Algebraic Groups Summer Semester 2008 Catharina Stroppel Olaf Schnürer

Exercise sheet 10

Solutions to be handed in on Wednesday 18th June 2008

Problem 36. Let X = V be a finite dimensional k-vector space and $x \in X$.

(a) For $v \in V$, show that $D_v : k[X] \to k$, defined by

$$D_v(f) = \frac{d}{dt}|_{t=0}(f(x+tv)),$$

is a point derivation at x, i.e. $D_v \in \text{Der}_k(k[X], k)$.

- (b) Show that $v \mapsto D_v$ defines a canonical isomorphism $V \xrightarrow{\sim} T_x X$.
- (c) If $U \subset X$ is an open subvariety and $x \in U$, show that $T_x U =$ $T_x X$.

Problem 37. Let G be an affine algebraic group. Show that

$$(\operatorname{ad} X)(Y) = [X, Y]$$

for any $X, Y \in \text{Lie} G = T_e G$.

Hint: If $\Delta(f) = \sum f_i \otimes g_i$, then $\tilde{D}(f) = \sum f_i D(g_i)$ and $[X, Y](f) = \sum X(f_i)Y(g_i) - Y(f_i)X(g_i)$.

Problem 38. Describe the Lie algebras of the following affine algebraic groups:

(a) $SL(n,k) \subset GL(n,k);$

(b) upper triangular matrices $\subset \operatorname{GL}(n,k)$;

(c) strictly upper triangular matrices $\subset \operatorname{GL}(n, k)$.

Problem 39. Consider the affine algebraic group PGL(2, k) from exercise sheet 3, problem 8. Determine the Lie algebra of PGL(2, k) and describe the Lie algebra homomorphism $\text{Lie SL}(2, k) \rightarrow \text{Lie PGL}(2, k)$. What happens in characteristic 2?