Algebraic Groups Summer Semester 2008 Catharina Stroppel Olaf Schnürer

Exercise sheet 8

Solutions to be handed in on Wednesday 4th June 2008

Problem 28. Let G be an affine algebraic group. Show: If G = (G, G) then $X^*(G) = 0$.

Problem 29. Let U be a unipotent affine algebraic group.

- (a) Show that $X_*(U) = 0$ and $X^*(U) = 0$.
- (b) Deduce that $X_*(\mathbb{G}_a) = 0$ and $X^*(\mathbb{G}_a) = 0$.

Problem 30. Let D_n be the closed subgroup of diagonal matrices in GL(n,k), and define $X_* = X_*(D_n)$, $X^* = X^*(D_n)$.

- (a) Show that $X^* \cong \mathbb{Z}^n$ and $X_* \cong \mathbb{Z}^n$.
- (b) Show: For $\chi \in X^*$ and $\alpha \in X_*$ there is a unique integer $n \in \mathbb{Z}$ such that $\chi(\alpha(z)) = z^n$ for all $z \in \mathbb{G}_m$. We denote this integer by $\langle \chi, \alpha \rangle$.
- (c) Show that

$$\langle \cdot, \cdot \rangle : X^* \times X_* \to \mathbb{Z},$$
$$(\chi, \alpha) \mapsto \langle \chi, \alpha \rangle$$

is a perfect pairing between X^* and X_* , i. e. any group homomorphism $X^* \to \mathbb{Z}$ is of the form $\chi \mapsto \langle \chi, \alpha \rangle$ for a unique $\alpha \in X_*$, and similarly for X_* .