Algebraic Groups Summer Semester 2008 Catharina Stroppel Olaf Schnürer

Exercise sheet 5

Solutions to be handed in on Wednesday 7th May 2008

Exercise 15. Let H and K be closed subgroups of an affine algebraic group G. We know: The commutator subgroup (H, K) is connected if H or K is connected. Is this statement still true if we drop the connectedness assumption?

Exercise 16.

(a) Show that GL(n,k) is connected.

Hint: Use that $Mat(n \times n, k) \cong k^{n^2}$ is irreducible.

(b) Let $A \in Mat(n \times n, k)$. Show that the centralizer

 $Z_{\mathrm{GL}(n,k)}(A) = \{g \in \mathrm{GL}(n,k) \mid gAg^{-1} = A\}$

of A in GL(n, k) is connected.

Hint: Use an argument similar to that of part (a).

Exercise 17. Let G be a connected affine algebraic group, and $N \subset G$ a closed normal subgroup. Show: If N is finite, then N is contained in the center $Z(G) = \{g \in G \mid gh = hg \text{ for all } h \in G\}$ of G.

Exercise 18. Let char $k \neq 2$ and $V = k^n$. Let $\langle , \rangle : V \times V \to k$, $(v, w) \mapsto \sum v^i w^i$, be the standard symmetric bilinear form and O_n the group of all $g \in GL(n, k)$ satisfying $\langle gv, gw \rangle = \langle v, w \rangle$ for all $v, w \in V$. Let $X = \{x \in V \mid \langle x, x \rangle = 1\}$.

- (a) For $x \in X$ define $s_x : V \to V, v \mapsto v 2\langle x, v \rangle x$. Show that s_x is in O_n .
- (b) Fact (not to be proved): O_n is generated by the s_x , for $x \in X$. Deduce that $SO_n = \{g \in O_n \mid \det g = 1\}$ is connected. Hint: Consider $X \times X \to GL(n,k), (x,y) \mapsto s_x s_y$.