Quantum Groups Winter Semester 2008/09 Catharina Stroppel Olaf Schnürer

Exercise Sheet 13

Solutions to be handed in on Monday 2nd February 2009

Problem 44. Let $\mathcal{B}(m) = \{F^{(i)}u \mid 0 \leq i \leq m\}$ be the crystal graph of the (m+1)dimensional irreducible $U_q(\mathfrak{sl}_2)$ -module L(m) with highest weight vector u and let $\mathcal{B}(\infty) = \{F^{(i)}v_0 \mid i \geq 0\}$ be the crystal graph of the Verma module M(0). Show: The map $\Psi : \mathcal{B}(m) \to \mathcal{B}(\infty) \otimes T_m$, $f^{(i)}u \mapsto f^{(i)}v_0 \otimes t_m$ $(0 \leq i \leq m)$, is an embedding of $U_q(\mathfrak{sl}_2)$ -crystals, but this crystal morphism is not strict.

Problem 45. Let $\lambda \in X^+$ be a dominant integral weight and $\mathcal{B}(\lambda)$ the crystal graph of the irreducible highest weight $U_q(\mathfrak{g})$ -module $L(\lambda)$. Suppose that \mathcal{B} is a connected $U_q(\mathfrak{g})$ -crystal. If there exists a strict crystal morphism $\Psi : \mathcal{B}(\lambda) \to \mathcal{B}$ such that $\Psi(\mathcal{B}(\lambda)) \subset \mathcal{B}$, then Ψ is a crystal isomorphism.

Problem 46. Let V be the three-dimensional $U_q(\mathfrak{sl}_3)$ -module that is the quantized version of the natural representation of \mathfrak{sl}_3 . Let $(\mathcal{L}, \mathcal{B})$ be its crystal basis. Draw the crystal graph $\mathcal{B} \otimes \mathcal{B}$ and show that $V \otimes V \cong L(2\epsilon_1) \oplus L(\epsilon_1 + \epsilon_2)$ as $U_q(\mathfrak{sl}_3)$ -modules.

Problem 47. Let \mathcal{B}_1 and \mathcal{B}_2 be normal crystals. Show that any injective morphism $f : \mathcal{B}_1 \to \mathcal{B}_2$ of crystals is strict.

Problem 48. Let $\lambda \in X^+$ be a miniscule dominant weight. Let $\pi_{\lambda} : [0, 1] \to X_{\mathbb{R}}$, $t \mapsto t\lambda$, be the path connecting 0 and λ in a straight line. Compute what is generated by π_{λ} under the action of the Littelmann root operators e_{α} , f_{α} . Compare it with the character formula for $L(\lambda)$.