Algebraic Groups Summer Semester 2008 Catharina Stroppel Olaf Schnürer

Exercise sheet 11

Solutions to be handed in on Wednesday 25th June 2008

Problem 40. Let $G = GL(2, \mathbb{C})$ and $B \subset G$ the set of upper triangular matrices in G. Show that B is a closed subgroup and that the map

$$G \to \mathbb{P}^1 \mathbb{C}, \quad g \mapsto [ge_1],$$

where e_1 is the first standard basis vector of \mathbb{C}^2 , is the Chevalley quotient of G by B.

Problem 41. Let G, B be as in the previous problem. Let $\rho : G \to GL(V)$ be a finite dimensional representation of G. Show that $V^B = V^G$, i. e. any vector $v \in V$ fixed by B is fixed by the whole group G.

Hint: Apply the universal property of the categorical quotient $G \to G/B$ to the orbit map $g \mapsto \rho(g)(v)$ and use that this quotient can be identified with the morphism $G \to \mathbb{P}^1\mathbb{C}$ from the previous problem.

Problem 42. Let V be a finite dimensional vector space, $f: V \to V$ a linear map and $r \in \mathbb{N}$. Consider the linear maps $\wedge^r(f)$ and $\Sigma^r(f)$: $\wedge^r V \to \wedge^r V$ given by

$$\wedge^{r}(f)(v_{1} \wedge v_{2} \wedge \dots v_{r}) := f(v_{1}) \wedge f(v_{2}) \wedge \dots f(v_{r}),$$

$$\Sigma^{r}(f)(v_{1} \wedge v_{2} \wedge \dots v_{r}) := \sum_{i=1}^{r} v_{1} \wedge \dots \wedge f(v_{i}) \wedge \dots \wedge v_{r}.$$

Let $W \subset V$ be an *r*-dimensional subspace. Define $L := \wedge^r W$ and consider this as a one-dimensional subspace of $\wedge^r V$.

- (a) If f is in GL(V) show that f(W) = W if and only if $\wedge^r(f)(L) = L$.
- (b) If f is in End(V) show that $f(W) \subset W$ if and only if $\Sigma^r(f)(L) \subset L$.

Problem 43. Let $\rho : G \to \operatorname{GL}(V)$ be a homomorphism of algebraic groups, where V is a finite dimensional vector space. We use the notation from the previous problem.

- (a) Show that $\wedge^r \rho : G \to \operatorname{GL}(\wedge^r V), g \mapsto \wedge^r(\rho(g))$, is a homomorphism of algebraic groups.
- (b) Show that the differential $d\wedge^r \rho : \mathfrak{g} \to \text{Lie} \operatorname{GL}(\wedge^r V) = \operatorname{End}(\wedge^r V)$ is given by $X \mapsto \Sigma^r(d\rho X)$.