Quantum Groups Winter Semester 2008/09 Catharina Stroppel Olaf Schnürer

Exercise Sheet 11

Solutions to be handed in on Monday 12th January 2009

Let $U = U_q(\mathfrak{g})$ with q not a root of unity.

Problem 37. Verify the following claim: To show that every finite dimensional U-module is semisimple it is enough to show that every short exact sequence $0 \to L(\lambda) \to M \to L(\mu) \to 0$ of U-modules with $\lambda, \mu \in X^+$ splits.

Hint: Use the long exact Ext-sequences.

Problem 38.

- (a) Show: Every finite dimensional irreducible U-module (of type I) is a direct summand of some $L(\omega_{i_1}) \otimes L(\omega_{i_2}) \otimes \cdots \otimes L(\omega_{i_r})$ for $i_j \in \{1, 2, \ldots, l\}$ (for r = 0 this tensor product is the trivial representation L(0)).
- (b) A dominant weight $\lambda \in X^+$ is miniscule if $\lambda \neq 0$ and $\langle \lambda, \alpha^{\vee} \rangle \in \{-1, 0, 1\}$ for all $\alpha \in \Phi$. Show that a dominant weight λ is miniscule if and only if there is no $\mu \in X^+$ with $\mu < \lambda$.
- (c) Determine all miniscule dominant weights for type A_2 and B_2 .
- (d) Let $\lambda \in X^+$. Show: $L(\lambda)^* \cong L(-w_0\lambda)$ where $w_0 \in W$ is the longest element.

Deduce that the direct sum M of all $L(\lambda)$, for λ miniscule dominant, is selfdual, i.e. $M \cong M^*$.

- (e) Show: If λ is miniscule dominant, then $X(L(\lambda)) = W\lambda$ and the weight spaces are all 1-dimensional.
- (f) Let λ be miniscule dominant. Consider a vector space V with basis x_{μ} , $\mu \in W\lambda$. Show that

$K_{\alpha}x_{\mu} = q^{(\mu,\alpha)}x_{\mu}$	$K_{\alpha}^{-1}x_{\mu} = q^{-(\mu,\alpha)}x_{\mu}$	and
$E_{\alpha}x_{\mu} = 0,$	$F_{\alpha}x_{\mu} = 0,$	if $\langle \mu, \alpha^{\vee} \rangle = 0;$
$E_{\alpha}x_{\mu} = 0,$	$F_{\alpha}x_{\mu} = x_{\mu-\alpha},$	if $\langle \mu, \alpha^{\vee} \rangle = 1;$
$E_{\alpha}x_{\mu} = x_{\mu+\alpha},$	$F_{\alpha}x_{\mu} = 0,$	if $\langle \mu, \alpha^{\vee} \rangle = -1;$

 $(\alpha \in \Pi, \mu \in W\lambda)$ defines a U-module structure on V such that $V \cong L(\lambda)$.

(g) Show for \mathfrak{g} of type A_n : The $L(\lambda)$, λ miniscule dominant, include the quantum analogue of the "natural" representation of \mathfrak{g} , i.e. the representation of \mathfrak{gl}_{n+1} on k^{n+1} .

Remark: This is also true in types C_n and D_n , but not in type B_n .

(h) Assume $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$. Show: All roots have the same length (the length of a root α is $\sqrt{(\alpha, \alpha)}$ where (\cdot, \cdot) is the bilinear extension of $(\alpha_i, \alpha_j) = a_{ij}d_j$). The (quantum analogue) of the adjoint representation is $L(\lambda)$, where λ is the largest (short) root (with respect to the partial ordering on X).

Remark: The modules $L(\lambda)$ for λ miniscule dominant are important, since they are quite easy to describe and every $L(\omega_i)$ occurs in a tensor product of $L(\lambda)$'s, where the λ 's are miniscule dominant weights or largest short roots. **Problem 39.** Let $u \in U$. Show: If u annihilates all finite dimensional U-modules, then u = 0.

Hint: Prove this by verifying the following:

(1) Given $\lambda = \sum_{\alpha \in \Pi} n_{\alpha} \omega_{\alpha} \in X^+$ and $\nu = \sum_{\alpha \in \Pi} m_{\alpha} \alpha \in \mathbb{Z}_{\geq 0} \Phi$ we have surjections

$$U^{-}_{-\nu} \twoheadrightarrow \tilde{L}(\lambda)_{\lambda-\nu}, \qquad \qquad y \mapsto yv_{\lambda},$$
$$U^{+}_{\nu} \twoheadrightarrow (^{\omega}\tilde{L}(\lambda))_{-\lambda+\nu}, \qquad \qquad x \mapsto xv'_{\lambda},$$

which are bijections if $m_{\alpha} \leq n_{\alpha}$ for all $\alpha \in \Pi$.

(2) Choose bases $(x_i)_i$ of U^+ and $(y_j)_j$ of U^- consisting of weight vectors, say $x_i \in U^+_{\nu(i)}$ and $y_j \in U^-_{-\nu'(j)}$ with $\nu(i)$ and $\nu'(j)$ in $\mathbb{Z}_{\geq 0}\Phi$ and write

$$u = \sum_{j} \sum_{\mu \in \mathbb{Z}\Phi} \sum_{i} a_{j,\mu,i} y_j K_{\mu} x_i$$

and

- (a) Calculate the action of x_i on $v_{\lambda} \otimes v'_{\lambda'} \in \tilde{L}(\lambda) \otimes {}^{\omega}\tilde{L}(\lambda')$ (for λ, λ' dominant).
- (b) Then calculate the action of $K_{\mu}x_i$ on $v_{\lambda} \otimes v'_{\lambda'}$.
- (c) Choose $\nu_0 \in \mathbb{Z}\Phi$ maximal among the weights ν such that there exist i, μ, j , with $a_{j,\mu,i} \neq 0$ and $\nu = \nu(i)$.

Compute the projection of $u(v_{\lambda} \otimes v'_{\lambda'})$ onto $\tilde{L}(\lambda) \otimes ({}^{\omega}\tilde{L}(\lambda'))_{-\lambda'+\nu_0}$.

- (d) Use (1) to deduce that for λ' big enough the $x_i v'_{\lambda'}$ for $\nu(i) = \nu_0$ are linearly independent.
- (e) Use an analogue of (2)d for the $y_j v_{\lambda}$'s to deduce that

$$u(v_{\lambda} \otimes v'_{\lambda'}) = 0 \Longrightarrow \sum_{\mu} a_{j,\mu,i} q^{(\mu,\nu_0 - \lambda')} q^{(\mu,\lambda)} = 0$$

for all i, j with $\nu(i) = \nu_0$ and λ, λ' big enough.

(f) Use (a variant of) Artin's theorem on the linear independence of characters to show that u = 0.