Catharina Stroppel Olaf Schnürer

Exercise Sheet 9

Solutions to be handed in on Monday 17th December 2008

Problem 30.

(a) Let A be a k-algebra and $p : A \to A$ a k-linear projection (i. e. $p^2 = p$). Assume that the kernel of p is a two-sided ideal.

Prove or disprove that p is an algebra homomorphism.

(b) Why is the Harish-Chandra map π from the lecture an algebra homomorphism?

Problem 31. Let $U = U_q(\mathfrak{sl}_2)$. Let q be a primitive *l*-th root of unity with *l* odd, $l \geq 3$

(a) Show that the center of U is generated by E^l , F^l and its intersection with U_0 .

Hint: If $u \in U_m \setminus \{0\}$ is central then l divides m, and u is a product of a central element in U_0 with a power of E^l or a power of F^l .

(b) (Computational Challenge) The center of U is generated by E^l , F^l , K^l , K^{-l} , and C.

Problem 32. (Harish-Chandra-Isomorphism) Consider $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ and a let $\mathfrak{h} \subset \mathfrak{g}$ be a Cartan subalgebra . Consider the space $\mathbb{C}[\mathfrak{h}^*] = U(\mathfrak{h})$ of polynomial functions on \mathfrak{h}^* , and let $\mathbb{C}[\mathfrak{h}^*]^W$ be the subalgebra of functions f satisfying $f(-\lambda) = f(\lambda)$ for all $\lambda \in \mathfrak{h}^*$. Show that the center Z of $U(\mathfrak{g})$ is isomorphic to $\mathbb{C}[\mathfrak{h}^*]^W$.

Hint: Adapt the methods of the lecture to the non-quantized situation: Take the standard basis (e, h, f) of \mathfrak{g} and $\mathfrak{h} = \mathbb{C}h$. Define a projection $\pi : U(\mathfrak{g}) \to U(\mathfrak{h})$ and an automorphism γ_{-1} of $U(\mathfrak{h}) = \mathbb{C}[\mathfrak{h}^*]$ by $f = f(\lambda) \mapsto f(\lambda - 1)$. Use the Casimir element $(h+1)^2 + 4fe$.

Problem 33. Let $A = (a_{ij})$ be a real $l \times l$ -matrix satisfying the following properties:

- (a) A is indecomposable.
- (b) $a_{ij} \leq 0$ for all $i \neq j$.
- (c) $a_{ij} = 0 \Leftrightarrow a_{ji} = 0$.

For $u \in \mathbb{R}^l$ we write u > 0 $(u \ge 0)$ if $u_i > 0$ $(u_i \ge 0$ respectively) for all $1 \le i \le l$. Similarly, u < 0 and $u \le 0$. Show that one and only one of the following possibilities holds for both A and A^t :

- (Fin) det $A \neq 0$ and there exists u > 0 such that Au > 0; $Av \ge 0$ implies v > 0 or v = 0.
- (Aff) rang A = l 1 and there exists u > 0 such that Au = 0; $Av \ge 0$ implies Av = 0.

(Ind) there exists u > 0 such that Au < 0; if $Av \ge 0$ and $v \ge 0$ then v = 0.

Hints:

- (a) Show (or use without proof): If B is a real $m \times s$ matrix for which there is no $u \ge 0$, $u \ne 0$, such that $B^{t}u \ge 0$, then there exists v > 0 such that Bv < 0.
- (b) Let A be as above. Then $Au \ge 0$ with $u \ge 0$ implies that either u > 0 or u = 0.
- (c) Consider the convex cone

$$K_A = \{ u \mid Au \ge 0 \}.$$