
HIGHEST WEIGHT CATEGORIES ARISING FROM

KHOVANOV’S DIAGRAM ALGEBRA IV: THE GENERAL

LINEAR SUPERGROUP

JONATHAN BRUNDAN AND CATHARINA STROPPEL
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equivalent to a limiting version of Khovanov’s diagram algebra. We deduce
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1. Introduction

This is the culmination of a series of four articles studying various general-
isations of Khovanov’s diagram algebra from [Kh]. The goal is to relate the
limiting version H∞r of this algebra constructed in [BS1] to blocks of the gen-
eral linear supergroup GL(m|n). More precisely, working always over a fixed
algebraically closed field F of characteristic zero, we show that any block of
GL(m|n) of atypicality r is Morita equivalent to the algebra H∞r . We refer the
reader to the introduction of [BS1] for a detailed account of our approach to the
definition of Khovanov’s diagram algebra and the construction of its limiting
version; see also [St3] which discusses further the connections to link homology.

To formulate our main result in detail, fix m,n ≥ 0 and let G denote the
algebraic supergroup GL(m|n) over F. Using scheme-theoretic language, G can
be regarded as a functor from the category of commutative superalgebras over
F to the category of groups, mapping a commutative superalgebra A = A0̄⊕A1̄

to the group G(A) of all invertible (m+ n)× (m+ n) matrices of the form

g =

(
a b
c d

)
(1.1)
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where a (resp. d) is an m ×m (resp. n × n) matrix with entries in A0̄, and b
(resp. c) is an m× n (resp. n×m) matrix with entries in A1̄.

We are interested here in finite dimensional representations of G, which can
be viewed equivalently as integrable supermodules over its Lie superalgebra
g ∼= gl(m|n,F); the condition for integrability is the same as for g0̄

∼= gl(m,F)⊕
gl(n,F). For example, we have the natural G-module V of column vectors, with
standard basis v1, . . . , vm, vm+1, . . . , vm+n and Z2-grading defined by putting vr
in degree r̄ := 0̄ if 1 ≤ r ≤ m, r̄ := 1̄ if m+ 1 ≤ r ≤ m+n. Let B and T be the
standard choices of Borel subgroup and maximal torus: for each commutative
superalgebra A, the groups B(A) and T (A) consist of all matrices g ∈ G(A)
that are upper triangular and diagonal, respectively. Let ε1, . . . , εm+n be the
usual basis for the character group X(T ) of T , i.e. εr picks out the rth diagonal
entry of a diagonal matrix. Equip X(T ) with a symmetric bilinear form (., .)
such that (εr, εs) = (−1)r̄δr,s, and set

ρ :=
m∑
r=1

(1− r)εr +
n∑
s=1

(m− s)εm+s. (1.2)

Let

X+(T ) :=

{
λ ∈ X(T )

∣∣∣∣ (λ+ ρ, ε1) > · · · > (λ+ ρ, εm),
(λ+ ρ, εm+1) < · · · < (λ+ ρ, εm+n)

}
(1.3)

denote the set of dominant weights.
We allow only even morphisms between G-modules, so that the category of all

finite dimensional G-modules is obviously an abelian category. Any G-module
M decomposes as M = M+ ⊕M−, where M+ (resp. M−) is the G-submodule
of M spanned by the degree λ̄ (resp. the degree (λ̄ + 1̄)) component of the λ-
weight space of M for all λ ∈ X(T ); here λ̄ := (λ, εm+1 + · · ·+ εm+n) (mod 2).
It follows that the category of all finite dimensional G-modules decomposes as
F⊕ ΠF, where F = F(m|n) (resp. ΠF = ΠF(m|n)) is the full subcategory
consisting of all M such that M = M+ (resp. M = M−). Moreover F and ΠF
are obviously equivalent. In view of this decomposition, we will focus just on
F from now on. Note further that F is closed under tensor product, and it
contains both the natural module V and its dual V ∗.

By [B1, Theorem 4.47], the category F is a highest weight category with
weight poset (X+(T ),≤), where ≤ is the Bruhat ordering defined combinatori-
ally in the next paragraph. We fix representatives {L(λ) | λ ∈ X+(T )} for the
isomorphism classes of irreducible modules in F so that L(λ) is an irreducible
object in F generated by a one-dimensional B-submodule of weight λ. We
also denote the standard and projective indecomposable modules in the highest
weight category F by {V(λ)|λ ∈ X+(T )} and {P(λ)|λ ∈ X+(T )}, respectively.
So P(λ) � V(λ) � L(λ). In this setting, the standard module V(λ) is often
referred to as a Kac module after [Ka].

Now we turn our attention to the diagram algebra side. Let Λ = Λ(m|n)
denote the set of all weights in the diagrammatic sense of [BS1, §2] drawn on
a number line with vertices indexed by Z, such that a total of m vertices are
labelled × or ∨, a total of n vertices are labelled ◦ or ∨, and all of the (infinitely
many) remaining vertices are labelled ∧. From now on, we identify the set



KHOVANOV’S DIAGRAM ALGEBRA IV 3

X+(T ) introduced above with the set Λ via the following weight dictionary.
Given λ ∈ X+(T ), we define

I∨(λ) := {(λ+ ρ, ε1), . . . , (λ+ ρ, εm)}, (1.4)

I∧(λ) := Z \ {(λ+ ρ, εm+1), . . . , (λ+ ρ, εm+n)}. (1.5)

Then we identify λ with the element of Λ whose ith vertex is labelled
◦ if i does not belong to either I∨(λ) or I∧(λ),
∨ if i belongs to I∨(λ) but not to I∧(λ),
∧ if i belongs to I∧(λ) but not to I∨(λ),
× if i belongs to both I∨(λ) and I∧(λ).

(1.6)

For example, the zero weight (which parametrises the trivial G-module) is iden-
tified with the diagram

if m ≥ n,

if m ≤ n.

· · · · · ·
n︷ ︸︸ ︷ m−n︷ ︸︸ ︷

∧∧ ∨ ∨ ∨ × × × ∧ ∧

· · · · · ·︸ ︷︷ ︸
m

︸ ︷︷ ︸
n−m

∧∧ ∨ ∨ ∨ ◦ ◦ ◦ ∧ ∧

where the leftmost ∨ is on vertex (1 −m). In these diagrammatic terms, the
Bruhat ordering on X+(T ) mentioned earlier is the same as the Bruhat ordering
on Λ from [BS1, §2], that is, the partial order ≤ on diagrams generated by the
basic operation of swapping a ∨ and an ∧ so that ∨’s move to the right.

Let ∼ be the equivalence relation on Λ generated by permuting ∨’s and ∧’s.
Following the language of [BS1] again, the ∼-equivalence classes of weights from
Λ are called blocks. The defect def(Γ) of each block Γ ∈ Λ/ ∼ is simply equal
to the number of vertices labelled ∨ in any weight λ ∈ Γ; this is the same thing
as the usual notion of atypicality in the representation theory of GL(m|n) as in
e.g. [Se1, (1.1)].

Let K = K(m|n) denote the direct sum of the diagram algebras KΓ associ-
ated to all the blocks Γ ∈ Λ/ ∼ as defined in [BS1, §4]. As a vector space, K
has a basis

{(aλb) | for all oriented circle diagrams aλb with λ ∈ Λ} , (1.7)

and its multiplication is defined by an explicit combinatorial procedure in terms
of such diagrams as in [BS1, §6]; see the discussion at the end of this introduction
for some examples illustrating the precise meaning of all this. As explained in
[BS1, §5], to each λ ∈ Λ there is associated an idempotent eλ ∈ K. The left
ideal P (λ) := Keλ is a projective indecomposable module with irreducible head
denoted L(λ). The modules {L(λ) | λ ∈ Λ} are all one dimensional and give a
complete set of irreducible K-modules. Finally let V (λ) be the standard module
corresponding to λ, which was referred to as a cell module in [BS1, §5].

The main result of the paper is the following.

Theorem 1.1. There is an equivalence of categories E from F(m|n) to the
category of finite dimensional left K(m|n)-modules, such that EL(λ) ∼= L(λ),
EV(λ) ∼= V (λ) and EP(λ) ∼= P (λ) for each λ ∈ Λ(m|n).
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Our proof of Theorem 1.1 involves showing that K is isomorphic to the locally

finite endomorphism algebra EndfinG (P )op of a canonical minimal projective
generator P ∼=

⊕
λ∈Λ P(λ) for F; see Lemmas 5.8–5.9 below. To construct P ,

we first consider the weight

λp,q :=
m∑
r=1

pεr −
n∑
s=1

(q +m)εm+s (1.8)

for integers p ≤ q. This is represented diagrammatically by

p qp−m q+n

· · · · · ·︸ ︷︷ ︸
m

︸ ︷︷ ︸
n

∧∧ ∧∧∧× × × ◦ ◦ ◦ ∧ ∧ (1.9)

where the rightmost × is on vertex p and the rightmost ◦ is on vertex (q + n).
The G-module V(λp,q) is projective, hence the “tensor space” V(λp,q) ⊗ V ⊗d
is projective for any d ≥ 0. Moreover, any P(λ) appears as a summand of
V(λp,q)⊗V ⊗d for suitable p, q and d. The key step in our approach is to compute

the endomorphism algebra of V(λp,q) ⊗ V ⊗d for d ≥ 0. For d ≤ min(m,n), we
show that it is a certain degenerate cyclotomic Hecke algebra of level two, giving
a new “super” version of the level two Schur-Weyl duality from [BK1]. Then
we invoke results from [BS3] which show that the basic algebra that is Morita
equivalent to this cyclotomic Hecke algebra is a generalised Khovanov algebra;
this equivalence relies in particular on the connection between cyclotomic Hecke
algebras and Khovanov-Lauda-Rouquier algebras in type A from [BK2]. Finally
we let p, q and d vary, taking a suitable direct limit to derive our main result.

We briefly collect here some applications of Theorem 1.1.

Blocks of the same atypicality are equivalent. The algebras KΓ for all
Γ ∈ Λ(m|n)/ ∼ are the blocks of the algebra K(m|n). Hence by Theorem 1.1
they are the basic algebras representing the individual blocks of the category
F(m|n). In the diagrammatic setting, it is obvious for Γ ∈ Λ(m|n)/ ∼ and
Γ′ ∈ Λ(m′|n′)/ ∼ (for possibly different m′ and n′) that the algebras KΓ and
KΓ′ are isomorphic if and only if Γ and Γ′ have the same defect. Thus we
recover a result of Serganova from [Se2]: the blocks of GL(m|n) for all m,n
depend up to equivalence only on the degree of atypicality of the block.

Gradings on blocks and Koszulity. Each of the algebrasKΓ carries a canon-
ical positive grading with respect to which it is a (locally unital) Koszul algebra;
see [BS2, Corollary 5.13]. So Theorem 1.1 implies that blocks of GL(m|n) are
Koszul. The appearence of such hidden Koszul gradings in representation the-
ory goes back to the classic paper of Beilinson, Ginzburg and Soergel [BGS] on
blocks of category O for a semisimple Lie algebra. In that work, the grading
is of geometric origin, whereas in our situation we establish the Koszulity in a
purely algebraic way.

Rigidity of Kac modules. Another consequence of Theorem 1.1, combined
with [BS2, Corollary 6.7] on the diagram algebra side, is that all the Kac mod-
ules V(λ) are rigid, i.e. their radical and socle filtrations coincide. See [BS1,
Theorem 5.2] for the explicit combinatorial description of the layers.
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Kostant modules and BGG resolution. In [BS2] we studied in detail the
Kostant modules for the generalised Khovanov algebras, i.e. the irreducible
modules whose Kazhdan-Lusztig polynomials are multiplicity-free. In particu-
lar in [BS2, Lemma 7.2] we classified the highest weights of these modules via a
pattern avoidance condition. Combining this with Theorem 1.1, we obtain the
following classification of all Kostant modules for GL(m|n): they are the irre-
ducible modules parametrised by the weights in which no two vertices labelled
∨ have a vertex labelled ∧ between them. By [BS2, Theorem 7.3], Kostant
modules possess a BGG resolution by multiplicity-free direct sums of standard
modules. All irreducible polynomial representations of GL(m|n) satisfy the
combinatorial criterion to be Kostant modules, so this gives another proof of
the main result of [CKL].

Endomorphism algebras of PIMs. For any λ ∈ Λ, Theorem 1.1 implies
that the endomorphism algebra EndG(P(λ))op of the projective indecomposable
module P(λ) is isomorphic to the algebra eλKeλ. By the definition of multipli-
cation in K, this algebra is isomorphic to F[x1, . . . , xr]/(x

2
1, . . . , x

2
r) where r is

the defect (atypicality) of the block containing λ, answering a question raised
recently by several authors; see [BKN, (4.2)] and [Dr, Conjecture 4.3.3]. (It
should also be possible to give a proof of the commutativity of these endomor-
phism algebras using some deformation theory like in [St2, §2.8], invoking the
fact that the multiplicities (P(λ) : V(µ)) are at most one by Theorem 2.1 below;
see [St1, Theorem 7.1] for a similar situation.)

Super duality. When combined with the results from [BS3], our results can be
used to prove the “Super Duality Conjecture” as formulated in [CWZ]. A direct
algebraic proof of this conjecture, and its substantial generalisation from [CW],
has recently been found by Cheng and Lam [CL]. All of these results suggest
some more direct geometric connection between the representation theory of
GL(m|n) and the category of perverse sheaves on Grassmannians may exist.

To conclude this introduction, we recall in more detail the definition of the
algebra K following [BS1, §6]. We assume m = n = r and focus just on
the principal block of G = GL(r|r), which is the basic example of a block of
atypicality r. The dominant weights in this block are the weights

λi1,...,ir :=
r∑
s=1

(is + s− 1)(εs − ε2r+1−s) ∈ X+(T )

parametrised by sequences i1 > · · · > ir of integers. According to the weight
dictionary (1.6), the diagram for λi1,...,ir has label ∨ at the vertices indexed by
i1, . . . , ir, and label ∧ at all remaining vertices. The corresponding block of
the algebra K is exactly the algebra denoted K∞r in the introduction of [BS1].
Theorem 1.1 (or rather the more precise Lemmas 5.8–5.9 below) asserts in this
situation that

K∞r
∼= EndfinG

( ⊕
i1>···>ir

P(λi1,...,ir)

)op

. (1.10)

Our explicit basis of K∞r is given by the oriented circle diagrams from (1.7).
These are obtained by taking the diagram of some λi1,...,ir , then gluing r cups
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and infinitely many rays to the bottom and r caps and infinitely many rays to
the top of the diagram so that

I every vertex meets exactly one cup or ray below and exactly one cap or
ray above the number line;

I each cup and each cap is incident with one vertex labelled ∧ and one
vertex labelled ∨;

I each ray is incident with a vertex labelled ∧ and extends from there
vertically up or down to infinity;

I no crossings of cups, caps and rays are allowed.

Under the isomorphism (1.10), such a diagram represents a homomorphism
P(λj1,...,jr) → P(λk1,...,kr) where j1 > · · · > jr (resp. k1 > · · · > kr) index the
leftmost vertices of the cups (resp. caps) in the diagram. For example, here are
two oriented circle diagrams corresponding to basis vectors in K∞2 (where · · ·
indicates infinitely many pairs of vertical rays labelled ∧):

· · · · · · · · · · · ·

1 2 3 4 5 6 1 2 3 4 5 6

∧ ∨ ∧ ∨ ∧ ∧

��' $
���� ∧ ∨ ∧ ∨ ∧ ∧��& %

����
The first diagram here represents a homomorphism P(λ4,2)→ P(λ3,2) and the
second one represents a homomorphism P(λ3,2) → P(λ4,1). Multiplying these
two basis vectors together as described in the next paragraph, bearing in mind
the “op” in (1.10) which means for once that we are writing maps on the right,
one gets the basis vector

· · · · · ·

1 2 3 4 5 6

∧ ∨ ∧ ∧ ∨ ∧����
����

which is some homomorphism P(λ4,2)→ P(λ4,1).
We now sketch briefly the combinatorial procedure for multiplying basis vec-

tors. Given two basis vectors, their product is necessarily zero unless the caps
at the top of the first diagram are in exactly the same positions as the cups at
the bottom of the second. Assuming that is the case, we glue the first diagram
underneath the second and join matching pairs of rays. Then we perform a
sequence of generalised surgery procedures to smooth out all cup-cap pairs in
the symmetric middle section of the resulting composite diagram, obtaining
zero or more new diagrams in which the middle section only involves vertical
line segments. Finally we collapse these middle sections to obtain a sum of
basis vectors, which is the desired product. Each generalised surgery procedure
in this algorithm either involves two components in the diagram merging into
one or one component splitting into two. The rules for relabelling the new
component(s) produced when this operation is performed are summarized as
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follows:

1⊗ 1 7→ 1, 1⊗ x 7→ x, x⊗ x 7→ 0,

1⊗ y 7→ y, x⊗ y 7→ 0, y ⊗ y 7→ 0,

1 7→ 1⊗ x+ x⊗ 1, x 7→ x⊗ x, y 7→ x⊗ y,
where 1 represents an anti-clockwise circle, x represents a clockwise circle, and y
represents a line. This is a little cryptic; we refer the reader to [BS1] for a fuller
account (and explanation of the connection to Khovanov’s original construction
via a certain TQFT). Let us at least apply this algorithm to the example from
the previous paragraph: two surgeries are needed, the first of which involves an
anti-clockwise circle and a line merging together (1⊗ y 7→ y) and the second of
which involves a line splitting into a clockwise circle and a line (y 7→ x⊗ y):

  

∧ ∨ ∧ ∨ ∧ ∧

��' $
����

∧ ∨ ∧ ∨ ∧ ∧��& %
����

∧ ∨ ∧ ∨ ∧ ∧

������

∧ ∨ ∧ ∨ ∧ ∧������

∧ ∨ ∧ ∧ ∨ ∧����

∧ ∨ ∧ ∧ ∨ ∧

����

Contracting the middle section of the diagram on the right hand side here gives
the final product recorded already at the end of the previous paragraph.

The case r = 1 in the above discussion (the principal block of GL(1|1))
is easy to derive from scratch, but still this is quite instructive. So now the
irreducible modules are indexed simply by the weights {λi | i ∈ Z}. It is well
known that P(λi) has irreducible socle and head isomorphic to L(λi), with
radP(λi)/soc P(λi) ∼= L(λi−1) ⊕ L(λi+1). Hence in this case the locally finite
endomorphism algebra from (1.10) has basis {ei, ci, ai, bi | i ∈ Z}, where ei is
the projection onto P(λi), ai : P(λi) → P(λi+1) and bi : P(λi+1) → P(λi) are
non-zero homomorphisms chosen so that bi ◦ ai = ai−1 ◦ bi−1, and ci := bi ◦ ai
sends the head of P(λi) onto its socle. This corresponds to our diagram basis
for K∞1 so that

ei = ∧ ∧∨��
��

ci = ∨∧ ∧��
��

ai = ∨ ∧∧

��
�� bi = ∨ ∧∧ ��

��
where we display only vertices i, i+ 1, i+ 2 and there are infinitely many pairs
of vertical rays labelled ∧ at all other vertices. In fact, K∞1 is simply the path
algebra of the infinite quiver

· · · •
ai−1

)) •
bi−1

ll

ai
(( •

bi

hh

ai+1
(( •

bi+1

hh

ai+2,,
• · · ·

bi+2

ii

modulo the relations aibi = bi−1ai−1 and aiai+1 = 0 = bi+1bi for all i ∈ Z. It is
clear from the quiver description that K∞1 is naturally graded by path length;
this is actually a Koszul grading. For general r the canonical Koszul grading
on K∞r is defined by declaring that a basis vector is of degree equal to the total
number of clockwise cups and caps in the oriented circle diagram.
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2. Combinatorics of Grothendieck groups

In this preliminary section, we compare the combinatorics underlying the
representation theory of GL(m|n) with that of the diagram algebra K(m|n).
Our exposition is largely independent of [B1], indeed, we will reprove the rel-
evant results from there as we go. On the other hand, we do assume that
the reader is familiar with the general theory of diagram algebras developed in
[BS1, BS2]. Later in the article we will also need to appeal to various results
from [BS3].

Representation theory of K(m|n). Fix once and for all integers m,n ≥ 0.
Let K = K(m|n) and Λ = Λ(m|n) be as in the introduction. The elements
{eλ | λ ∈ Λ} form a system of (in general infinitely many) mutually orthogonal
idempotents in K such that

K =
⊕
λ,µ∈Λ

eλKeµ. (2.1)

So the algebra K is locally unital, but it is not unital (except in the trivial case
m = n = 0). By a K-module we always mean a locally unital module; for a left
K-module M this means that M decomposes as

M =
⊕
λ∈Λ

eλM.

The irreducible K-modules {L(λ) | λ ∈ Λ} defined in the introduction are all
one dimensional, so K is a basic algebra.

Let rep(K) denote the category of finite dimensional left K-modules. The
Grothendieck group [rep(K)] of this category is the free Z-module on basis
{[L(λ)] | λ ∈ Λ}. The standard modules {V (λ) | λ ∈ Λ} and the projective
indecomposable modules {P (λ) | λ ∈ Λ} from [BS1, §5] are finite dimensional,
so it makes sense to consider their classes [V (λ)] and [P (λ)] in [rep(K)]. Finally,
we use the notation µ ⊃ λ (resp. µ ⊂ λ) from [BS1, §2] to indicate that the
composite diagram µλ (resp. µλ) is oriented in the obvious sense.

Theorem 2.1. We have in [rep(K)] that

[P (λ)] =
∑
µ⊃λ

[V (µ)], [V (λ)] =
∑
µ⊂λ

[L(µ)]

for each λ ∈ Λ.

Proof. This follows from [BS1, Theorem 5.1] and [BS1, Theorem 5.2]. �

As µ ⊃ λ (resp. µ ⊂ λ) implies that µ ≥ λ (resp. µ ≤ λ) in the Bruhat
ordering, we deduce from Theorem 2.1 that the classes {[P (λ)]} and {[V (λ)]}
are linearly independent in [rep(K)]. However they do not span [rep(K)] as the
chains in the Bruhat order are infinite.
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Remark 2.2. The algebraK possesses a natural Z-grading defined by declaring
that each basis vector (aλb) from (1.7) is of degree equal to the number of
clockwise cups and caps in the diagram aλb. This means that one can consider
the graded representation theory of K. The various modules L(λ), V (λ) and
P (λ) also possess canonical gradings, as is discussed in detail in [BS1, §5].

Special projective functors: the diagram side. As in [BS3, (2.5)], let us
represent a block Γ ∈ Λ/ ∼ by means of its block diagram, that is, the diagram
obtained by taking any λ ∈ Γ and replacing all the ∧’s and ∨’s labelling its
vertices by the symbol •. Because m and n are fixed, the block Γ can be
recovered uniquely from its block diagram. Recall also the notion of the defect
of a weight λ ∈ Λ from [BS1, §2]. In this setting, this simply means the number
of vertices labelled ∨ in λ, and the defect of λ is the same thing as the defect
def(Γ) of the unique block Γ ∈ Λ/ ∼ containing λ.

Given a block Γ, we say that i ∈ Z is Γ-admissible if the ith and (i + 1)th
vertices of the block diagram of Γ match the top number line of a unique one
of the following pictures, and def(Γ) is as indicated:

Γ
ti(Γ)
Γ− αi?

Fi

def(Γ) ≥ 1 def(Γ) ≥ 0 def(Γ) ≥ 0 def(Γ) ≥ 0

“cup” “cap” “right-shift” “left-shift”

��
×◦

• • ��◦×

• •

◦

◦ @
@@

•

•

×

×

�
��

•

•
(2.2)

Assuming i is Γ-admissible, we let (Γ−αi) denote the block obtained from Γ by
relabelling the ith and (i + 1)th vertices of its block diagram according to the
bottom number line of the appropriate picture. Also define a (Γ−αi)Γ-matching
ti(Γ) in the sense of [BS2, §2] so that the strip between the ith and (i + 1)th
vertices of ti(Γ) is as in the picture, and there are only vertical “identity” line
segments elsewhere.

For blocks Γ,∆ ∈ Λ/ ∼ and a Γ∆-matching t, recall the geometric bimodule
Kt

Γ∆ from [BS2, §3]. By definition this is a (KΓ,K∆)-bimodule. We can view
it as a (K,K)-bimodule by extending the actions of KΓ and K∆ to all of K
so that the other blocks act as zero. The functor Kt

Γ∆⊗K? is an endofunctor
of rep(K) called a projective functor. Writing t∗ for the mirror image of t in a
horizontal axis, the functor Kt∗

∆Γ⊗K? gives another projective functor which is
biadjoint to Kt

Γ∆⊗K? by [BS2, Corollary 4.9].
For any i ∈ Z, introduce the (K,K)-bimodules

F̃i :=
⊕

Γ

K
ti(Γ)
(Γ−αi)Γ, Ẽi :=

⊕
Γ

K
ti(Γ)∗

Γ(Γ−αi), (2.3)

where the direct sums are over all Γ ∈ Λ/ ∼ such that i is Γ-admissible. The

special projective functors are the endofunctors Fi := F̃i⊗K? and Ei := Ẽi⊗K?
of rep(K) defined by tensoring with these bimodules. The discussion in the
previous paragraph implies that the functors Fi and Ei are biadjoint, hence
they are both exact and map projectives to projectives.

For λ ∈ Λ, let I×(λ) := I∨(λ) ∩ I∧(λ) (resp. I◦(λ) := Z \ (I∨(λ) ∪ I∧(λ)))
denote the set of integers indexing the vertices labelled × (resp. ◦) in λ; cf.
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(1.6). Introduce the notion of the height of λ:

ht(λ) :=
∑

i∈I×(λ)

i−
∑

i∈I◦(λ)

i. (2.4)

Note all weights belonging to the same block have the same height.

Lemma 2.3. For λ ∈ Λ and i ∈ Z, all composition factors of FiL(λ) (resp.
EiL(λ)) are of the form L(µ) with ht(µ) = ht(λ) + 1 (resp. ht(λ)− 1).

Proof. This follows by inspecting (2.2). �

Lemma 2.4. Let λ ∈ Λ and i ∈ Z. For symbols x, y ∈ {◦,∧,∨,×} we write
λxy for the diagram obtained from λ by relabelling the ith and (i+ 1)th vertices
by x and y, respectively.

(i) If λ = λ∨◦ then FiP (λ) ∼= P (λ◦∨), FiV (λ) ∼= V (λ◦∨), FiL(λ) ∼= L(λ◦∨).
(ii) If λ = λ∧◦ then FiP (λ) ∼= P (λ◦∧), FiV (λ) ∼= V (λ◦∧), FiL(λ) ∼= L(λ◦∧).
(iii) If λ = λ×∨ then FiP (λ) ∼= P (λ∨×),FiV (λ) ∼= V (λ∨×),FiL(λ) ∼= L(λ∨×).
(iv) If λ = λ×∧ then FiP (λ) ∼= P (λ∧×),FiV (λ) ∼= V (λ∧×),FiL(λ) ∼= L(λ∧×).
(v) If λ = λ×◦ then:

(a) FiP (λ) ∼= P (λ∨∧);
(b) there is a short exact sequence

0→ V (λ∧∨)→ FiV (λ)→ V (λ∨∧)→ 0;

(c) FiL(λ) has irreducible socle and head both isomorphic to L(λ∨∧),
and all other composition factors are of the form L(µ) for µ ∈ Λ
such that µ = µ∨∨, µ = µ∧∧ or µ = µ∧∨.

(vi) If λ = λ∨∧ then FiP (λ) ∼= P (λ◦×) ⊕ P (λ◦×), FiV (λ) ∼= V (λ◦×) and
FiL(λ) ∼= L(λ◦×).

(vii) If λ = λ∧∨ then FiV (λ) ∼= V (λ◦×) and FiL(λ) = {0}.
(viii) If λ = λ∨∨ then FiV (λ) = FiL(λ) = {0}.
(ix) If λ = λ∧∧ then FiV (λ) = FiL(λ) = {0}.
(x) For all other λ we have that FiP (λ) = FiV (λ) = FiL(λ) = {0}.

For the dual statement about Ei, interchange all occurrences of ◦ and ×.

Proof. Apply [BS2, Theorems 4.2], [BS2, Theorem 4.5] and [BS2, Theorem
4.11], exactly as was done in [BS3, Lemma 3.4]. �

Remark 2.5. Using Lemma 2.4, one can check that the endomorphisms of
[rep(K)] induced by the functors Fi and Ei for all i ∈ Z satisfy the Serre re-
lations defining the Lie algebra sl∞. Indeed, letting V∞ denote the natural
sl∞-module of column vectors, the category rep(K) can be interpreted in a
precise sense as a categorification of a certain completion of the sl∞-module∧m V∞ ⊗

∧n V ∗∞; see also [B1] where this point of view is taken on the super-
group side. Using the graded representation theory mentioned in Remark 2.2,
i.e. replacing rep(K) with the category of finite dimensional graded K-modules,
one gets a categorification of the q-analogue of this module over the quantised
enveloping algebra Uq(sl∞); the action of q comes from shifting the grading
on a module up by one. We are not going to pursue this connection further
here, but refer the reader to [BS3, Theorem 3.5] where an analogous “graded
categorification theorem” is discussed in detail.



KHOVANOV’S DIAGRAM ALGEBRA IV 11

The crystal graph. Define the crystal graph to be the directed coloured graph

with vertex set equal to Λ and a directed edge µ
i→ λ of colour i ∈ Z if L(λ)

is a quotient of FiL(µ). It is clear from Lemma 2.4 that µ
i→ λ if and only if

the ith and (i + 1)th vertices of λ and µ are labelled according to one of the
six cases in the following table, and all other vertices of λ and µ are labelled in
the same way:

µ ∨ ◦ ∧ ◦ × ∨ × ∧ × ◦ ∨ ∧
λ ◦ ∨ ◦ ∧ ∨ × ∧ × ∨ ∧ ◦ × (2.5)

Comparing this explicit description with [B1, §3-d], it follows that our crystal
graph is isomorphic to Kashiwara’s crystal graph associated to the sl∞-module
mentioned in Remark 2.5, which hopefully explains our choice of terminology.

Suppose we are given integers p ≤ q. Define the following intervals

Ip,q := {p−m+ 1, p−m+ 2, . . . , q + n− 1}, (2.6)

I+
p,q := {p−m+ 1, p−m+ 2, . . . , q + n− 1, q + n}. (2.7)

(The reader may find it helpful at this point to note which vertices of the weight
λp,q from (1.9) are indexed by the set I+

p,q.) Then introduce the following subsets
of Λ:

Λp,q := {λ ∈ Λ | the ith vertex of λ is labelled ∧ for all i /∈ I+
p,q}, (2.8)

Λ◦p,q :=
{
λ ∈ Λp,q

∣∣∣ amongst vertices j, . . . , q + n of λ, the number
of ∧’s is ≥ the number of ∨’s, for all j ∈ I+

p,q

}
. (2.9)

Note that the weight λp,q from (1.9) belongs to Λ◦p,q. It is the unique weight in
Λp,q of minimal height.

Lemma 2.6. Given λ ∈ Λ, choose p ≤ q such that λ ∈ Λ◦p,q (which is always
possible as there are infinitely many ∧’s and finitely many ∨’s). Then there are

integers i1, . . . , id ∈ Ip,q, where d = ht(λ) − ht(λp,q), such that λp,q
i1→ · · · id→ λ

is a path in the crystal graph. Moreover we have that

Fid · · ·Fi1V (λp,q) ∼= P (λ)⊕2r ,

where r is the number of edges in the given path of the form ∨∧→ ◦×.

Proof. For the first statement, we proceed by induction on ht(λ). If ht(λ) =
ht(λp,q), then λ = λp,q and the conclusion is trivial. Now assume that ht(λ) >
ht(λp,q). As λ ∈ Λ◦p,q and λ 6= λp,q, it is possible to find i ∈ Ip,q such that the ith
and (i + 1)th vertices of λ are labelled ◦∨, ◦∧, ◦×,∨×,∧× or ∨∧. Inspecting

(2.5), there is a unique weight µ ∈ Λ◦p,q with µ
i→ λ in the crystal graph.

Noting ht(µ) = ht(λ)− 1, we are now done by induction. To deduce the second
statement, we apply Lemma 2.4 to get easily that Fid · · ·Fi1P (λp,q) ∼= P (λ)⊕2r .
Finally P (λp,q) ∼= V (λp,q) as λp,q is of defect zero, by [BS1, Theorem 5.1]. �

Representation theory of GL(m|n). Now we turn to discussing the repre-
sentation theory of G = GL(m|n). In the introduction, we defined already the
abelian category F = F(m|n) and the irreducible modules {L(λ)}, the stan-
dard modules {V(λ)} and the projective indecomposable modules {P(λ)}, all of
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which are parametrised by the set X+(T ) of dominant weights. We are using an
unusual font here (and a few other places later on) to avoid confusion with the
analogous K-modules {L(λ)}, {V (λ)} and {P (λ)}. Recall in particular that
the Z2-grading on L(λ) is defined so that its λ-weight space is concentrated in
degree λ̄ := (λ, εm+1 + · · ·+ εm+n) (mod 2). Bearing in mind that we consider
only even morphisms, the modules

{L(λ) | λ ∈ X+(T )} ∪ {ΠL(λ) | λ ∈ X+(T )}
give a complete set of pairwise non-isomorphic irreducible G-modules, where Π
denotes the change of parity functor.

The standard module V(λ) is usually called a Kac module in this setting
after [Ka], and can be constructed explicitly as follows. Let P be the parabolic
subgroup of G such that P (A) consists of all invertible matrices of the form (1.1)
with c = 0, for each commutative superalgebra A. Given λ ∈ X+(T ), we let
E(λ) denote the usual finite dimensional irreducible module of highest weight
λ for the underlying even subgroup G0̄

∼= GL(m) × GL(n), viewing E(λ) as a
supermodule with Z2-grading concentrated in degree λ̄. We can regard E(λ)
also as a P -module by inflating through the obvious homomorphism P � G0̄.
Then we have that

V(λ) = U(g)⊗U(p) E(λ), (2.10)

where g and p denote the Lie superalgebras of G and P , respectively. This
construction makes sense because the induced module on the right hand side of
(2.10) is an integrable g-supermodule, i.e. it lifts in a unique way to a G-module.

The module L(λ) is isomorphic to the unique irreducible quotient of V(λ).
Also P(λ) is the projective cover of L(λ) in the category F. It has a standard
flag, that is, a filtration whose sections are standard modules. The multiplicity
(P(λ) : V(µ)) of V(µ) as a section of any such standard flag is given by the
BGG reciprocity formula

(P(λ) : V(µ)) = [V(µ) : L(λ)], (2.11)

as follows from [Zo] or the discussion in [B2, Example 7.5].

Special projective functors: the supergroup side. Recall the weight
dictionary from (1.6) by means of which we identify the set X+(T ) with the
set Λ = Λ(m|n). Under this identification, the usual notion of the degree of
atypicality of a weight λ ∈ X+(T ) corresponds to the notion of defect of λ ∈ Λ.
Given λ, µ ∈ Λ, the irreducible G-modules L(λ) and L(µ) have the same central
character if and only if λ ∼ µ in the diagrammatic sense; this can be deduced
from [Se1, Corollary 1.9]. Hence the category F decomposes as

F =
⊕

Γ∈Λ/∼

FΓ, (2.12)

where FΓ is the full subcategory consisting of the modules all of whose compo-
sition factors are of the form L(λ) for λ ∈ Γ. We let prΓ : F→ F be the exact
functor defined by projection onto FΓ along (2.12).

Recall that V denotes the natural G-module and V ∗ is its dual. Following
[B1, (4.21)–(4.22)], we define the special projective functors Fi and Ei for each
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i ∈ Z to be the following endofunctors of F:

Fi :=
⊕

Γ

prΓ−αi ◦ (?⊗ V ) ◦ prΓ, Ei :=
⊕

Γ

prΓ ◦ (?⊗ V ∗) ◦ prΓ−αi , (2.13)

where the direct sums are over all Γ ∈ Λ/ ∼ such that i is Γ-admissible (as in
(2.3)). The functors ?⊗ V and ?⊗ V ∗ are biadjoint, hence so are Fi and Ei. In
particular, all these functors are exact and send projectives to projectives. For
later use, let us fix once and for all a choice of an adjunction making (Fi, Ei)
into an adjoint pair for each i ∈ Z.

Lemma 2.7. The following hold for any λ ∈ X+(T ):

(i) V(λ)⊗V has a filtration with sections V(λ+εr) for all r = 1, . . . ,m+n
such that λ+ εr ∈ X+(T ), arranged in order from bottom to top.

(ii) V(λ)⊗V ∗ has a filtration with sections V(λ−εr) for all r = 1, . . . ,m+n
such that λ− εr ∈ X+(T ), arranged in order from top to bottom.

Proof. This follows from the definition (2.10) and the tensor identity. �

Corollary 2.8. The following hold for any λ ∈ X+(T ) and i ∈ Z:

(i) FiV(λ) has a filtration with sections V(λ+ εr) for all r = 1, . . . ,m+ n
such that λ+ εr ∈ X+(T ) and (λ+ ρ, εr) = i+ (1− (−1)r̄)/2, arranged
in order from bottom to top.

(ii) EiV(λ) has a filtration with sections V(λ − εr) for all r = 1, . . . ,m + n
such that λ− εr ∈ X+(T ) and (λ+ ρ, εr) = i+ (1 + (−1)r̄)/2, arranged
in order from top to bottom.

Proof. For (i), apply prΓ−αi to the statement of Lemma 2.7(i), where Γ is the
block containing λ (and do a little work to translate the combinatorics). The
proof of (ii) is similar. �

Corollary 2.9. We have that ?⊗ V =
⊕

i∈ZFi and ?⊗ V ∗ =
⊕

i∈Z Ei.

The next lemma gives an alternative definition of the functors Fi and Ei
which will be needed in the next section; cf. [CW, Proposition 5.2]. Let

Ω :=

m+n∑
r,s=1

(−1)s̄er,s ⊗ es,r ∈ g⊗ g, (2.14)

where er,s denotes the rs-matrix unit. This corresponds to the supertrace form
on g, so left multiplication by Ω (interpreted with the usual superalgebra sign
conventions) defines a G-module endomorphism of M ⊗N for any G-modules
M and N .

Lemma 2.10. For any G-module M , we have that FiM (resp. EiM) is the
generalised i-eigenspace (resp. the generalised −(m− n+ i)-eigenspace) of the
operator Ω acting on M ⊗ V (resp. M ⊗ V ∗).

Proof. We just explain for Fi. Let c :=
∑m+n

r,s=1(−1)s̄er,ses,r ∈ U(g) be the

Casimir element. It acts on V(λ) by multiplication by the scalar

cλ := (λ+ 2ρ+ (m− n− 1)δ, λ)
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where δ = ε1 + · · · + εm − εm+1 − · · · − εm+n. Also, we have that Ω =
(∆(c) − c ⊗ 1 − 1 ⊗ c)/2 where ∆ is the comultiplication of U(g). Now to
prove the lemma, it suffices to verify it for the special case M = V(λ). Using
the observations just made, we see that multiplication by Ω preserves the filtra-
tion from Lemma 2.7(i), and the induced action of Ω on the section V(λ+ εr)
is by multiplication by the scalar

(cλ+εr − cλ −m+ n)/2 = (λ+ ρ, εr) + (1− (−1)ī)/2.

The result follows on comparing with Corollary 2.8(i). �

The next two lemmas are the key to understanding the representation theory
of GL(m|n) from a combinatorial point of view.

Lemma 2.11. Let i ∈ Z and λ ∈ Λ be a weight such that the ith and (i+ 1)th
vertices of λ are labelled ∧ and ∨, respectively. Let µ be the weight obtained from
λ by interchanging the labels on these two vertices. Then L(µ) is a composition
factor of V(λ).

Proof. This is a reformulation of [Se1, Theorem 5.5]. It can be proved directly
by an explicit calculation with certain lowering operators in U(g) as in [BS3,
Lemma 4.8]. �

Lemma 2.12. Exactly the same statement as Lemma 2.4 holds in the cate-
gory F, replacing L(λ), V (λ), P (λ), Fi and Ei by L(λ),V(λ), P(λ), Fi and Ei,
respectively.

Proof. The statements involving V(λ) follow from Corollary 2.8. The remaining
parts then follow by mimicking the arguments used to prove [BS3, Lemma 4.9],
using Lemma 2.11 in place of [BS3, Lemma 4.8]. �

Corollary 2.13. Given λ ∈ Λ, pick p, q, d, i1, . . . , id and r as in Lemma 2.6.
Then we have that Fid · · · Fi1V(λp,q) ∼= P(λ)

⊕
2r .

Proof. We note as λp,q is of defect zero that it is the only weight in its block.
Using also (2.11), this implies that P(λp,q) = V(λp,q). Given this, the corollary
follows from Lemma 2.12 in exactly the same way that Lemma 2.6 was deduced
from Lemma 2.4. �

Identification of Grothendieck groups. Consider the Grothendieck group
[F] of F. It is the free Z-module on basis {[L(λ)] | λ ∈ Λ}. The exact functors
Fi and Ei (resp. Fi and Ei) induce endomorphisms of the Grothendieck group
[F] (resp. [rep(K)]), which we denote by the same notation. The last part of
the following theorem recovers the main result of [B1].

Theorem 2.14. Define a Z-module isomorphism ι : [F]
∼→ [rep(K)] by declar-

ing that ι([L(λ)]) = [L(λ)] for each λ ∈ Λ.

(i) We have that ι([V(λ)]) = [V (λ)] and ι([P(λ)]) = [P (λ)] for each λ ∈ Λ.
(ii) For each i ∈ Z, we have that Fi ◦ ι = ι ◦ Fi and Ei ◦ ι = ι ◦ Ei as linear

maps from [F] to [rep(K)].
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(iii) We have in [F] that

[P(λ)] =
∑
µ⊃λ

[V(µ)], [V(λ)] =
∑
µ⊂λ

[L(µ)]

for each λ ∈ Λ.

Proof. Given λ ∈ Λ, let p, q, d, r and i1, . . . , id be as in Lemma 2.6. By
Lemma 2.6 and Theorem 2.1, we know already that

[P (λ)] =
1

2r
· Fid · · ·Fi1 [V (λp,q)] =

∑
µ⊃λ

[V (µ)], (2.15)

all equalities written in [rep(K)]. In view of Lemma 2.12, the action of Fi on
the classes of standard modules in [rep(K)] is described by exactly the same
matrix as the action of Fi on the classes of standard modules in [F]. So we
deduce from the second equality in (2.15) that

1

2r
· Fid · · · Fi1 [V(λp,q)] =

∑
µ⊃λ

[V(µ)],

equality in [F]. By Corollary 2.13 this also equals [P(λ)], proving the first
formula in (iii). The second formula in (iii) follows from the first and (2.11).

Then (i) is immediate from the definition of ι and the coincidence of the
formulae in (iii) and Theorem 2.1.

Finally to deduce (ii), we have already noted that ι(Fi[V (λ)]) = Fi[V(λ)] for
every λ. It follows easily from this that ι(Fi[P (λ)]) = Fi[P(λ)] for every λ.
Using also the adjointness of Fi and Ei (resp. Fi and Ei) we deduce that

[EiL(µ) : L(λ)] = dim HomK(P (λ), EiL(µ))

= dim HomK(FiP (λ), L(µ)) = dim HomG(FiP(λ),L(µ))

= dim HomG(P(λ), EiL(µ)) = [EiL(µ) : L(λ)]

for every λ, µ ∈ Λ. This is enough to show that ι(Ei[L(µ)]) = Ei[L(µ)] for every
µ, which implies (ii) for Ei and Ei. The argument for Fi and Fi is similar. �

Highest weight structure and duality. At this point, we can also deduce
the following result, which recovers [B1, Theorem 4.47].

Theorem 2.15. The category F is a highest weight category in the sense of
[CPS] with weight poset (Λ,≤). The modules {L(λ)}, {V(λ)} and {P(λ)} give
its irreducible, standard and projective indecomposable modules, respectively.

Proof. We already noted just before (2.11) that P(λ) has a standard flag with
V(λ) at the top. Moreover by Theorem 2.14(iii) all the other sections of this
flag are all of the form V(µ) with µ > λ in the Bruhat order. The theorem
follows from this, (2.11) and the definition of highest weight category. �

The costandard modules in the highest weight category F can be constructed
explicitly as the duals V(λ)~ of the standard modules with respect to a natural
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duality ~. This duality maps a G-module M to the linear dual M∗ with the
action of G defined using the supertranspose anti-automorphism g 7→ gst, where

gst =

(
at −ct
bt dt

)
for g of the form (1.1). Note ~ fixes irreducible modules, i.e. L(λ)~ ∼= L(λ) for
each λ ∈ Λ.

3. Cyclotomic Hecke algebras and level two Schur-Weyl duality

Fix integers p ≤ q and let λp,q be the weight of defect zero from (1.8). The
standard module V(λp,q) is projective. As the functor ? ⊗ V sends projectives

to projectives, the G-module V(λp,q) ⊗ V ⊗d is again projective for any d ≥ 0.
We want to describe its endomorphism algebra.

Action of the degenerate affine Hecke algebra. We begin by constructing
an explicit basis for V(λp,q)⊗ V ⊗d. Recalling (2.10), we have that

V(λp,q) = U(g)⊗U(p) E(λp,q). (3.1)

Let detm (resp. detn) denote the one-dimensional G0̄-module defined by tak-
ing the determinant of GL(m) (resp. GL(n)), with Z2-grading concentrated in
degree 0̄. Then the module E(λp,q) in (3.1) is the inflation to P of the mod-

ule Πn(q+m)(detpm⊗det
−(q+m)
n ), so it is also one dimensional. Hence, fixing a

non-zero highest weight vector vp,q ∈ V(λp,q), the induced module V(λp,q) is of
dimension 2mn with basis{

m+n∏
r=m+1

m∏
s=1

e
τr,s
r,s · vp,q

∣∣∣∣ 0 ≤ τr,s ≤ 1

}
, (3.2)

where the products here are taken in any fixed order (changing the order only
changes the vectors by ±1). Recall also that v1, . . . , vm+n is the standard basis
for the natural module V , from which we get the obvious monomial basis

{vi1 ⊗ · · · ⊗ vid | 1 ≤ i1, . . . , id ≤ m+ n} (3.3)

for V ⊗d. Tensoring (3.2) and (3.3), we get the desired basis for V(λp,q)⊗ V ⊗d.
Now let Hd be the degenerate affine Hecke algebra from [D]. This is the

associative algebra equal as a vector space to F[x1, . . . , xd] ⊗ FSd, the tensor
product of a polynomial algebra and the group algebra of the symmetric group
Sd. Multiplication is defined so that F[x1, . . . , xd] ≡ F[x1, . . . , xd]⊗1 and FSd ≡
1⊗ FSd are subalgebras of Hd, and also

srxs = xssr if s 6= r, r + 1, srxr+1 = xrsr + 1,

where sr denotes the rth basic transposition (r r + 1).
By [CW, Proposition 5.1], there is a right action of Hd on V(λp,q)⊗ V ⊗d by

G-module endomorphisms. The transposition sr acts as the “super” flip

(v⊗vi1⊗· · ·⊗vir⊗vir+1⊗· · ·⊗vid)sr = (−1)īr īr+1v⊗vi1⊗· · ·⊗vir+1⊗vir⊗· · ·⊗vid .
This is the same as the endomorphism defined by left multiplication by the
element Ω from (2.14) so that the first and second tensors in Ω hit the (r+1)th
and (r + 2)th tensor positions in V(λp,q) ⊗ V ⊗d, respectively. The polynomial
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generator xs acts by left multiplication by Ω so that the first tensor in Ω is
spread across tensor positions 1, . . . , s using the comultiplication of U(g) and
the second tensor in Ω hits the (s+ 1)th tensor position in V(λp,q)⊗ V ⊗d. The
following lemma gives an explicit formula for the action of xs in a special case.

Lemma 3.1. For 1 ≤ i1, . . . , id ≤ m+ n and 1 ≤ s ≤ d, we have that

(vp,q ⊗ vi1 ⊗ · · · ⊗ vid)xs = pvp,q ⊗ vi1 ⊗ · · · ⊗ vid

+
s−1∑
r=1

(−1)īr īs+
∑
r<t<s (̄ir+īs )̄itvp,q ⊗ vi1 ⊗ · · · ⊗ vis ⊗ · · · ⊗ vir ⊗ · · · ⊗ vid

if 1 ≤ is ≤ m, and

(vp,q ⊗ vi1 ⊗ · · · ⊗ vid)xs = (q +m)vp,q ⊗ vi1 ⊗ · · · ⊗ vid

+
s−1∑
r=1

(−1)īr īs+
∑
r<t<s (̄ir+īs )̄itvp,q ⊗ vi1 ⊗ · · · ⊗ vis ⊗ · · · ⊗ vir ⊗ · · · ⊗ vid

+

m∑
j=1

(−1)n(q+m)+ī1+···+īs−1(eis,j · vp,q)⊗ vi1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vid

if m+ 1 ≤ is ≤ m+ n. (In the first two summations we have interchanged vir
and vis, while in the last one we have replaced vis by vj.)

Proof. Note for any 1 ≤ i, j ≤ m+ n that

ei,j · vp,q =


pvp,q if 1 ≤ i = j ≤ m,
−(q +m)vp,q if m+ 1 ≤ i = j ≤ m+ n,
ei,j · vp,q if m+ 1 ≤ i ≤ m+ n and 1 ≤ j ≤ m,
0 otherwise.

Using this, the lemma is a routine calculation (taking care with superalgebra
signs). �

Corollary 3.2. The element (x1−p)(x1−q) ∈ Hd acts as zero on V(λp,q)⊗V ⊗d.

Proof. It suffices to check this in the special case that d = 1. In that case,
Lemma 3.1 shows that

(vp,q ⊗ vi)x1 =


pvp,q ⊗ vi if 1 ≤ i ≤ m,
qvp,q ⊗ vi

+
∑m

j=1(−1)n(q+m)ei,j(vp,q ⊗ vj) if m+ 1 ≤ i ≤ m+ n.

It follows easily that (x1 − p)(x1 − q) acts as zero on the vector vp,q ⊗ vi for
every 1 ≤ i ≤ m+ n. These vectors generate V(λp,q)⊗ V as a G-module so we
deduce that (x1 − p)(x1 − q) acts as zero the whole module. �

Corollary 3.3. If d ≤ min(m,n) then the endomorphisms of V(λp,q) ⊗ V ⊗d
defined by right multiplication by {xσ11 · · ·x

σd
d w | 0 ≤ σ1, . . . , σd ≤ 1, w ∈ Sd} are

linearly independent.

Proof. Any vector v ∈ V(λp,q)⊗ V ⊗d can be written as v =
∑

i∈I bi ⊗ ci where

{bi | i ∈ I} is the basis from (3.2) and the ci’s are unique vectors in V ⊗d. We
refer to ci as the bi-component of v. Exploiting the assumption on d, we can
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pick distinct integers m+ 1 ≤ i1, . . . , id ≤ m+ n and 1 ≤ j1, . . . , jd ≤ m. Take
0 ≤ σ1, . . . , σd ≤ 1 and consider the vector

(vp,q ⊗ vi1 ⊗ · · · ⊗ vid)x
σ1
1 · · ·x

σd
d .

For 0 ≤ τ1, . . . , τd ≤ 1, Lemma 3.1 implies that the eτ1i1,j1 · · · e
τd
id,jd
·vp,q-component

of (vp,q⊗vi1⊗· · ·⊗vid)x
σ1
1 · · ·x

σd
d is zero either if τ1 + · · ·+τd > σ1 + · · ·+σd, or

if τ1 + · · ·+ τd = σ1 + · · ·+ σd but τr 6= σr for some r. Moreover, if τr = σr for
all r, then the eτ1i1,j1 · · · e

τd
id,jd
· vp,q-component of (vp,q ⊗ vi1 ⊗ · · · ⊗ vid)x

σ1
1 · · ·x

σd
d

is equal to ±vk1 ⊗ · · · ⊗ vkd where kr = ir if σr = 0 and kr = jr if σr = 1.
This is enough to show that the vectors (vp,q ⊗ vi1 ⊗ · · · ⊗ vid)x

σ1
1 · · ·x

σd
d w for

all 0 ≤ σ1, . . . , σd ≤ 1 and w ∈ Sd are linearly independent, and the corollary
follows. �

In view of Corollary 3.2, the right action of Hd on V(λp,q)⊗ V ⊗d induces an
action of the quotient algebra

Hp,q
d := Hd/〈(x1 − p)(x1 − q)〉. (3.4)

This algebra is a particular example of a degenerate cyclotomic Hecke algebra
of level two. It is well known (e.g. see [BK1, Lemma 3.5]) that dimHp,q

d = 2dd!.

Corollary 3.4. If d ≤ min(m,n) the action of Hp,q
d on V(λp,q)⊗V ⊗d is faithful.

Proof. This follows on comparing the dimension of Hp,q
d with the number of

linearly independent endomorphisms constructed in Corollary 3.3. �

Since the action of Hp,q
d on V(λp,q) ⊗ V ⊗d is by G-module endomorphisms,

it induces an algebra homomorphism

Φ : Hp,q
d → EndG(V(λp,q)⊗ V ⊗d)op. (3.5)

The main goal in the remainder of the section is to show that this homorphism
is surjective.

Weight idempotents and the space T p,qd . For a tuple i = (i1, . . . , id) ∈ Zd,
there is an idempotent e(i) ∈ Hp,q

d determined uniquely by the property that
multiplication by e(i) projects any Hp,q

d -module onto its i-weight space, that is,
the simultaneous generalised eigenspace for the commuting operators x1, . . . , xd
and eigenvalues i1, . . . , id, respectively. All but finitely many of the e(i)’s are
zero, and the non-zero ones give a system of mutually orthogonal idempotents
in Hp,q

d summing to 1; see e.g. [BK2, §3.1].

The action of the idempotent e(i) on the module V(λp,q) ⊗ V ⊗d can be
interpreted as follows. In view of Corollary 2.9, we have that

V(λp,q)⊗ V ⊗d =
⊕
i∈Zd
FiV(λp,q) (3.6)

where Fi denotes the composite Fid ◦ · · · ◦ Fi1 of the functors from (2.13).
By Lemma 2.10 and the definition of the actions of x1, . . . , xd, the summand
FiV(λp,q) in this decomposition is precisely the i-weight space of V(λp,q)⊗V ⊗d.
Hence the weight idempotent e(i) acts on V(λp,q)⊗V ⊗d as the projection onto
the summand FiV(λp,q) along the decomposition (3.6).
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Recalling the interval Ip,q from (2.6), we are usually from now on going to
restrict our attention to the summand

T p,qd :=
⊕

i∈(Ip,q)d

FiV(λp,q) (3.7)

of V(λp,q)⊗ V ⊗d. By the discussion in the previous paragraph, we have equiv-

alently that T p,qd = (V(λp,q)⊗ V ⊗d)1p,qd where

1p,qd :=
∑

i∈(Ip,q)d

e(i) ∈ Hp,q
d . (3.8)

As a consequence of the fact that any symmetric polynomial in x1, . . . , xd is
central in Hd, the idempotent 1p,qd is central in Hp,q

d . The space T p,qd is naturally
a right module over 1p,qd Hp,q

d , which is a sum of blocks of Hp,q
d . Hence the map

Φ from (3.5) induces an algebra homomorphism

1p,qd Hp,q
d → EndG(T p,qd )op. (3.9)

As a refinement of the surjectivity of Φ proved below, we will also see later in
the section that the induced map (3.9) is an isomorphism. Note from (3.16)
onwards we will denote the algebra 1p,qd Hp,q

d instead by Rp,qd .

Stretched diagrams. In this subsection, we develop some combinatorial tools
which will be used initially to compute the dimension of the various endomor-
phism algebras that we are interested in. We say that a tuple i ∈ Zd is (p, q)-
admissible if ir is Γr−1-admissible for each r = 1, . . . , d, where Γ0, . . . ,Γd are
defined recursively from Γ0 := {λp,q} and Γr := Γr−1 − αir , notation as in
(2.2). We refer to the sequence Γ := Γd · · ·Γ1Γ0 of blocks here as the associ-
ated block sequence. The composite matching t = td · · · t1 defined by setting
tr := tir(Γr−1) for each r is the associated composite matching. Both of these
things make sense only if i ∈ Zd is (p, q)-admissible.

Lemma 3.5. If i ∈ Zd is not (p, q)-admissible then FiV(λp,q) is zero.

Proof. This follows from the definitions and (2.13). �

By a stretched cap diagram t = td · · · t1 of height d, we mean the associ-
ated composite matching for some (p, q)-admissible sequence i ∈ Zd. We can
uniquely recover the sequence i, hence also the associated block sequence Γ,
from the stretched cap diagram t. Here is an example of a stretched cap di-
agram of height 5, taking m = 2, n = 1 and q − p = 1; we draw only the
strip containing the vertices indexed by I+

p,q, as the picture outside of this strip
consists only of vertical lines, and also label the horizontal number lines by the
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associated block sequence Γ = Γ5 · · ·Γ0.

Γ0

t1
Γ1

t2
Γ2

t3
Γ3

t4
Γ4

t5
Γ5

× × • ◦
@
@× × •◦��

• •× •��
×◦× •

�
�

× •
��

×•• •

• •

By a generalised cap in a stretched cap diagram we mean a component that
meets the bottom number line at two different vertices. An oriented stretched
cap diagram is a consistently oriented diagram of the form

t[γ] = γdtdγd−1 · · · γ1t1γ0

where γ = γd · · · γ0 is a sequence of weights chosen from the associated block
sequence Γ = Γd · · ·Γ0, i.e. γr ∈ Γr for each r = 0, . . . , d. In other words,
we decorate the number lines of t by weights from the appropriate blocks, in
such a way that the resulting diagram is consistently oriented. (For a precise
definition of the term oriented we refer to [BS1, §2]).

Theorem 3.6. There are G-module isomorphisms

V(λp,q)⊗ V ⊗d ∼=
⊕

λ∈Λ, ht(λ)=ht(λp,q)+d

P(λ)⊕ dimp,q(λ),

T p,qd
∼=

⊕
λ∈Λp,q ,ht(λ)=ht(λp,q)+d

P(λ)⊕ dimp,q(λ),

where dimp,q(λ) is the number of oriented stretched cap diagrams t[γ] of height
d such that γ0 = λp,q, γd = λ, and all generalised caps are anti-clockwise.

Proof. For the first isomorphism, in view of Theorem 2.14 and Corollary 2.9, it
suffices to prove the analogous statement on the diagram algebra side, namely,
that ⊕

i∈Zd
FiV (λp,q) ∼=

⊕
λ∈Λ, ht(λ)=ht(λp,q)+d

P (λ)⊕ dimp,q(λ) (3.10)

as K-modules. Remembering that V (λp,q) = P (λp,q), this follows as an appli-
cation of [BS2, Theorem 4.2], first using [BS2, Theorem 3.5] and [BS2, Theo-
rem 3.6] to write the composite projective functor Fi = Fid ◦ · · · ◦ Fi1 in terms
of indecomposable projective functors.

The proof of the second isomorphism is similar, taking only i ∈ (Ip,q)
d in

(3.10). It is helpful to note that if λ ∈ Λp,q and t[γ] is one of the oriented
stretched cap diagrams counted by dimp,q(λ) then t[γ] is trivial outside the
strip containing the vertices indexed by I+

p,q, i.e. it consists only of straight
lines oriented ∧ outside that region. This follows by considering (2.2). �

Corollary 3.7. The modules {P(λ) | λ ∈ Λ◦p,q,ht(λ) = ht(λp,q) + d} give a
complete set of representatives for the isomorphism classes of indecomposable
direct summands of T p,qd .
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Proof. Suppose we are given λ ∈ Λ◦p,q with ht(λ) = ht(λp,q) + d. Applying

Corollary 2.13, there is a sequence i = (i1, . . . , id) ∈ (Ip,q)
d such that P(λ) is a

summand of FiV(λp,q). Hence P(λ) is a summand of T p,qd . Conversely, applying
Theorem 3.6, we take λ ∈ Λp,q with ht(λ) = ht(λp,q) + d and dimp,q(λ) 6= 0,
and must show that λ ∈ Λ◦p,q. There exists an oriented stretched cap diagram
t[γ] of height d with γ0 = λp,q and γd = λ, all of whose generalised caps are
anti-clockwise. Every vertex labelled ∨ in λ must be at the left end of one
of these anti-clockwise generalised caps, the right end of which gives a vertex
labelled ∧ indexed by an integer ≤ q + n. Recalling the definition (2.9), these
observations prove that λ ∈ Λ◦p,q. �

Corollary 3.8. T p,qd = {0} for d > (m+ n)(q − p) + 2mn.

Proof. The set Λp,q has a unique element µp,q of maximal height, namely, the
weight

p−m q+n

· · · · · ·︸ ︷︷ ︸
n

︸ ︷︷ ︸
m

∧∧ ∧∧∧◦ ◦ ◦ × × × ∧ ∧

Using this and Theorem 3.6, we deduce that T p,qd = {0} for d > ht(µp,q) −
ht(λp,q) = (m+ n)(q − p) + 2mn. �

The mirror image of the oriented stretched cap diagram u[δ] in a horizontal
axis is denoted u∗[δ∗]. We call it an oriented stretched cup diagram. Then an
oriented stretched circle diagram of height d means a composite diagram of the
form

u∗[δ∗] o t[γ] = δ0u
∗
1δ1 · · · δd−1u

∗
dγdtdγd−1 · · · γ1t1γ0

where t[γ] and u[δ] are oriented stretched cap diagrams of height d with γd = δd;
see [BS3, (6.17)] for an example.

Theorem 3.9. The dimension of the algebra EndG(T p,qd )op is equal to the
number of oriented stretched circle diagrams u∗[δ∗] o t[γ] of height d such that
γ0 = δ0 = λp,q and γd = δd ∈ Λp,q.

Proof. Applying Theorem 3.6, we see that the dimension of the endomorphism
algebra is equal to∑

λ,µ∈Λp,q , ht(λ)=ht(µ)=ht(λp,q)+d

dimp,q(λ) · dimp,q(µ) · dim HomG(P(λ),P(µ)).

Also in view of Theorem 2.14, dim HomG(P(λ),P(µ)) = [P(µ) : L(λ)] is equal
to the analogous dimension dim HomK(P (λ), P (µ)) = [P (µ) : L(λ)] on the
diagram algebra side, which is described explicitly by [BS1, (5.9)]. We deduce
that dim HomG(P(λ),P(µ)) is equal to the number of weights ν such that
λ ∼ ν ∼ µ and the circle diagram λνµ is consistently oriented. The theorem
follows easily on combining this with the combinatorial definitions of dimp,q(λ)
and dimp,q(µ) from Theorem 3.6. �

The algebra Rp,qd and the isomorphism theorem. Now we need to recall
some of the main results of [BS3] which give an alternative diagrammatic de-
scription of the algebra 1p,qd Hp,q

d . This will allow us to see to start with that
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this algebra has the same dimension as the endomorphism algebra from Theo-
rem 3.9. For the reader wishing to understand already the relationship between
the diagram algebra Rp,qd defined in the next paragraph and the algebra K(m|n)
from the introduction, we point to Lemma 4.1, (4.7) and Corollary 4.6 in the
next section. On the other hand Corollary 3.22 established later in this section
explains the connection between Rp,qd and the representation theory of G.

Let Rp,qd be the associative, unital algebra with basis{
|u∗[δ∗] o t[γ]|

∣∣∣∣ for all oriented stretched circle diagrams u∗[δ∗] o t[γ]
of height d with γ0 = δ0 = λp,q and γd = δd ∈ Λp,q

}
.

The multiplication is defined by an explicit algorithm described in detail [BS3].
Briefly, to multiply two basis vectors |s∗[τ ∗] o r[σ]| and |u∗[δ∗] o t[γ]|, the prod-
uct is zero unless r = u and all mirror image pairs of internal circles in r[σ]
and u∗[δ∗] are oriented so that one is clockwise, the other anti-clockwise. As-
suming these conditions hold, the product is computed by putting s∗[τ ∗] o r[σ]
underneath u∗[δ∗] o t[γ], erasing all internal circles and number lines in r[σ]
and u∗[δ∗], then iterating the generalised surgery procedure to smooth out the
symmetric middle section of the diagram.

Lemma 3.10. The algebras Rp,qd and EndG(T p,qd )op have the same dimension.
In particular, Rp,qd is the zero algebra for d > (m+ n)(q − p) + 2mn.

Proof. The number of elements in the diagram basis for Rp,qd is the same as
the dimension of the algebra EndG(T p,qd )op thanks to Theorem 3.9. The last
statement follows from Corollary 3.8. �

As a consequence of [BS3, Corollary 8.6], we can identify Rp,qd with a certain
cyclotomic Khovanov-Lauda-Rouquier algebra in the sense of [KL, Ro]. To make
this identification explicit, we need to define some special elements

{e(i) | i ∈ (Ip,q)
d} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1} (3.11)

in Rp,qd . For i ∈ (Ip,q)
d, we let e(i) ∈ Rp,qd be the idempotent defined as follows.

If i is not (p, q)-admissible then e(i) := 0. If it is admissible, let t = td · · · t1 be
the associated composite matching and Γ = Γd · · ·Γ0 be the associated block
sequence. Then

e(i) :=
∑
δ,γ

|t∗[δ∗] o t[γ]| (3.12)

where the sum is over all sequences γ = γd · · · γ0 and δ = δd · · · δ0 of weights
with each γr, δr ∈ Γr chosen so that every circle of t∗[δ∗]ot[γ] crossing the middle
number line is anti-clockwise, and all remaining mirror image pairs of circles
are oriented so that one is clockwise, the other anti-clockwise. The elements
{e(i) |i ∈ (Ip,q)

d} give a system of mutually orthogonal idempotents whose sum
is the identity in Rp,qd .

Next we define the elements y1, . . . , yd. Let ȳ1, . . . , ȳd be the unique elements
of Rp,qd such that the product |u∗[δ∗]ot[γ]|·ȳr (resp. ȳr ·|u∗[δ∗]ot[γ]|) is computed
by making a positive circle move in the section of u∗t containing tr (resp. u∗r),
as described in detail in [BS3, (5.5), (5.11)]. Also introduce the signs

σrp,q(i) := (−1)min(p,ir)+min(q,ir)+m−p−δi1,ir−···−δir−1,ir . (3.13)
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Then we define yr :=
∑
i∈(Ip,q)d

yre(i) where

yre(i) := σrp,q(i)ȳre(i), (3.14)

to get the elements yr ∈ Rp,qd for r = 1, . . . , d.
Finally we define ψ1, . . . , ψd−1. Let ψ̄1, . . . , ψ̄d−1 be the unique elements

of Rp,qd such that the product |u∗[δ∗] o t[γ]| · ψ̄r (resp. ψ̄r · |u∗[δ∗] o t[γ]|) is
computed by making a negative circle move, a crossing move or a height move
in the section of u∗t containing tr+1tr (resp. u∗ru

∗
r+1), as described in detail in

[BS3, (5.7),(5.12)]. Then we define ψr :=
∑
i∈(Ip,q)d

ψre(i) where

ψre(i) :=

{
−σrp,q(i)ψ̄re(i) if ir+1 = ir or ir+1 = ir + 1,
ψ̄re(i) otherwise,

(3.15)

to get the elements ψr ∈ Rp,qd for r = 1, . . . , d− 1.

Theorem 3.11. The elements (3.11) generate Rp,qd subject only to the defin-
ing relations of the Khovanov-Lauda-Rouquier algebra associated to the linear
quiver

• • •−→−→ · · ·• •−→
with vertices indexed by the set Ip,q in order from left to right (see e.g. [BS3,

(6.8)–(6.16)]), plus the additional cyclotomic relations y
δi1,p+δi1,q
1 e(i) = 0 for

i = (i1, . . . , id) ∈ (Ip,q)
d.

Proof. This is a consequence of [BS3, Corollary 8.6]. More precisely, we apply
[BS3, Corollary 8.6], taking the index set I there to be the set Ip,q, the pair
(o + m, o + n) there to be (p, q), and summing over all α ∈ Q+ of height d.
This implies that the given quotient of the Khovanov-Lauda-Rouquier algebra
is isomorphic to the diagram algebra with basis consisting of oriented stretched
circle diagrams |u∗[δ∗] o t[γ]| just like the ones considered here, except they are
drawn only in the strip containing the vertices indexed by I+

p,q. The isomorphism
in [BS3] is not quite the same as the map here, because the sign in (3.13) differs
from the corresponding sign chosen in [BS3] by a factor of (−1)m−p; this causes
no problems as it amounts to twisting by an automorphism of the Khovanov-
Lauda-Rouquier algebra. It remains to observe that all the oriented stretched
circle diagrams in the statement of the present theorem are trivial outside the
strip I+

p,q, consisting only of straight lines oriented ∧ in that region; these have
no effect on the multiplication. �

Now we can formulate the following key isomorphism theorem, which identi-
fies the algebras 1p,qd Hp,q

d and Rp,qd .

Theorem 3.12. There is a unique algebra isomorphism

1p,qd Hp,q
d

∼→ Rp,qd

such that e(i) 7→ e(i), xre(i) 7→ (yr + ir)e(i) and sre(i) 7→ (ψrqr(i)− pr(i))e(i)
for each r and i ∈ (Ip,q)

d, where pr(i), qr(i) ∈ Rp,qd are chosen as in [BK2, §3.3],



24 JONATHAN BRUNDAN AND CATHARINA STROPPEL

e.g. one could take

pr(i) :=

{
1 if ir = ir+1,
−(ir+1 − ir + yr+1 − yr)−1 if ir 6= ir+1;

qr(i) :=


1 + yr+1 − yr if ir = ir+1,
(2 + yr+1 − yr)(1 + yr+1 − yr)−2 if ir+1 = ir + 1,
1 if ir+1 = ir − 1,
1 + (ir+1 − ir + yr+1 − yr)−1 if |ir − ir+1| > 1.

(The inverses on the right hand sides of these formulae make sense because each
yr+1 − yr is nilpotent with nilpotency degree at most two, as is clear from the
diagrammatic definition of the yr’s.)

Proof. This is a consequence of Theorem 3.11 combined with the main theorem
of [BK2]; see also [BS3, Theorem 8.5]. �

Henceforth, we will use the isomorphism from the above theorem to identify
the algebra 1p,qd Hp,q

d with Rp,qd , so

1p,qd Hp,q
d ≡ Rp,qd . (3.16)

We will denote it always by the more compact notation Rp,qd . Thus there are
three different ways of viewing Rp,qd : it is a diagram algebra with basis given by
oriented stretched circle diagrams, it is a cyclotomic Khovanov-Lauda-Rouquier
algebra, and it is a sum of blocks of the cyclotomic Hecke algebra Hp,q

d .

Super version of level two Schur-Weyl duality. Now we can prove the
main results of the section, namely, that the map Φ from (3.5) is surjective and
the induced map (3.9) is an isomorphism. In the case d ≤ min(m,n) we have
already done most of the work:

Theorem 3.13. If d ≤ min(m,n) then we have that T p,qd = V(λp,q) ⊗ V ⊗d,
Rp,qd = Hp,q

d , and the map

Φ : Hp,q
d → EndG(V(λp,q)⊗ V ⊗d)op

is an algebra isomorphism.

Proof. Let us first show that T p,qd = V(λp,q)⊗ V ⊗d. Observe for d ≤ min(m,n)

that any (p, q)-admissible sequence i ∈ Zd necessarily lies in (Ip,q)
d. This is

clear from (2.2) and the form of the diagram λp,q. Hence applying Lemma 3.5

we get that FiV(λp,q) = {0} for i ∈ Zd \ (Ip,q)
d. So we are done by (3.7).

Now consider the map Φ. It is injective by Corollary 3.4. To show that it
is an isomorphism, we apply Lemma 3.10, recalling the identification (3.16), to
see that

dim EndG(V(λp,q)⊗ V ⊗d)op = dim EndG(T p,qd )op = dimRp,qd ≤ dimHp,q
d .

Hence our injective map is an isomorphism. At the same time, we deduce that
dimRp,qd = dimHp,q

d , hence Rp,qd = Hp,q
d . �

It remains to consider the cases with d > min(m,n). For that, following a
standard argument, we need to allow m and n to vary. So we take some other
integers m′, n′ ≥ 0 and consider the supergroup G′ = GL(m′|n′). To avoid
any confusion, we decorate all notation related to G′ with a prime, e.g. V ′ is
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its natural module, its irreducible modules are the modules denoted L′(λ) for
λ ∈ Λ′ := Λ(m′|n′), and F ′ := F(m′|n′). We are going to exploit the following
standard lemma.

Lemma 3.14. Let F : F ′ → F be an exact functor and X ⊆ Λ′ be a subset
with the following properties:

(i) F commutes with duality, i.e. F ◦~ ∼= ~ ◦ F ;
(ii) the modules FV ′(λ) for λ ∈ X have standard flags;
(iii) the map HomG′(V ′(λ),V ′(µ)~) → HomG(FV ′(λ), FV ′(µ)~) defined by

the functor F is surjective for all λ, µ ∈ X.

Suppose M,N are G′-modules with standard flags all of whose sections are of
the form V ′(λ) for λ ∈ X. Then the map HomG′(M,N~)→ HomG(FM,FN~)
defined by the functor F is surjective.

Proof. We proceed by induction on the sum of the lengths of the standard flags
of M and N , the base case being covered by (iii). For the induction step, either
M or N has a standard flag of length greater than one. It suffices to consider
the case when the standard flag of M has length greater than 1, since the other
case reduces to that using duality. Pick a submodule K of M such that both
K and Q := M/K are non-zero and possess standard flags. By a general fact
about highest weight categories (see also [B2, Lemma 3.6] for a short direct
proof in this context), the functor HomG′(?, N

~) is exact on sequences of G′-
modules possessing a standard flag. So applying it to the short exact sequence
0→ K →M → Q→ 0 we get a short exact sequence as on the top line of the
following diagram:

0 → HomG′(Q,N
~) → HomG′(M,N~) → HomG′(K,N

~) → 0y y y
0 →HomG(FQ,FN~)→HomG(FM,FN~)→HomG(FK,FN~)→ 0.

Similar considerations applying the functor HomG(?, FN~) to 0 → FK →
FM → FQ→ 0 gives the short exact sequence in the bottom row. The vertical
maps making the diagram commute are the maps defined by the functor F . The
left and right vertical arrows are surjective by the induction hypothesis. Hence
the middle vertical arrow is surjective too by the five lemma. �

Now we consider the situation that

G′ = GL(m|n+ 1). (3.17)

Embed G = GL(m|n) into G′ in the top left hand corner in the obvious way.
Also let S be the one-dimensional torus embedded into G′ in the bottom right
hand corner, so that S centralises the subgroup G. The character group X(S)
is generated by εm+n+1. Let F+ : F ′ → F be the functor mapping M ∈ F ′ to
the −(q +m)εm+n+1-weight space of Πq+mM with respect to the torus S.

Lemma 3.15. Let G′ = GL(m|n+ 1) and G = GL(m|n) as in (3.17).

(i) For λ ∈ X+(T ′) with (λ, εm+n+1) = q + m, we have that F+V ′(λ) ∼=
V(µ), where µ is the restriction of λ to T < T ′.

(ii) F+V ′(λ′p,q) ∼= V(λp,q).
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(iii) For λ ∈ X+(T ) with (λ, εm+n+1) < q+m, we have that F+V ′(λ) = {0}.

Proof. The proof of (i) reduces easily using the definition (2.10) to checking that
the −(q+m)εm+n+1-weight space of Πq+mE′(λ) with respect to S is isomorphic
to E(µ) as a G0̄-module, which is well known. Then (ii) is a consequence of (i),

noting that λ′p,q =
∑m

r=1 pεr −
∑n+1

s=1 (q + m)εm+s. The proof of (iii) is similar
to (i). �

Lemma 3.16. Let G′ = GL(m|n + 1) and G = GL(m|n) as in (3.17). There
is a unique G-module isomorphism

F+(V ′(λ′p,q)⊗ (V ′)⊗d)
∼→ V(λp,q)⊗ V ⊗d

such that v′p,q⊗v′i1⊗· · ·⊗v
′
id
7→ vp,q⊗vi1⊗· · ·⊗vid for all 1 ≤ i1, . . . , id ≤ m+n.

Moreover, this map intertwines the natural actions of Hp,q
d .

Proof. The first statement follows using the isomorphism F+V ′(λ′p,q) ∼= V(λp,q)
from the first part of the previous lemma, together with the following observa-
tions:

I the weights µ arising with non-zero multiplicity in V ′(λ′p,q) all satisfy
(µ, εm+n+1) ≤ q +m;

I the weights µ arising with non-zero multiplicity in (V ′)⊗d all satisfy
(µ, εm+n+1) ≤ 0;

I the zero weight space of (V ′)⊗d with respect to S is V ⊗d.

The second statement is straightforward. �

Lemma 3.17. Let G′ = GL(m|n+1) and G = GL(m|n) as in (3.17). Assume

the map Φ′ : Hp,q
d → EndG′(V ′(λ′p,q) ⊗ (V ′)⊗d)op is surjective. Then the map

Φ : Hp,q
d → EndG(V(λp,q)⊗ V ⊗d)op is surjective too.

Proof. We apply Lemma 3.14 to F := F+, taking m′ := m,n′ := n+ 1 and the
set of weights X to be {λ ∈ X+(T ′) | (λ, εm+n+1) ≤ q + m}. The hypothesis
in Lemma 3.14(ii) follows from Lemma 3.15, and the other two hypotheses are
clear. Since V ′(λ′p,q) ⊗ (V ′)⊗d is self-dual and has a standard flag, we deduce
that the functor F+ defines a surjection

EndG′(V ′(λ′p,q)⊗ (V ′)⊗d)op � EndG(F+(V ′(λ′p,q)⊗ (V ′)⊗d))op.

Composing with the isomorphism from Lemma 3.16 and using also the last part
of that lemma, we deduce that there is a commutative triangle

Hp,q
d

Φ′↙ ↘Φ

EndG′(V ′(λ′p,q)⊗ (V ′)⊗d)op −−−−→ EndG(V(λp,q)⊗ V ⊗d)op

in which the bottom map is surjective. The map Φ′ is surjective by assumption.
So we deduce that Φ is surjective too. �

Instead consider the situation that

G′ = GL(m+ 1|n) (3.18)

and embed G = GL(m|n) into G′ into the bottom right hand corner in the
obvious way. Also let S be the one-dimensional torus embedded into G′ in the
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top left hand corner, so again S centralises the subgroup G. The character
group X(S) is generated by ε1. Let F− : F ′ → F be the functor mapping
M ∈ F ′ to the (p − n)ε1-weight space of M with respect to the torus S. The
analogues of Lemmas 3.15–3.17 in the new situation are as follows.

Lemma 3.18. Let G′ = GL(m+ 1|n) and G = GL(m|n) as in (3.18).

(i) For λ ∈ X+(T ′) with (λ, ε1) = p, we have that F−V ′(λ) ∼= V(µ), where
µ is the restriction of λ− nε1 + εm+2 + · · ·+ εm+n+1 to T .

(ii) F−V ′(λ′p,q) ∼= V(λp,q).

(iii) For λ ∈ X+(T ′), with (λ, ε1) > p, we have that F−V ′(λ) = {0}.

Proof. This follows by similar arguments to the proof of Lemma 3.15, but there
is an additional subtlety. The main new point is that if v+ is a non-zero highest
weight vector of weight λ in V ′(λ) as in (i), then the vector e1,m+2 · · · e1,m+n+1v+

gives a highest weight vector for G in F−V ′(λ) of weight λ − nε1 + εm+2 +
· · · + εm+n+1. This statement is checked by explicit calculation in U(g′). It
then follows from the PBW theorem that this vector generates F−V ′(λ) and

F−V ′(λ) ∼= V(µ) to give (i). For (ii) we note that λ′p,q =
∑m+1

r=1 pεr −
∑n

s=1(q+
m+ 1)εm+1+s. �

Lemma 3.19. Let G′ = GL(m + 1|n) and G = GL(m|n) as in (3.18). There
is a unique G-module isomorphism

F−(V ′(λ′p,q)⊗ (V ′)⊗d)
∼→ V(λp,q)⊗ V ⊗d

such that e1,m+2 · · · e1,m+n+1 · v′p,q ⊗ v′i1 ⊗ · · · ⊗ v
′
id
7→ vp,q ⊗ vi1−1 ⊗ · · · ⊗ vid−1

for all 2 ≤ i1, . . . , id ≤ m + n + 1. Moreover, this map intertwines the natural
actions of Hp,q

d .

Proof. Similar to the proof of Lemma 3.16, using Lemma 3.18. �

Lemma 3.20. Let G′ = GL(m+1|n) and G = GL(m|n) as in (3.18). Assume

the map Φ′ : Hp,q
d → EndG′(V ′(λ′p,q) ⊗ (V ′)⊗d)op is surjective. Then the map

Φ : Hp,q
d → EndG(V(λp,q)⊗ V ⊗d)op is surjective too.

Proof. Apply Lemma 3.14 taking m′ := m+ 1, n′ := n and the set X of weights
to be {λ ∈ X+(T ′) | (λ, ε1) ≥ p}, arguing in the same way as in the proof of
Lemma 3.17. �

Finally we can assemble the pieces to prove a key result, which is a super
analogue of the Schur-Weyl duality for level two from [BK1].

Theorem 3.21 (Super Schur-Weyl duality). For any d ≥ 0, the map

Φ : Hp,q
d → EndG(V(λp,q)⊗ V ⊗d)op

is surjective.

Proof. In the case that d ≤ min(m,n), this is immediate from Theorem 3.13.
To prove it in general, pick m ≤ m′ and n ≤ n′ so that d ≤ min(m′, n′). We
already know the surjectivity of the map Φ′ for G′ = GL(m′|n′). Now apply
Lemma 3.17 a total of (n′−n) times and Lemma 3.20 a total of (m′−m) times
to deduce the surjectivity for G = GL(m|n). �
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Corollary 3.22. Recalling the identification (3.16), the map Φ induces an

algebra isomorphism Rp,qd
∼→ EndG(T p,qd )op.

Proof. Theorem 3.21 shows the induced map Rp,qd → EndG(T p,qd )op is surjective.
It is an isomorphism by Lemma 3.10. �

Irreducible representations of Rp,qd . As an application of Corollary 3.22,
we can recover the known classification of the irreducible Rp,qd -modules. For
λ ∈ Λ◦p,q with ht(λ) = ht(λp,q) + d, let

Dp,q(λ) := HomG(T p,qd ,L(λ)), (3.19)

viewed as a left Rp,qd -module in the natural way.

Theorem 3.23. The modules {Dp,q(λ) | λ ∈ Λ◦p,q, ht(λ) = ht(λp,q) + d} give

a complete set of pairwise inequivalent irreducible Rp,qd -modules. Moreover,
we have that dimDp,q(λ) = dimp,q(λ), where dimp,q(λ) is as defined in The-
orem 3.6.

Proof. As T p,qd is a projective module, Corollary 3.22 and the usual theory of
functors of the form Hom(P, ?) imply that the non-zero modules of the form
HomG(T p,qd ,L(λ)) for λ ∈ Λ give a complete set of pairwise inequivalent ir-
reducible Rp,qd -modules. The non-zero ones are parametrised by the weights
λ ∈ Λ◦p,q with ht(λ) = ht(λp,q) + d, thanks to Corollary 3.7. Finally the stated
dimension formula is a consequence of Theorem 3.6. �

Remark 3.24. For a graded version of the dimension formula for the irreducible
Rp,qd -modules derived in Theorem 3.23, we refer the reader to [BS3, Theorem
9.9]. (The identification of the labellings of irreducible representations in the
above theorem with the one in [BS3] can be deduced using the methods of the
next subsection.)

i-Restriction and i-induction. To identify the labelling of irreducible Rp,qd -
modules from Theorem 3.23 with other known parametrisations, it is useful
to have available a more intrinsic characterisation of Dp,q(λ). We explain one
inductive approach to this here in terms of the well-known i-restriction functors.

Suppose that i ∈ Ip,q. The natural inclusion Hd ↪→ Hd+1 induces an
embedding Hp,q

d ↪→ Hp,q
d+1. Composing before and after with the inclusion

Rp,qd = 1p,qd Hp,q
d ↪→ Hp,q

d+1 and the projection Hp,q
d+1 � 1p,qd+1H

p,q
d+1 = Rp,qd+1, we

get a unital algebra homomorphism

θd : Rp,qd → Rp,qd+1. (3.20)

Note this map need not be injective, e.g. if d = (m+ n)(p− q) + 2mn then the
algebra Rp,qd is non-zero but Rp,qd+1 is zero by Lemma 3.10. The image of xd+1 in

Rp,qd+1 centralises θd(R
p,q
d ). So it makes sense to define the i-restriction functor

Ei : rep(Rp,qd+1)→ rep(Rp,qd ) (3.21)

to be the exact functor mapping an Rp,qd+1-module M to the generalised i-

eigenspace of xd+1 on M , viewed as an Rp,qd -module via θd.
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For us, a slightly different formulation of this definition will be more conve-
nient. Let

1p,qd;i :=
∑

i∈(Ip,q)d+1, id+1=i

e(i) ∈ Rp,qd+1. (3.22)

Multiplication by this idempotent projects any Rp,qd+1-module M onto the gen-

eralised i-eigenspace of xd+1, which is a module over the subring 1p,qd;iR
p,q
d+11p,qd;i

of Rp,qd+1. As 1p,qd;i centralises the image of the homomorphism θd, we can define

another unital algebra homomorphism

θd;i : Rp,qd → 1p,qd;iR
p,q
d+11p,qd;i , x 7→ θd(x)1p,qd;i . (3.23)

Because 1p,qd+1 =
∑

i∈Ip,q 1p,qd;i , we have that θd =
∑

i∈Ip,q θd;i. The functor Ei
from the previous paragraph can be defined equivalently as the functor map-
ping an Rp,qd+1-module M to the space 1p,qd;iM viewed as an Rp,qd -module via the

homomorphism θd;i. So:

EiM = 1p,qd;iM
∼= HomRp,qd+1

(Rp,qd+11p,qd;i ,M), (3.24)

where we view Rp,qd+11p,qd;i as an (Rp,qd+1, R
p,q
d )-bimodule using the homomorphism

θd;i to get the right module structure. It is clear from (3.24) that the i-restriction
functor Ei has a left adjoint

Fi := Rp,qd+11p,qd;i⊗Rp,qd ? : rep(Rp,qd )→ rep(Rp,qd+1). (3.25)

We refer to this as the i-induction functor.

Lemma 3.25. There is an isomorphism

r : Ei ◦HomG(T p,qd+1, ?)
∼→ HomG(T p,qd , ?) ◦ Ei

of functors from F to rep(Rp,qd ).

Proof. Take M ∈ F. Note recalling (3.6) that T p,qd+11p,qd;i = FiT p,qd . So we can

identify

Ei(HomG(T p,qd+1,M)) = 1p,qd;iHomG(T p,qd+1,M)

= HomG(T p,qd+11p,qd;i ,M) = HomG(FiT p,qd ,M).

Then the adjunction between Fi and Ei fixed earlier defines a natural isomor-
phism HomG(FiT p,qd ,M)

∼→ HomG(T p,qd , EiM). Naturality gives automatically
that this is an Rp,qd -module homorphism. So we have defined the desired iso-
morphism of functors r. �

Corollary 3.26. Take λ ∈ Λ◦p,q with ht(λ) = ht(λp,q) + d + 1 for some d ≥ 0.

ick µ ∈ Λ◦p,q such that µ
i→ λ is an edge in the crystal graph for some i ∈ Ip,q.

Then Dp,q(λ) is the unique irreducible representation of Rp,qd+1 with the property
that EiDp,q(λ) has a quotient isomorphic to Dp,q(µ).

Proof. By Lemma 2.12, we know for λ as in the statement of the corollary and

i ∈ Ip,q that EiL(λ) is zero unless there exists µ ∈ Λ◦p,q with µ
i→ λ in the

crystal graph, in which case L(µ) is the unique irreducible quotient of EiL(λ).
The corollary follows from this on applying the exact functor HomG(T p,qd , ?)
and using Lemma 3.25 and the definition (3.19). �
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Remark 3.27. It is sometimes necessary to understand the homomorphism
θd;i from (3.23) from a diagrammatic point of view. Using Theorem 3.12, we
can easily write down θd;i on the Khovanov-Lauda-Rouquier generators: it is
the map

θd;i : e(i) 7→ e(i+ i), yre(i) 7→ yre(i+ i), ψse(i) 7→ ψse(i+ i) (3.26)

for i ∈ (Ip,q)
d, 1 ≤ r ≤ d and 1 ≤ s < d, where i + i denotes the (d + 1)-tuple

(i1, . . . , id, i). It is harder to see θd;i in terms of the bases of oriented stretched
circle diagrams, but this is worked out in detail in [BS3, Corollary 6.12]. The
basic idea to compute θd;i(|u∗[γ∗] ot[δ]|) is to insert two extra levels chosen from
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into the middle of the matching u∗t, where we display only the strip between
the ith and (i + 1)th vertices, the diagrams being trivial outside that strip.
In the first configuration here, this process involves making one application of
the generalised surgery procedure. The construction is made precise in the
paragraph after [BS3, (6.34)].

4. Morita equivalence with generalised Khovanov algebras

Next we construct an explicit Morita equivalence between Rp,q :=
⊕

d≥0R
p,q
d

and a certain generalised Khovanov algebra Kp,q. Using this, we replace the
tensor space T p,q :=

⊕
d≥0 T

p,q
d from the level two Schur-Weyl duality with

a new space P p,q whose endomorphism algebra is Kp,q. Exploiting the fact
that Kp,q is a basic algebra, we show that the space P p,q has exactly the same
indecomposable summands as T p,q (up to isomorphism), but that they each
appear with multiplicity one.

Generalised Khovanov algebras. Given p ≤ q, let Kp,q denote the subring
ep,qKep,q of K, where ep,q is the (non-central) idempotent

ep,q :=
∑
λ∈Λ◦p,q

eλ ∈ K. (4.1)

Lemma 4.1. The algebra K is the union of the subalgebras Kp,q for all p ≤ q.

Proof. This follows from (2.1) and the observation that, for any λ, µ ∈ Λ, we
can find integers p ≤ q such that both λ and µ belong to Λ◦p,q. �

Remark 4.2. In terms of the diagram basis from (1.7), Kp,q has basis{
(aλb)

∣∣∣∣∣ for all oriented circle diagrams aλb with λ ∈ Λp,q such that
cups and caps pass only through vertices in the interval I+

p,q

}
.

All the diagrams in the diagram basis of Kp,q consist simply of straight lines
oriented ∧ outside of the interval I+

p,q; these play no role when computing the
multiplication. So we can just ignore all of the diagram outside this strip
without changing the algebra structure. This shows that the algebra Kp,q is a
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direct sum of the generalised Khovanov algebras from [BS1, §6] associated to
the weights obtained from Λp,q by erasing vertices outside the interval I+

p,q.

Representations of Kp,q. To understand the representation theory of the
algebra Kp,q, we exploit the exact functor

ep,q : rep(K)→ rep(Kp,q) (4.2)

arising by left multiplication by the idempotent ep,q; cf. [BS1, (6.13)]. It
is easy to see that ep,qL(λ) 6= {0} if and only if λ ∈ Λ◦p,q. Hence, letting
Lp,q(λ) := ep,qL(λ) for λ ∈ Λ◦p,q, the modules

{Lp,q(λ) | λ ∈ Λ◦p,q} (4.3)

give a complete set of pairwise inequivalent irreducible Kp,q-modules.

Recalling also the (K,K)-bimodules F̃i and Ẽi from (2.3), we get (Kp,q,Kp,q)-
bimodules

F̃ p,qi := ep,qF̃ie
p,q, Ẽp,qi := ep,qẼie

p,q (4.4)

for any i ∈ Ip,q. Let Fi := F̃ p,qi ⊗Kp,q? and Ei := Ẽp,qi ⊗Kp,q? be the endofunctors
of rep(Kp,q) defined by tensoring with these bimodules.

Lemma 4.3. For any i ∈ Ip,q, there are isomorphisms Fi ◦ ep,q ∼= ep,q ◦ Fi and
Ei ◦ ep,q ∼= ep,q ◦ Ei of functors from rep(K) to rep(Kp,q).

Proof. We just explain the proof for Ei, since the argument for Fi is the same.
Suppose first that P is any projective right K-module that is isomorphic to a
direct sum of summands of ep,qK. Then the natural multiplication map

Pep,q ⊗ep,qKep,q ep,qK → P

is an isomorphism of right K-modules. This follows because it is obviously true

if P = ep,qK. In the next paragraph, we show that P = ep,qẼi satisfies the
hypothesis that it is isomorphic to a direct sum of summands of ep,qK as a
right K-module. Hence, we deduce that the multiplication map

Ẽp,qi ⊗Kp,q ep,qK
∼→ ep,qẼi (4.5)

is a (Kp,q,K)-bimodule isomorphism. The desired isomorphism Ei ◦ ep,q ∼=
ep,q ◦ Ei follows at once, since Ei ◦ ep,q is the functor defined by tensoring
with the bimodule on the left hand side and ep,q ◦ Ei is the functor defined by
tensoring with the bimodule on the right hand side of (4.5).

It remains to show that ep,qẼi is isomorphic to a direct sum of summands
of ep,qK. Equivalently, twisting with the obvious anti-automorphism ∗ that

reflects diagrams in a horizontal axis, we show that F̃ie
p,q is isomorphic to a

direct sum of summands of Kep,q. The indecomposable summands of Kep,q are
all of the form P (µ) for µ ∈ Λ◦p,q, so using the definition (4.1) this follows if

we can show for any λ ∈ Λ◦p,q that all indecomposable summands of F̃ieλ are of

the form P (µ) for µ ∈ Λ◦p,q. As F̃ieλ ∼= FiP (λ), this follows easily from [BS2,
Theorem 4.2], using also the assumption that i ∈ Ip,q. �

Corollary 4.4. Let λ, µ and i be as in the statement of Corollary 3.26. Then
Lp,q(λ) is the unique irreducible representation of Kp,q with the property that
EiL

p,q(λ) has a quotient isomorphic to Lp,q(µ).
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Proof. This follows from Lemmas 2.4 and 4.3 by the same argument used to
prove Corollary 3.26. �

Morita bimodules. Recall the G-module T p,qd from (3.7). In view of Theorem
3.21, we can identify its endomorphism algebra with the algebra Rp,qd . Actually
it is convenient now to work with all d simultaneously, setting

T p,q :=
⊕
d≥0

T p,qd , (4.6)

Rp,q :=
⊕
d≥0

Rp,qd ≡ EndG(T p,q)op. (4.7)

Note by Corollary 3.8 and Lemma 3.10 that T p,q and Rp,q are both finite di-
mensional.

We next want to explain how the algebra Rp,q is Morita equivalent to the
basic algebra Kp,q, by writing down an explicit pair of bimodules Ap,q and
Bp,q that induce the Morita equivalence. To do this, recall the notions of
oriented upper- and lower-stretched circle diagrams from [BS3, (6.17)]. They
are the consistently oriented diagrams obtained by gluing a cup diagram below
an oriented stretched cap diagram, or gluing a cap diagram above an oriented
stretched cup diagram, respectively. Let Ap,q and Bp,q be the vector spaces
with bases{

(a t[γ]|
∣∣∣∣ for all oriented upper-stretched circle diagrams a t[γ] of

height d ≥ 0 such that γ0 = λp,q and γd ∈ Λp,q

}
,{

|u∗[δ∗] b)
∣∣∣∣ for all oriented lower-stretched circle diagrams u∗[δ∗] b of

height d ≥ 0 such that δ0 = λp,q and δd ∈ Λp,q

}
,

respectively. We make Ap,q into a (Kp,q, Rp,q)-bimodule as follows.

I The left action of a basis vector (aλb) ∈ Kp,q on (c t[γ]| ∈ Ap,q is by
zero unless λ ∼ γd (where γ = γd · · · γ0) and b = c∗. Assuming these
conditions hold, the product is computed by drawing aλb underneath
c t[γ], then iterating the generalised surgery procedure to smooth out
the symmetric middle section of the diagram.

I The right action of a basis vector |s∗[τ ∗] o r[σ]| ∈ Rp,q on (a t[γ]| ∈ Ap,q
is by zero unless t = s and all mirror image pairs of internal circles
in s∗[τ ∗] and t[γ] are oriented so that one is clockwise, the other anti-
clockwise. Assuming these conditions hold, the product is computed by
drawing a t[γ] underneath s∗[τ ∗] o r[σ], erasing all internal circles and
number lines in t[γ] and s∗[τ ∗], then iterating the generalised surgery
procedure in the middle section once again.

Similarly we make Bp,q into an (Rp,q,Kp,q)-bimodule. We refer the reader
to [BS3, §6] for detailed proofs (in an entirely analogous setting) that these
bimodules are well defined.

Theorem 4.5. There are isomorphisms

µ : Ap,q ⊗Rp,q Bp,q ∼→ Kp,q, ν : Bp,q ⊗Kp,q Ap,q
∼→ Rp,q

of (Kp,q,Kp,q)-bimodules and of (Rp,q, Rp,q)-bimodules, respectively.
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Proof. This is a consequence of [BS3, Theorem 6.2] and [BS3, Remark 6.7].
These references give a somewhat indirect construction of the desired isomor-
phisms µ and ν. The same maps can also be constructed much more directly
by mimicking the definitions of multiplication in the algebras Rp,q and Kp,q,
respectively. �

Corollary 4.6 (Morita equivalence). The bimodule Bp,q is a projective genera-

tor for rep(Rp,q). Also there is an algebra isomorphism Kp,q ∼→ EndRp,q(B
p,q)op

induced by the right action of Kp,q on Bp,q. Hence the functors

HomRp,q(B
p,q, ?) : rep(Rp,q)→ rep(Kp,q),

Bp,q⊗Kp,q? : rep(Kp,q)→ rep(Rp,q)

are quasi-inverse equivalences of categories.

Proof. This follows immediately from the theorem by the usual arguments of
the Morita theory; see e.g. [Ba, (3.5) Theorem]. �

More about i-restriction and i-induction. We will view the i-restriction
and i-induction functors Ei and Fi from (3.24)–(3.25) now as endofunctors of
rep(Rp,q). Summing the maps θd;i from (3.23) over all d ≥ 0, we get a unital
algebra homomorphism

θi : Rp,q → 1p,qi Rp,q1p,qi where 1p,qi :=
∑
d≥0

1p,qd;i (4.8)

(which makes sense as the sum has only finitely many non-zero terms). Then Ei
is the functor defined by multiplying by the idempotent 1p,qi , viewing the result
as an Rp,q-module via θi. The i-induction functor Fi = Rp,q1p,qi ⊗Rp,q? is left
adjoint to Ei; here, we are viewing Rp,q1p,qi as a right Rp,q-module via θi.

Lemma 4.7. There is an isomorphism

s′ : Bp,q⊗Kp,q? ◦ Ei
∼→ Ei ◦Bp,q⊗Kp,q?

of functors from rep(Kp,q) to rep(Rp,q).

Proof. By the definitions of the various functors, it suffices to construct an
(Rp,q,Kp,q)-bimodule isomorphism

Bp,q ⊗Kp,q Ẽp,qi
∼→ 1p,qi Bp,q,

where 1p,qi Bp,q is viewed as a left Rp,q-module via the homomorphism θi. There
is an obvious multiplication map defined on a tensor product of basis vectors of
the form |u∗[δ∗] b)⊗ (cλtµd) so that it is zero unless c = b∗ and λ ∼ δd (where
δ = δd · · · δ0), in which case it is the sum of basis vectors obtained by applying
the generalised surgery procedure to the bc-part of the diagram obtained by
putting u∗[δ∗] b underneath cλtµd. The fact that this multiplication map is
an isomorphism of right Kp,q-modules is a consequence of [BS2, Theorem 3.5].
It remains to show that it is a left Rp,q-module homomorphism. Using the
diagrammatic description of the map θi from Remark 3.27, this reduces to
checking a statement which, on applying the anti-automorphism ∗, is equivalent
to the identity (6.38) established in the proof of [BS3, Theorem 6.11]. �
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Corollary 4.8. There is an isomorphism

s : Ei ◦HomRp,q(B
p,q, ?)

∼→ HomRp,q(B
p,q, ?) ◦ Ei

of functors from rep(Rp,q) to rep(Kp,q).

Proof. In view of Corollary 4.6, the natural transformations arising from the
canonical adjunction between tensor and hom give isomorphisms

η : Idrep(Kp,q)
∼→ HomRp,q(B

p,q, ?) ◦Bp,q⊗Kp,q?,

ε : Bp,q⊗Kp,q? ◦HomRp.q(B
p,q, ?)→ Idrep(Rp,q) .

Now take the isomorphism from Lemma 4.7, compose on the left and the right
with the functor HomRp,q(B

p,q, ?), then use the isomorphisms η and ε to cancel
the resulting pairs of quasi-inverse functors. �

Identification of irreducible representations. Now we can identify the
labelling of the irreducible Rp,q-modules from Lemma 3.23 with the labelling of
the irreducible Kp,q-modules from (4.3).

Lemma 4.9. For λ ∈ Λ◦p,q, we have that HomRp,q(B
p,q, Dp,q(λ)) ∼= Lp,q(λ) as

Kp,q-modules.

Proof. We first show that L := HomRp,q(B
p,q, Dp,q(λp,q)) ∼= Lp,q(λp,q). It is

obvious that EiDp,q(λp,q) = {0} for all i ∈ Ip,q. So by Corollary 4.8 we get
that EiL = {0} for all i ∈ Ip,q. Combined with Corollary 4.4, this implies that
L ∼= Lp,q(µ) for some µ ∈ Λ◦p,q with ht(µ) = ht(λp,q), hence L ∼= Lp,q(λp,q) as
λp,q is the only such weight µ.

Now take λ ∈ Λ◦p,q different from λp,q, so that ht(λ) > ht(λp,q). We again
need to show that L := HomRp,q(B

p,q, Dp,q(λ)) ∼= Lp,q(λ). Let µ and i be
as in Corollary 3.26, so Dp,q(µ) is a quotient of EiDp,q(λ). We may assume by
induction that HomRp,q(B

p,q, Dp,q(µ)) ∼= Lp,q(µ). Applying Corollary 4.8 again,
we deduce that Lp,q(µ) is a quotient of EiL. So we get that L ∼= Lp,q(λ) by
Corollary 4.4. �

Multiplicity-free version of level two Schur-Weyl duality. Continue
with p ≤ q. Let

P p,q := T p,q ⊗Rp,q Bp,q. (4.9)

This is a (G,Kp,q)-bimodule, i.e. it is both a G-module and right Kp,q-module
so that the right action of Kp,q is by G-module endomorphisms.

Theorem 4.10. The homomorphism Kp,q ∼→ EndG(P p,q)op induced by the right
action of Kp,q on P p,q is an isomorphism. Moreover:

(i) There is an isomorphism

ζ : HomG(P p,q, ?)
∼→ HomRp,q(B

p,q, ?) ◦HomG(T p,q, ?)

of functors from F to rep(Kp,q).
(ii) There is an isomorphism

t : Ei ◦HomG(P p,q, ?)
∼→ HomG(P p,q, ?) ◦ Ei

of functors from F to rep(Kp,q).
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(iii) We have that HomG(P p,q,L(λ)) ∼= Lp,q(λ) for each λ ∈ Λ◦p,q.
(iv) As a G-module, P p,q decomposes as

⊕
λ∈Λ◦p,q

P p,qeλ with P p,qeλ ∼= P(λ)

for each λ ∈ Λ◦p,q.

Proof. We have natural isomorphisms

EndG(P p,q)op = HomG(T p,q ⊗Rp,q Bp,q, T p,q ⊗Rp,q Bp,q)

∼= HomRp,q(B
p,q,HomG(T p,q, T p,q ⊗Rp,q Bp,q))

∼= HomRp,q(B
p,q,HomG(T p,q, T p,q)⊗Rp,q Bp,q)

∼= HomRp,q(B
p,q, Rp,q ⊗Rp,q Bp,q) ∼= EndRp,q(B

p,q)op ∼= Kp,q,

using Corollary 4.6. This proves the first statement in the theorem.
Then for (i), we use the natural isomorphisms

HomG(P p,q,M) = HomG(T p,q⊗Rp,qBp,q,M) ∼= HomRp,q(B
p,q,HomG(T p,q,M)).

For (ii), we combine (i), Corollary 4.8 and Lemma 3.25; the isomorphism t is
given explicitly by the natural transformation ζ−11 ◦ 1r ◦ s1 ◦ 1ζ. For (iii), use
Lemma 4.9 and the definition (3.19).

Finally, consider (iv). The fact that P p,q =
⊕

λ∈Λ◦p,q
P p,qeλ follows as the

idempotents {eλ|λ ∈ Λ◦p,q} sum to the identity inKp,q. Note asBp,q is projective
as a left Rp,q-module, it is a summand of a direct sum of copies of Rp,q as a left
module. Hence as a G-module P p,q is a summand of a direct sum of copies of
T p,q. Applying Corollary 3.7, we deduce that the indecomposable summands
of P p,q as a G-module are all of the form P(λ) for various λ ∈ Λ◦p,q. Moreover,
for any λ, µ ∈ Λ◦p,q, we have that

dim HomG(P p,qeλ,L(µ)) = dim eλHomG(P p,q,L(µ)) = dim eλL
p,q(µ) = δλ,µ,

using (iii) and the definition of Lp,q(µ). This completes the proof. �

5. Direct limits

In this section we complete the proof of Theorem 1.1 by taking a limit as
p→ −∞ and q →∞.

Various embeddings. In this subsection we fix p′ ≤ p ≤ q ≤ q′ such that
either p′ = p− 1 and q′ = q or p′ = p and q′ = q+ 1. By definition, the algebra
Kp,q is equal to the subring ep,qKp′,q′ep,q of Kp′,q′ . So P p

′,q′ep,q is a (G,Kp,q)-

bimodule. The goal is to construct an isomorphism πp
′,q′
p,q : P p,q

∼→ P p
′,q′ep,q.

Throughout the subsection, we set

i :=

{
(p′, p′ − 1, . . . , p′ −m+ 1) if p′ = p− 1,
(q′, q′ + 1, . . . , q′ + n− 1) if q′ = q + 1.

(5.1)

We have that i ∈ (Ip′,q′)
c where c := m if p′ = p − 1 and c := n if q′ = q + 1.

Introduce the idempotent

ξi :=
∑
d≥0

ξi;d ∈ Rp
′,q′ where ξi;d =

∑
j∈(Ip,q)d

e(i+ j) ∈ Rp
′,q′

c+d , (5.2)

writing i + j for the sequence (i1, . . . , ic, j1, . . . , jd). The following lemma ex-

plains how to identify Rp,q with the subring ξiR
p′,q′ξi of Rp

′,q′ .
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Lemma 5.1. Let t = tc · · · t1 be the composite matching and Γ = Γc · · ·Γ0 be
the block sequence associated to the (p′, q′)-admissible sequence i from (5.1).
Let γ = γc · · · γ0 be the unique sequence of weights with γr ∈ Γr for each r; in
particular, γ0 = λp′,q′ and γc = λp,q. Then there is a unital algebra isomorphism

ρp
′,q′
p,q : Rp,q

∼→ ξiR
p′,q′ξi

defined on the basis of oriented stretched circle diagrams by setting

ρp
′,q′
p,q (|s∗[τ ∗] o r[σ]|) := |t∗[γ∗] o s∗[τ ∗] o r[σ] o t[γ]|,

i.e. we glue γ0t
∗
1γ1 · · · γc−1t

∗
c onto the bottom and tcγc−1 · · · γ1t1γ0 onto the

top of the given diagram s∗[τ ∗] o r[σ]. Moreover, writing ρp
′,q′
p,q =

∑
d≥0 ρd for

isomorphisms ρd : Rp,qd
∼→ ξi;dR

p′,q′

c+d ξi;d, the following two properties hold.

(i) On the Khovanov-Lauda-Rouquier generators of Rp,qd , we have that

ρd(e(j)) = e(i+ j), ρd(ψr) = ξi;dψc+r, ρd(ys) = ξi;dyc+s,

for j ∈ (Ip,q)
d, 1 ≤ r < d and 1 ≤ s ≤ d.

(ii) On the Hecke generators of Rp,qd , we have that

ρd(sr) = ξi;dsc+r, ρd(xs) = ξi;dxc+s,

for 1 ≤ r < d and 1 ≤ s ≤ d.

Proof. The existence of the isomorphism ρp
′,q′
p,q is a consequence of the dia-

grammatic description of the algebras Rp,q and ξiR
p′,q′ξi. One first checks by

inspecting bases that the given linear map is a vector space isomorphism, then
that it preserves multiplication. The latter is obvious because we have just
added some extra line segments all oriented ∧ at the top and bottom of the
diagram.

To check (i), it follows from (3.12) and the definitions just before (3.15) and
(3.14) that ρd(e(j)) = e(i + j), ρd(ψ̄r) = ξi;dψ̄c+r and ρd(ȳs) = ξi;dȳc+s. It
remains to show that the signs (3.13) involved in passing from ψ̄ to ψ and from
ȳ to y match up correctly, which amounts to the observation that σrp,q(j) =

σc+rp′,q′(i+ j) for j ∈ (Ip,q)
d and 1 ≤ r ≤ d. This follows from the identity

min(p, jr) + min(q, jr)− p = min(p′, jr) + min(q′, jr)− p′ − δi1,jr − · · · − δic,jr ,
which we leave as an exercise for the reader. Then (ii) follows from (i) and
Theorem 3.12. �

We can make a very similar construction at the level of the bimodule Bp,q.
In the following lemma, we view ξiB

p′,q′ep,q as an (Rp,q,Kp,q)-bimodule, where
the left Rp,q-module structure is defined via the isomorphism from Lemma 5.1.

Lemma 5.2. Let t and γ be as in Lemma 5.1. There is an isomorphism of
(Rp,q,Kp,q)-bimodules

βp
′,q′
p,q : Bp,q ∼→ ξiB

p′,q′ep,q

defined on the basis of oriented upper-stretched circle diagrams by setting

βp
′,q′
p,q (|u∗[δ∗] b)) := |t∗[γ∗] o u∗[δ∗] b).
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Moreover, the map

κp
′,q′
p,q : Rp

′,q′ξi ⊗Rp,q Bp,q→Bp′,q′ep,q, x⊗ b 7→ xβp
′,q′
p,q (b)

is an isomorphism of (Rp
′,q′ ,Kp,q)-bimodules.

Proof. The fact that βp
′,q′
p,q is an isomorphism of vector spaces follows by consid-

ering the explicit diagram bases, and it is obviously a bimodule homomorphism.
To deduce the final part of the lemma, it remains to show that the natural mul-
tiplication map

Rp
′,q′ξi ⊗ξiRp′,q′ξi ξiB

p′,q′ep,q → Bp′,q′ep,q

is an isomorphism. For this, we argue like in the proof of Lemma 4.3, starting
from the trivial observation that the multiplication map

Rp
′,q′ξi ⊗ξiRp′,q′ξi ξiR

p′,q′ξi → Rp
′,q′ξi

is an isomorphism. Thus, we are reduced to showing that all the indecom-
posable summands of Bp′,q′ep,q are also summands of Rp

′,q′ξi as left Rp
′,q′-

modules. By Corollary 4.6 and Lemma 4.9, we know that the indecomposable
summands of Bp′,q′ep,q are the projective covers of the irreducible Rp

′,q′-modules
{Dp′,q′(λ) | λ ∈ Λ◦p,q}. Since Rp

′,q′ξi is projective, it just remains to check that

HomRp′,q′ (R
p′,q′ξi, D

p′,q′(λ)) = ξiD
p′,q′(λ) 6= {0}

for λ ∈ Λ◦p,q. By Lemma 2.6, we can find d ≥ 0 and a tuple j ∈ (Ip,q)
d such

that λp,q
j1→ · · · jd→ λ is a path in the crystal graph. As λp′,q′

i1→ · · · ic→ λp,q is a
path in the crystal graph too, we get by repeated application of Corollary 3.26
that Ei1 · · · EicEj1 · · · EjdDp′,q′(λ) 6= {0}. By the definition of the i-restriction

functors, this means that e(i + j)Dp′,q′(λ) 6= {0}. Since ξie(i + j) = e(i + j),

this implies that ξiD
p′,q′(λ) 6= {0} too. �

Next we explain how to identify T p,q with T p
′,q′ξi.

Lemma 5.3. There exists a (unique up to scalars) G-module isomorphism

τp
′,q′
p,q : T p,q

∼→ T p
′,q′ξi

such that τp
′,q′
p,q =

∑
d≥0 τd for isomorphisms τd : T p,qd

∼→ T p
′,q′

c+d ξi;d with τd+1 =∑
k∈Ip,q Fk(τd) for each d ≥ 0. Moreover, τp

′,q′
p,q is a homomorphism of right

Rp,q-modules, i.e. it is a (G,Rp,q)-bimodule isomorphism, where we are viewing

T p
′,q′ξi as a right Rp,q-module via the isomorphism from Lemma 5.1.

Proof. We first construct the map τ0. Recall that T p,q0 = V(λp,q) and T p
′,q′

c ξi;0 =
(V(λp′,q′)⊗V ⊗c)e(i) = FiV(λp′,q′). By Lemma 2.12 we have that FiV(λp′,q′) ∼=
V(λp,q); only the analogues of the statements from (i) and (iii) of Lemma 2.4
are needed to see this. So we can pick a G-module isomorphism

τ0 : T p,q0 = V(λp,q)
∼→ FiV(λp′,q′) = T p

′,q′
c ξi;0.

This map is unique up to a scalar.
Now we inductively define the higher τd’s. Note as T p,qd =

⊕
j∈(Ip,q)d

FjV(λp,q)

that T p,qd+1 =
⊕

k∈Ip,q FkT
p,q
d . Similarly T p

′,q′

c+d+1ξi;d+1 =
⊕

k∈Ip,q Fk(T
p′,q′

c+d ξi;d).
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So given a G-module isomorphism τd : T p,qd
∼→ T p

′,q′

c+d ξi;d for some d ≥ 0, we get

a G-module isomorphism τd+1 : T p,qd+1
∼→ T p

′,q′

c+d+1ξi;d+1 on applying the functor⊕
k∈Ip,q Fk. Starting from the map τ0 from the previous paragraph, we obtain

isomorphisms τd for every d ≥ 0 in this way. Then we set τp
′,q′
p,q :=

∑
d≥0 τd, to

get the desired G-module isomorphism T p,q
∼→ T p

′,q′ξi.
It remains to check that each τd is a homomorphism of right Rp,qd -modules,

viewing T p
′,q′

c+d ξi;d as a rightRp,qd -module via the isomorphism ρd from Lemma 5.1.
Because τ0 is a G-module homomorphism, the map

V(λp,q)⊗ V ⊗d → V(λp′,q′)⊗ V ⊗(c+d), u⊗ v 7→ τ0(u)⊗ v (u ∈ V(λp,q), v ∈ V ⊗d)
intertwines the action of xs ∈ Hd with xc+s ∈ Hc+d. It obviously intertwines
the action of each sr ∈ Hd with sc+r ∈ Hc+d. From this and the definition of
τd, we deduce that τd intertwines the actions of sr, xs ∈ Hd on T p,qd with the

actions of sc+r, xc+s ∈ Hc+d on T p
′,q′

c+d ξi;d. So we are done by the description of
ρd from Lemma 5.1(ii). �

Recall finally the spaces P p,q = T p,q ⊗Rp,q Bp,q from (4.9).

Theorem 5.4. There is a unique (up to scalars) (G,Kp,q)-bimodule isomor-
phism

πp
′,q′
p,q : P p,q

∼→ P p
′,q′ep,q

such that πp
′,q′
p,q (v ⊗ b) = τp

′,q′
p,q (v) ⊗ βp

′,q′
p,q (b) for v ∈ T p,q, b ∈ Bp,q and some

choice of the isomorphism τp
′,q′
p,q from Lemma 5.3.

Proof. Recalling the isomorphism κp
′,q′
p,q from Lemma 5.2, we define πp

′,q′
p,q to be

the composition of the following (G,Kp,q)-bimodule isomorphisms:

T p,q ⊗Rp,q Bp,q τ
p′,q′
p,q ⊗id
−→ T p

′,q′ξi ⊗Rp,q Bp,q ≡ T p′,q′ ⊗Rp′,q′ R
p′,q′ξi ⊗Rp,q Bp,q

id⊗κp
′,q′
p,q−→ T p

′,q′ ⊗Rp′,q′ B
p′,q′ep,q.

It remains to observe that πp
′,q′
p,q (v⊗ b) = τp

′,q′
p,q (v)⊗βp

′,q′
p,q (b), which follows from

the definition of κp
′,q′
p,q . �

Compatibility of embeddings. Now we explain how to glue the isomor-
phisms πp,q+1

p,q and πp−1,q
p,q from the previous subsection together in a consistent

way to obtain a compatible system of isomorphisms πp
′,q′
p,q : P p,q

∼→ P p
′,q′ep,q for

every p′ ≤ p ≤ q ≤ q′. The following lemma is the key ingredient making this
possible.

Lemma 5.5. Let p ≤ q be fixed. Given a choice of three out of the four maps

{πp,q+1
p,q , πp−1,q

p,q , πp−1,q+1
p,q+1 , πp−1,q+1

p−1,q }
from Theorem 5.4, there is a unique way to choose the fourth one so that
πp−1,q+1
p,q+1 ◦ πp,q+1

p,q = πp−1,q+1
p−1,q ◦ πp−1,q

p,q .
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Proof. We show equivalently given a choice of all four maps that there is a
(necessarily unique) scalar z ∈ F such that

πp−1,q+1
p,q+1 ◦ πp,q+1

p,q = zπp−1,q+1
p−1,q ◦ πp−1,q

p,q .

To see this, let h := (p− 1, p− 2, . . . , p−m) and i := (q + 1, q + 2, . . . , q + n).
Let

ψ := (ψmψm+1 · · ·ψm+n−1) · · · (ψ2ψ3 · · ·ψn+1)(ψ1ψ2 · · ·ψn),

ψ′ := (ψn · · ·ψ2ψ1)(ψn+1 · · ·ψ3ψ2) · · · (ψm+n−1 · · ·ψm+1ψm).

It is easy to see from the defining relations between the Khovanov-Lauda-
Rouquier generators from [BS3, (6.8)–(6.16)] that ψξi+h = ξh+iψ, ξi+hψ

′ =
ψ′ξh+i, and ψ′ψξi+h = ξi+h in Rp−1,q+1.

Now we claim that there exists a scalar z ∈ F such that the following two
diagrams commute:

Bp,q

βp−1,q
p,q ↙ ↘βp,q+1

p,q

ξhB
p−1,qep,q ξiB

p,q+1ep,q

βp−1,q+1
p−1,q

y yβp−1,q+1
p,q+1

ξi+hB
p−1,q+1ep,q

∼−−−−→
Lψ

ξh+iB
p−1,q+1ep,q,

(5.3)

T p,q

τp−1,q
p,q ↙ ↘τp,q+1

p,q

T p−1,qξh T p,q+1ξi

τp−1,q+1
p−1,q

y yτp−1,q+1
p,q+1

T p−1,q+1ξi+h
∼−−−−→

Rzψ′
T p−1,q+1ξh+i,

(5.4)

where Lψ(b) := ψb and Rzψ′(v) := zvψ′. Given the claim and recalling
Lemma 5.4, we get for any v ⊗ b ∈ T p,q ⊗Rp,q Bp,q that

πp−1,q+1
p,q+1 (πp,q+1

p,q (v ⊗ b)) = τp−1,q+1
p,q+1 (τp,q+1

p,q (v))⊗ βp−1,q+1
p,q+1 (βp,q+1

p,q (b))

= zτp−1,q+1
p−1,q (τp−1,q

p,q (v))ψ′ ⊗ ψβp−1,q+1
p−1,q (βp−1,q

p,q (b))

= zτp−1,q+1
p−1,q (τp−1,q

p,q (v))⊗ ψ′ψβp−1,q+1
p−1,q (βp−1,q

p,q (b))

= zτp−1,q+1
p−1,q (τp−1,q

p,q (v))⊗ βp−1,q+1
p−1,q (βp−1,q

p,q (b))

= zπp−1,q+1
p−1,q (πp−1,q

p,q (v ⊗ b)).
So the lemma follows from the claim.

To prove the claim, consider first the diagram (5.3). The point for this
is that all the ψr’s in the element ψ are acting successively on the left on
ξi+hB

p−1,q+1ep,q as a sequence of height moves in the sense of [BS3, §5]. Com-
bined with the diagrammatic definition from Lemma 5.3 this is enough to see
that (5.3) commutes. Next consider the diagram (5.4). Here one first reduces
using the definition of the higher τd’s in Lemma 5.3 to checking just that the
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diagram commutes on restriction to T p,q0 = V(λp,q). In that case, both of

T p−1,q+1
m+n ξi+h and T p−1,q+1

m+n ξh+i are isomorphic to V(λp,q), and the map defined
by right multiplication by ψ′ is a non-zero isomorphism. So the diagram must
commute up to a scalar as EndG(V(λp,q)) is one dimensional. �

Theorem 5.6. We can choose (G,Kp,q)-bimodule isomorphisms

πp
′,q′
p,q : P p,q

∼→ P p
′,q′ep,q

for all p′ ≤ p ≤ q ≤ q′, in such a way that πp
′′,q′′
p,q = πp

′′,q′′

p′,q′ ◦ π
p′,q′
p,q whenever

p′′ ≤ p′ ≤ p ≤ q ≤ q′ ≤ q′′.

Proof. First of all we make arbitrary choices for the maps πp,q+1
p,q from Theo-

rem 5.4 for all p ≤ q. Also we make arbitrary choices for the maps πp−1,p
p,p from

Theorem 5.4 for all p. Then we repeatedly apply Lemma 5.5 , proceeding by
induction on (q − p), to get maps πp−1,q

p,q so that the following local relation
holds

πp−1,q+1
p,q+1 ◦ πp,q+1

p,q = πp−1,q+1
p−1,q ◦ πp−1,q

p,q

for all p ≤ q. Finally we define the maps πp
′,q′
p,q in general by setting πp

′,q′
p,q :=

πp
′,q′

p′+1,q′ ◦ · · · ◦ π
p−1,q′

p,q′ πp,q
′

p,q′−1 ◦ · · · ◦ π
p,q+1
p,q . The equality πp

′′,q′′
p,q = πp

′′,q′′

p′,q′ ◦ π
p′,q′
p,q

follows from this definition and the local relation. �

Proof of the main theorem. Consider the directed set {(p, q) | p ≤ q} where
(p, q) → (p′, q′) if p′ ≤ p ≤ q ≤ q′. By Theorem 5.6, it is possible to choose

a direct system {πp
′,q′
p,q : P p,q → P p

′,q′ep,q} of (G,Kp,q)-bimodule isomorphisms
for every (p, q)→ (p′, q′). Let

P := lim−→P p,q (5.5)

be the corresponding direct limit taken in the category of all G-modules, and
denote the canonical inclusion of each P p,q into P by ϕp,q. We make P into a
locally unital right K-module as follows. Take x ∈ K and v ∈ P . Recalling
Lemma 4.1, we can choose p ≤ q so that x = ep,qxep,q and v = ϕp,q(vp,q) for
some vp,q ∈ P p,q. Then set vx := ϕp,q(vp,qx).

Remark 5.7. Note that P is independent of the particular choice of the maps

{πp
′,q′
p,q } in the sense that if P̄ = lim−→P p,q is another such direct limit taken with

respect to maps {π̄p
′,q′
p,q }, then there is a unique bimodule isomorphism P

∼→ P̄
such that ϕp,q(v) 7→ ϕ̄p,q(v) for all v ∈ P p,q and p ≤ q.

Roughly speaking, the following lemma shows that P is a minimal projective
generator for the category F (except that as P is not finite dimensional it is
not actually an object in the category).

Lemma 5.8. As a G-module, we have that P =
⊕

λ∈Λ Peλ with Peλ ∼= P(λ)
for each λ ∈ Λ.

Proof. The first part of the lemma is immediate because P is a locally unital
right K-module. To show that Peλ ∼= P(λ), we have by the above definitions
that Peλ = lim−→(P p,qeλ) where the direct limit is taken over all p ≤ q with
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λ ∈ Λ◦p,q (so that eλ ∈ Kp,q). Each P p,qeλ is isomorphic to P(λ) by Theo-
rem 4.10(iv). Hence the direct limit is isomorphic to P(λ) too. �

Now we want to identify the algebra K with the endomorphism algebra of P .
A little care is needed here as P is an infinite direct sum. So for any G-module
M , we let

Homfin
G (P,M) :=

⊕
λ∈Λ

HomG(Peλ,M) ⊆ HomG(P,M), (5.6)

which is the locally finite part of HomG(P,M). Note if M is finite dimensional

that Homfin
G (P,M) = HomG(P,M). In particular, we denote Homfin

G (P, P ) by

EndfinG (P ) and write EndfinG (P )op for the opposite algebra, which acts naturally
on the right on P by G-module endomorphisms.

Lemma 5.9. The right action of K on P defined above induces an algebra

isomorphism K
∼→ EndfinG (P )op.

Proof. We need to show that right multiplication induces a vector space iso-
morphism eλK

∼→ HomG(Peλ, P ) for each λ ∈ Λ. By definition, the right hand
space is

HomG(Peλ,
⋃
Pep,q) =

⋃
HomG(Peλ, P e

p,q)

where we can take the union just over p ≤ q with λ ∈ Λ◦p,q. As Peλ =
ϕp,q(P p,qeλ) and Pep,q = ϕp,q(P p,q) for all such p ≤ q, the first statement
from Theorem 4.10 implies that right multiplication induces an isomorphism
eλKe

p,q ∼→ HomG(Peλ, P e
p,q). Taking the union and recalling Lemma 4.1, we

deduce that we do get an isomorphism eλK
∼→
⋃

HomG(Peλ, P e
p,q). �

Finally we record the following variation on a basic fact.

Lemma 5.10. Let B be a G-module that is also a locally unital right K-module,
such that the action of K on B is by G-module endomorphisms. Let M be any
finite dimensional left K-module and assume that B⊗KM is finite dimensional.
Then there is a natural G-module isomorphism

Homfin
G (P,B)⊗K M → HomG(P,B ⊗K M)

sending f ⊗m to the homomorphism v 7→ f(v)⊗m.

Proof. It suffices to show that HomG(Peλ, B) ⊗K M ∼= HomG(Peλ, B ⊗K M)
for each λ ∈ Λ, which is well known. �

Now we can prove the main result of the article, which is essentially Theo-
rem 1.1 from the introduction with the functor E there constructed explicitly.
The proof is a rather standard consequence of the last three lemmas, but we
include some details since we are in a slightly unusual locally finite setting.

Theorem 5.11. The functors

HomG(P, ?) : F→ rep(K), P⊗K? : rep(K)→ F

are quasi-inverse equivalences of categories. Moreover P ⊗K P (λ) ∼= P(λ) for
each λ ∈ Λ.
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Proof. Note using Lemma 5.8 that both the functors map finite dimensional
modules to finite dimensional modules, so the first statement makes sense.
Lemmas 5.10 and 5.9 yield a natural isomorphism

HomG(P, P ⊗K M)
∼→ Homfin

G (P, P )⊗K M ∼= K ⊗K M ≡M
for any M ∈ rep(K). Thus HomG(P, ?)◦P⊗K? ∼= Idrep(K). Conversely, to show
that P⊗K? ◦HomG(P, ?) ∼= IdF, we have a natural homomorphism

P ⊗K HomG(P,N)→ N, v ⊗ f 7→ f(v)

for every N ∈ F. Because of Lemma 5.8 this map is surjective. To show that it
is injective too, denote its kernel by U . Applying the exact functor HomG(P, ?),
we get a short exact sequence

0→ HomG(P,U)→ HomG(P, P ⊗K HomG(P,N))→ HomG(P,N)→ 0.

By the fact established just before, the middle space here is isomorphic to
HomG(P,N), so the right hand map is an isomorphism. Hence HomG(P,U) =
{0}, which implies that U = {0}. So our natural transformation is an isomor-
phism, and we have established the equivalence of categories. Moreover,

P ⊗K P (λ) = P ⊗K Keλ ≡ Peλ ∼= P(λ)

by Lemma 5.8. �

Theorem 1.1 from the introduction is a consequence of Theorem 5.11, taking
E := HomG(P, ?). We have already proved that EP(λ) ∼= P (λ), which immedi-
ately implies that EL(λ) ∼= L(λ). The fact that EV(λ) ∼= V (λ) follows because
both the categories F and rep(K) are highest weight categories in which the
modules {V(λ)} and {V (λ)} give the standard modules; see Theorem 2.15 for
the former and [BS1, Theorem 5.3] for the latter fact.

Identification of special projective functors. Finally we discuss briefly
how to relate the special projective functors on the two sides of our equivalence
of categories.

Theorem 5.12. For each i ∈ I, we have that

Ei ∼= HomG(P, ?) ◦ Ei ◦ P⊗K?, Fi ∼= HomG(P, ?) ◦ Fi ◦ P⊗K?

as endofunctors of rep(K).

Proof. Since Fi is left adjoint to Ei and Fi is left adjoint to Ei, the second
isomorphism is a consequence of the first, by unicity of adjoints. To prove the
first, we note using Lemma 5.10 that there are natural isomorphisms

HomG(P, Ei(P ⊗K M)) ∼= HomG(P, (EiP )⊗K M) ∼= Homfin
G (P, EiP )⊗K M

for any M ∈ rep(K). Hence it suffices to show that Homfin
G (P, EiP ) ∼= Ẽi as

(K,K)-bimodules. For this, we just sketch how to construct the appropriate
map, leaving details to the reader. Take any λ ∈ Λ and any p ≤ q so that we
actually have λ ∈ Λ◦p,q. When applied to the module P p,q, the natural isomor-
phism from Theorem 4.10(ii) produces a (Kp,q,Kp,q)-bimodule isomorphism

εp,q : Ẽp,qi
∼→ HomG(P p,q, EiP p,q).
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Restricting this to eλẼ
p,q
i = eλẼie

p,q and using ϕp,q to identify P p,q with Pep,q,
we get from this a vector space isomorphism

εp,q : eλẼie
p,q ∼→ eλHomG(Pep,q, EiPep,q) = HomG(Peλ, EiPep,q).

Now one checks for p′ ≤ p ≤ q ≤ q′ that εp,q(v) = εp
′,q′(v) for all v ∈ eλẼiep,q;

it suffices to do this in the cases (p′, q′) = (p−1, q) or (p, q+1). Hence it makes
sense to take the union over all p ≤ q to get an isomorphism

ε : eλẼi
∼→ HomG(Peλ, EiP ).

Taking the direct sum of these maps over all λ ∈ Λ gives finally the desired

map Ẽi
∼→ Homfin

G (P, EiP ). �

Index of notation

G = GL(m|n) General linear supergroup 1
V, V ∗ Natural representation of G and its dual 2
B, T Standard Borel subgroup and maximal torus of G 2
F = F(m|n) Half of the category of finite dimensional G-modules 2
X+(T ) Dominant weights 2
L(λ),V(λ),P(λ) Irreducibles, standards and PIMs for G for λ ∈ X+(T ) 11
Ei,Fi Special projective functors for G 13
K = K(m|n) Generalised Khovanov algebra 8
Λ = Λ(m|n) Diagrammatic weights in bijection with X+(T ) 2
L(λ), V (λ), P (λ) Irreducibles, standards and PIMs for K for λ ∈ Λ 8
Ei, Fi Special projective functors for K 9
λp,q Ground-state weight 4
Hp,q

d Cyclotomic Hecke algebra which acts on V(λp,q)⊗ V ⊗d 18
I+p,q Index set for pq-strip 11
Λp,q,Λ

◦
p,q Weights, weights of maximal defect in pq-strip 11

1p,qd Central idempotent in Hp,q
d corresponding to pq-strip 19

T p,q
d Tensor space (V(λp,q)⊗ V ⊗d)1p,qd 16
Rp,q

d Cyclotomic KLR algebra ∼= 1p,qd Hp,q
d
∼= EndG(T p,q

d )op 22
T p,q, Rp,q Direct sums

⊕
d≥0 T

p,q
d and

⊕
d≥0R

p,q
d 32

Kp,q Subring of K that is Morita equivalent to Rp,q 30
Ap,q, Bp,q Morita bimodules 32
P p,q Multiplicity-free projective module T p,q ⊗Rp,q Bp,q 34
P = lim−→P p,q Canonical minimal projective generator for F 40
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