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Problem 44.

(a) What is the center of GLn(C)?

Let G := GL2(C).

(b) Consider the adjoint representation Ad : G → GL(LieG). Re-
strict this representation to the subtorus T ⊂ G of diagonal
matrices. Then LieG decomposes as

LieG =
⊕

χ∈X∗(T )

(LieG)χ,

where

(LieG)χ = {X ∈ LieG | Ad(t)(X) = χ(t)X for all t ∈ T}
Determine the non-zero (LieG)χ.

(c) Similarly, restrict ad : LieG → End(LieG) to LieT and find a
decomposition

LieG =
⊕

λ∈(LieT )∗

(LieG)λ,

where

(LieG)λ = {X ∈ LieG | ad(H)(X) = λ(H)X for all H ∈ LieT}.
(d) Determine all ideals of LieG. (An ideal of a Lie algebra is a

vector subspace U of LieG such that [X, u] ∈ U for all X ∈
LieG and u ∈ U .) Hint: Use the above decomposition.

Problem 45. Describe the quotient GL2n(C)/ Sp2n(C) using skew-
symmetric matrices. Here Sp2n(C) = {g ∈ GLn(C) | gtJg = J},

where J is the 2n× 2n-matrix

[
0 1n
−1n 0

]
.

Hint: If V is a finite dimensional vector space of dimension 2n
with a non-degenerate skew-symmetric bilinear form ω, there is a basis
b1, . . . , b2n of V such that ω(bi, bj) = Jij for all i, j.

Problem 46. Compute the dimension of the variety F of flags in Cn

and show that there is an isomorphism GLn(C)/B
∼−→ F of varieties,

where B ⊂ GLn(C) is the subgroup of (invertible) upper triangular
matrices.

Problem 47. Let G be an affine algebraic group and N ⊂ G a closed
subgroup. Show that the varieties (G×G)/(N ×N) and G/N ×G/N
are isomorphic.


