Quantum Groups Winter Semester 2008/09 Catharina Stroppel Olaf Schnürer

Exercise sheet 5

Solutions to be handed in on Monday 17th November 2008

Problem 15. Let \mathfrak{g} be a finite dimensional Lie algebra over a field k.

(a) Show: $U(\mathfrak{g})$ is an example of a cocommutative, conlipotent Hopf-algebra. (Of course you are not allowed to use the Classification Theorem of cocommutative (conilpotent) Hopf algebras).

Assume now that k has characteristic zero.

- (b) Choose a basis $\{x_1, \dots, x_n\}$ of \mathfrak{g} . Then the elements $Z_{\alpha} =$ $\prod_{i=1}^{n} \frac{1}{\alpha_{i}!} x_{i}^{\alpha_{i}} \text{ for } \alpha \in \mathbb{Z}_{\geq 0}^{n} \text{ form a basis of } U(\mathfrak{g}).$
- (c) Show: In this basis the comultiplication has the form

$$\Delta(Z_{\alpha}) = \sum_{\beta + \gamma = \alpha} Z_{\beta} \otimes Z_{\gamma}.$$

(d) Deduce: The primitive elements in $U(\mathfrak{g})$ are exactly the elements of \mathfrak{g} .

Remark: The assumptions of finite-dimensionality is superfluous.

Problem 16. Prove the **Theorem of Milnor-Moore**: Let A = $\bigoplus_{n>0} A_n$ be a graded Hopf algebra over a field k of characteristic zero. Asume that A is connected (i. e. $A_0 = k \cdot 1$) and that the product in A is commutative. Then A is a free commutative algebra (i.e. a polynomial algebra) generated by homogeneous elements.

Hint: A graded Hopf algebra is a Hopf algebra A with a vector space decomposition $A = \bigoplus_{n>0} A_n$ such that the multiplication satisfies $m(A_i \otimes A_j) \subseteq A_{i+j}$, and $\overline{\Delta}(A_n) \subseteq \bigoplus_{i+j=n} A_i \otimes A_j$.

For the proof follow the following steps:

- (a) Define, as in the lecture, $\Psi_n : A \to A$, for $n \ge 1$, as the *n*-fold convolution of the identity.
- (b) Decompose $A = \bigoplus_{p \ge 0} \pi_p(A)$ where $\pi_p(A) = \{a \in A \mid \Psi_n(a) =$ $n^p a$ for all $n \ge 1$.
- (c) Show: There is a well-defined algebra isomorphism

$$\Theta : \operatorname{Sym}(\pi_1(A)) \to A$$

from the symmetric algebra of $\pi_1(A)$ to A.

Problem 17. Let k be a field of characteristic zero. Show: The characters of the symmetric groups form a graded Hopf algebra $Ch = \bigoplus_{n\geq 0} Ch_n$ isomorphic to a polynomial ring.

Proceed as follows:

- (a) Let Ch_n be the vector space of all functions $S_n \to k$ constant on conjugacy classes.
- (b) Show that $\operatorname{Ch}_p \otimes \operatorname{Ch}_q$ can be identified with the space of functions $f: S_p \times S_q \to k$ that are constant on conjugacy classes.
- (c) View $S_p \times S_q$ as a subgroup of S_{p+q} . This yields a restriction map

$$\Delta_{p,q}: \operatorname{Ch}_{p+q} \to \operatorname{Ch}_p \otimes \operatorname{Ch}_q.$$

Use this to define a comultiplication on Ch.

(d) Define on each Ch_n a non-degenerate bilinear form and dualize the comultiplication into a multiplication. Extend this to a Hopf algebra structure. Apply Milnor-Moore.

Problem 18.

- (a) Let A be a commutative finite dimensional algebra over an algebraically closed field k. Then A is isomorphic to a direct product of algebras A_i , $1 \le i \le n$, where each A_i is a local ring whose maximal ideal \mathfrak{m}_i is nilpotent (i.e. $\mathfrak{m}_i^N = 0$ for some big enough N). (This is a special case of the so-called structure theorem for semilocal rings.)
- (b) Now assume additionally that $A = C^*$ is the dual of a coalgebra. Then the algebra homomorphisms from A to k are in bijection to the group-like elements in C.