Quantum Groups Winter Semester 2008/09 Catharina Stroppel Olaf Schnürer

Exercise Sheet 7

Solutions to be handed in on Monday 1st December 2008

Problem 22.

(a) **Tensor identity:** Let $B \to A$ be a homomorphism of Hopf algebras over k, C a *B*-module and *E* an *A*-module. Show that

$$A \otimes_B (C \otimes_k \operatorname{res}^A_B E) \to (A \otimes_B C) \otimes_k E$$
$$a \otimes (c \otimes e) \mapsto \sum_{(a)} a_{(1)} \otimes c \otimes a_{(2)} e$$

is a well-defined isomorphism of A-modules. (The inverse is $(a \otimes c) \otimes e \mapsto \sum_{(a)} a_{(1)} \otimes c \otimes S(a_{(2)})e$.)

(b) Let \mathfrak{b} be a subalgebra of a Lie algebra \mathfrak{g} , \mathbb{C}_{λ} a representation of \mathfrak{b} and E a representation of \mathfrak{g} . Show that

$$U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (\mathbb{C}_{\lambda} \otimes_{k} E) \xrightarrow{\sim} (U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}) \otimes_{k} E$$

as $U(\mathfrak{g})$ -modules.

(c) Consider $U = U_q(\mathfrak{sl}_2)$ and let $M(\lambda)$ be a Verma module, for $\lambda \in k \setminus \{0\}$. Describe $M(\lambda) \otimes_k V$ where V is the 2-dimensional irreducible representation of type I of U (we assume that q is not a root of unity).

Problem 23. Let $U = U_q(\mathfrak{sl}_2)$, where $q \in k$ is not a root of unity and char $k \neq 2$. Let V_i be the irreducible (i + 1)-dimensional U-module of type I.

(a) Are the following true as isomorphisms of U-modules?

$$V_i \otimes_k V_0 \cong V_i \cong V_0 \otimes_k V_i$$
$$V_1 \otimes_k V_2 \cong V_2 \otimes_k V_1$$
$$V_2 \otimes_k V_3 \cong V_3 \otimes_k V_2$$

If so, can you find an isomorphism?

(b) Decompose $V_i \otimes_k V_j$ into a direct sum of irreducible modules (Clebsch-Gordan formula).

Problem 24. Let \mathfrak{g} be a complex semisimple Lie algebra, and let $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}$ be a Cartan and a Borel subalgebra. Any $\lambda \in \mathfrak{h}^*$ extends uniquely to a Lie algebra homomorphism $\mathfrak{b} \to \mathbb{C}$, i. e. to a one dimensional representation \mathbb{C}_{λ} of \mathfrak{b} (since the extension has to vanish on the nilradical $\mathfrak{n} = [\mathfrak{b}, \mathfrak{b}]$, and $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}$). The Verma module $M(\lambda)$ is defined by $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$.

- (a) Show: $M(\lambda) = \bigoplus_{\mu \in \mathfrak{h}^*} M(\lambda)_{\mu}$, i.e. $M(\lambda)$ decomposes into weight spaces with respect to the action of \mathfrak{h} .
- (b) Give an explicit formula for dim M(λ)_μ in terms of the combinatorics of roots.

Problem 25. Let $U = U_q(\mathfrak{sl}_2)$ and λ , $\lambda' \in \{q^n \mid n \in \mathbb{Z}\}$ (and q not a root of unity). Assume we have a short exact sequence (i. e. f injective, g surjective and im $f = \ker g$) of U-modules of the form

$$0 \to M(\lambda') \xrightarrow{f} M \xrightarrow{g} M(\lambda) \to 0.$$

- (a) For which pairs (λ, λ') do we have $M \cong M(\lambda') \oplus M(\lambda)$ automatically? Hint: Use the Casimir.
- (b) Assume $M = \bigoplus M_{\mu}$ decomposes into weight spaces. Can you say more in this case?
- (c) Give examples of U-modules M which fit into a short exact sequence of the form

$$0 \to M(\lambda) \to M \to M(\lambda) \to 0$$

but are not isomorphic to $M(\lambda) \oplus M(\lambda)$.