Algebraic Groups Summer Semester 2008 Catharina Stroppel Olaf Schnürer

Exercise sheet 12

Solutions to be handed in on Wednesday 2nd July 2008

Problem 44.

(a) What is the center of $GL_n(\mathbb{C})$?

Let $G := \operatorname{GL}_2(\mathbb{C})$.

(b) Consider the adjoint representation $\operatorname{Ad} : G \to \operatorname{GL}(\operatorname{Lie} G)$. Restrict this representation to the subtorus $T \subset G$ of diagonal matrices. Then $\operatorname{Lie} G$ decomposes as

$$\operatorname{Lie} G = \bigoplus_{\chi \in X^*(T)} (\operatorname{Lie} G)_{\chi},$$

where

$$(\operatorname{Lie} G)_{\chi} = \{ X \in \operatorname{Lie} G \mid \operatorname{Ad}(t)(X) = \chi(t)X \text{ for all } t \in T \}$$

Determine the non-zero $(\text{Lie }G)_{\gamma}$.

(c) Similarly, restrict ad : Lie $G \to \operatorname{End}(\operatorname{Lie} G)$ to Lie T and find a decomposition

$$\operatorname{Lie} G = \bigoplus_{\lambda \in (\operatorname{Lie} T)^*} (\operatorname{Lie} G)_{\lambda},$$

where

- $(\operatorname{Lie} G)_{\lambda} = \{ X \in \operatorname{Lie} G \mid \operatorname{ad}(H)(X) = \lambda(H)X \text{ for all } H \in \operatorname{Lie} T \}.$
- (d) Determine all ideals of Lie G. (An ideal of a Lie algebra is a vector subspace U of Lie G such that $[X, u] \in U$ for all $X \in$ Lie G and $u \in U$.) Hint: Use the above decomposition.

Problem 45. Describe the quotient $\operatorname{GL}_{2n}(\mathbb{C})/\operatorname{Sp}_{2n}(\mathbb{C})$ using skewsymmetric matrices. Here $\operatorname{Sp}_{2n}(\mathbb{C}) = \{g \in \operatorname{GL}_n(\mathbb{C}) \mid g^t J g = J\}$, where J is the $2n \times 2n$ -matrix $\begin{bmatrix} 0 & 1_n \\ -1_n & 0 \end{bmatrix}$.

Hint: If V is a finite dimensional vector space of dimension 2n with a non-degenerate skew-symmetric bilinear form ω , there is a basis b_1, \ldots, b_{2n} of V such that $\omega(b_i, b_j) = J_{ij}$ for all i, j.

Problem 46. Compute the dimension of the variety \mathcal{F} of flags in \mathbb{C}^n and show that there is an isomorphism $\operatorname{GL}_n(\mathbb{C})/B \xrightarrow{\sim} \mathcal{F}$ of varieties, where $B \subset \operatorname{GL}_n(\mathbb{C})$ is the subgroup of (invertible) upper triangular matrices.

Problem 47. Let G be an affine algebraic group and $N \subset G$ a closed subgroup. Show that the varieties $(G \times G)/(N \times N)$ and $G/N \times G/N$ are isomorphic.