Algebraic Groups Summer Semester 2008 Catharina Stroppel Olaf Schnürer

Exercise sheet 4

Solutions to be handed in by Wednesday 30th April 2008

Exercise 11.

- (a) Show that the special orthogonal group $SO_2(\mathbb{C})$ and the multiplicative group $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^*$ are isomorphic.
 - Hint: Consider the obvious operation of $SO_2(\mathbb{C})$ on \mathbb{C}^2 and find a 1-dimensional $SO_2(\mathbb{C})$ -stable subspace.
- (b) Find the connected components of the orthogonal group $O_2(\mathbb{C})$.

Exercise 12. Let $f : X \to Y$ be a morphism of affine varieties and $f^* : k[Y] \to k[X]$ its comorphism. Show that

- (a) f^* is surjective $\Rightarrow f(X) \subset Y$ is closed;
- (b) f^* is injective $\Leftrightarrow f(X)$ is dense in Y;
- (c) X is irreducible $\Rightarrow f(X)$ is irreducible and dim $f(X) \leq \dim Y$.

Exercise 13.

- (a) If Y is a proper irreducible closed subvariety of an irreducible affine variety X, then $\dim Y < \dim X$.
- (b) If X and Y are irreducible affine varieties, then $\dim X \times Y = \dim X + \dim Y$.

Exercise 14. Let *A* and *B* be Hopf algebras.

- (a) Show that $A \otimes B$ becomes a Hopf algebra in a natural way.
- (b) If A and B arise from affine algebraic groups G and H, show that the comultiplication of $A \otimes B$ is the comorphism of the multiplication $(G \times H) \times (G \times H) \to G \times H$.