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Abstract. This paper contains a categorification of the sl(k) link invariant
using parabolic singular blocks of category O. Our approach is intended to

be as elementary as possible, providing combinatorial proofs of the main re-
sults of [30]. We first construct an exact functor valued invariant of webs
or “special” trivalent graphs labelled with 1, 2, k − 1, k satisfying the MOY
relations. Afterwards we extend it to the sl(k)-invariant of links by passing
to the derived categories. The approach of [16] using foams appears natu-
rally in this context. More generally, we expect that our approach provides a
representation theoretic interpretation of the sl(k)-homology, based on foams
and the Kapustin-Lie formula, from [19]. Conjecturally this implies that the
Khovanov-Rozansky link homology is obtained from our invariant by restric-
tion.
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1. Introduction

Let k ≥ 2 be a positive integer. In [24], Murakami, Ohtsuki and Yamada devel-
oped a graphical calculus for the sl(k) polynomial invariant Pk of knots and links.
Web diagrams describe intertwiners between the finite tensor products of funda-
mental representations of U = Uq(slk), the (generic) quantised universal enveloping
algebra of slk. The sl(k) link polynomial Pk is defined via the skein relation

qkPk

( )

− q−kPk

( )

= (q − q−1)Pk

( )

and normalised by setting Pk of the trivial knot equal to the quantum number [k].
In this paper we want to describe a categorification of this invariant Pk using

parabolic categories O for various gln. For the special case of k = 3 we explicitly
describe how the sl3-link homology from [16] emerges naturally from our approach.
More generally, our results should be the representation theoretic explanation of
[19], which uses foams and the Kapustin-Lie formula (see Conjecture 7.7). Having
set up the representation theoretic picture conveniently, the verification of this claim
reduces to straight forward, but apparently quite lengthy, combinatorics. In the
present paper, we therefore want to focus on giving all the necessary representation
theoretic tools. Since the Mackaay-Stosic-Vaz homology is equivalent (see [19]) to
the Khovanov-Rozansky homology [18], the verification of the conjecture would give
a representation theoretic interpretation of [18].

In connection with categorifications of link polynomials, in particular the MOY-
relations, category O appeared already in several disguises in the literature. Our
results here are a generalisation of [28], where the case of the Jones polynomial,
i.e. k = 2, was established. A categorification for general k using certain (derived
categories of) singular blocks of category O was first worked out by Josh Sussan in
the interesting paper [30]. Our picture here will be Koszul dual to Sussan’s ([21]).
Although very similar on the first sight, our approach appears to us as being much
simpler and better adapted, for instance because of the following:

• The categorification of webs which appears when completely flattening any
link diagram can be done by working inside certain abelian categories. Only
crossings force us to pass to derived categories (whereas the approach of
[30] has to use derived categories and higher derived functors from the very
beginning).
• Assuming a few standard facts on projective functors turns the problem of

checking the MOY relations into an easy task, involving a couple of simple
facts from the Kazhdan-Lusztig combinatorics.
• Our approach directly shows the connection to [16] and [19]. The homology

rings of partial flag varieties here arise as endomorphism rings of projective
modules in our picture (using a very special and easy case of Soergel’s
endomorphism theorem [25]).

The organisation of the paper and the main results. The main goal of this paper is
to provide a “down-to-earth” approach to the quite involved, technical work of [30].
The price to pay is that one has to assume a few standard facts about projective
functors which we state as Fact 1 to Fact 4 in Section 4. The MOY-relations are
then easy to check: We first do some calculations in the Hecke algebra of the sym-
metric group Sn which describes the combinatorics of projective functors for the
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ordinary (non-parabolic) category O. As a consequence we get the MOY relations
up to some “error term”. This “error term” vanishes however when we restrict the
functors to the parabolic categories which are really used in our categorification.
Again, the verification is completely combinatorial using the knowledge of anni-
hilators of induced modules for the symmetric group (Fact 3). In fact, only the
verification of Reidemeister I and one additional move (Proposition 6.7) involving
crossings, require non-combinatorial arguments. (Note that the arguments in [30]
for these moves are incomplete.)

Let now V be the natural representation of U , i.e. of quantum slk, and let ν be
a composition of n. Consider a tensor product of fundamental representations of U
of the form

Xν :=

ν1
∧

V ⊗
ν2
∧

V ⊗ . . .⊗
νk
∧

V.

In Section 2 we categorify this C[q, q−1]-module via the direct sum

CXν :=
⊕

µ

ZO(n)µ
ν

of parabolic singular blocks of (the graded version of) category O for gl(n), where
µ runs through all compositions of n with at most k parts. This is a generalisation
of the categorifications in [4], [28], see also [7]. In Subsection 3.3 we give an explicit
isomorphism Γν between the standard basis vectors of X and the isomorphism
classes of parabolic Verma modules using some easy combinatorics. This is used
afterwards in Section 4 to categorify intertwiners via graded translation functors.
In Section 4 we show that these translation functors satisfy the MOY relations for
trivalent graphs. This means that to each “special intertwiner” f (see Section 2)
labelled by numbers from {1, 2, k−1, k} only, we associate in Section 5 some functor
F (f) = Fk(f) such that the following holds:

Theorem 1.1. Let k ≥ 2 as above and let ν, ν′ be compositions of n.

(1) If f : Xν → Xν′

is a composition of special intertwiners then F (f) is an
exact functor CXν → CXν′ .

(2) Up to isomorphism, the functors satisfy the MOY relations (Figures 1 to 5).

(3) Under the isomorphism Γν , a composition f : Xν → Xν′

of special inter-
twiners corresponds to [F (f)], the C[q, q−1]-linear map from the complexi-
fied Grothendieck group of CXν to the one of CXν′ .

In Section 5 we extend this assignment f 7→ F (f) to a categorification of the
MOY-tangle invariant, by associating to each oriented tangle diagram t a certain
functor F (t) = Fk(t) such that the following holds:

Theorem 1.2. (1) Up to isomorphism, the functors are invariants of oriented
tangles, i.e. if t ∼= t′ then F (t) ∼= F (t′).

(2) In the Grothendieck group of the homotopy category of complexes of projec-
tive functors we have the equality

qk

[

Fk

( )]

− q

[

Fk

( )]

= q−k

[

Fk

( )]

− q−1

[

Fk

( )]

,

where qj means that the grading is shifted up by j.

In other words, we get a categorification of the polynomial sl(k)-invariant Pk.
Note that this is only a categorification in the weak sense, which means we do not
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specify isomorphisms defining the relations. This is somehow the drawback of our
”down-to-earth” combinatorial approach: we cannot control these morphisms.

In the last section, however, we bring the natural transformation into the picture.
For that we stick to the case k = 3 as in [16] (but see the general Conjecture 7.7).
To each basic foam as depicted in Figure 16, we associate just the obvious natural
transformation of functors given by adjointness properties. Now, any such natural
transformation defines a homomorphism when evaluating at any single object, in
particular if we evaluate it at the antidominant projective module in the most reg-
ular block to choose from. Under Soergel’s combinatorial functor V this morphism
turns into a morphism between certain modules over the endomorphism ring of
the antidominant projective modules. These endomorphism rings have however a
very easy description, namely each of them is isomorphic to the cohomology ring
of some partial flag variety which are in most cases just Grassmannians. Hence we
finally end up with maps between modules over certain cohomology rings, in fact
with tensor products of certain cohomology rings. These turn out to be exactly the
maps in [16]. In general these maps should give rise exactly to the maps from [19].
Putting dots on a foam means in our approach nothing else than multiplication
with an element of the centre of (a direct summand) of the category categorifying
the boundary web.

In light of [7] and [29] one might expect that not only the partial flag varieties,
but also Springer fibres and Spaltenstein varieties, and the combinatorics of their
cohomology rings should play a crucial role in the complete picture.

Notation: In the following we will abbreviate ⊗C as ⊗.

Acknowledgments: We would like to thank Christina Cobbold and Wolfgang Soergel
for useful discussions and comments.

2. Trivalent coloured graphs and intertwiners

Throughout the whole paper we fix an integer k ≥ 2 and denote by V the
natural k-dimensional representation of the quantum group Uq(slk) with generic
parameter q, and fix the standard basis vi, 1 ≤ i ≤ k, of V (see [14, 5A.1]). For
1 ≤ i ≤ k we have the fundamental weights ωi with the corresponding irreducible

Uq(slk)-modules
∧i

V .

For any i, j ∈ {1, 2, . . . k} we have the exterior powers
∧i V ,

∧j V ,
∧i+j V

together with the intertwiner maps

πi+j
i,j :

∧i
V ⊗

∧j
V →

∧i+j
V πi,j

i+j :
∧i+j

V →
∧i

V ⊗
∧j

V.

For explicit formulae of the for us relevant intertwiners we refer to the next para-
graph.

i+j

i j i+j

i j

Figure 0. The graphs associated with πi+j
i,j and πi,j

i+j respectively

There is a graphical description of intertwiners between tensor products of exte-
rior products of V which associates to πi+j

i,j and πi,j
i+j the coloured trivalent graphs



A COMBINATORIAL APPROACH 5

as depicted in Figure 0. (Here and in the following the graphs should be read from
the bottom to the top.) Any arbitrary intertwiner can be described via a compo-
sition of the elementary graphs from Figure 0, so that one can associate with any
intertwiner a trivalent graph coloured by elements from the set {1, 2, . . . , k} (which
should be identified with the set of fundamental weights for slk).

2.1. Special intertwiners. In the context of knot and link invariants, a special
role is played by the pairs (i, j) ∈ {(1, 1), (1, k− 1), (k − 1, 1)}. We will use a (red)
very thick line for the labelling k, a (green) thick line for the labelling k − 1. A
(blue) normal line indicates the labelling by 2, and finally a thin black line indicates
labelling by 1. In the standard bases we have the following explicit formulas:

:
∧k V →

∧k−1 V ⊗ V

w 7→
∑k

j=1 q
j−1w(j) ⊗ vj .

:
∧k V → V ⊗

∧k−1 V

w 7→
∑k

j=1 q
k−jvj ⊗ w(j).

:
∧k−1

V ⊗ V →
∧k

V

w(j) ⊗ vs 7→

{

qj−kw if j = s

0 if j 6= s

: V ⊗
∧k−1

V →
∧k

V

vs ⊗ w(j) 7→

{

qj−1w if j = s

0 if j 6= s

: V ⊗ V →
∧2 V

vi ⊗ vj 7→

{

q−1vi ∧ vj if i > j

vi ∧ vj if i < j

:
∧2 V → V ⊗ V

vi ∧ vj 7→ vj ⊗ vi + qvi ⊗ vj if i < j

where w := v1 ∧ v2 ∧ . . . ∧ vk and w(j) := v1 ∧ . . . vj−1 ∧ vj+1 ∧ . . . ∧ vk.
The relations between the intertwiners translate into relations between trivalent

graphs. Some of them - namely the ones involving only the special intertwiners
with labels from {1, 2, k − 1, k} are depicted in the Relations (I) to (IV) below.

These are the relevant graphs used in [24] to define the slk-invariants of links.
Theorem 1.1 gives a categorical interpretation of these relations, including a functor
valued slk-invariant which enriches the polynomial invariant Pk.
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=  [k] =  [k]and

Figure 1. Relations (I): Two pairs of Intertwiners ∧kV → ∧kV .

=  [2]

Figure 2. Relation (II): Intertwiners ∧2V → ∧2V

=  [k-1]

Figure 3. Relation (III): Intertwiners V ⊗ ∧kV → V ⊗ ∧kV .

= +  [k-2]

Figure 4. Relation (IV): Intertwiners ∧kV ⊗ V ⊗ ∧k−1V →
∧kV ⊗ V ⊗ ∧k−1V .

3. Box diagrams and fillings

Fix a positive integers n. Any tensor product V ⊗i, exterior product ∧iV , or
combination of both, comes along with the standard basis given by tensors of basis
vectors of V and exterior products vi1∧vi2 ∧. . .∧vik

with strictly decreasing indices
i1 > i2 > . . . > ik.

A tuple µ = (µ1, µ2, . . . , µl) of nonnegative integers with
∑l

i=1 µi = n is a
composition of n, denoted µ � n. We call the number l the length l(µ) of µ,
and the number of non-zero entries of µ the actual length, denoted ll(µ), of µ.
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+ +=

Figure 5. Relation (V): Intertwiners V ⊗ V ⊗ V → V ⊗ V ⊗ V .

Associated with any composition µ we have the box diagram Dµ - drawn in the
{(x, y) | x ≥ 0, y ≤ 0}-quadrant of the plane, numbering rows 1, 2, . . . from top to
bottom and columns 1, 2, . . . from left to right - with µi boxes in the ith-column,
placed in the rows 1 to µi - see Examples below.

Given a box diagram Dµ of type µ and a second composition ν of n, a filling of
Dµ of type ν is a filling of Dµ such that for 1 ≤ i ≤ l(ν), the number i appears
exactly νi times. The filling is column strict if in each column the numbers are
strictly increasing from top to bottom. If l(µ) ≤ k we associate to a given column
strict filling F of type ν of Dµ a standard basis element

Φ(F ) ∈
ν
∧

V :=

ν1
∧

V ⊗
ν2
∧

V ⊗ . . .⊗
νk
∧

V

as follows: Let ci,1 < ci,2 < . . . < ci,νi
be the numbers of the columns, where the

entry i occurs, then

Φ(F ) := w1 ⊗ w2 ⊗ . . .⊗ wk(3.1)

where wi := vci,1 ∧ vci,2 ∧ . . . ∧ vci,νi
.

Examples 3.1. Let n = 6, k = 3, ν = (2, 3, 1). Then
∧ν

V has dimension 9.
For µ equal to (3, 2, 1), (3, 1, 2), (2, 1, 3), (2, 3, 1), (1, 2, 3), (1, 3, 2) there is only one
possible column strict filling of type ν giving rise to the following basis vectors

(3, 2, 1)  v1 ∧ v2 ⊗ v1 ∧ v2 ∧ v3 ⊗ v1

(3, 1, 2)  v1 ∧ v3 ⊗ v1 ∧ v2 ∧ v3 ⊗ v3

(2, 1, 3)  v2 ∧ v3 ⊗ v1 ∧ v2 ∧ v3 ⊗ v3

(2, 3, 1)  v1 ∧ v3 ⊗ v1 ∧ v2 ∧ v3 ⊗ v1,

(1, 2, 3)  v1 ∧ v2 ⊗ v1 ∧ v2 ∧ v3 ⊗ v2,

(1, 3, 2)  v2 ∧ v3 ⊗ v1 ∧ v2 ∧ v3 ⊗ v2.

For µ = (2, 2, 2) there are the following three possible column strict fillings with
corresponding basis vectors

2
3

1
2

1
2

1
2

2
3

1
2

1
2

1
2

2
3

v2 ∧ v3 ⊗ v1 ∧ v2 ∧ v3 ⊗ v1 v1 ∧ v3 ⊗ v1 ∧ v2 ∧ v3 ⊗ v2 v1 ∧ v2 ⊗ v1 ∧ v2 ∧ v3 ⊗ v3.

Let n = 2, k = 3, ν = (1, 1), hence
∧ν

V = V ⊗ V . Then we have for instance the
following box diagrams, where the dots are indicating the columns with no boxes:

D(2,0,0) = • • D(0,2,0) = • • D(0,2,0) = • •
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In each case there is only one possible column strict filling of type ν = (1, 1), namely

1
2

. The corresponding basis elements of V ⊗V are then v1⊗v1, v2⊗v2 and v3⊗v3

respectively. Figuring out the remaining basis vectors is left to the reader.

3.1. Actions of the symmetric group. Let D̂µ
ν (resp. Dµ

ν ) be the set of box
diagrams of type µ with fillings (resp. column strict filling) of type ν. If ν =
(1n) := (1, 1, . . .1) we will normally omit the index ν in the notation. There is a
special element T µ ∈ Dµ with the standard filling given by putting the numbers
1, 2, 3, . . . , n in this order column by column from the top to the bottom; for instance

T (2,2,2) = 1
2

3
4

5
6

.

The i-th box of Dµ is the box with the number i in the standard filling; it is
denoted by bi(D

µ). Let Sn be the symmetric group with the usual generators si,

1 ≤ i ≤ n − 1. Then Sn acts on D̂µ
ν from the right by permuting the entries and

from the left by permuting the boxes (with their entries).

Examples 3.2. T (2,2,2)s4s3s2 = 1
3

4
5

2
6

, whereas s2s3s4T
(2,2,2) = 1

5
2
3

4
6

.

3.2. The correspondence. For any composition µ of n let µ̃ be the reduced com-
position obtained by disregarding the zero entries of µ. Let Sµ be the corresponding
Young subgroup, i.e. Sµ = Sµ̃1 × Sµ̃2 × Sµ̃ll(µ)

of Sn. We denote by µSn the set

of shortest coset representatives in Sµ\Sn, similarly let Sµ
n be the set of shortest

coset representatives in Sn/Sµ. Let Oµ
ν denote the set of cosets c ∈ Sn/Sν such

that w ∈ µSn for any w ∈ c.
Assume we have a box diagram D and ν � n. Then any filling of type ν can

be transferred into a filling of type (1n) by replacing first all ones by the numbers
1, 2, . . . , νi from left to right, then all two’s by the numbers ν1 + 1, . . . ν1 + ν2 etc.
On the other hand, if we have a filling F of type (1n) then we can replace the first
ν1 numbers by 1’s, the next ν2 numbers by 2’s etc. We call the result ψν(F ). The

latter is always an element of D̂µ
ν , but not necessarily of Dµ

ν . We have however the
following result

Lemma 3.3. (1) Let µ � n and w ∈ Sn, then wT µ = T µw.
(2) The map Φ from (3.1) defines a bijection

Φµ
ν :

⋃

l(µ)≤k

Dµ
ν

1:1
↔ elements of the standard basis of

ν
∧

V

(3) There is a bijection

Ψµ
ν : Oµ

ν

1:1
↔ Dµ

ν

w 7→ ψν(wT µ).

Proof. By definition, the entry of the ith-box of T µ is precisely i, so the first
statement is obvious. The map Φµ

ν is obviously injective. To see that it is surjective
note that a basis of

∧ν
V is given by elements of the form w1⊗w2⊗ . . .⊗wk where

wi := vci,1 ∧ vci,2 ∧ . . . ∧ vci,ri
, where for any i we have ci,1 < ci,2 < . . . < ci,ri

and 1 ≤ ci,j ≤ k. A preimage of w1 ⊗w2 ⊗ . . .⊗wk can be constructed as follows:
we create a box diagram with column strict filling by putting ones in the columns
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c(1,j), then 2’s in the columns c(2,j) etc. As a result we get an element in
⋃

l(µ)≤k Dµ
ν

which is obviously a preimage, and Φµ
ν is surjective.

Let’s take the box diagram T µ associated with µ with the standard filling. Sn

acts transitively from the left on D̂µ giving rise to a bijection α : Sn
∼= SnT

µ. From
the definition of the left action of Sn on diagrams with fillings we get directly that
wT µ ∈ µSn if and only if, in each column, the entries are strictly increasing from
top to bottom. Hence Ψµ

ν is a bijection if ν = (1n). If ν is now arbitrary, then
w ∈ Oµ

ν if and only if the entries in the columns are still strictly increasing from
top to bottom if we replace the first ν1 numbers by ones, then the next ν2 numbers
by twos etc. The claim is then obvious. �

For any set M let C[M ] be the free C-module with basis given by the elements
of M . If µ = 1n, then the action of Sn turns C[Dµ] into the permutation module,
which is a special instance of the induced sign module N(µ) = C[Sn]⊗C[Sµ] sgn for
arbitrary µ. The latter has a basis given by x⊗ 1, x ∈ µSn. We identify this space
in the obvious way with C[Oµ] and C[Dµ] so that Lemma 3.3 induces isomorphisms
of Sn-modules C[Oµ] ∼= C[Dµ] and

⊕

µ C[Dµ] ∼= V ⊗n where Sn acts by permuting
the factors.

All this can be quantised: If ZOµ
ν denotes the free C[q, q−1]-module with basis

Oµ
ν then we view ZOµ as the induced sign module N (µ) = Hq(Sn)⊗Hq(Sµ) sgn for

the Iwahori-Hecke algebra Hq(Sn) and

⊕

µ

ZOµ ∼= V ⊗n

where Hq(Sn) acts via the R-matrix.
The Hecke algebra Hq(Sn) comes along with the standard basis Hx, x ∈ Sn, and

with the Kazhdan-Lusztig basis Hx, x ∈ Sn. In the following we use the normali-
sation of [26]. In particular, Hs = Hs + qHe =: Hs + q. Associated with x ∈ Sn we
have (t(x), t′(x)), the corresponding pair of standard tableaux via the Robinson-
Schensted correspondence. We will need the following well-known result (see e.g.
[12, Section3]): If t(x) has more than ll(µ) rows then Hx is in the annihilator of
ZOµ.

3.3. Category O. We consider the Lie algebra gln and the corresponding Bern-
stein-Gelfand-Gelfand category O = O(n) associated with the standard triangular
decomposition gln = n− ⊕ h ⊕ n = n− ⊕ b, see [3]. The Weyl group is identified
with the permutation group Sn in the standard way.

For any composition λ of n we fix an integral block Oλ̃ of O such that the

projective Verma module in this block has highest weight λ̃, and the stabiliser of
λ̃ is Sλ. By abuse of notation we denote this block by Oλ and the highest weight
of the projective Verma module P (λ̃) = M(λ̃) ∈ Oλ̃ by λ. For µ � n let Oµ

λ

be the subcategory given by all locally p-finite objects, where p is the parabolic
(containing b) with Weyl group Sµ. The simple objects in Oλ are exactly the
simple highest weight modules L(x ·λ) with x ∈ Sλ

n , with the corresponding Verma
modules M(x · λ). The simple objects in Oµ

λ are exactly the simple highest weight
modules L(x · λ) with x ∈ Oµ

λ. In particular, C[Oµ
λ] can be identified with the

complexified Grothendieck group of Oµ
λ by mapping x ∈ Oµ

λ to the isomorphism
class of the parabolic Verma module Mµ(x · λ) with highest weight x · λ.
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We denote by ZOµ
λ the graded version of Oµ

λ as introduced in [2] and further
developed in [27] and [28, Section 2]. Each parabolic Verma module Mµ(x ·λ) ∈ Oµ

λ

has a standard graded lift ∆(x · λ) ∈ ZOµ
λ with head concentrated in degree zero.

For j ∈ Z we denote by ∆(x · λ)〈j〉 the lift with head in degree j, in particular
∆(x · λ)〈0〉 = ∆(x · λ). Let P (x · λ)〈j〉 be the indecomposable projective cover of
∆(x · λ)〈j〉. More generally, we denote by 〈j〉 the functor which shifts the grading
up by j ∈ Z.

Note that the complexified Grothendieck group [ZOµ
λ ] of ZOµ

λ is naturally iso-

morphic to ZOµ
λ by mapping ∆(x · λ)〈j〉 to qjx. In the following we will abuse

notation and denote ∆(x ·λ)〈j〉 by qj∆(x ·λ) or even by qj∆(x) or qj∆(i1 i2 . . . ir)
if x = si1 . . . sir

is a reduced expression for x and it is clear from the context to
which category the module belongs to. Analogous abbreviations will be used for
the projectives P (x · λ)〈j〉.

4. The same combinatorics in three disguises

4.1. Translation functors - combinatorially. We first recall the explicit com-
binatorics of special projective functors, namely the translation functors on and
out of the walls. Thanks to Fact 1 below the combinatorics describes the functor
completely.

Let λ, µ � n. If Sλ ⊆ Sν then there is the translation out of the walls functor
(see [13, 4.11])

T λ
ν : O(n)ν −→ O(n)λ

with its standard graded lift

θλ
ν : ZO(n)ν −→

ZO(n)λ

which is uniquely determined by requiring that ∆(e) is mapped to a standard lift
of the (indecomposable) projective module T λ

ν M(ν). In the following we will only
need special instances of translation functors (analogous to our special choices of
intertwiners in Section 2.1). Let ν, λ � n such that there exists some l such that
λt = νt for t < l, λt+1 = νt for t > l + 1 and set j = λ1 + ...λl−1.

(Case 1.) If moreover λl = 1, λl+1 = i, νl = i + 1 then θλ
ν : ZO(n)ν −→ ZO(n)λ

maps ∆(e) to the graded projective module P ((i+j)(i+j−1) . . . (j+1)).
The latter has each of the following:

∆((j + i)...(j + 1)), q∆((j + i− 1)...(j + 1)), ..., qi∆(e)

exactly once as graded Verma subquotients. To abbreviate this we will
say ∆(e) is mapped to Aj+1

j+i as defined in (5.1).

(Case 2.) If moreover λl = i, λl+1 = 1, νl = i + 1, then θλ
ν : ZO(n)ν −→ ZO(n)λ

maps ∆(e) to the graded projective P ((j + 1) (j + 2) . . . (j + i)) which
has

∆ ((1 + j) . . . (i+ j)) , q∆((2 + j) . . . (i+ j)) , . . . ,

qi−1∆(i+ j), qi∆(e),

as graded Verma subquotients. In a short form we say that ∆(e) is

mapped to Bi+j
j+1 as defined in (5.1).
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Translation functors preserve parabolic subcategories, hence it makes sense to
define

(i, j)j

(i+j)

=
⊕

µ

θ
(i,j)
(i+j) :

⊕

µ

ZO(i+ j)µ

(i+j) −→
⊕

µ

ZO(i+ j)µ

(i,j).

where the sum runs over all compositions µ of length at most k.
Again if we have Sλ ⊆ Sν there is also the translation onto the walls functor

T ν
λ : O(n)λ −→ O(n)ν . We have its standard graded lift

θν
λ : ZO(n)λ −→

ZO(n)ν

which maps ∆(x) to q−r∆(z), where z and r are defined by writing x = zy with
y ∈ Sν , and z ∈ Sν

n a shortest coset representative and r = l(y) being the length of
y. We define

(i+j)k

(i, j)

=
⊕

µ

θ
(i+j)
(i,j) :

⊕

µ

ZO(i+ j)µ

(i,j) −→
⊕

µ

ZO(i+ j)µ

(i+j),

where the sum runs over all compositions µ of length at most k.
Let λ, ν, µ be compositions of n. Translation functors out and onto walls are

special instances of projective functors. We denote by P(λ, ν) the set of projective
functors from Oλ to Oν as introduced and classified in [5]. We recall the following
well-known facts:

Fact 1 ([5]) A projective functor F ∈ P(λ, ν) is (up to isomorphism) completely
determined by its value onM(λ), i.e. we have an isomorphism of projective
functors F ∼= G if and only if there is an isomorphism of modules FM(λ) ∼=
GM(λ). More precisely: FM(λ) ∈ Oν is projective and F decomposes
into indecomposable summands exactly according to the decomposition of
FM(λ) into indecomposable direct summands.

Fact 2 ([28, Corollary 3.12], [27]) Let F ∈ P(λ, ν) be indecomposable. There

exists a graded lift F̃ : ZOλ → ZOν . Up to isomorphism and shift in the
grading it is unique, and up to isomorphism completely determined by its
value on ∆(e) ∈ ZOλ (thanks to Fact 1).

Fact 3 ([28, Proposition 4.2] and references therein) Let F ∈ P(λ, ν) be inde-

composable such that θ
(1n)
ν FM(λ) ∼= P (x). Assume the tableau t(x) has

more than k rows. Then the restriction of F to Oµ
λ is zero for any µ with

ll(µ) ≤ k.

4.2. The combinatorial action of trivalent graphs. We define C[q, q−1]-linear
maps

(i+j)k

(i, j)

:
⊕

µ

C[Dµ

(i,j)] →
⊕

µ

C[Dµ

(i+j)]

(i, j)j

(i+j)

:
⊕

µ

C[Dµ

(i+j)] →
⊕

µ

C[Dµ

(i,j)]

where µ runs over all compositions of i+ j with at most k parts, as follows: In the
first case we write any box diagram D with filling of type (i, j) as D = xψ(i,j)T

µ
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with x of smallest possible length. Then D is mapped to a box diagram q−l(x)D′

where D′ ∈ Dµ

(i+j) has the same shape as D, but for the filling we replace the 2’s

by 1’s. In the second case a box diagram D of type µ and filling (i+ j) is mapped
to
∑

I q
lIDI , where I runs through all possible subsets of cardinality j of the set of

boxes of D. The diagram DI is obtained from D by replacing all 1’s in the boxes
from I by 2’s, and lI is equal to ij minus the length of the element x of minimal
length such that DI = xψ(i,j)T

µ.

Examples 4.1. Let ν = (3), ν′ = (2, 1) and r = 1. Then

(2,1)j

(3)

( 1 1 1 ) = 2 1 1 + q 1 2 1 + q2
1 1 2

(3)k

(2,1)

( 2 1 1 ) = q
−2

1 1 1

(3)k

(2,1)

( 1 2 1 ) = q
−1

1 1 1

(3)k

(2,1)

( 1 1 2 ) = 1 1 1

We have the obvious generalisation of this procedure if λ and ν are of the form
as in (Case 1) or (Case 2), namely the role played by the entries 1 and 2 above is

then the role of j+1 and j+2. This defines the maps

λj

ν

:
⊕

µ

C[Dµ
ν ]→

⊕

µ

C[Dµ
λ]

and
νk

λ

:
⊕

µ

C[Dµ
λ] →

⊕

µ

C[Dµ
ν ], where µ runs always through all compositions

of n with at most k parts.

Proposition 4.2. For simplicity let λ and ν be as in Case 1 or Case 2. The
following diagram commutes:

[

⊕

µ
ZOµ

λ

]

[F ]

��

Ξλ
//
⊕

µ C[Dµ
λ]

Φλ
//

G

��

∧λ V

H

��[

⊕

µ
ZOµ

ν

]

Ξν
//
⊕

µ C[Dµ
ν ]

Φν
//
∧ν

V

where F = θν
λ is the standard lift of the translation functor to the wall, G =

νk

λ

,

H = πν
λ is the corresponding intertwiner, and the Φ’s and the Ξ’s are the maps

given via all the identifications described in Subsections 3.2 and 3.3. The analogous
statement holds if the roles of λ and ν are swapped.

Proof. The proof is a straightforward checking and therefore omitted. �

5. Functor-valued invariants of coloured trivalent graphs

In this section we will indicate how to construct a functor-valued invariant of
trivalent graphs. Since we are mainly interested in invariants of knots, we stick to
what we called the special intertwiners together with the Relations (I) to (V).

For a basic trivalent graph as depicted in Figure 0 we associate the corresponding
translation functor from Section 4.1, more precisely let λ � n and ν � m and

assume we have a basic intertwiner
∧ν

V →
∧λ

V or its corresponding graph.
Then we first associate as an intermediate step the corresponding non-parabolic
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translation functor θλ
ν : ZO(m)λ → ZO(n)ν and call it the naively associated functor.

Afterwards we take the direct sum of all the restriction to all parabolic with at most
k parts. The result is what we call the functor associated with the intertwiner or
the functor associated with the graph we started with.

We will need the following

Fact 4 Let F : ZOλ → ZOλ be a composition of functors naively associated to
any of the graphs depicted in Relation (I) to Relation (IV). Then we have
F∆(λ) ∼= P where P is a finite direct sum of graded projective modules
from the set

{Q,Q〈k〉 ⊕Q〈−k〉 | k ∈ Z}

where Q runs through the standard lifts of indecomposable projective mod-
ule in Oλ.

Proof. Let d be the usual duality on O. Let F ′ = T ν
λ be a translation on or out of

the walls with λ and ν related as in (Case 1) or (Case 2). Then dF ′ ∼= F ′d ([13,
4.12(9)]). Let d be the standard graded lift of the duality ([27, 6.1.1]). An easy
direct calculation shows that dF ′ ∼= F ′ d〈2(nν −nλ)〉, where nν (resp. nλ) denotes
the length of the longest element in Sν (resp. Sλ). In particular, dF ∼= F d. Let T
be the graded lift of the twisting functor ([1], [9, Section 5]) corresponding to the
longest element w0 of the Weyl group such that T ∆(x·λ) is mapped to d ∆(w0x·λ).
Let first θ = θν

λ be a translation onto the walls with λ and ν related as in (Case 1)
or (Case 2). Then T θ = θT if we forget the grading ([1]), and then T θ = θT〈r〉
for some integer r.

Analogously, T θ′ = θ′ T〈s〉 for some s ∈ Z, where θ′ = θλ
ν . Hence, θθ′ T〈s〉 =

θT θ′ = T θθ′〈−r〉. Since θθ′ is just the direct sum of several copies of the identity
functors (possibly shifted in the grading), we get s = −r. Since all the functors to
consider are associated with graphs having a reflection symmetry in a vertical line,
the sum of overall shifts is zero. This means dF∆(λ) ∼= F d ∆(λ) ∼= F T2 ∆(λ) ∼=
T2 F∆(λ), and since d maps Q〈k〉 to (dQ)〈−k〉, whereas T2 maps Q〈k〉 to (dQ)〈k〉
(see [1, Section 3]) the statement follows. �

Let us summarise what we have: we associated to each trivalent graph two
functors the naively associated one and then the direct sum of its restriction to
all parabolics attached to a composition with at most k parts. We will show that
the latter functors satisfy the Relations (I) to (V). Thanks to Fact 1 to Fact 4
this becomes a purely combinatorial problem, which also shows that it is enough
to verify the the relations of the functors locally, without paying attention how
complicated the graphs might be outside this small region.

For any positive integers r ≥ s, we will use the following abbreviations

As
r = r (r − 1) (r − 2) . . . s Br

s = s (s+ 1) . . . (r − 1) r

q(r − 1) (r − 2) . . . s q(s+ 1) . . . (r − 1) r
...

...

qr−ss qr−sr

qr−s+1e qr−s+1e

(5.1)

In the following we will also “multiply” such (unordered) lists and write AB to
denote the list of all concatenations ab, where a ∈ A and b ∈ B. For instance, A1

2B
4
3

denotes the list 2 1 3 4, q 2 1 3, q2 2 1, q1 3 4, q2 1 3, q31, q2 3 4, q3 3, q4e.
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We denote by [m] = qm−q−m

q−q−1 the m-th quantum number. For a list A as above

we denote by [m]A the list containing qm−1−2ja, 0 ≤ j ≤ m− 1 , a ∈ A.
For a basic trivalent graph as depicted in Figure 0 we associate the corresponding

translation functor from Section 4.1. We are going to show now that the Relations
(I) to (IV) are satisfied. As a consequence we will obtain Theorem 1 from the
Introduction.

Proposition 5.1 (Relations (I) and (II)). Let l ∈ {k, 2}. There are isomorphisms
of functors

θl
l−1,1 θ

l−1,1
l

∼= [l] id and θl
1,l−1 θ

1,l−1
l

∼= [l] id .

Hence, the relations from Figures 1 and 2 hold (even for the naively associated
functors).

Proof. Thanks to Fact 2 it is enough to compare the image (even its Verma flag!)
of the functors applied to the projective Verma module ∆(e). The first functor is
going from the block with singularity ν = (l) to ν = (1, l − 1) and back to (l).
Combinatorially, the image of ∆(e) is given as follows:

(l) (1, k − 1) (l)

e A1
l [l]e

Here, the first row indicates the singularity ν, whereas the second row displays the
Verma flag of the corresponding functor applied to ∆(e) according to the combi-
natorics of translation functors. The first isomorphism follows then directly, the
second is completely analogous. In particular, the Relations (I) and (II) hold for
both, the naively associated functors as well as their parabolic versions. (Note that
our argument doesn’t make any assumptions on l, hence the statement is true in
bigger generality.) �

Proposition 5.2 (Relation (III)). Let G be the naively associated functor to the
left hand side diagram of Figure 3. Then there is an isomorphism of functors

G := θ
(1,k)
(1,1,k−1) θ

(1,1,k−1)
(2,k−1) θ

(2,k−1)
(1,1,k−1) θ

(1,1,k−1)
(1,k)

∼= F ⊕ [k − 1] id,(5.2)

where F is indecomposable and vanishes when restricted to any parabolic with at
most k parts. In particular, the relation depicted in Figure 3 holds.

Proof. Combinatorially, the naively associated functor is given as follows:

(1, k) (1, 1, k − 1) (2, k − 1) (1, 1, k − 1) (1, k)

e A2
k A2

k A2
k1, qA2

k A1
k, [k − 1]e

Using Fact 4 we get that G ∼= G′⊕[k−1] id, whereG′ maps ∆(e) to P (k(k−1) . . . 1).

Now we use Fact 3 and consider θ
(1k+1)
(1,k) G′∆(e) = P (x), where x is the following

permutation (of n = k + 1 letters)

x =

(

1 2 3 . . . . . . k k + 1

k + 1 k k − 1 k − 2 . . . 2 1

)

Under the Robinson-Schensted algorithm this corresponds to a tableau with entries
1, 2, . . . , k, k+1 in its first column, hence has k+1 rows. By Fact 3, the functor F
is zero when restricted to any parabolic with at most k parts. Hence the statement
follows. �
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We also have to check the relation which we obtain by reflecting the graphs
from Figure 3 in a vertical line passing between the two graphs. This can be done
completely analogously as above. Alternatively, consider the isomorphism of the
Lie algebra gln given by the obvious involution of the Dynkin diagram which swaps
the i-th with the n − i-th node. This isomorphism defines an auto-equivalence of
the category O for gln which identifies O(n)µ

ν with O(n)µ̃
ν̃ , where the partition are

’reflected in a vertical line’. Applying this involution we are back at the situation
described in Proposition 5.2.

Proposition 5.3 (Relation (IV)). Let G3 be the functor naively associated with
the graph on the LHS of Figure 4. There is an isomorphism of functors

G3
∼= F ⊕ [k − 2] θ

(k,1,k−1)
(k,k) θ

(k,k)
(k,1,k−1) ⊕ id(k,1,k−1)

where F is an indecomposable functor which vanishes when restricted to any para-
bolic with at most k parts. In particular, the Relation displayed in Figure 4 holds.

Proof. The functor G3 is a composition of different translation functors. We go,
step by step, through the combinatorics:

(k, 1, k − 1) (k − 1, 1, 1, k− 1) (k − 1, 2, k − 1) (k − 1, 1, 1, k − 1)

e Bk−1
1 Bk−1

1 Bk−1
1 k, qBk−1

1

If we now go to (k−1, 1, k) nothing changes and back to (k−1, 1, 1, k−1) we obtain

Bk−1
1 k (2k − 1) (2k − 2) . . . (k + 1)

qBk−1
1 k (2k − 2) . . . (k + 1) qBk−1

1 (2k − 1) (2k − 2) . . . (k + 1)

q2Bk−1
1 k (2k − 3) . . . (k + 1) q2Bk−1

1 (2k − 2) . . . (k + 1)
...

...

qk−1Bk−1
1 k qk−1Bk−1

1 (k + 1)

qkBk−1
1

We denote the column on the left hand side by C1 and the one on the right hand
side by C2 and define D to be the C1 where we remove the part qk−1Bk−1

1 k. (i.e.
all the graded Verma modules indexed by the elements which become shorter if we
multiply with k from the right hand side.) Note also that C1 = Bk−1

1 kAk+1
2k−1 and

C2 = qBk−1
1 Ak+1

2k−1.
If we pass from (k−1, 1, 1, k−1) to (k−1, 2, k−1) and go back to (k−1, 1, 1, k−1)

then our C1 together with C2 from above is then turned into the collection

Dk, qD, C2k, qC2, q
k−2Bk−1

1 k, qk−1Bk−1
1 .

Finally, we have to go to (k, 1, k − 1). The elements Dk, qD, qk−2Bk−1
1 k and

C2k stay the same, qC2 becomes q
∑k

j=1 q
jq−(k−j)Ak+1

2k−1, and qk−1Bk−1
1 becomes

(1 + q2 + q4 + · · · q2(k−1))e. Together with Fact 4, we finally obtain the following
decomposition into indecomposable projective modules:

P (1 . . . k − 1 k (2k − 1) . . . (k + 1))⊕ P (e)⊕ [k − 2]P ((2k − 1) (2k − 2) . . . k + 1).

Now it’s time again to use Fact 3: take the element y = 1 . . . (k− 1)k(2k− 1) . . . k
and translate P (y) out of all walls. We get P (yz), where z is the longest element
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..... .......... ..... .....

The identity functors Translations out of the wall Translations onto the walls

Oriented circles:
Translation onto and out of the walls

=

The different orientations

=

=
=

=

(anti-clockwise)

=

(clockwise)

Figure 6. Crossingless elementary tangles and their associated functors

of Sk × S1 × Sk−1. Now we write yz as a permutation x (of n = 2k letters),

x =

(

1 2 3 . . . k k + 1 k + 2 . . . n− 1 n

k + 1 k k − 1 . . . 2 n n− 1 . . . k + 2 1

)

Under the Robinson-Schensted algorithm, x corresponds to a tableau with entries
1, 2, . . . , k, k+ 1 in its first column, hence has k+ 1 rows. Therefore, the functor F
is zero when restricted to any parabolic with at most k parts. �

The Relation from Figure 5 is nothing else than the Hecke algebra relations, so

Proposition 5.4 (Relation (V)). The relation from Figure 5 holds.

Theorem 1.1 from the Introduction follows.

6. Functor valued invariants of oriented tangles

We want to use the previous paragraphs to construct a functor valued invariant
of oriented tangles categorifying the quantum slk-invariants.

If A is an abelian category we denote by Db(A) the bounded derived category
with shift functor J K such that J1K shifts the complex one step to the right.

Recall now the definition of the tangle category T (see for example [15], [17]).
The objects are finite +,−-sequences, including the empty sequence; morphisms
are the isotopy classes of oriented tangles. Here a plus indicates the orientation
downwards, whereas a minus indicates the orientation upwards. The unoriented
elementary tangles are depicted at the top of Figure 6. The first cup below would
be a morphism from the emptyset to (−,+), whereas the cup in the left lower corner
is a morphism from the emptyset to (+,−). Any morphism in T is a composition
of oriented elementary morphisms.

For any object a ∈ T we define |a| := j + (k − 1)i where i is the number of
pluses and j the number of minuses in a. To an elementary morphism from a to b
we associate a functor F : Db(

⊕

µ
ZO(|a|)µ)→ Db(

⊕

µ′

ZO(|b|)µ′

), where µ and µ′

run through all partitions with at most k parts, as follows:

(1) To vertical strands we associate the identity functor (Figure 6) between the
associated categories.
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= q
-k

q = q
k

q
-1

Figure 7. Crossingless elementary tangles and their associated functors

=

=

Figure 8. The functors associated with arbitrary crossings

(2) A cap diagram should first be replaced by a trivalent graph with labels 1,
k − 1 and k, depending on its orientation, and as shown in Figure 6. To
a cap diagram we associate the corresponding standard lift of translation
functor onto the walls as defined in Section 4.1. The orientation determines
the corresponding categories (Figure 6).

(3) A cup diagram should first be replaced by a trivalent graph with labels 1,
k − 1 and k, depending on its orientation, and as shown in Figure 6. To a
cup diagram we associate then the corresponding standard lift of translation
functor out of the walls as defined in Section 4.1.

(4) Following [28], we associate to a positive crossing with upwards pointing ar-
rows the corresponding left derived of the shuffling functor, but now shifted
by 〈−k〉J1K. To a negative crossing we associate the right derived of the
coshuffling functor shifted by 〈k〉J−1K. In other words, we take the cone
of the natural transformations as depicted in Figure 7, where the identity
parts are concentrated in position zero of the complex. The natural trans-
formations are both homogeneous of degree zero and arise as adjunction
morphisms from translation on and out of the wall.

To an arbitrary crossing we associate the functors given in Figure 8: We first
consider the positive upwards pointing crossing and compose it with cap and cap as
indicated to get the negative crossing pointing to the left. Repeating this process we
get all the 4 crossings depicted to the right in the first row of Figure 8. Analogously
we could start with the (negative) upwards pointing crossing and proceed as shown
in the second row of Figure 8. This associates with each type of crossing a functor.
To obtain Theorem 1.2 from the introduction we have to check the invariance under
tangle moves.
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= = = =
F:= =:G

Figure 9. The 4 versions of the Isomorphism 1 of Tangles

6.1. The tangle moves. In Figure 9 we have depicted four pairs of functors. In
the first pair, the functor F on the RHS has been already defined and goes from the
singularity ν = (1, k) to ν = (k, 1). The corresponding categories can be identified
via an Enright-Shelton equivalence ([8]). The following proposition ensures that
under this identification the functor F becomes isomorphic to the identity functor.
We indicate the identifications to be made by slightly incline the arrow. Analogous
statements hold for the remaining three functors shown in Figure 9. Hence the
following result should be considered as a refined version of the isotopy relations of
tangles:

Proposition 6.1 (Isomorphisms 1). The functors depicted in Figure 9 are all
equivalences of the corresponding categories. (The first two functors are mutually
inverse, as so are the second two functors).

Proof. Let F ′ = θ
(1,k)
(1,k−1,1)θ

(1,k−1,1)
(k,1) and G′ = θ

(k,1)
(1,k−1,1)θ

(1,k−1,1)
(1,k) be the naively

associated functors to the graphs of Figure 9. Combinatorially, the composition
G′F ′ is given as follows:

(k, 1) (1, k − 1, 1) (1, k) (1, k − 1, 1)

e A1
k−1 A1

k−1 A1
k−1B

k
2

The braid relations in Sn provide the equality

r . . . 2 1 2 3 . . . r = 1 2 . . . r(r − 1) . . . 2 1

for any 1 ≤ r < n. Using these equalities one can show that A1
k−1B

k
2 is of the

form as depicted in Figure 10. The top line of the i-th box upstairs is in degree
i− 1, whereas the bottom line is always in degree k − 2. The top line of each box
downstairs is in degree k − 1, whereas the bottom line of the i-th box is in degree
k − 2 + i. We combine the i-th upstairs box with the i+ 1-th downstairs box.

Translating to (k, 1), any two combined boxes together represent (up to a shift
in the grading) a copy of the projective module P := P (1 2 . . . k). (Above or below
each box we denoted the grading shift 〈−j〉 which occurs if we translate any element
x from the box to (k, 1) - one just has to remove the last j elements from x and
shift by −j in the grading). The only remaining element from the first downstairs
box becomes a copy of P (e). Altogether we get G′F ′∆(e) = [k − 1]P ⊕ P (e).

The projective module θ
(1k+1)
k,1 P corresponds to the following permutation (of k+ 1

letters)

x =

(

1 2 3 . . . k − 1 k k + 1

k + 1 k k − 1 . . . 3 2 1

)

Under the Robinson-Schensted correspondence this corresponds to a tableau with
entries 1, 2, . . . , k+1 in its first column. Fact 3 implies now FG ∼= id(k,1). We leave
it to the reader to verify that G′F ′∆(e) ∼= P (k (k− 1) . . . 1)⊕∆(e), where the first
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1 2 ... k  (k-2) ... 1

2 .... k (k-2) ... 1

(k-1) k (k-2) ... 1

(k-1)(k-2)   ....   1

12 ...   k(k-3)...1

2  .... k(k-3)...1

(k-2)...k(k-3)...1

k(k-2)     ...   1

(k-2)(k-3)...    1

(k-1)k(k-3)...1

k(k-3)...1

(k-3)...1

345 ... k 1

45 ... k 1

k 1

1

2 3 ... k

3 ... k

k

e

1 2 ... k

12 ...   k(k-4)...1

2  .... k(k-4)...1

(k-3)...k(k-4)...1

<-(k-2)>

<-(k-3)>

<-(k-4)>

<0>

<0>

<-1>

<-(k-3)>

<-(k-2)>

<-(k-1)>

Figure 10. The Verma flag of F ′G′∆(e)

=

Figure 11. Isomorphism 2 of Tangles

summand translated out of the walls is P (x), where x is as above. Invoking again
Fact 3, it follows GF ∼= id(1,k). Hence the functors F and G define mutually inverse
equivalences of (the singular parabolic) categories in question. Similar calculations
show that the remaining two functors are mutually inverse equivalences as well, we
omit the details. �

Proposition 6.2. The functors associated to the tangle diagrams depicted in Fig-
ure 11 are isomorphic.

As preparation we need to prove several small statements, formulated as Lem-
mas.

Lemma 6.3. There is an isomorphisms of functors as shown in Figure 12.

Proof. The proof is again completely combinatorial, so we leave out the details.
The functor associated with the left hand side maps ∆(e) to ∆(e). The functor
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Figure 12. Step 1 in the proof of Proposition 6.2

=

Figure 13. Step 2 in the proof of Proposition 6.2

associated with the right hand side maps ∆(e) to a direct sum of ∆(e) and copies

of P := P ((2k − 1) . . . (k + 1)2 . . . k). On the other hand θ
(12k)
(k,k)P = P (x), where

x =

(

1 2 3 . . . k − 1 k k + 1 k + 2 . . . 2k − 1 2k

2k k k − 1 . . . 3 1 2k − 1 2k − 2 . . . k + 1 2

)

,

and so x corresponds to a tableaux with the numbers 1, 3, 4, . . . k, 2k − 1, 2k in the
first column, which means there are k− 1 + 2 = k + 1 rows. The statement follows
by applying Fact 3. �

Lemma 6.4. There is an isomorphisms of functors as shown in Figure 13.

Proof. The proof is again completely combinatorial, so we leave out the details.
The functor associated with the right hand side maps ∆(e) to P (3 . . . k), whereas
the functor associated with the left hand side maps ∆(e) to P (12 . . . k)⊕P (3 . . . k).

Note that θ1
2k

(k,k)P (12 . . . k) = P (x), where

x =

(

1 2 . . . k k + 1 . . . 2k − 1 2k

k + 1 k . . . 2 2k . . . k + 2 1

)

,

and so x corresponds to a tableaux with the numbers 1, 2, . . . , k + 1 in the first
column, which means there are k + 1 rows. The statement follows. �

Proof of Proposition 6.2. Let F1 (resp. F2) be the functor on the left (right) hand
side of Figure 12. Let G1 (resp. G2) be the functor on the left (right) hand side
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= =

Figure 14. Reidemeister 1

of Figure 13. Fix any composition µ of 2k with at most k parts and consider the
functors

H := θ
(2,k−1,k−1)
(1,1,k−1,k−1) : Oµ

(1,1,k−1,k−1) → Oµ

(2,k−1,k−1)

J := θ
(1,1,k−2,k)
(1,1,k−2,1,k−1)θ

(1,1,k−2,1,k−1)
(1,1,k−1,k−1) : Oµ

(1,1,k−1,k−1) → Oµ

(1,1,k−2,k)

Then we have isomorphisms of functors as follows:

G1H ∼= G2H ∼= F1J ∼= F2J.

This follows directly from the Lemmas 12 and 13 by drawing pictures. Using
Proposition 9, Figure 9 we see that F2J is isomorphic to the functor given by the
vertically reflected diagram. From this it follows that we have an isomorphism of

functors as in Figure 11, but the crossings replaced by . Now one has just to
take the Cone of the corresponding adjunction morphism. Up to a scalar, there
is a unique morphism with the correct degree. The statement of the Proposition
follows by applying Fact 3. �

Proposition 6.5 (Reidemeister 2 and 3). The functors associated to the positive
and negative upwards pointing crossings are mutually inverse equivalences and sat-
isfy the braid relations.

Proof. This is a standard fact, see for example [22]. �

Proposition 6.6 (Reidemeister1). The three functors associated to the tangle di-
agrams in Figure 14 are isomorphic.

Proof. The functors in question are going from the singularity (1, k) to the singu-
larity (1, k). Recall the definition of the functor associated to the crossings.

Let us first give a short explanation why one might expect the claimed isomor-
phisms: From the relations in Figures 3 and Figure 2 the functor on the left hand
side of Figure 14 is, up to an overall shift by 〈−k〉, the Cone of a morphism

γ : [k] id〈1〉 −→ [k − 1] id,

sitting in cohomological degree zero and 1. There is the obvious surjection

(qk + qk−2 + qk−4 + . . .+ q4−k + q2−k) id→ (qk−2 + qk−4 + . . .+ q4−k + q2−k) id

which identifies the same summands and has kernel qk id, so that we expect the sec-
ond isomorphism of Figure 14 (and similarly the first one). To prove the statement
we have to understand the morphism γ better.

The adjunction morphism α : θ
(1,1,k−1)
(1,k) → θ1,1,k−1

2,k−1 θ2,k−1
1,1,k−1θ

(1,1,k−1)
(1,k) is injective

for any module with Verma flag, in particular for Verma modules and projectives.
From the proof of Proposition 5.2 we see that the image of the adjunction morphism
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== = =

Figure 15. Isomorphisms of Tangles

applied to ∆(e) is a module with Verma subquotients given by qAk
2 , qke. Hence

γ′ := θ
(1,k)
(1,1,k−1)(α)∆(e) surjects onto the [k − 1] copies of ∆(e), and defines a split

θ
(1,k)
(1,1,k−1)θ

(1,1,k−1)
(1,k)

∼= F ′ ⊕ [k − 1] id

for some projective functor F ′. Thanks to Proposition 5.1 we have F ′ ∼= id〈k〉. Now,
if we restrict to the parabolic subcategories with at most k parts, then γ′ induces
the surjection with kernel the identity functor shifted up by k in the degree. Putting
the overall shift back into the picture, we obtain the second isomorphism. The first
isomorphism can be proved analogously or by observing that these are just the
adjoint functors. �

Proposition 6.7. The functors associated to the tangle diagrams in Figure 15
satisfy the displayed isomorphisms.

Proof. The right half of Figure 15 is just the reflection in a vertical line of the
diagrams in Figure 15. Now there is an isomorphism of the Lie algebra gln given
by the obvious involution of the Dynkin diagram which swaps the i-th with the
n − 1 − i-th node. This isomorphism defines an auto-equivalence of the category
O for gln which identifies ZO(n)µ

ν with ZOµ̃
ν̃ , where the partition are “reflected in

a vertical line”. Under this automorphism the functors displayed on the left half
of Figure 15 correspond to the functors displayed on the right half, so that it is
enough to prove the first two isomorphisms.1 Consider first the diagram on the left
hand side together with the following functors

F := θ
(k−1,1,1,k−1)
(k,1,k−1) , F̂ := θ

(k,1,k−1)
(k−1,1,1,k−1)

H := θ
(k−1,1,k)
(k−1,1,1,k−1), Ĥ := θ

(k−1,1,1,k−1)
(k−1,1,k) ,

θ := θ
(k−1,1,1,k−1)
(k−1,2,k−1) θ

(k−1,2,k−1)
(k−1,1,1,k−1)

G := Cone(θ −→ id〈−1〉)〈k〉, Ĝ := Cone(id〈1〉 −→ θ)J1K〈−k〉,
The relation we want to verify says exactly that after restricting to parabolics with
at most k parts, the functors Φ1 := F̂ Ĝ Ĥ and Φ2 := HGF are inverse to each
other.

Directly from the definitions it follows, that the composition Φ1Φ2 is given by
the the following complex of functors:

F̂ Ĥ H θ F 〈1〉 −→ F̂ θ Ĥ H θ F ⊕ F̂ Ĥ H F −→ F̂ θ Ĥ H F 〈−1〉.

1Note that the proof of the corresponding result in [30] is not complete.
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Here the first map is

(

F̂ (β)
ĤHθF

F̂ ĤH(α)F

)

, and the second is
(

F̂ θĤH(α)F ,−F̂ (β)
ĤHF

)

,

where α is the adjunction morphism θ → id〈−1〉 and β the adjunction morphism
id〈1〉 → θ.

Using now the Relations (I), (III) and (IV) (Figures 1, 3, 4) the restrictions of
the functors to any parabolic with at most k parts gives rise to the complex

[k − 1]J〈1〉 −→ (id⊕[k − 2]J)⊕ [k]J −→ [k − 1]J〈−1〉(6.1)

where J is the restriction of the functor θ
(k,k−1,1)
(k,k) θ

(k,k)
(k,k−1,1). As in Proposition 6.6 we

deduce that the first map is an inclusion and the second map is a surjection so that
the functor [k−1]J〈−1〉 splits off as a direct summand and (6.1) is quasi-isomorphic
to

0→ [k − 1]J〈1〉
γ
−→ id⊕[k − 1]J → 0.(6.2)

Denote by κ1 : id⊕[k − 1]J → [k − 1]J the projection. We claim that κ1γ is an
isomorphism.

Indeed, assume that this is not the case. Let P (w) be an indecomposable pro-
jective, different from the dominant Verma module ∆(e). Then the Verma flag of
P (w) contains, as a submodule, the copy of ∆(e) which corresponds to the inclusion
∆(w) →֒ ∆(e). The socle of this submodule is in the kernel of any non-invertible
homomorphism f : P (w)→ P (w) and any homomorphism g : P (w)→ ∆(e). Thus
it is in the kernel of γ∆(e), which contradics the injectivity of γ.

Let κ2 : id⊕[k − 1]J → id be the projection. In particular, γ =

(

κ2γ

κ1γ

)

. Now

the map (id,−κ2γ(κ1γ)
−1) : id⊕[k − 1]J → id satisfies (id,−κ2γ(κ1γ)

−1)γ = 0
and hence defines a quasi-isomorphism from (6.2) to the complex 0 → id → 0,
which represents the identity functor. This proves the first isomorphism. The sec-
ond can be deduced analogously. Alternatively one could deduce it by adjointness
properties. �

To summarise: Theorem 1.2 from the introduction holds.

7. Cohomology rings, natural transformations and foams

In this final section we indicate how to extend our functorial invariant of trivalent
graphs to an invariant of trivalent graphs and foams, and also explain the connection
with [16]. Conjecturally our setup actually gives the representation theoretical
background for the very recent generalisation [19] of [16] to arbitrary k.

Roughly speaking, a foam is a morphism between certain trivalent graphs (for
a precise definition see [16], [20], [19]). Khovanov associated to each special triva-
lent graph a graded vector space and to any foam a homogeneous linear map of
degree being the degree of the foam. In the following we want to indicate how this
construction emerges naturally from our picture by restricting the functors to the
non-parabolic part and applying some Soergel’s combinatorial functor V. In the
following we assume that the reader is familiar with [16].

7.1. Natural transformation associated with basic foams. Apart from the
identity morphisms, un-dotted foams are compositions of elementary foams as de-
picted in Figure 16. Each rectangle should be read from the left to the right, as



24 VOLODYMYR MAZORCHUK AND CATHARINA STROPPEL

Figure 16. Basic Foams correspond to basic natural transforma-
tions, homogeneous of degree −1, 1, −2, 2 respectively.

well as from the right to the left; giving rise to two basic foams. Additionally, both
possible orientation should be considered in the last two cases. For each graph
appearing as the boundary of a foam, we have the associated functor (Section 5).
We assign now to each basic foam a natural transformation, all of them will be just
adjunction morphisms:

First row: We associate the adjunction morphism β1 from the identity to the

composition θ
(2)
(1,1)θ

(1,1)
(2) , and β2 vice versa. β1 and β2 are homogeneous of degree

−1 ([27, Theorem 8.4]). Thanks to ([27, Remarks 3.8 c)]) we have adjunction

morphisms α1 : id → θ
(1,1)
(2) θ

(2)
(1,1) and α2 : θ

(1,1)
(2) θ

(2)
(1,1) → id, both homogeneous

of degree 1. A priori, they are unique up to a non-zero scalar - which we want
to choose such that Lemma 7.2 and Lemma 7.3 below hold; the same will apply
to all the other adjunction morphisms. These are the natural transformations we
associate to the two foams given by the first diagram.

The second row: Recall that we associated to a circle the composition of trans-
lation out of the walls and onto the walls as depicted in Figure 6. Hence we have
the obvious adjunction morphisms γ1 from a clockwise circle, γ2 from an anti-
clockwise circle, γ3 to a clockwise circle, γ4 to an anticlockwise circle. They are

all homogeneous of degree 1 − k. This follows from the adjunction (θ
(i,j)
(k) , θ

(k)
(i,j)),

where (i, j) ∈ {(1, k − 1), (k − 1, 1)〈1 − k〉} (a special case of [9, Proposition

4.2]). The adjunction morphisms δ1 : θ
(2,1)
(3) θ

(3)
(2,1) → id, δ′1 : θ

(1,2)
(3) θ

(3)
(1,2) → id and

δ2 : id→ θ
(2,1)
(3) θ

(3)
(2,1), δ

′
2 : id→ θ

(1,2)
(3) θ

(3)
(1,2), are homogeneous of degree k− 1 (by the

combinatorics of Section 4).
¿From now on we stick to the case k = 3 and illustrate the connection to [16].

Denote by deg F the degree of a basic foam F. From the definition it follows:

Lemma 7.1. Let k = 3. For a basic foam F let φF be the associated natural
transformation as defined above. Then deg(F) = deg(φF).

Apart from the basic foams we need the so-called theta foams. Theta-foams
(Figure 17) are obtained by gluing three oriented disks along their boundaries (their
orientations must coincide).

Dots will correspond to multiplication with a certain element of degree two in
the centre of the category. This will be exactly as in [16] and [19]. To explain
this connection we have to bring cohomology rings of partial flag varieties into the
picture.
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= 0

= = =1

= = = -1

Figure 17. Examples of Theta foams with all the non-trivial evaluations

7.2. The cohomology of flag varieties. Recall the following result of Soergel:
The category ZO(n)λ (for λ a partition of n) has one indecomposable projective-
injective module Pλ with head concentrated in degree zero. We have Soergel’s
functor

V = HomO(P (λ),− ) : ZO(n)λ −→ gmod−EndO(Pλ).

By Soergel’s Endomorphismensatz ([25]) we know that EndO(Pλ) is isomorphic (as
a graded ring) to the cohomology ring (with complex coefficients) of the associated
partial flag variety Fλ, where the dimensions of the subquotients are {λi}i>0.

For instance End(P(1,1)) ∼= H∗(F(1,1)) ∼= C[x]/(x2). If we choose λ = (3), then

we just get the cohomology C of a point, whereas EndO(Pλ) ∼= H∗(P2) ∼= C[x]/(x3)
if λ = (2, 1) or λ = (1, 2). In each case, x is of degree two. If we choose the reversed
standard orientation on P2, then the cohomology ring A := C[x]/(x3) comes along
([16]) with the trace form Tr(xi) = −1δ2,i and the comultiplication

∆(1) = −(1⊗x2+x⊗x+x2⊗1), ∆(x) = −(x⊗x2 +x2⊗x), ∆(x2) = −x2⊗x2.

We choose the basis X(1) = 1, X(2) = x,X(3) = x2 of A and denote by X(1), X(2),

X(3) its dual basis with respect to Tr.
Finally, the cohomology ring C := H∗(F(1,1,1)) is isomorphic to the polyno-

mial ring C[X1, X2, X3] modulo the ideal generated by the elementary symmetric
polynomials. There is the trace function Tr : C → C which maps X1X

2
2 to 1.

7.3. The bridge. The functor V connects category O and modules over coho-

mology rings of flag varieties: The functor θ
(1,1)
(2) θ

(2)
(1,1) : ZO(2)(1,1) →

ZO(2)(1,1)

corresponds ([25], [27]) under V to the functor

• ⊗C C[x]/(x2)〈−1〉 : gmod−C[x]/(x2)→ gmod−C[x]/(x2).

Lemma 7.2. Under the above correspondence the natural transformations α1, α2

become the multiplication V(α1)N : (N ⊗C C[x]/(x2)〈−1〉)〈1〉 → N , n⊗ c 7→ nc and
the comultiplication V(α2)N : N〈1〉 → N ⊗C C[x]/(x2)〈−1〉, n 7→ x ⊗ n + 1 ⊗ xn
respectively.

Proof. See [28, Lemma 8.2]. �

Similarly, the functor θ
(2)
(1,1)θ

(1,1)
(2) : ZO(2)(2) →

ZO(2)(2) corresponds under V to

the functor

• ⊗CC[x]/(x2)〈−1〉 ∼= id〈1〉 ⊕ id〈−1〉 : gmod−C→ gmod−C.(7.1)

Lemma 7.3. With the above definitions, for every graded C-module N we have
V(β1)N : N〈−1〉 → N ⊗C C[x]/(x2)〈−1〉, n 7→ n ⊗ 1 and we further have the
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following: V(β2)N : (N ⊗C C[x]/(x2)〈−1〉)〈−1〉 → N, n ⊗ c 7→ Tr(c)n. Under the
isomorphism (7.1) we just get the projection and inclusion morphisms of degree −1.

Proof. Since the source and target categories of the functors are semi-simple, there
is only one (up to scalar) possible map of the correct degree in each case. �

Now consider the functor θ
(2,1)
(3) θ

(3)
(2,1) : ZO(3)(2,1) →

ZO(3)(2,1). Under the functor

V this corresponds to the functor

• ⊗CC[x]/(x3)〈−2〉 ∼= • ⊗C A〈−2〉(7.2)

([9, 3.4]). Because of Soergel’s double centralizer property with respect to the an-
tidominand projective module, a natural transformation between projective func-
tors is already determined by its value on the antidominant projective module (by
argumens similar to e.g. [23, Lemma 5.1]). Hence the following Lemma is useful:

Lemma 7.4. Under the functor V we have the following correspondences:

• Evaluated at the antidominant projective module P (21) or P (12), the nat-
ural transformations δ1 and δ′1 correspond to the multiplication morphism
m : (A⊗A〈−2〉)〈2〉 → A, whereas δ2 and δ′2 corresponds to the comultipli-
cation morphism ∆ : A〈2〉 → A⊗A〈−2〉.
• Evaluated at the dominant Verma module ∆(e), we get for δ1 and δ′1 the

induced multiplication morphism m : (C⊗A〈−2〉)〈2〉 → C, and for δ1 and
δ′1 the induced comultiplication morphism ∆ : C〈2〉 → C⊗A〈−2〉.

Proof. Note first that we have Vθ
(2,1)
(3) θ

(3)
(2,1)P (21) ∼= A ⊗ A〈−2〉, and similarly

Vθ
(1,2)
(3) θ

(3)
(1,2)P (12) ∼= A ⊗A〈−2〉 by (7.2); whereas Vθ

(2,1)
(3) θ

(3)
(2,1)∆(e) ∼= C ⊗A〈−2〉,

and similarly Vθ
(1,2)
(3) θ

(3)
(1,2)∆(e) ∼= C ⊗ A〈−2〉. Frobenius reciprocity provides a

natural isomorphism of the form

Homgmod−A(N ⊗A, N) ∼= Homgmod−C(N,N)

mapping f to f̂ , where f̂(n) = f(1 ⊗ n) for any graded right A-module N and
n ∈ N . In particular, m̂ is the identity map which implies half of the statement.

Denote by X∗ the graded vector space dual of X . Then there is an isomorphism
of graded right A-modules as follows:

γ : (N ⊗A)∗ ∼= N∗ ⊗A, g 7→
3
∑

i=1

gi ⊗X
(i), f̃ ⊗ c←[ f ⊗ c,

where gi(n) = g(n⊗X(i)) and f̃ ⊗ c(n⊗ d) = Tr(cd)f(n) for n ∈ N , c, d ∈ A. The
second adjunction morphism is then the chain of isomorphisms

Homgmod−C(N,N) ∼= Homgmod−C(N∗, N∗) ∼= Homgmod−A(N∗ ⊗A, N∗)
∼= Homgmod−A((N ⊗A)∗, N∗) ∼= Homgmod−A(N,N ⊗A).

The first isomorphism here is the duality, the second the adjunction from above,
then we invoke the isomorphism γ and finally the duality again. It is now an easy
direct calculation to verify the claim. �

Lemma 7.5. Under the functor V for every graded C-module N we have the fol-
lowing: V(γ1)N : N〈−2〉 → N ⊗C C[x]/(x3)〈−2〉, n 7→ n ⊗ 1 and further we have
V(γ2)N : (N ⊗C C[x]/(x3)〈−2〉)〈−2〉 → N,n⊗ c 7→ Tr(c)n. Under the isomorphism
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from Figure 1 we just get the inclusion and projection morphisms of degree −2.
The same holds for γ′1 and γ′2.

7.3.1. Dots on basic foams. We still have to explain what to do with dots on basic
foams. Under the functor V any dot just corresponds to multiplication with the
variable x. By Soergel’s Struktursatz this means that we multiply the natural
transformation with a certain element of the centre of one of the involved categories

([25], [23]). To make this explicit, consider the functors F := θ
(2,1)
(3) θ

(3)
(2,1) and G :=

θ
(1,2)
(3) θ

(3)
(1,2). A natural transformation f : F → F (or g : G → G) is uniquely

determined by V(f) : VF∆(e)→ VF∆(e) (or V(g) : VG∆(e)→ VG∆(e)) (because
O(3)(3) is semisimple).

Choosing for f and g the identity morphism, we have V(f),V(g) : A → A, and
one checks directly that the surgery operation from Figure 18 decomposes them as
follows:

− id = mx ◦mx ◦ δ2 ◦ δ1 +mx ◦ δ2 ◦ δ1 ◦mx + δ2 ◦ δ1 ◦mx ◦mx

− id = mx ◦mx ◦ δ
′
2 ◦ δ

′
1 +mx ◦ δ

′
2 ◦ δ

′
1 ◦mx + δ′2 ◦ δ

′
1 ◦mx ◦mx

where mx is the multiplication with x which we associate with a dot.

+ +=-

Figure 18. The surgery relation decomposes the identity morphisms

7.3.2. Theta foams. We have to associate to each theta foam a natural transforma-
tion from the identity functor on ZO(3)(3) to itself. To a theta foam with di dots on
the i-th disk we associate the natural transformation which corresponds under the
functor V to the map C→ C, z 7→ Tr(Xd1

1 Xd2
2 Xd3

3 )z. In particular, corresponding
to the three discs (the equatorial, the upper hemisphere and the lower hemisphere)
there are three embeddings of A into C, namely x 7→ X1, x 7→ X2 and x 7→ X3 and
we apply the usual rule for the dots.

Let F be a basic foam with input boundary DF1 and output boundary DF2 .
Let F1, F2 be the corresponding functors as assigned in Section 4 and G1, G2 the
associated graded vector spaces in [16]. Assigned to F we have φF : F1 → F2 and

also a linear map g : G1 → G2 from [16]. Let F 1, F 2 and φF be the restrictions to
the non-parabolic summand. The following result is now easily verified:

Proposition 7.6. (1) The above assignments define a functor from the cat-
egory of prefoams as defined in [16] to the category of graded projective
functors associated with intertwiners and natural transformations between
them.

(2) There are isomorphism VF i∆(e) ∼= Gi, i = 1, 2, of graded vector spaces
under which VφF corresponds to g.

In particular, the approach of [16] follows directly from our setup by restriction.
Note that we really loose some information here, since we evaluate the natural
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transformation on the dominant Verma module (instead of on the antidominant
projective which would keep all the information). On the other hand, we restricted
to a direct summand. This is irrelevant for the quality of the invariant, but only
carries the information of the zero weight space in our original sl(k)-modules Xν.

Conjecture 7.7. The obvious generalisation of our construction for general k
gives rise to the Mackaay-Stosic-Vaz homology ([19]) and hence to the Khovanov-
Rozansky homology [18].

A verification of this conjecture would in particular imply a very nice description
of the interplay of natural transformations between projective functors in terms of
Schur polynomials, based on [19].

7.4. Speculations on web bases and dual canonical bases. In Section 4 we
associated to each special intertwiner or web diagram a certain projective functor.
In the case k = 2 the web bases coincides with the Temperley-Lieb algebra basis
which agrees with Lusztig’s canonical basis ([10]). One can show that the associated
functors are all indecomposable ([28]). This is however just pure accident and very
special for k = 2. The answer to the following question might shed some light on
the relationship in general:

Question. Is it true that the transformation matrix between the web basis and
the canonical basis describes the decomposition of the functors assigned to webs
into a direct sum of indecomposable functors?

To answer this question one has to improve the categorification presented in
the present paper, to include more general intertwiners, and then connect it with
the results on dual canonical bases from [11], and the more general results [6].
Since there is no classification of indecomposable projective functors for parabolic
categories we expect that finding an answer to this question might be quite hard.
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