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Abstract. We explicitly describe a relationship between the Lie theoretic and

topological categorification of the Jones-Wenzl projector.

1. Introduction

The Jones-Wenzl projector pn is an endomorphism of the n-fold tensor product
V ⊗n of the natural representation of the quantum group Uq(sl2) for sl2. It appears
as a standard tool for decomposing explicitly the finite dimensional representations
and plays an important role in the definition and construction of the corresponding
Reshetikhin-Turaev 3-manifold invariant. A categorification of these projectors
seems therefore a necessary tool in establishing a categorification of the 3-manifold
invariant.

A Lie theoretic categorification of the Jones-Wenzl projector pn was constructed
in [7], based on [6], using a graded version ZO(gln) of the category O of highest
weight modules for gln. The direct sum ⊕ni=0(

ZOi(gln)) of maximal singular blocks
is a category whose Grothendieck group V ⊗n is naturally isomorphic as Z[q, q−1]-
module to V ⊗n. A major problem in categorifying the projection lies in the fact that
it is only defined over the rational numbers. However, the Jones-Wenzl projector
can be defined integrally when passing to the completion of V ⊗n. The resulting
Z[q−1][[q]]-module then got realized in [7] as a certain completed Grothendieck
group corresponding to certain subcategory of the one-sided unbounded derived
category ⊕ni=0D

<(ZOi(gln)).
A more topological categorification of the Jones-Wenzl projector was found by

Cooper and Kruskhal [4] using techniques of Bar-Natan [1]. It is based on Kho-
vanov’s arc algebra from [9]. The latter is known to be directly related to the
highest weight categories for gln mentioned above by [17] and [3] via an equiva-
lence of abelian categories composed with a Koszul duality. As stated already in
[7], the two categorifications of the Jones-Wenzl projector are therefore supposed
to be related by an equivalence of categories composed with Koszul duality. In
this note we verify this conjecture for the case where an explicit description of the
Cooper-Krushkal categorified projector is available. We explicitly compare the Lie
theoretic with the topological construction. For general n, the statement should
follow from the (abstract) characterization of the categorified Jones-Wenzl projec-
tor, but (apart from n = 3) it would need much more effort (if possible at all) to
make the relationship and constructions explicit.

Finally we want to mention yet another categorification of the Jones-Wenzl pro-
jector due to Rozansky, [14] which is quite different in nature. It arises as a limit of
a certain direct system of complexes. Lie theoretically this corresponds to taking

1



limits of so-called shuffling functors (and their Koszul duals, [13, Section 6.5]) which
we will not work out in detail here.

We first recall in Section 2 the abstract Lie theoretic construction which should
give already a rough idea of the general categorification. After that we specialize
to the case n = 2 where we work out the setup in detail and make the categories
and functors explicit. We finally prove in Section 3.5 the main result saying that
the Lie theoretic construction of the categorified Jones-Wenzl projector from [7] is
related to the topological construction from [4] by Koszul duality.

Acknowledgements. The first author is deeply grateful to Olaf Schnürer for sev-
eral interesting discussions. The second author is grateful for the support from the
Max Planck Institute for Mathematics in Bonn and its excellent working conditions.

2. A Lie theoretic categorification

Let gln = n− ⊕ h⊕ n+ be the triangular decomposition of the Lie algebra of com-
plex n × n matrices into the direct sum of strictly lower triangular, diagonal, and
strictly upper triangular matrices respectively. Set b = h ⊕ n+. Define O(gln) to
be the full subcategory of U(gln)-modules which are finitely generated, diagonal-
izable with respect to h, and locally finite with respect to U(b). The dual space
h∗ has basis {e1, . . . , en}. Let λi = e1 + ⋯ + ei − ρ where ρ is half the sum of the
positive roots. Let Oi(gln) be the full subcategory of Oi(gln) consisting of mod-
ules which have generalized central character χλi corresponding to λi under the
Harish-Chandra isomorphism. The category Oi(gln) is abelian, C-linear with finite
dimensional hom-spaces and has enough projective objects. For each i, fixing a
minimal projective generator P = Pi provides an equivalence of categories between
Oi(gln) and the category of finitely generated right modules over the complex finite
dimensional algebra A ∶= EndO(P ). This algebra can be equipped with a natural
Koszul grading. The category of finite dimensional graded A-modules can there-
fore be viewed as a graded version of Oi(gln) and is denoted by ZOi(gln). The
Grothendieck groups K(ZOi(gln)), for i = 1, . . . , n are naturally Z[q, q−1]-modules,
where q and q−1 act by shifting up resp. down the degree by one.

Let Uq(sl2) be the generic quantum group of sl2, that is the C(q)-algebra with
generators E,F,K∓ and the usual relations. Let Vi denote the irreducible represen-
tation (of type I) of dimension i+1, see e.g. [7] for details. As mentioned already in
the introduction, the n-th tensor power V ⊗n = V ⊗n

1 of the 2-dimensional irreducible
type I representation V1 of Uq(sl2) (the quantum version of the vector represen-
tation) arises as the Grothendieck group K0 of a direct sum of graded versions of
blocks of category O:

Proposition 1. [6, Special case of Theorem 4.1] There exists a canonical isomor-
phism of Uq(sl2)-modules

n

⊕
i=0

C(q)⊗Z[q,q−1]K0(
Z
Oi(gln)) ≅ V

⊗n
1 .

where the action on the left hand side is induced from certain exact functors.

There is also a categorification of Vn, the (n+1)-dimensional, irreducible Uq(sl2)-
module of type I. Let Gr(i, n) be the variety of complex i-dimensional subspaces in
Cn and denote its singular cohomology with complex coefficients by Ci =H∗(Gr(i, n)).
Denote the category of finitely generated, graded, right Ci-modules by gmod−Ci.
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Proposition 2. [6, Theorem 6.2] There is a canonical isomorphism of Uq(sl2)-
modules

n

⊕
i=0

C(q)⊗Z[q,q−1]K0(gmod−Ci) ≅ Vn.

where the action on the left hand side is induced from exact restriction and induction
functors.

The category appearing in Proposition 2 is obtained from the category in Propo-
sition 1 by taking a quotient by a Serre subcategory. We have the corresponding
quotient functor

(1) π̃n ∶=
n

⊕
i

π̃i,n∶
n

⊕
i

Z
Oi(gln)→

n

⊕
i

gmod−Ci

and its (right exact) left adjoint

(2) ι̃n ∶=
n

⊕
i

ι̃i,n∶
n

⊕
i

gmod−Ci →
n

⊕
i

Z
Oi(gln)

The first functor is just a graded version of Soergel’s combinatorial functor V intro-
duced originally in [15]. Since the left adjoint ι̃n is not exact, we will need its derived
functor acting on a certain derived category. Note that we could directly, see [11,
Theorem 3.2], work with the one-sided unbounded derived category and consider
the derived Verdier quotient. However, basically due to an Eilenberg-Schwindel
argument, the Grothendieck groups behave not as we want them to, [12]. Hence we
will work with slightly smaller categories which whose definition is taken from [2,
Section 2.12] (alternatively we could also work with the category D▽(?) studied in
[AS]).

Let R = ⊕j≥0Rj be a positively graded ring of finite dimension and gmod−R
the category of finite dimensional graded right R-modules. Let K(gmod−R) be the
homotopy category of complexes in gmod−R. An object M ∈ K(gmod−R) is a com-
plex of graded R-modules where the module sitting in the i− th homological degree
is M i = ⊕jM

i
j . Let K<(gmod−R) be the full subcategory of K(R) whose objects

M satisfy M i
j = 0 if i≫ 0 or i+ j ≪ 0. Let K>(gmod−R) be the full subcategory of

K(R) whose objects M satisfy M i
j = 0 if i≫ 0 or i + j ≫ 0. Let D<(gmod−R) and

D>(gmod−R) be the localizations of K<(gmod−R) and K>(gmod−R) respectively
at quasi-isomorphisms.

We have the derived functors of the functors appearing in (1) and (2):

(3) Rπ̃n = π̃n ∶=
n

⊕
i

(Rπ̃i,n = π̃i,n)∶
n

⊕
i

D
<
(
Z
Oi(gln))→

n

⊕
i

D
<
(gmod−Ci)

(4) Lι̃n =
n

⊕
i

Lι̃i,n∶
n

⊕
i

D
<
(gmod−Ci)→

n

⊕
i

D
<
(
Z
Oi(gln))

which induce projection and inclusion on the Grothendieck groups, by [7].
To get the categorified Jones-Wenzl projector, we define

(5) Pn = ⊕ni=0Pi,n = ⊕
n
i=0(Lι̃i,n) ○ π̃i,n∶ ⊕

n
i=0D

<
(
Z
Oi(gln))→ ⊕

n
i=0D

<
(
Z
Oi(gln))

the composition of the derived functors in (3) and (4). It was shown in [7] that
this functor categorifies the Jones-Wenzl projector pn and naturally commutes with
functors categorifying the action of Uq(sl2). Note that L(̃ιi,n) ○ π̃i,n ≠ L(̃ιi,n ○ π̃i,n)
which makes Pn an interesting highly non-trivial functor.
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The Koszul duality functor:

Di,n∶ D<
(
Z
Oi(gln))→D>

(
Z
O
i
(gln))

a triangulated functor from the derived category of graded singular category O
into the derived category of graded parabolic category O was constructed in [2,
Theorem 2.12.1] (see also [13]). This is a covariant functor whose definition in the
special case of n = 2 and i = 1 we recall in Section 3.2. It maps simple and injective
modules to projective and simple modules respectively [2, Theorem 2.12.5]. A shift
in the internal grading is mapped under Di,n to a diagonal shift in the internal and
homological grading. More precisely:

(6) Di,n(M⟨r⟩) ≅ (Di,nM)⟨−r⟩[−r]

(7) Di,n(M[r]) ≅ (Di,nM)[r]

where (M⟨r⟩)j =Mj−r and (M[r])j =M j+r [2, Theorem 2.12.5].

3. Categorifications of the second Jones-Wenzl projector

Consider now the case gl2 from the general setup in Section 2. Since we only
study the case when n = 2 and i = 1, we will omit these indices in what follows.

3.1. The functor P. Let Q denote the quiver in (8) with vertices 1 and 2 and
arrows a, b as indicated. A path (of length l > 0) is a sequence p = α1α2⋯αl of
arrows where the starting point of αi is the ending point of αi+1 for i = 1, . . . , l−1. By
CQ we denote the path algebra of Q, with basis the set of all paths with additionally
e(1) and e(2) the trivial paths of length 0 beginning at 1 and 2 respectively, and
product given by concatenation. For example, c = ab is a basis element of CQ. The
path algebra is a graded algebra where the grading comes from the length of each
path.

(8)

a

b
1 2

Set B to be the algebra CQ modulo the two-sided ideal generated by ba. By
abuse of notation, we denote the image of an element p ∈ CQ in the algebra B
also by p. The algebra B inherits a grading from CQ since the relation ba = 0 is
homogenous. Let Bj denote degree j subspace of B. The degree zero part B0 is a
semi-simple algebra spanned by e(1) and e(2). The degree one subspace is spanned
by a and b. The degree two subspace is spanned by c and Bj = 0 for all j ≥ 3. Let
B+ be the subspace of B whose homogenous elements are in positive degree. The
subspace B+ is the radical of B.

The graded category ZO1(gl2) is equivalent to the category of finitely generated,
graded, right modules over the path algebra of B. The projective modules P (1) =
e(1)B and P (2) = e(2)B correspond to the dominant and anti-dominant projective
modules respectively in category O1(gl2). The simple quotients of the latter two
objects correspond to one-dimensional right modules over B: L(1) = e(1)B/e(1)B+
and L(2) = e(2)B/e(2)B+.
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Up to scalars, the only non-zero homogeneous maps between indecomposable
projectives objects are:

b∶ P (2)⟨i⟩→ P (1)⟨i − 1⟩, a∶ P (1)⟨i⟩→ P (2)⟨i − 1⟩,

c∶ P (2)⟨i⟩→ P (2)⟨i − 2⟩,

e(1)∶ P (1)⟨i⟩→ P (1)⟨i⟩, e(2)∶ P (2)⟨i⟩→ P (2)⟨i⟩

where the maps are multiplication on the left by b, a , c, e(1), and e(2) respectively.
Let C = Endgmod−B1,2(P (2)) ≅ C[x]/(x2) where e(2) ↦ 1 and c ↦ x. This

becomes an isomorphism of graded algebras if we put x in degree two and we may
identify C with H∗(P1C).

Then we have an exact quotient functor π̃∶ gmod−B → gmod−C given by:

M ↦ Homgmod−B(P (2),M)⟨−1⟩.

It is clear that π̃(P (2)) = C⟨−1⟩. The map sending e(2) to a and every other basis
element to zero gives that π̃(P (1)) ≅ C = C/C+ ≅ C. There is also a right exact
inclusion functor ι̃∶ gmod−C → gmod−B given by:

M ↦M ⊗C P (2)⟨1⟩.

Clearly ι̃(C) ≅ P (2)⟨1⟩.
Since the functor ι̃ is not exact, we take derived functors and consider the com-

posite

P = Lι̃ ○ π̃∶ D<
(gmod−B)→D<

(gmod−B).

It follows that:

(9) P(P (2)) = P (2)

where the equality means canonical isomorphism, and

(10) P(P (1)) ≅ ⋯→ P (2)⟨5⟩→ P (2)⟨3⟩→ P (2)⟨1⟩→ 0

where the object P (2)⟨1⟩ is in homological degree zero and all the maps are c.

3.2. The Koszul duality functor D. First we define the Koszul dual algebra B!

of the algebra B and then write down the functor D following [2]. Let V = B1

which is spanned by a and b. The algebra B is a quadratic algebra defined as
the tensor algebra of V over B0 modulo the ideal generated by b ⊗ a. Set V ∗ =

HomB0−mod(V,B0) which is spanned by a∗, b∗ where

a∗(a) = e(2), a∗(b) = 0, b∗(a) = 0, b∗(b) = e(1)

This space is a (B0,B0)-bimodule where

e(2)a∗ = 0, e(1)a∗ = a∗, e(2)b∗ = b∗, e(1)b∗ = 0,

a∗e(1) = 0, a∗e(2) = a∗, b∗e(1) = b∗, b∗e(2) = 0.

Then B! is defined to be the tensor algebra of V ∗ over B0 modulo the ideal generated
by a∗ ⊗ b∗.

Consider the quiver Q!:

(11)

b∗

a∗
1 2
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It is clear that B! is isomorphic to the quotient of the path algebra CQ! modulo
the ideal is generated by a∗b∗. There is an obvious isomorphism ϕ B → B! where

e(1)↦ e(2), e(2)↦ e(1), a↦ a∗, b↦ b∗, ab↦ a∗b∗

An object M in D<(gmod−B) can be viewed as a bigraded vector space ⊕r,sM
r
s

with a differential d∶Mr
s →Mr+1

s for all r and s. Using the isomorphism ϕ, following
[2], we set

(12) (DM)
p
q = ⊕

p=r+s
q=l−s

Mr
s ⊗B0 Bl

where the left action of B0 is twisted by the isomorphism ϕ.
Define DM =⊕p,q(DM)pq to be a graded complex with differential d̃ given by

(13) d̃(m⊗ g) = dm⊗ g + (−1)r+s(ma⊗ ag +mb⊗ bg)

where m ∈Mr
s . Then we get a functor

D∶ D<
(gmod−B)→ D

>
(gmod−B).

Let I(2) be the injective hull of L(2). We will need the following easy facts
which can be found in [2].

Lemma 3. There are isomorphisms of graded modules

(14) DL(1) ≅ P (2), DL(2) ≅ P (1), DI(2) ≅ L(1), P (2) ≅ I(2)⟨2⟩,

Example: DL(1) ≅ P (2). Since L(1)rs = 0 unless r = s = 0, if p ≠ 0, then
(DL(1))pq = 0. By definition, (DL(1))0q = L(1) ⊗B0 Bq. Clearly, L(1) ⊗B0 B0 is
spanned by e(1) ⊗ e(2), L(1) ⊗B0 B1 is spanned by e(1) ⊗ a, and L(1) ⊗B0 B2 is
spanned by e(1)⊗ ab. This is clearly isomorphic to P (2).

3.3. The functor D ○P. First we take the Koszul dual of the complexes obtained
in Section 3.1. Using (6), (9) and (14) we get:

(15) D ○ P(P (2)) = D(P (2)) ≅ L(1)⟨−2⟩[−2].

Note that P(P (1)) is an object of D<(gmod−B) by (10). Then we get:

(16) D1,2 ○ p̃1,2(P (1)) ≅ (⋯→ L(1)⟨−4⟩[−4]→ L(1)⟨−2⟩[−2]→ L(1)→ 0)⟨−3⟩[−3]

where the rightmost L(1) sits in homological degree zero.
It is easy to see that the simple object L(1) is quasi-isomorphic to its minimal

projective resolution:

(17) 0 // P (1)⟨2⟩
a // P (2)⟨1⟩

b // P (1)→ 0.

Then (16) is the total complex shifted by ⟨−3⟩[−3] of the following complex of
complexes where the object P (1)⟨2⟩ in the upper-right corner sitting in homological
degree −2:
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(18) 0

��
P (1)⟨2⟩

��
0

��

P (2)⟨1⟩

��
P (1)

��

// P (1)

��
0

��

P (2)⟨−1⟩

��

0

P (1)⟨−2⟩

��

// P (1)⟨−2⟩

��
P (2)⟨−3⟩

��

0

⋯ // P (1)⟨−4⟩

��
0

The total complex of (18) is the middle complex in (19) where the object P (1)⟨2⟩
in the bottom row sits in homological degree −2. The complex is an object of
D>(gmod−B). It is easy to check that this middle complex decomposes as a direct
sum of the complexes displayed in the left and right columns in (19).

where for n ≥ 2,

A0 = (0) A1 = (
1
0
) An = (

0 1
0 0

)

B0 = (
a
0
) B1 =

⎛
⎜
⎝

b 1
0 −a
0 0

⎞
⎟
⎠

Bn =
⎛
⎜
⎝

0 b 1
0 0 −a
0 0 0

⎞
⎟
⎠

C0 = (a) C1 = (c) Cn = (c)

J0 = (0) J1 = (
0
1
) Jn =

⎛
⎜
⎝

1 0
−a 0
0 1

⎞
⎟
⎠

K0 = (1) K1 = (1 0) Kn = (a 1 0)

L0 = (0) L1 = (b 1) Ln = (
1 0 0
0 b 1

)
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(19)
⋯ ⋯ ⋯

P (1)⟨−4⟩⊕ P (1)⟨−6⟩

A4

OO

J4 // P (1)⟨−4⟩⊕ P (2)⟨−5⟩⊕ P (1)⟨−6⟩

B4

OO

K4 //
L4

oo P (2)⟨−5⟩

C4

OO

M4

oo

P (1)⟨−2⟩⊕ P (1)⟨−4⟩

A3

OO

J3 // P (1)⟨−2⟩⊕ P (2)⟨−3⟩⊕ P (1)⟨−4⟩

B3

OO

K3 //
L3

oo P (2)⟨−3⟩

C3

OO

M3

oo

P (1)⊕ P (1)⟨−2⟩

A2

OO

J2 // P (1)⊕ P (2)⟨−1⟩⊕ P (1)⟨−2⟩

B2

OO

K2 //
L2

oo P (2)⟨−1⟩

C2

OO

M2

oo

P (1)

A1

OO

J1 // P (2)⟨1⟩⊕ P (1)

B1

OO

K1 //
L1

oo P (2)⟨1⟩

C1

OO

M1

oo

0

A0

OO

J0 // P (1)⟨2⟩

B0

OO

K0 //
L0

oo P (1)⟨2⟩

C0

OO

M0

oo

0

OO

0

OO

M0 = (1) M1 = (
1
−b

) Mn =
⎛
⎜
⎝

0
1
−b

⎞
⎟
⎠

Hence we have determined D ○P on projective objects in gmod−B and will now
determine it on maps between projective objects.

Lemma 4.
D1,2 ○ p̃1,2(c)∶

0 // P (1)⟨−2⟩
a //

1

��

P (2)⟨−3⟩
b // P (1)⟨−4⟩ // 0

0 // P (1)
a // P (2)⟨−1⟩

b // P (1)⟨−2⟩ // 0

D1,2 ○ p̃1,2(a)∶

0 // P (1)⟨−2⟩
a //

1

��

P (2)⟨−3⟩
c // P (2)⟨−5⟩

c // ⋯

0 // P (1)
a // P (2)⟨−1⟩

b // P (1)⟨−2⟩ // 0

D1,2 ○ p̃1,2(b)∶
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0 // P (1)⟨−1⟩
a //

1

��

P (2)⟨−2⟩
b //

1

��

P (1)⟨−3⟩ //

a

��

0

0 // P (1)⟨−1⟩
a // P (2)⟨−2⟩

c // P (2)⟨−4⟩
c // P (2)⟨−6⟩

c // ⋯

3.4. The Cooper-Krushkal projector CK. Let θ be the (B,B)− bimodule
Be(2) ⊗ e(2)B⟨−1⟩. By abuse of notation, if M is an object of gmod−B, then
θM is an object of gmod−B given by M ⊗B θ giving rise to an exact functor.

Remark 5. This bimodule was studied in [10] as a categorified generator of the
two-dimensional Temperley-Lieb algebra TL2 and Lie theoretically in [16] as a
translation functor where the natural transformations were also considered.

There are bimodule homomorphisms:

α∶ B⟨i⟩→ θ⟨i − 1⟩ e(2)↦ c⊗ e(2) + e(2)⊗ c e(1)↦ a⊗ b

β∶ θ⟨i⟩→ θ⟨i − 2⟩ e(2)⊗ e(2)↦ c⊗ e(2) − e(2)⊗ c

γ∶ θ⟨i⟩→ θ⟨i − 2⟩ e(2)⊗ e(2)↦ c⊗ e(2) + e(2)⊗ c

Proposition 6. There is a complex of bimodules as follows CK ∶=

0 // B1,2
α // θ1⟨−1⟩

β // θ1⟨−3⟩
γ // θ1⟨−5⟩

β // θ1⟨−7⟩
γ // ⋯

Proof. It is routine to check that the composition of consecutive maps is zero. �

Let X be a complex in D>(gmod−B). Then X ⊗B CK is a bicomplex of B-
modules. This gives rise to a functor

CK∶ D>
(gmod−B)→ D

>
(gmod−B)

where the complex X is mapped to be the total complex of X ⊗B CK.
The functor CK is a Cooper-Krushkal universal projector of width two up to a

renormalization in the grading: our internal grading is opposite to that of [4].

Lemma 7. Θ acts on projectives as follows

(1) θP (2) ≅ P (2)⟨−1⟩⊕ P (2)⟨1⟩
(2) θP (1) ≅ P (2).

Proof. Under the equality:

θP (2) = e(2)B ⊗B Be(2)⊗ e(2)B⟨−1⟩,

the first isomorphism maps 1⊗ 1⊗ y to y in the first coordinate and c⊗ 1⊗ y to y
in the second coordinate. For the second part of the lemma, first note that

θP (1) = e(1)B ⊗B Be(2)⊗ e(2)B⟨−1⟩.

The desired isomorphism maps a⊗ y to y. �

Proposition 8. There are isomorphisms in D>(gmod−B):

(1) CK(P (2)) ≅ 0
(2) CK(P (1)) ≅

0 // P (1)
b // P (2)⟨−1⟩

−c // P (2)⟨−3⟩
c // P (2)⟨−5⟩

−c // ⋯
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Proof. Applying the functor CK to the module P (2) gives the complex which is up
to shift 2-periodic after the first step:

0 // P (2)
ν // M

η // M⟨−2⟩
ζ // M⟨−4⟩

η // ⋯

where M = P (2)⟨−2⟩⊕ P (2) and

ν = (
c
1
) η = (

−c 0
1 −c

) ζ = (
c 0
1 c

)

This is clearly homotopically trivial. The second isomorphism follows from Lemma 7.
�

3.5. A duality theorem.

Lemma 9. DP (1) is quasi-isomorphic to:

(20) 0 // P (2) //b // P (1)⟨−1⟩ // 0

where the object P (1)⟨−1⟩ is in homological degree one.

Proof. There is an exact sequence of modules:

0→ L(2)⟨1⟩→ P (1)→ L(1)→ 0

which gives rise to a triangle in the derived category:

L(1)[−1]→ L(2)⟨1⟩→ P (1).

Applying the functor D to this triangle gives the triangle:

P (2)[−1]→ P (1)[−1]⟨−1⟩→ DP (1).

�

Lemma 10. (1) CK ○D(P (2)) ≅ L(1)⟨−2⟩[−2]
(2) CK ○D(P (1)) ≅

0 // P (1)⟨−1⟩
b // P (2)⟨−2⟩

−c // P (2)⟨−4⟩
c // P (2)⟨−6⟩

−c // ⋯

where the object P (1) is in homological degree 1.

Proof. Recall P (2) isomorphic to I(2)⟨2⟩ where I(2) is the injective hull of L(2)
and DI(2) ≅ L(1). Then tensoring CK with 0 → P (1)⟨2⟩ → P (2)⟨1⟩ → P (1) → 0
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(over B) using Proposition 8, gives the following double complex:

(21) ⋯ ⋯ ⋯

0 // P (2)⟨−3⟩

−c
OO

// 0 //

OO

P (2)⟨−5⟩

−c
OO

// 0

0 // P (2)⟨−1⟩

c

OO

// 0 //

OO

P (2)⟨−3⟩

c

OO

// 0

0 // P (2)⟨1⟩

−c
OO

// 0 //

OO

P (2)⟨−1⟩

−c
OO

// 0

0 // P (1)⟨2⟩

b

OO

// 0 //

OO

P (1)

b

OO

// 0

0

OO

0

OO

0

OO

It is easy to see that its double complex is homotopically equivalent to

0→ P (1)⟨2⟩→ P (2)⟨1⟩→ P (1)→ 0

which is isomorphic to L(1)⟨−2⟩[−2] giving the first isomorphism.
The second isomorphism follows easily from Lemma 9 and (8). �

Now we summarize the calculations of the functors on projective objects:

Proposition 11.
D ○ P(P (1)) ≅ CK ○D(P (1))

D ○ P(P (2)) ≅ CK ○D(P (2))

Now we check that D ○ P equals CK ○D on maps.

Lemma 12. D ○ P(c) = CK ○D(c).

Proof. The morphism c∶P (2)⟨2⟩ → P (2) gets mapped under Koszul duality to the
morphism D(c)∶

0 // P (1)⟨−2⟩ //

1

��

P (2)⟨−3⟩ // P (1)⟨−4⟩ // 0

0 // P (1) // P (2)⟨−1⟩ // P (1)⟨−2⟩ // 0

Tensoring with the complex CK gives a map of bicomplexes as shown in (22)
where the bicomplex D(P (2)⟨2⟩) ⊗B CK is on the right. The morphism between
complexes is given by the curved arrows and the arrows which would be zero have
been omitted.

11



(22)
⋯ ⋯ ⋯ ⋯ ⋯ ⋯

P (2)⟨−3⟩

−c
OO

// 0 //

OO

P (2)⟨−5⟩

−c
OO

P (2)⟨−5⟩

−c
OO

//

1

ii
0 //

OO

P (2)⟨−7⟩

−c
OO

P (2)⟨−1⟩

c

OO

// 0 //

OO

P (2)⟨−3⟩

c

OO

P (2)⟨−3⟩

c

OO

//

1

ii
0 //

OO

P (2)⟨−5⟩

c

OO

P (2)⟨1⟩

−c
OO

// 0 //

OO

P (2)⟨−1⟩

−c
OO

P (2)⟨−1⟩

−c
OO

//

1

ii
0 //

OO

P (2)⟨−3⟩

−c
OO

P (1)⟨2⟩

b

OO

// 0 //

OO

P (1)

b

OO

P (1)

b

OO

//

1

hh 0 //

OO

P (1)⟨−2⟩

b

OO

0

OO

0

OO

0

OO

0

OO

0

OO

0

OO

This induces CK ○D(P (2)⟨2⟩)→ CK ○D(P (2)) on total complexes:

0 // P (1) //

1

��

P (2)⟨−1⟩ // P (1)⟨−2⟩ // 0

0 // P (1)⟨2⟩ // P (2)⟨1⟩ // P (1) // 0

This is equal to the map D ○ P(c) and the claim follows. �

Lemma 13. D ○ P(a) = CK ○D(a).

Proof. The morphism a∶P (1)⟨1⟩→ P (2) gets mapped under Koszul duality to the
morphism D(a)∶

0 //

��

P (2)⟨−1⟩

1

��

b // P (1)⟨−2⟩

1

��

// 0

0 // P (1)
a // P (2)⟨−1⟩

b // P (1)⟨−2⟩ // 0

Tensoring with the complex CK gives rise to the morphism of bicomplexes in-
dicated by the curved arrows in (23), where for simplicity all the zero maps are
omitted.
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(23) ⋯ ⋯ ⋯ ⋯ ⋯

P (2)⟨−5⟩

−c
OO

// 0 //

OO

P (2)⟨−7⟩

−c
OO

0 //

OO

P (2)⟨−7⟩

−c
OO

1
kk

P (2)⟨−3⟩

c

OO

// 0 //

OO

P (2)⟨−5⟩

c

OO

0 //

OO

P (2)⟨−5⟩

c

OO

1
kk

P (2)⟨−1⟩

−c
OO

// 0 //

OO

P (2)⟨−3⟩

−c
OO

0 //

OO

P (2)⟨−3⟩

−c
OO

1
kk

P (1)

b

OO

// 0 //

OO

P (1)⟨−2⟩

b

OO

0 //

OO

P (1)⟨−2⟩

b

OO

1
kk

0

OO

0

OO

0

OO

0 //

OO

0

OO

It induces the following map CK ○ D(P (1)⟨1⟩) → CK ○ D(P (2)) on total com-
plexes:

0 // P (1)⟨−2⟩
C0 //

1

��

P (2)⟨−3⟩
C1 // P (2)⟨−5⟩

C2 // ⋯

0 // P (1) // P (2)⟨−1⟩ // P (1)⟨−2⟩ // 0

This is the map D ○ P(a) and the claim follows. �

Lemma 14. D ○ P(b) = CK ○D(b).

Proof. The morphism b∶P (2)⟨1⟩ → P (1) gets mapped under Koszul duality to the
morphism D(b)∶

0 // P (1)⟨−1⟩
a //

��

P (2)⟨−2⟩
b // P (1)⟨−3⟩ // 0

0 // P (2)
b // P (1)⟨−1⟩ // 0

Tensoring with the complex CK gives rise to the morphism of bicomplexes in-
dicated by the curved arrows in (24), where for simplicity all the zero maps are
omitted.
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(24) ⋯ ⋯ ⋯ ⋯ ⋯

P (2)⟨−6⟩

−c
OO

// 0 //

OO

P (2)⟨−8⟩

−c
OO

0 //

OO

P (2)⟨−6⟩

−c
OO

P (2)⟨−4⟩

c

OO

// 0 //

OO

P (2)⟨−6⟩

c

OO

0 //

OO

P (2)⟨−4⟩

c

OO

P (2)⟨−2⟩

−c
OO

//
1
220 //

OO

P (2)⟨−4⟩

−c
OO

0 //

OO

P (2)⟨−2⟩

−c
OO

P (1)⟨−1⟩

b

OO

//
1
220 //

OO

P (1)⟨−3⟩

b

OO

a

CC

0 //

OO

P (1)⟨−1⟩

b

OO

0

OO

0

OO

0

OO

0 //

OO

0

OO

This induces the following map on total complexes CK ○ D(P (2)⟨1⟩) → CK ○

D(P (1)):

0 // P (1)⟨−1⟩
a //

1

��

P (2)⟨−2⟩
b //

1

��

P (1)⟨−3⟩ //

a

��

0

0 // P (1)⟨−1⟩
a // P (2)⟨−2⟩

c // P (2)⟨−4⟩
c // P (2)⟨−6⟩

c // ⋯

This is the map D ○ P(b) and the claim follows.
�

Theorem 15. There is an isomorphism of functors:

D ○ P ≅ CK ○D.

Proof. This follows from Proposition 11 and Lemmas 12, 13, and 14. �
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