Quantum Groups Winter Semester 2008/09 Catharina Stroppel Olaf Schnürer

Exercise sheet 2

Solutions to be handed in on Wednesday 29th October 2008

Problem 3. (Ore localization) Let R be a ring and $S \subset R$ a multiplicative subset (i.e. $1 \in S$ and $a, b \in S \Rightarrow ab \in S$). Assume that S is a **right denominator set**, i.e.

(i) $\forall a \in R, s \in S: aS \cap sR \neq \emptyset$, and

(ii) $\forall a \in R, s \in S: sa = 0 \Rightarrow \exists t \in S: at = 0$. Show that

$$(a, s) \sim (a', s')$$
 if $au = a'u'$ and $su = s'u' \in S$ for some $u, u' \in R$

defines an equivalence relation on $R \times S$. Denote the equivalence class of (a, s) by a/sand let $R[S^{-1}]$ be the set of equivalence classes. Equip $R[S^{-1}]$ with a ring structure such that $R \to R[S^{-1}], r \mapsto r/1$, is universal among all ring homomorphisms $R \to A$ inverting all elements of S.

- (a) Show: If S is generated by a finite set and R is noetherian, then $R[S^{-1}]$ is noetherian.
- (b) Consider $\mathcal{O}_q(k^n)$ and let X be the multiplicative set generated by X_1, \ldots, X_n . Show that X is a right denominator set and that

$$\mathcal{O}_q(k^n)[X^{-1}] \xrightarrow{\sim} \mathcal{O}_q((k^{\times})^n).$$

Problem 4. Show:

- (a) $\mathcal{O}_q(\mathcal{M}(2,k))$ is a bialgebra (with the formulas from the lecture). Is it (co)commutative?
- (b) Its bialgebra structure induces a bialgebra structure on $\mathcal{O}_q(\mathrm{SL}(2,k))$ which can be extended to a Hopf algebra structure.
- (c) $\mathcal{O}_q(\mathrm{GL}(2,k))$ is a Hopf algebra.
- (d) $\mathcal{O}_q(k^2)$ is a $\mathcal{O}_q(\mathrm{SL}(2,k))$ -comodule algebra.

Problem 5. Show: Any Hopf algebra H is a left and right H-module algebra via

$$h.m = \sum_{(h)} h'mS(h'')$$
 and
$$m.h = \sum_{(h)} S(h')mh''$$

respectively, where h is in H and m in the H-module H. Here S is the antipode and we use the Sweedler notation $\Delta(h) = \sum_{(h)} h' \otimes h''$.

Problem 6. Let G = (k, +) be the additive group and \mathfrak{g} its Lie algebra. Find a natural Hopf algebra structure on

$$L := \{ f \in \mathcal{O}(G)^* = \operatorname{Hom}_k(\mathcal{O}(G), k) \mid f(\mathfrak{m}^n) = 0 \text{ for } n \gg 0 \},\$$

where $\mathfrak{m} = \{f \in \mathcal{O}(G) \mid f(1) = 0\}$ is the so called augmentation ideal, and an isomorphism of Hopf algebras

$$U(\mathfrak{g}) \xrightarrow{\sim} L.$$

Show the same statement for an arbitrary affine algebraic group.