilbert
factorization of this product into two suitable factors.

Although this factorization is typically non-unique—indicating that the nonlinear Fourier series
is not injective—the work in [ALM+24] establishes uniqueness under the condition that a is outer.
This uniqueness lends stability to the forward nonlinear Fourier series, which we will utilize to derive
analytic estimates.

One goal under Objective 9 is to establish a nonlinear analogue of Carleson’s theorem, assuming
that a is outer. We will draw on ideas from [Pol24], which proposes a weak nonlinear version of
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Carleson’s theorem but appears to contain a gap in the last portion of the argument, as noted in the
most recent update of [Mna24]. We will adapt the ideas from both of these papers by transferring
them from the SU(1, 1) model to the SU(2) model, which involves developing a theory of left and
right orthogonal polynomials for bilinear forms that are not symmetric. An intermediate objective
may be a nonlinear analogue of a lacunary version of Carleson’s theorem.

A second goal under Objective 9 is to establish a uniform nonlinear Hausdorff–Young inequality
under the assumption of outer a. Uniform bounds were proven in a finite characteristic model of
nonlinear Fourier series in [Kov12]. A third goal is to develop a structural theorem for the fibers of
the SU(2) nonlinear Fourier series, building on the results of Tsai using the ideas from [ALM+24].

To generalize nonlinear Fourier series to higher dimensions, as desired in Objective 10, we will first
focus on extending the results of [ALM+24] to Fourier series valued in SU(2n). For this, we interpret
the definition in (25) in block matrix form. The initial step is to construct an outer matrix-valued
function a for a given b. While this can be achieved through polynomial approximations, we will also
seek efficient numerical methods for computing a that parallel the Weiss algorithm in the scalar case.
The next step involves a matrix-valued Riemann–Hilbert factorization, which we aim to implement
using fast Toeplitz solvers. An additional generalization will be to replace z with an arbitrary unitary
input matrix, following the quantum singular value decomposition [GSLW19]. We will examine the
implications of these constructions for quantum computing.

Similarly, one may explore generalizations of the SU(1, 1) nonlinear Fourier series. More broadly,
we will investigate models in SU(n,m) for general values of n and m, which includes the case of
SU(n) for odd n, and therefore does not follow the block matrix structure of (25). We will present a
comprehensive analysis of all these models, extending the scalar case as in [TT12].

A further goal in Objective 10 is to extend the integer domain of the sequence fn to the square
lattice. In the context of solving the Davey–Stewartson equation [DS74], a nonlinear Fourier transform
in the plane was developed in [AH75]. This transform has remarkable properties; for instance, it
shares with the linear case the characteristic that, up to a reflection symmetry, it is essentially its
own inverse. Tataru and coauthors [NRT20] have developed an advanced L2 theory for this nonlinear
Fourier transform. A discrete analog was introduced earlier in [GHL06]. We will discuss both models
beyond the L2 theory, examine the impact of the discrete model on quantum computing, and analyze
fast algorithms for implementing this nonlinear Fourier transform.

Conclusion

HALF arrives at a pivotal moment, poised to be the first initiative to integrate formalization with
research-level mathematics, fully leveraging the synergy that arises from this essential collaboration.
By establishing a groundbreaking lab focused on the formalization of advanced mathematical research,
HALF is charting a course toward a future where formalization becomes a standard part of mathemat-
ical exploration. Although this ambitious endeavor initially requires significant human resources, such
an investment is the most effective and research-driven approach to achieving this transformative goal.
A future with routine formalization is essential for mathematics, as it ensures absolute correctness and
enables us to harness the full potential of modern artificial intelligence in mathematical research.

The HALF project structures its formalization efforts around a crucial agenda in harmonic analysis,
tackling fundamental questions on multilinear singular integrals. This work in harmonic analysis also
holds significant applications for convergence problems in ergodic theory and will pioneer the use of
nonlinear Fourier analysis in quantum computing. Through these efforts, HALF not only aims to
advance the frontiers of mathematics but also to establish a lasting framework that will enable future
breakthroughs in both mathematics and its interdisciplinary applications.
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Section c. Resources and time commitments (including project costs)

Total amount requested: 6.443.439 e

c.1 Resources and time commitments for Thiele

Total amount requested by Thiele, including indirect costs: 3.250.653 e

Personnel costs (2.407.522 e)

In every year of HALF, the team of Thiele will consist of A

• Christoph Thiele as cPI (298.819 e).
Thiele is an expert in harmonic analysis. He will supervise the other members of his team,
conduct research for HALF, coordinate with van Doorn regarding the interaction between the
teams, and administer HALF as the corresponding PI. He will primarily work on Objectives 1
and 5–10.

To fully focus on and work exclusively on the projects outlined in this proposal, Thiele requests
six years of funding for 25% of his own position (full professorship at the Universität Bonn).
Without grant support, he will not be able to engage in this research to the necessary extent.
Thiele will dedicate 35% of his time to HALF.

• Two postdocs (NN) at 80% time each (1.000.047 e).
Postdocs will be chosen respecting a balance of harmonic analysis expertise between the Objec-
tives 5–10. They will conduct research on the respective objectives. At any time, one postdoc
will be involved in the stage of writing a blueprint.

• Two PhD students (NN) at 75% time each (866.219 e).
Each PhD student will conduct research on one of the Objectives 5–10. At any time, one PhD
student will be involved in the stage of writing a blueprint.

• One Secretary (NN) at 50% time (242.437 e).
The secretary will work for the administration of HALF.

Travel and subsistence (165.000 e)

We request 3.000 e per year for Thiele and for each of the postdocs and PhD students in Thiele’s
team. This funding will be used for travel to conferences as well as to invite guest researchers to
support the team’s research on the objectives of HALF.

Thiele will organize three small workshops on topics relevant to HALF, in which Thiele’s team and
additional young researchers from Bonn and beyond will participate. These workshops will disseminate
the results of HALF and facilitate scientific exchange in areas pertinent to HALF. They will also
contribute to the recruitment of scientific personnel for HALF. We request 15.000 e in travel and
subsistence funds for each of these workshops.

Additionally, Thiele will organize a larger conference in the later years of HALF to further dis-
seminate the research findings of HALF. We request 30.000 e in travel and subsistence funds for this
conference.

Publications (0 e)

In line with practice in the field of harmonic analysis, all publications will be posted on the open
access preprint server arXiv and submitted to journals at no cost to the authors.

Other additional costs (28.000 e)

We request additional costs of 5.000 e for each of the three smaller workshops and 10.000 e for the
larger conference.

At the end of the funding period, we are required to conduct an audit to obtain a certificate of
financial statements (3.000 e).
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Existing resources

The corresponding host institution will cover the remaining 20% for each postdoc. Office space and a
workstation are provided for all personnel in Thiele’s team.

c.2 Resources and time commitments for van Doorn

Total amount requested by van Doorn, including indirect costs: 3.192.786 e

Personnel costs (2.461.229 e)

In every year of HALF, the team of van Doorn will consist of

• Floris van Doorn as PI 2 (319.032 e).
Van Doorn is an expert in formalization and Lean. He will supervise the other members of his
team, work on research for HALF and coordinate with Thiele the interaction between the teams.
He will work mainly on Objectives 1, 2, 3, and 4 and the formalization of 5–10.

To be able to fully focus and work exclusively on the projects outlined in this proposal, Van
Doorn is requesting 50% of his own position for the first three years. His current non-permanent
contract is set to expire in September 2028, so he is requesting 70% of his position for the fourth
to sixth years. Van Doorn will dedicate 50% of his time to HALF in years 1-3 and 70% in
years 4-6, which means that, on average, he will work 60% of his time for HALF over the entire
duration of the project.

• Two postdocs (NN) at 80% time each (1.000.047 e).
Postdocs will have expertise and do research in Lean and formalizations. They will work on
Objectives 3 and 4, and the formalization of Objectives 2 and 5–10. An experienced postdoc
will help supervise student research assistants with the formalization tasks.

• Two PhD students (NN) at 75% time each (866.219 e).
Each PhD student will conduct research on one of the Objectives 3 and 4 and help with the
formalization of Objectives 2 and 5–10.

• Four research student assistants (NN) at 10h per week (275.931 e).
The research student assistants will work for the stage of formalizing a blueprint.

Travel and subsistence (90.000 e)

We request 3.000 e per year for van Doorn and for each of the postdocs and PhD students in van
Doorn’s team. This will be used for travel to conferences and to invite guest researchers to assist
the team’s research on the objectives of HALF. Attending conferences is important for presenting
published work and exchanging ideas with external colleagues.

Publications (0 e)

In line with practice in the field of formalization, all publications will be posted on the open access
preprint server arXiv and submitted to conferences and journals at no cost to the authors.

Other additional costs (3.000 e)

At the end of the funding period, we are required to conduct an audit to obtain a certificate of financial
statements (3.000 e).

Existing resources

The current contract of van Doorn with the host institution ends in September 2028. However, the
host institution will continue to fund the remaining percentage up to 100% of van Doorn’s time for
the duration of HALF. The host institution will also cover the remaining 20% of funding for each
postdoc. Office space and a workstation will be provided for each member of van Doorn’s team.
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Appendix

All ongoing grants and submitted grant applications of each of the PIs (Funding ID)

Funding ID for Thiele

Ongoing grants

Project
Title

Funding
source

Amount
(Euros)

Period Role of the PI Relation to current ERC
proposal

EXC
2047/1
Hausdorff
Center for
Mathe-
matics

DFG 48.444.000 1/2019–
12/2025

Thiele is one of 25
PIs.

This funding period will con-
clude before HALF starts.

Project
C08 of
CRC 1060

DFG 205.200 1/2021–
12/2024

Thiele participates
through project
C08, Multilinear es-
timates in geometric
Fourier analysis.

CRC 1060 is in its final fund-
ing period and will conclude
before HALF starts.

Ongoing/submitted grant proposals

Project
Title

Funding
source

Amount
(Euros)

Period Role of the PI Relation to current ERC
proposal

EXC
2047/2
Hausdorff
Center for
Mathe-
matics

DFG 56.685.000 1/2026–
12/2032

Thiele is one of 25
PIs. Thiele has no
specified time com-
mitment. No re-
sources are allocated
directly to Thiele.

Initiating the IRU Formal
Mathematics, the HCM has
laid the institutional base
for HALF. The research pro-
posed in HALF will not be
funded by HCM.

Project
C06 of
CRC 1720

DFG 239.500 1/2026–
12/2029

Thiele participates
through project
C06, Variational
Estimates in Multi-
and Nonlinear Har-
monic Analysis,
dedicating 6% of
his time. C06
funds one PhD
students supervised
by Thiele.

The research will remain
separate from HALF. C06
does not include formaliza-
tion or focus on doubling
metric measure spaces; in-
stead, it will explore nonlin-
ear phase unwinding. See
also page 7 of B2.
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Funding ID for van Doorn

Ongoing grants

Project
Title

Funding
source

Amount
(Euros)

Period Role of the PI Relation to current ERC
proposal

NFDI
29/1
“MaRDI
– Mathe-
matische
Forschungs-
datenini-
tiative.”

DFG 1.261.800 10/2024–
10/2027

Van Doorn is an
application partner
with no specified
time commitment.
This arrangement
funds one PhD
student for Van
Doorn.

There is no overlap with
HALF, as MaRDI focuses
on managing research data
derived from formalization
and making it accessible via
search. It does not involve
the formalization of mathe-
matics itself.

Ongoing/submitted grant proposals

Project
Title

Funding
source

Amount
(Euros)

Period Role of the PI Relation to current ERC
proposal

EXC
2047/2
Hausdorff
Center for
Mathe-
matics

DFG 56.685.000 1/2026–
12/2032

Van Doorn is one
of 25 PIs. There
is no specificed per-
centage of time com-
mitment.

Initiating the IRU Formal
Mathematics, the HCM has
laid the institutional base
for HALF. The research pro-
posed in HALF will not be
funded by HCM.
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