Quantum Groups Winter Semester 2008/09 Catharina Stroppel Olaf Schnürer

Exercise Sheet 10

Solutions to be handed in on Monday 5th January 2009

Problem 34. Let $w \in W$ and $w = s_{i_1}s_{i_2}\cdots s_{i_r}$ an expression as a product of simple reflections (not necessarily reduced).

(a) Assume that $s_{i_1}s_{i_2}\cdots s_{i_{r-1}}(\alpha_{i_r})$ is negative. Show that there is an index $1 \le k < r$ such that

$$s_{i_1}s_{i_2}\cdots s_{i_r} = s_{i_1}s_{i_2}\cdots s_{i_{k-1}}s_{i_{k+1}}\dots s_{i_{r-1}},$$

i.e. the above expression was not reduced.

Hint: Let t be minimal such that $s_{i_{t+1}}s_{i_{t+2}}\cdots s_{i_{r-1}}(\alpha_{i_r})$ is positive. For any root α and $v \in W$, $\gamma = v(\alpha)$ we have $s_{\gamma} = vs_{\alpha}v^{-1}$.

- (b) Assume that our expression is reduced. Deduce that $s_{i_1}s_{i_2}\cdots s_{i_r}(\alpha_{i_r})$ is negative.
- (c) Assume that our expression is reduced. Define β_j for $1 \le j \le r$ by

$$\beta_1 = \alpha_{i_1}.$$

$$\beta_2 = s_{i_1}(\alpha_{i_2}),$$

$$\beta_2 = s_{i_1}s_{i_2}(\alpha_{i_3}),$$

$$\cdots$$

$$\beta_r = s_{i_1}s_{i_2}\cdots s_{i_{r-1}}(\alpha_{i_r}).$$

Show: The β_j 's form exactly the set $S(w^{-1})$ of positive roots that are mapped to negative roots under w^{-1} .

Problem 35. Consider the Weyl group $W = S_n$ and the subgroup $H := S_i \times S_{n-i}$ for $0 \le i \le n$.

Show that there is exactly one coset representative of minimal length for each coset $H\backslash W$; give explicitly reduced expressions for these representatives.

Hint: Start to make a complete list for small examples.

Problem 36.

(a) Let \mathfrak{g} be a finite dimensional Lie algebra, $T(\mathfrak{g})$ its tensor algebra and $U(\mathfrak{g})$ its enveloping algebra. The standard filtration $T(\mathfrak{g})_n = \bigoplus_{j \leq n} \mathfrak{g}^{\otimes j}$ of $T(\mathfrak{g})$ induces a filtration on the quotient $U(\mathfrak{g})$. Show that the associated graded algebra is isomorphic to the symmetric algebra $S(\mathfrak{g})$:

$$S(\mathfrak{g}) \xrightarrow{\sim} \operatorname{gr} U(\mathfrak{g})$$

(b) Show that $U(\mathfrak{g})$ is a Noetherian domain.

Now let $U_q(\mathfrak{g})$ be a quantized enveloping algebra (over a field of characteristic zero, q generic). We use the notation of the lecture.

Verify the following general results for $U_q(\mathfrak{sl}_3)$:

(c) (Levendorskii-Soibelman) For $1 \leq i < j \leq N$ we have

$$E_{\beta_i}E_{\beta_j} - q^{(\beta_i,\beta_j)}E_{\beta_j}E_{\beta_i} = \sum_{k \in \mathbb{N}^N} z_k E_{\beta_1}^{k_1} \dots E_{\beta_N}^{k_N},$$

where z_k ∈ Q[q^{±1}] and z_k = 0 unless k_r = 0 for r ≤ i and r ≥ j.
(d) Consider the filtration of U_q(g) from the lecture. The associated graded algebra gr U_q(g) is isomorphic to the k-algebra with generators E_{β1},..., E_{βN}, F_{β1},..., F_{βN}, K_α (α ∈ Q), subject to the relations

$$\begin{split} K_{\alpha}K_{\beta} &= K_{\alpha+\beta}, & K_{0} &= 1 \\ K_{\alpha}E_{\beta_{i}} &= q^{(\alpha,\beta_{i})}E_{\beta_{i}}K_{\alpha}, & K_{\alpha}F_{\beta_{i}} &= q^{-(\alpha,\beta_{i})}F_{\beta_{i}}K_{\alpha}, \\ E_{\beta_{i}}F_{\beta_{j}} &= F_{\beta_{j}}E_{\beta_{i}}, & E_{\beta_{i}}E_{\beta_{j}} &= q^{(\beta_{i},\beta_{j})}E_{\beta_{j}}E_{\beta_{i}}, & F_{\beta_{i}}F_{\beta_{j}} &= q^{(\beta_{i},\beta_{j})}F_{\beta_{j}}F_{\beta_{i}}, \end{split}$$

(One can also deduce that $U_q(\mathfrak{g})$ is a Noetherian domain.)