
CATEGORIFICATION OF THE TEMPERLEY-LIEB
CATEGORY, TANGLES, AND COBORDISMS VIA
PROJECTIVE FUNCTORS

CATHARINA STROPPEL

Abstract
To each generic tangle projection from the three-dimensional real vector space onto
the plane, we associate a derived endofunctor on a graded parabolic version of the
Bernstein-Gel′fand category O . We show that this assignment is (up to shifts) invari-
ant under tangle isotopies and Reidemeister moves and defines therefore invariants of
tangles. The occurring functors are defined via so-called projective functors. The first
part of the paper deals with the indecomposability of such functors and their connec-
tion with generalised Temperley-Lieb algebras which are known to have a realisation
via decorated tangles. The second part of the paper describes a categorification of
the Temperley-Lieb category and proves the main conjectures of [BFK]. Moreover,
we describe a functor from the category of 2-cobordisms into a category of projective
functors.
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0. Introduction
On the way to finding topological invariants for knots and links, some new ideas
concerning a connection to representation theory recently appeared (see, e.g., [Kh1],
[FK]). Our paper was mainly motivated by [BFK] and contains a proof of the main
conjectures therein. Bernstein, Frenkel, and Khovanov constructed a realisation of the
Temperley-Lieb algebra via projective functors on parabolic versions of the Bernstein-
Gel′fand-Gel′fand category O . The category O is given by representations (with cer-
tain finiteness conditions) of a complex semisimple Lie algebra g. It is stable under
tensoring with a finite-dimensional g-module E . A direct summand of •⊗ E is called
a projective functor since it preserves projectivity. Such functors play a crucial role
in representation theory. The indecomposable projective functors on O were classi-
fied by Bernstein and Gel′fand [BG]. When restricted to the main block O0, their
isomorphism classes are in bijection to the Weyl group. The famous Kazhdan-Lusztig
theory is based on the fact that the Grothendieck ring of projective functors is de-
scribed by the corresponding (specialised) (Iwahori-)Hecke algebra. In other words,
this algebra has a “functorial realisation”; that is, there is a ring homomorphism from
the specialised (Iwahori-)Hecke algebra into the Grothendieck ring of projective func-
tors on a regular integral block of O . In type A, there is a well-known quotient of the
Iwahori-Hecke algebra called the Temperley-Lieb algebra. Because of its diagrammat-
ical description, it is directly linked with knot theory and has several applications in
physics and science (see, e.g., [K]). In [BFK], the authors considered the action of the
specialised Iwahori-Hecke algebra induced via projective functors on the direct sum
over all maximal parabolic subcategories of O0. They proved that it factors through
the specialised Temperley-Lieb algebra. On the level of the Grothendieck group, the
resulting representation coincides with the natural representation on the n-fold tensor
product of C2 given by place permutations.

The following questions appeared in this context (and are the content of our pa-
per).
(I) Is there a “functorial realisation” of the Temperley-Lieb algebra where the

deformation variable comes into the picture (see [BFK])?
(II) Is there a classification of indecomposable projective functors in the parabolic

setup (see [B2])?
(III) Is it possible to generalise the results of [BFK] to other types?
(IV) Is there a “functorial realisation” of the Temperley-Lieb 2-category and of

arbitrary tangles (see [BFK])?
The first problem can be solved using the graded version of category O introduced in
[BGS]. In [St], a graded version of translation functors is defined such that one can
easily get the required “functorial realisation” (Theorem 4.1). In this context we also
obtain a “functorial realisation” of the Temperley-Lieb algebras of Types B, C , and
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D. This might be interesting since these algebras can be realised via decorated tangles
(see, e.g., [G]).

The classification problem, however, seems to be much more complicated. We
are far away from a reasonable answer. Nevertheless, we give a combinatorial for-
mula (Proposition 3.6, Theorem 5.7) for the number of isomorphism classes of in-
decomposable functors. This formula was motivated by discussions with W. Soergel,
who conjectured that it should determine the number of indecomposable projective
functors. However, in non–simply laced cases we do not have equality in general (see
Examples 3.7). In Proposition 3.8 we prove that it is sufficient to study the case of
simple Lie algebras.

A very nice (and helpful!) result is given by Theorem 5.1, where we prove that
an indecomposable projective functor on O0(sln) either stays indecomposable or be-
comes zero after restricting to a maximal parabolic subcategory. (This was conjec-
tured in [BFK]. Note that it is not true for other types; see Examples 3.7.) Moreover,
the indecomposable functors corresponding to non-braid-avoiding Weyl group ele-
ments are always trivial after restriction (see Lemma 5.2).

Our main results are the proofs of [BFK, Conjectures 1 – 4]. Let Omax
n be the di-

rect sum of all parabolic subcategories of the main block of O(sln) given by parabolic
subgroups of the form Sk×Sn−k . We associate to each morphism f of the Temperley-
Lieb 2-category, that is, to each (m, n)-tangle projection without crossings, a projec-
tive functor F( f ) : Omax

m → Omax
n and prove the following in Theorem 6.2.

If f ' g via planar isotopies, then F( f ) ∼= F(g) as functors.

We extend this “functorial realisation” to tangles with crossings as follows. Let
Db(Omax

n
)

denote the bounded derived category of Omax
n . To each (m, n)-tangle pro-

jection t we associate a functor T (t) : Db(Omax
m

)
→ Db(Omax

n
)
. The functors as-

signed to a right or left basic braid are given as mapping cones of the adjunction
morphisms between the identity functor and translation functors through the wall.
That means that they coincide with the derived functors of Irving’s shuffling functors
(see [I2]). We prove the following in Theorem 7.1.

If t ' t ′ via ambient isotopies, then T (t) ∼= T (t ′)

up to a grading shift and a shift in the derived category. These results prove [BFK,
Conjectures 3, 4]. The dependency on the chosen representation of the tangle in the
form of shifts disappears if one works with oriented tangles (see Remark 7.2 and
cf. [Kh2]). Using the fact that projective functors are Koszul dual to Zuckerman’s
functors (as proved in [Ry]), a “functorial realisation” of tangles via singular blocks
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of category O follows (see [BFK, Conjectures 1, 2]).
Therefore, we get functor invariants for tangles. In particular, we can assign to

a disjoint union of closed oriented 1-manifolds a certain endofunctor on a parabolic
version of category O(sln). Our final result (Theorem 8.1) is a “functorial realisa-
tion” of the category of 2-cobordisms. In other words, we assign to each cobordism a
natural transformation between the corresponding functors and prove that this assign-
ment is invariant under isomorphisms of cobordisms. Since all the occurring functors
can be lifted to a Z-graded version (as explained in [St]), the natural transformations
corresponding to cobordisms can be interpreted as (homogeneous) transformations
between Z-functors. It turns out that the Euler characteristic of the cobordism surface
coincides with the degree of the assigned natural transformation. A way to realise the
2-category of tangle cobordisms in terms of projective functors will be explained in a
subsequent paper.

The paper is organised as follows. In the first section we recall the main results on
Category O , its parabolic version, and its combinatorics. In Section 2 we explain how
the deformation variable of the (Iwahori-)Hecke algebra can be interpreted as grading
shifts. In Section 3 we define the categories of projective functors and prove some ba-
sic and general results. The problem about indecomposability of projective functors
is worked out, including a description of how to define graded lifts of projective func-
tors. In Section 4 we describe “functorial realisations” of generalised Temperley-Lieb
algebras. Section 5 considers the maximal parabolic situation of type A. It includes the
theorem on indecomposability of indecomposable projective functors after restriction
to the parabolic category. Since some proofs rely on explicit calculations, we have at-
tached an appendix containing the description of distinguished coset representatives
for maximal parabolic subgroups. Sections 6 and 7 contain (the proof of) the two
“functorial realisation” theorems for tangles. In Section 8 we finally describe “func-
torial realisations” of the 2-cobordisms category and mention how the Euler charac-
teristic of cobordism surfaces can be realised as degrees of natural transformations
between Z-functors.

1. Category O and its combinatorics
Let g ⊃ b ⊃ h be a semisimple complex Lie algebra with fixed Borel and Cartan
subalgebras. Let g = n−⊕b = n−⊕h⊕n be the corresponding Cartan decomposition.
The universal enveloping algebras are denoted by U = U (g), U (b), and so on. Let
Z ⊂ U be the centre.

We consider the category O of Bernstein, Gel′fand, and Gel′fand [BGG], which
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is the full subcategory of the category of all U -modules given by the set of objects

Ob(O) :=

M ∈ g−mod

∣∣∣∣∣∣
M is finitely generated as a U (g)-module,
M is locally finite for b,

h acts diagonally on M

 ,
where the second condition means that dimC U (n)·m <∞ for all m ∈ M and the last
says that M =

⊕
µ∈h∗ Mµ, where Mµ = {m ∈ M | h · m = µ(h)m for all h ∈ h} is

the µ-weight space of M . Many results about this category can be found, for example,
in [BGG], [J1], and [J2].

For a given weight λ ∈ h∗, let M(λ) = U (g)⊗U (b)Cλ denote the Verma module
with highest weight λ and simple head L(λ). Let P(λ) ∈ O be the projective cover of
L(λ).

Let π ⊂ R be the set of simple roots inside the set of all roots. For α ∈ R, let
gα be the α-weight space of g under the adjoint action. The coroot of α is denoted
by α̌. We use W for the Weyl group with unit element e and denote by S the set of
simple reflections. The length of w ∈ W is denoted by l(w). For w, a1, . . . , ar ∈ W ,
we call an expression w = a1a2 · · · ar minimal if

∑r
i=1 l(ai ) = l(w). In particular,

any reduced expression is minimal. The Weyl group acts in a natural way on h∗ (with
fix-point zero); for any λ ∈ h∗, we denote by w · λ = w(λ + ρ) − ρ the image of
λ under the “translated” action of W with fix-point −ρ, where ρ is the half-sum of
positive roots.

Let Wλ denote the stabiliser of λ under this action. We denote by Oλ the full
subcategory of O having as objects all modules annihilated by a large enough power of
the maximal ideal kerχλ = AnnZ M(λ) in the centre of U . We call λ ∈ h∗ dominant
(with respect to−ρ) if 〈λ+ρ, α̌〉 ≥ 0, and we always label the subcategories Oλ with
dominant weights.

1.1. The parabolic category Op

Let S ⊆ π be a subset of the simple roots with corresponding root system RS =

R ∩ ZS. We define the Lie algebra gS ⊆ g as

gS = n−S ⊕ hS ⊕ n+S ,

where n∓S =
⊕

α∈∓R∩RS
gα . Then gS is semisimple with Cartan subalgebra hS =⊕

α∈S Cα̌ and root system RS . Let us denote the corresponding Weyl group by WS ,
and let W S be the set of minimal-length coset representatives for WS\W , that is,

W S
=

{
w ∈ W

∣∣∀s ∈ S ∩WS : l(sw) > l(w)
}
.

The parabolic subalgebras (containing b) of g are parametrised by the elements of the
power set of π in such a way that S ⊆ π corresponds to

pS = (gS ⊕ hS)+ n,
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where hS
=

⋂
α∈S kerα. Using this bijection, we identify WpS = WS , W S

= W pS ,
and so on.

Let p = pS be a parabolic subalgebra (containing b) of g with universal en-
veloping algebra U (p). The category O S

= Op is the full subcategory of O whose
objects are exactly the locally p-finite modules of O; that is, M ∈ Op if and only if
dimC U (p)m < ∞ for all m ∈ M . This category is called the parabolic category O

(with respect to p or S, resp.).
Let P+p = {λ ∈ h∗ | 〈λ, α̌〉 ∈ N, ∀α ∈ S} be the strictly dominant integral

weights with respect to S. The map that sends a simple U (p)-module to its highest
weight gives (see [Ro]) a bijection{

iso-classes of finite-dimensional simple U (p)-modules
} 1:1
←→ P+p . (1.1)

We denote the (unique up to isomorphism) simple p-module of highest weight λ by
E(λ). The parabolic Verma module (with respect to S or p, resp.) of highest weight λ
is defined as

Mp(λ) = U (g)⊗U (p) E(λ).

It has a unique simple quotient Lp(λ) ∼= L(λ) (see [Ro, Proposition 3.3]). Note that
if S = ∅, then pS = b and Mp(λ) = M(λ) is the “ordinary” Verma module. In the
other extreme case, where S = π , we have Mg(λ) ∼= L(λ).

There is a bijection between the isomorphism classes of simple modules in Op

and the elements of P+p by mapping a module to its highest weight. The category Op

has enough projectives. We denote the projective cover of the simple module L(λ)
corresponding to λ ∈ P+p by Pp(λ) (for details, see [Ro, Proposition 3.3, Corollaries
4.2, 4.4]). A categorical characterisation of the parabolic Verma modules is given by
the following fact.

LEMMA 1.1 (Parabolic Verma modules as projective objects)
Let λ ∈ P+p . The module Mp(λ) is projective in the full subcategory O

p
λ≥ of Op,

objects of which have only composition factors of the form L(µ) with µ 6> λ.

Proof
For M ∈ O

p
λ≥, we have by Frobenius’s reciprocity

Homg

(
Mp(λ),M

)
= Homg

(
U (g)⊗U (p) E(λ),M

)
∼= Homp

(
E(λ),M

)
∼= Mλ.

Therefore, Homg(Mp(λ), •) is exact and Mp(λ) is projective. (Note that the last iso-
morphism follows from (1.1) and the fact that λ is by assumption a maximal possible
weight.)
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The following proposition describes how to construct the projective covers in Op

given a projective cover in O .

PROPOSITION 1.2 (Projective covers in Op)
Let Q ∈ Op with projective cover P ∈ O . Then the projective cover of Q in Op

is (up to isomorphism) the quotient P/M , where M is the smallest submodule of P
containing all composition factors of P not contained in Op.

Proof
First of all, it is clear from the definition of Op that P/M ∈ Op. Since HomO(P, •) =
HomO(P/M, •) = HomOp(P/M, •) on Op, the projectivity of P/M follows. If
a submodule of P/M surjects onto Q, then its preimage under the canonical map
P � P/M maps surjectively onto Q as well. Hence, P/M is a projective cover by
the minimality of P .

Restriction to the subcategory O
p
λ≥ gives the following.

COROLLARY 1.3
For λ ∈ h∗, there is an isomorphism Mp(λ) ∼= M(λ)/M , where M denotes the
smallest submodule containing all composition factors not contained in Op.

1.2. The parabolic Hecke module N

We recall some facts on the Kazhdan-Lusztig combinatorics developed in [KL] and
[D]. We use the notation of [S2].

Let Z[v, v−1
] be the ring of Laurent polynomials in one variable v. Let H =

H (W,S ) denote the Hecke algebra of (W,S ), that is, the free Z[v, v−1
]-module

with basis {Hx | x ∈ W } and relations

H2
s = He + (v

−1
− v)Hs for s ∈ S , (1.2)

Hx Hy = Hxy if l(x)+ l(y) = l(xy). (1.3)

We denote by H 7→ H the duality on H , that is, the ring homomorphism given
by Hx 7→ (Hx−1)−1 and v 7→ v−1. The Kazhdan-Lusztig basis is given by el-
ements H x (for x ∈ W ) such that H x is self-dual (i.e., H x = H x ) and H x ∈

Hx +
∑

y∈W vZ[v]Hy . In particular, Cs := H s = Hs + v is a Kazhdan-Lusztig
basis element for each simple reflection s ∈ W . For S ⊆ π , a subset of the simple
roots, let HS =H (WS,WS ∩S ) be the corresponding Hecke algebra. We consider
Z[v, v−1

] as a right HS-module, where Hs for s ∈ S acts by multiplication with
−v. On the other hand, the Hecke algebra H is in a natural way, via restriction, a left
HS-module. Therefore, the following definition of the parabolic Hecke module (with
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respect to S or p) makes sense:

N p
:= Z[v, v−1

] ⊗HS H .

Hence, the parabolic Hecke module N p is a right H -module and a free Z[v, v−1
]-

module with basis {Np
x := 1⊗ Hx | x ∈ W p

}. The structure as a right H -module is
given by the following.

LEMMA 1.4 (see [S2])
We have

Np
x Cs =


Np

xs + vNp
x if xs > x and xs ∈ W p,

Np
xs + v

−1 Np
x if xs < x and xs ∈ W p,

0 if xs /∈ W p.

1.3. Translation through the wall and the parabolic Hecke module
For λ ∈ h∗ dominant and integral, let θλ0 : O0 → Oλ (resp., θ0

λ : Oλ → O0) be the
corresponding translation functors. For Wλ = {e, s}, s ∈ S , we denote by θs = θ

0
λθ
λ
0

the translation functor through the wall (for more details, see, e.g., [J1], [J2]).
Note that if M is p-locally finite, then so is the tensor product M⊗E for any finite-

dimensional g-module E . Hence, the functor θs restricts to a functor O
p
0 −→ O

p
0 for

any parabolic subalgebra containing b.
Let [Op

0 ] denote the Grothendieck group of O
p
0 . Since θs is exact, it induces a

group homomorphism on [Op
0 ] which is denoted by

[
[θs]

]
. Each of the following

sets is a basis of [Op
0 ]: {[P

p(x · 0)] | x ∈ W p
}, {[Mp(x · 0)] | x ∈ W p

}, and
{[L(x · 0)] | x ∈ W p

}. In the following we use the abbreviations Pp(x) = Pp(x · 0),
Mp(x) = Mp(x · 0), and L(x) = L(x · 0) for any x ∈ W .

We state the following well-known results.

PROPOSITION 1.5
Let x ∈ W p. Let s be a simple reflection.
(1) If xs ∈ W p and x < xs, then θs Mp(x) ∼= θs Mp(xs) and there is a short exact

sequence of the form

0→ Mp(x) −→ θs Mp(x) −→ Mp(xs)→ 0.

(2) If xs /∈ W p, then θs Mp(x) = 0.
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(3) The following diagram commutes:

N p

·Cs

��

v=1

Np
x 7→[Mp(x)] // [Op

0 ][
[θs ]

]
��

N p
v=1

Np
x 7→[Mp(x)] // [Op

0 ]

Proof
The first part of the theorem is [I1, Proposition v]. For the second part, we assume
xs /∈ W p; hence, xs > x . (Otherwise, choose t ∈ Wp ∩ S such that t xs < xs.
Then l(t xs) = l(xs) − 1 = l(x) − 2 = l(t x) − 3. This is a contradiction.) Any
nonzero quotient of θs M(x) contains L(xs) as a composition factor; hence, there
is no nontrivial quotient that is p-locally finite. In particular, θs Mp(x) = 0. The
commutativity of the diagram is then clear by Lemma 1.4.

2. Gradable modules and graded translation
In the following we consider an integral regular block (say, O0) of the category O with
its parabolic subcategory. Let P =

⊕
x∈W P(x) be the sum over all indecomposable

projectives in this block. This is a minimal projective generator. How its endomor-
phism ring becomes a Z-graded ring is explained in [BGS] and [St]. In the following,
let A = Endg(P) be equipped with this (Z-)grading. By Morita equivalence, we can
consider O0 as a category of finitely generated (nongraded!) right modules over a
graded ring A. If we denote by mof−A the category of finitely generated right A-
modules, this means

O0 ∼= mof−A.

We denote by (g)mof−A the category of finitely generated graded right A-modules.
As in [St], we call a module M ∈ O0 gradable if Homg(P,M) is gradable, that is,
if there exists a graded right A-module M̃ such that f(M̃) ∼= Homg(P,M). (Here
f denotes the grading forgetting functor gmof−A −→ mof−A.) In this case, M̃ is
called a lift of M . We call M ∈ O

p
0 gradable if it is gradable considered as an object

of O0.
In [St] and [BGS] it is shown that all “important” objects of O0, such as projective

modules, simple modules, and Verma modules, are gradable. We generalise this result
to the parabolic situation.

THEOREM 2.1
Let M ∈ O

p
0 be a simple object, a projective object, or a parabolic Verma module.

Then M is gradable (considered as an object in O0).
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Proof
Since the simple modules in the parabolic subcategory are also simple in O0, the
statement for simple objects is proved in [St]. By Lemma 1.2, for each x ∈ W p there
is an isomorphism Pp(x) ∼= P(x)/M , where M is the smallest submodule containing
all simple composition factors of the form L(y)with y /∈ W p. We consider the graded
lift P̃(x) of P(x), which is defined in [St]. Let M be its smallest submodule that is
generated by the collection of one-dimensional subspaces corresponding to simple
composition factors of the form L(y) of P(x) with y /∈ W p. Therefore, M is by
definition generated by homogeneous elements; hence the module P̃(x)/M is a lift
of Pp(x). For the parabolic Verma modules, we can do (by Lemmas 1.1 and 1.2) an
analogous construction. The theorem follows.

The proof of Theorem 2.1 gives the following.

COROLLARY 2.2
Let Pp

:=
⊕

x∈Wp Pp(x) be a minimal projective generator of O
p
0 . Then Endg(Pp)

is a quotient of Endg(P) even as a graded ring.

Remark 2.3
(1) By construction, the graded rings A = Endg(P) and Ap

= Endg(Pp) coin-
cide with the ones introduced in [BGS].

(2) The graded lifts of Pp(x) (with x ∈ W p) are unique up to isomorphism and a
shift of the grading (see [St, Lemma 1.5]). We defined the lifts in such a way
that the simple head is concentrated in degree zero. The same is true for the
lifts of the parabolic Verma modules and of the simple objects.

(3) It follows directly from the construction that a module M ∈ O
p
0 is gradable if

and only if it is gradable as an object of O
p
0 , that is, if there exists a graded

right Ap-module M̃ such that f(M̃) ∼= Homg(Pp,M) (as nongraded right
Ap-modules).

(4) In [B1] it is proved that Ap (even for singular blocks) becomes a Koszul ring,
generalising the results of [BGS].

2.1. Combinatorics of graded translation functors
Let us from now on denote by P̃p(x), M̃p(x), and L̃(x) the graded lifts of Pp(x),
Mp(x), and L(x), respectively, as defined in the proof of Theorem 2.1, that is, with
head concentrated in degree zero. We consider Ap

:= Endg(Pp), the endomorphism
ring of the minimal projective generator Pp

=
⊕

x∈Wp Pp(x) of O
p
0 , as a graded

ring. For m ∈ Z, let M〈m〉 be the graded module defined by M〈m〉n := Mn−m with
the same module structure as M ; that is, f(M〈m〉) = f(M). Let [gmof−Ap

] be the
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Grothendieck group of the category of all finitely generated right Ap-modules. Each
of the following three sets is a basis of [gmof−Ap

]: {[L̃(x)〈i〉] | x ∈ W p, i ∈ Z},
{[M̃p(x)〈i〉] | x ∈ W p, i ∈ Z}, {[P̃p(x)〈i〉 | x ∈ W p, i ∈ Z}. Let θ̃s : gmof−A −→
gmof−A denote the graded version of θs with the graded adjunction morphisms
ID〈1〉 → θ̃s and θ̃s → ID〈−1〉 as defined in [St]. We get the following generalisation
of [St, Theorems 3.6 and 5.3].

THEOREM 2.4
Let s ∈ W be a simple reflection.
(1) Let x , xs ∈ W p such that x < xs. The graded lifts of the parabolic Verma

modules fit into the following short exact sequences of graded modules:

0→ M̃p(x)〈1〉 → θ̃s M̃p(x)→ M̃p(xs)→ 0,

0→ M̃p(x)→ θ̃s M̃p(xs)→ M̃p(xs)〈−1〉 → 0.

(2) Let x ∈ W p such that xs /∈ W p. Then θ̃s M̃p(x) = 0.

Proof
Note that the maps have to be (up to a scalar) the adjunction morphisms since the
homomorphism spaces in question are all one-dimensional. Hence, the upper inclu-
sion and the lower surjection are clear. On the other hand, the canonical surjection
M̃(xs) � M̃p(xs) is homogeneous of degree zero by definition. The surjection of
graded modules (see [St, Theorem 3.6]) θ̃s M̃(x) � M̃(xs) has kernel M̃(x)〈1〉.
Therefore, the surjection in the first row has to be homogeneous of degree zero.
For the injection in the second row, we consider the inclusion of graded modules
M̃(x) ↪→ θ̃s M̃(xs) (see [St, Theorem 5.3]). This induces the injection in the second
sequence.

For the second part, we already know the statement when forgetting the grading
(Proposition 1.5); hence, there is nothing to do.

We get a combinatorial description of the graded translation functors.

COROLLARY 2.5
The following diagram commutes:

N p

·Cs

��

vn Nx 7→[M̃p(x)〈n〉] // [gmof−Ap
][

[θ̃s ]
]

��
N p

vn Nx 7→[M̃p(x)〈n〉] // [gmof−Ap
]
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Proof
This follows from Theorem 2.4 using Lemma 1.4.

Remark 2.6
The horizontal maps in the corollary are in fact isomorphisms of Z[v, v−1

]-modules,
where the action on [gmof−A] is given by vi

[M] = [M〈i〉].

3. The categories of projective functors
In this section we define the additive categories of projective functors.

For each dominant weight h∗, we denote by pp
λ : O

p
→ O

p
λ the canonical pro-

jection. An endofunctor on O
p
λ is called projective if it is a (nonzero) direct summand

of pp
λ(• ⊗ E) for some finite-dimensional g-module E . Note that the direct sum of

two such functors is again projective. Together with the zero functor, these functors
form an additive category P

p
λ with the usual morphisms (i.e., natural transformation

between functors) and the usual notation of (finite) direct sums.
A (projective) functor F on O

p
λ is indecomposable if F ∼= F1 ⊕ F2 for some

endofunctors F1, F2 on O
p
λ implies F1 = 0 or F2 = 0. In particular, a projective

functor on O
p
λ is indecomposable if and only if it is an indecomposable object in

P
p
λ ; hence, there is no obstacle to calling such functors indecomposable projective

functors (on O
p
λ ).

In the following we write just Pp instead of P
p
0 , and Pλ =Pb

λ . We denote by
IndP(g, p) the set of isomorphism classes of indecomposable objects in Pp and by
# IndP(g, p) the order of this set. The indecomposable functors on Oλ are classified
by the following.

THEOREM 3.1 ([BG, Theorems 3.3, 3.5])
(1) Let λ be an integral dominant weight. Let F , G ∈Pλ. Then

F ∼= G ⇐⇒ F
(
M(λ)

)
∼= G

(
M(λ)

)
.

(2) The assignment F 7→ F(M(λ)) defines a bijection between IndP(g, b) and the
set of isomorphism classes of indecomposable projective objects in Oλ.

For λ = 0, let Fw ∈ P such that FwM(e) ∼= P(w). For any F ∈ Pp, we denote by[
[F]

]
the induced homomorphism on the Grothendieck group.

Remark 3.2
Since for F ∈P the module F(M(e)) is projective, we can reformulate the first part
of the theorem as

F ∼= G ⇐⇒
[
F(M(e))

]
=

[
G(M(e))

]
⇐⇒

[
[F]

]
=

[
[G]

]
.



TANGLES AND COBORDISMS VIA PROJECTIVE FUNCTORS 559

Unfortunately, the obvious generalisation of Theorem 3.1 to the parabolic situation is
no longer true. Let s be a simple reflection. Choose p such that L(s) /∈ O

p
0 . We have

θs 6= 0 in general, but θs(Mp(e)) = 0. Nevertheless, we conjecture a generalisation
of Remark 3.2.

CONJECTURE 3.3
Let F , G ∈Pp. Then

F ∼= G ⇐⇒
[
[F]

]
=

[
[G]

]
.

3.1. Indecomposable projective functors
In this subsection, we state some characterisations of indecomposable (projective)
functors in a general setup and define graded lifts.

PROPOSITION 3.4
Let λ ∈ h∗ be dominant and integral. Let F ∈P

p
λ . The following are equivalent.

(i) F is indecomposable.
(ii) The only idempotents in End(F) are 0 and 1.
(iii) End(F) is a local ring.

Proof
(ii)⇒ (i). Assume that F is decomposable and F ∼= F1⊕ F2. The natural transforma-
tion given by projection onto the first factor obviously defines a nontrivial idempotent.

(i)⇒ (ii). Let π ∈ End(F) be a nontrivial idempotent. This defines an endofunc-
tor Fπ on O

p
λ by Fπ (M) = π(F(M)) on objects and Fπ ( f ) = πN ◦ F( f )|πM (F(M))

on morphisms f ∈ Hom(M, N ). Since π is idempotent, it is Fπ (IdM ) = Idπ(M) for
any object M . Let f ∈ Hom(M, N ) and g ∈ Hom(Q,M). We get πN ◦ F( f ) ◦ πM ◦

F(g)|πQ(F(Q)) = πN ◦ F( f )◦ F(g)◦πQ |πQ(F(Q)) = πN ◦ F( f ◦ g)|πQ(F(Q)) since π
is idempotent. Hence, Fπ is indeed a functor. On the other hand, (Id−π) ∈ End(F)
is also idempotent, and we have F ∼= Fπ ⊕ FId−π .

(ii)⇔ (iii). Note that dim End(F) ≤ dim Endg(F(P)) for some (minimal) pro-
jective generator P of O

p
0 ; hence, dim End(F) < ∞. Then the equivalence is well

known (see, e.g., [L]).

We next get a generalisation of the classical Krull-Remak-Azumaya-Schmidt theorem
(see, e.g., [L]).

COROLLARY 3.5
Let λ ∈ h∗ be dominant and integral. Let F ∈P

p
λ . Then F is isomorphic to a finite di-

rect sum of indecomposable projective functors on O
p
λ . Moreover, this decomposition
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is unique up to isomorphism and order of the summands.

Proof
Let ll(F) denote the length of a Jordan-Hölder series of F(Pp). Of course, ll(F1) <

ll(F) when F1 is a direct summand of F . This shows that the desired decomposition
exists. The uniqueness follows then by standard arguments (see, e.g., [L, Corollary
19.23]) using Proposition 3.4.

3.2. The image of the Hecke algebra
The action of the Hecke algebra on the parabolic Hecke module (see Lemma 1.4)
induces a homomorphism

8p
:H −→ EndZ(N

p
v=1) = EndZ([O

p
0 ]), (3.1)

where N
p
v=1 denotes the specialisation v  1 of N p. The Z-rank of the image of

8p is denoted by R(g, p). The following lemma gives a lower bound for the number
of indecomposable projective functors.

PROPOSITION 3.6
For any parabolic subalgebra p containing b, the following holds:

# IndP(g, p) ≥ R(g, p). (3.2)

Proof
The image of8p is generated by the multiplications ·H x with x ∈ W . Let {·H x | x ∈
I } be a maximal linear independent subset. Let {Fx | x ∈ I } be the corresponding
projective functors on O0. Let {Gi | 1 ≤ i ≤ m} be a system of representatives for
IndP(g, p). For x ∈ I , we therefore have Fx |Op

0
∼=

⊕m
i=1 Gαi

i for some nonnegative

integers αi . (Here, Gαi
i denotes the direct sum of αi copies of Gi .) Hence

[
[Fx |Op

0
]
]
=∑m

i=1 αi
[
[Gi ]

]
. Thus, the

[
[Gi ]

]
generate the image of 8p and the claim follows.

We list a few examples, including some where we have strict inequality in formula
(3.2).

Examples 3.7
(a) Let g be arbitrary semisimple. For p = b, both sides of formula (3.2) are equal to
the order of the Weyl group: the left-hand side by Theorem 3.1, and the right-hand side
because the self-dual elements H x = He H x with x ∈ W constitute a Z[v, v−1

]-basis
of H giving rise to a Z-basis after specialisation.

(b) In the other extremal case, we have IndP(g, g) = 1. The isomorphism
EndZ(N

p
v=1)
∼= EndZ(Z) implies R(g, g) = 1.
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(c) Let g be of type B2 or G2, with p a maximal parabolic subalgebra. Then

10 = # IndP(so3, p) > R(g, p) = 6,

26 = # IndP(g of type G2, p) > R(g, p) = 10.

Consider g = so3. Let Wp = 〈t〉 ⊆ 〈s, t〉; hence, W p
= 〈e, s, st, sts〉. By The-

orem 3.9 below, θt is indecomposable (with X = {st}). For λ ∈ h∗ dominant and
integral such that Wλ = {e, s}, the category O

p
λ is semisimple. (Note that θλ0 Pp(e) ∼=

Mp(λ) and [θλ0 Pp(st)] = [θλ0 (M
p(st) ⊕ Mp(sts))] = [Mp(st · λ) ⊕ Mp(st · λ)].

Therefore, Pp(x · λ) = Mp(x · λ) = L(x · λ) for x ∈ {e, st}.)
We define (exact) endofunctors Ge, Gst on O

p
λ by

GwL(x · λ) =

{
L(x · λ) if w = x,

0 otherwise.
(3.3)

In particular, ID ∼= Ge ⊕ Gst . Set Gw = θ
0
λGwθ

λ
0 . Then θs ∼= Ge ⊕ Gst and hence is

decomposable. If x 6∈ {e, s}, then Geθ
λ
0 Mp(x) = 0. Otherwise,

[Geθ
λ
0 Mp(x)] = [Ge Mp(λ)] = [Mp(λ)] =

[
Ge(Mp(λ)⊕ Mp(st · λ))

]
=

[
Geθ

λ
0
(
Mp(s)⊕ Mp(st)

)]
=

[
Geθ

λ
0 θt

(
Mp(e)⊕ Mp(s)

)]
= [Geθ

λ
0 θtGe Mp(x)].

By the semisimplicity of O
p
λ , we get Geθ

λ
0 θtGe ∼= Geθ

λ
0 ; hence, GeθtGe ∼= Ge. Analo-

gously, GstθtGst ∼= Gst . One can easily check that for w, z ∈ {e, st} with w 6= z, the
functors

ID, θt ,Gw,Gwθt , θtGw, θwθtGz

induce pairwise distinct morphisms on the Grothendieck group [Op
0 ]. The criterion of

Theorem 3.9 shows that the functors are all indecomposable. Hence (by Theorem 3.1
and Corollary 3.5), they represent Ind(g, p).

We remark that the induced representation on the Grothendieck group is isomor-
phic to the one obtained by taking by g = sl4, where Wp is generated by noncommut-
ing simple reflections s2, s3.

The case G2 can be done in an analogous way.

3.3. Restriction to the simple case
To get a description of indecomposable projective functors, it is enough to consider
simple Lie algebras because of the following.

PROPOSITION 3.8
Let g1, g2 be two semisimple complex Lie algebras with parabolic subalgebras pi
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containing the fixed Borel subalgebra bi ⊂ gi for i = 1, 2. Then

# IndP(g1 × g2, p1 × p2) = # IndP(g1, p1) · # IndP(g2, p2).

Proof
There is a triangular decomposition g1×g2 = (n

−

1 ×n−2 )⊕(h1×h2)⊕(n1×n2) arising
from the corresponding triangular decompositions of g1 and g2, respectively. The
identification U (g1×g2) = U (g1)�U (g2) induces Z (U (g1×g2)) = Z (U (g1))�
Z (U (g2)) (where � denotes the outer tensor product over C). This corresponds to
an identification h∗1 × h∗2 = (h1 × h2)

∗ and an isomorphism between the Weyl group
of g1 × g2 and the product W1 ×W2 of the single Weyl groups. Then the outer tensor
product defines a functor

� : O0(g1)× O0(g2) −→ O(0,0)(g1 × g2).

The simple objects in O(0,0)(g1 × g2) are given as tensor products of simple objects
in formulas L((x, y)) ∼= L(x)� L(y) for (x, y) ∈ W1 ×W2 with projective cover

P
(
(x, y)

)
∼= P(x)� P(y) (3.4)

(for more details concerning this, see [B2, Section 2]). On the other hand, the outer
tensor product defines a map between the sets of projective functors

� :P(g1)×P(g1) −→P(g1 × g2).

The isomorphisms (3.4) together with the classification theorem (Theorem 3.1) imply
that the map is in fact a bijection. This proves the proposition for pi = bi , i = 1, 2.

On the other hand, for any F , G ∈P , there is an isomorphism of rings

0 : End(F)� End(G) −→ End(F � G) (3.5)

given by 0(φ ⊗ ψ)(P,Q)(p, q) = φP(p) ⊗ ψQ(q) on projective generators P ∈
O0(g1), Q ∈ O0(g2), and p ∈ P , q ∈ Q. (It is not difficult to see that this in fact
defines a homomorphism of functors. For the bijectivity, see, e.g., [B2, Lemma 2.1].)

The isomorphism (3.5) induces an isomorphism

0p
: End(F

|O
p1
0
)� End(G

|O
p2
0
) −→ End(F � G|O0(p1×p2)).

Note that 0p(φ ⊗ψ) is an idempotent if and only if φ, ψ are idempotents. Moreover,
0p(φ ⊗ ψ) is a trivial idempotent if and only if φ and ψ are also. Hence, pairs of in-
decomposable projective functors correspond to indecomposable projective functors.
This proves the proposition.
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3.4. A criterion for indecomposability
For F ∈Pp and X ⊆ W p, we consider the sets of simple objects in O

p
0 ,

supp(F) =
{

L
∣∣ F(L) 6= 0

}
,

Comp(X) =
{

L
∣∣ [Mp(x) : L] 6= 0 for some x ∈ X

}
.

We get the following criterion for a projective functor to be indecomposable.

THEOREM 3.9
Let 0 6= F ∈ Pp. Assume that there exists X ⊆ W with supp(F) ⊆ Comp(X) such
that
(a) F(Mp(x)) is indecomposable for any x ∈ X ;
(b) for any nontrivial decomposition X = X1 ∪ X2, we have

Comp(X1) ∩ Comp(X2) ∩ supp(F) 6= ∅.

Then F is indecomposable.

Remark 3.10
• The functor ID ∈Pp is indecomposable; therefore, IndP(g, g) = {ID}.

• Let p = b. The theorem gives an alternative proof of the fact that the indecom-
posability of F(M(e)) implies the indecomposability of F . Let X = {e}. Since every
simple module occurs as a composition factor in M(e), the assumptions are satisfied
if and only if F(M(e)) is indecomposable.

On the other hand, we could also choose X = W . Note that F(M(e)) is indecom-
posable if and only if F(M(x)) is decomposable for all x ∈ W by [AS, Theorem 2.2,
Corollary 4.2]. Since F(L(wo)) 6= 0 and L(wo) occurs in the socle of each Verma
module, assumption (2) is satisfied.

• Consider the situation g = so3 of Example 3.7 for F = θs . Condition (a)
is always satisfied. Let us assume the existence of a set X as in the theorem. For
i ∈ {1, 2}, set X i = X ∩ Ai , where A1 = {e, s} and A2 = {st, sts}. Hence, condition
(b) is not satisfied. It turns out that θs is indeed decomposable.

Proof of Theorem 3.9
We assume the existence of X . Let π ∈ End(F) be an idempotent. By assumption
(a), it is πMp(x) ∈ {Id, 0} for all x ∈ X . Choose x1 ∈ X such that F Mp(x1) 6= 0.
Set X1 = {x1} and X2 = X\X1. Let L be an element of the intersection given in (b)
occurring in, say, Comp({x2}), x2 ∈ X2. If πMp(x1) = Id, then πL = Id, and therefore
πMp(x2) = Id. Going on with X1 := {x1, x2}, and so on, in the same way finally gives
πMp(x) = Id for any x ∈ X . The same arguments work if πMp(x1) = 0. Hence, π is
either the identity or zero on all simple objects simultaneously.
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We first consider the case where π is the identity on simple objects. We prove
that πM = Id for any M by induction on its length. Let M1 ↪→ M � M2 be a

short exact sequence. Then F(M1)
i
↪→ F(M)

p
� F(M2) is exact. Let x ∈ F(M). If

x = i(y) for some y ∈ F(M1), then πM (x) = πM (i(y)) = i(y) = x . Otherwise,
0 6= p(x) = πM2(p(x)) = p(πM (x)). Hence, x − πM (x) = i(y) for some y ∈
F(M1). Since π is idempotent, we have 0 = πM (πM (x) − x) = πM (i(y)) = i(y).
Therefore, y = 0 and πM = Id. Now let πMi = 0 for i = 1, 2. For x ∈ F(M), we get
p(πM (x)) = πM2(p(x)) = 0; hence, πM (πM (x)) = πM (i(y)) = i(πM1(y)) = 0 for
some y ∈ M1. The theorem follows.

3.5. Lifts of projective functors
Let F be an exact endofunctor on O

p
0 . We call F̃ : gmof−Ap

−→ gmof−Ap a
graded lift of F if F̃ is a Z-functor (as defined in [AJS, Section E3]) and induces
F after forgetting the grading and applying the equivalence mof−Ap

→ O
p
0 (for

details, see [St]). If such a lift exists, we call F gradable.

PROPOSITION 3.11
Let F ∈Pp be indecomposable. A lift F̃ of F (if it exists) is unique up to isomorphism
and grading shift.

Proof
Under the equivalence O

p
0
∼= gmof−Ap, the functor F corresponds to • ⊗Ap X for

some Ap-bimodule X (see [Ba]). Moreover, F is indecomposable if and only if X is
also (as an Ap-bimodule). A graded lift F̃ of F is therefore given as tensoring with
some graded Ap-bimodule X̃ such that X̃ ∼= X after forgetting the grading. By the
indecomposability of X , a lift is unique up to isomorphism and grading shift (use [St,
Lemma 1.5] for the graded ring Ap

⊗ (Ap)opp).

COROLLARY 3.12
Let F ∈ P be indecomposable. Then F is gradable. A lift of F is unique up to
isomorphism and grading shift.

Proof
The translation functors through a wall are gradable (see [St]); hence, so are their
compositions. Theorem 3.1 shows that there is a decomposition of functors

θsr θsr−1 · . . . · θs1
∼= Fx ⊕

⊕
y<x

F
αy
y (3.6)

for some αy ∈ N and x = s1 · . . . · sr a reduced expression of x . By the induction hy-
pothesis, the Fy’s are gradable for y < x . (Note that Fe = ID is gradable.) Therefore,
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Fx is gradable (see [St, Lemma 1.4]). The statement on the uniqueness is Proposition
3.11.

We fix a lift F̃w of Fw such that F̃w M̃(e) ∼= P̃(w).

Remark 3.13
Let [w] = s1s2 · . . . · sr be a reduced expression of w ∈ W . With the conventions on
the lift F̃w and Corollary 2.5, we get

θ̃sr θ̃sr−1 · . . . · θ̃s1
∼=

⊕
y∈W

(F̃y〈i〉)α[w],y,i ,

where the α[w],y,i are defined as Cs1Cs2 · . . . ·Csr =
∑

y∈W,i∈Z αw,y,i v
i H y . Note that

αw,y,i does not depend on the reduced expression of w, provided w is braid-avoiding.

4. Generalised Temperley-Lieb algebras
In this section we describe “functorial realisations” of generalised Temperley-Lieb
(TL) algebras. Let W be a Weyl group of type A, B, C , or D with corresponding
Hecke algebra H . We consider the (generalised) Temperley-Lieb algebra H /T L;
that is, T L is generated by all

∑
w∈Wadj

v−l(w)Hw such that Wadj ⊂ W is generated by
two simple reflections, where the corresponding vertices in the Dynkin diagram are
connected. These algebras were introduced by Temperley and Lieb [TL] for type A
and by Dieck [Di] for other types. Alternatively, they can be defined by the following
relations (with s, t ∈ S ):

C2
s = (v + v

−1)Cs, (4.1)

CsCt = Ct Cs if ts = st . (4.2)

Additionally, for types A, B, C , and D,

CsCt Cs = Cs if ts 6= st and sts = tst, (4.3)

and for types B and C ,

Ct CsCt Cs = Ct Cs + Ct Cs if ts 6= st and sts 6= tst . (4.4)

THEOREM 4.1 (TL algebras and projective functors)
Let g be a simple Lie algebra of type A, B, C , or D. Let p ⊂ g be maximal parabolic.
With the interpretation of vi as grading shift 〈i〉, the graded translation functors satisfy
the relations (4.1) – (4.4).

Proof
Let s, t be commuting simple reflections. By Theorem 3.1, θsθt ∼= θtθs . The functors
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are indecomposable, and therefore θ̃s θ̃t ∼= θ̃t θ̃s〈i〉 for some i ∈ Z (Corollary 3.12).
Since M̃(e)〈2〉 occurs in both θ̃s θ̃t M̃(e) and θ̃t θ̃s M̃(e) as a submodule (Theorem 2.4),
it follows that i = 0. Therefore, relation (4.2) is satisfied. Since there is an iso-
morphism θ2

s
∼= θs ⊕ θs , we get θ̃2

s
∼= θs〈i〉 ⊕ θ̃s〈 j〉 for some i , j (again using

Corollary 3.12). On the other hand, Corollary 2.5 shows [θ̃2
s M̃(e)] = [θ̃s M̃(e)〈1〉] +

[θ̃s M̃(e)〈−1〉]. Relation (4.1) is satisfied. Now let st 6= ts, but let sts = tst . We
just recall the arguments of [BFK]. We have θsθtθs ∼= Fsts ⊕ θs by Theorem 3.1.
Let η ∈ h∗ be dominant and integral such that Wη = 〈s, t〉. Since Fsts M(e) ∼=
P(sts) ∼= θ0

η θ
η
0 M(e) (see, e.g., [J2, Formula 14.13(1)] and [S2, Proposition 2.9]),

we get Fsts ∼= θ0
η θ
η
0 by Theorem 3.1. In particular, Fsts = 0 when restricted to O

p
0

(for p maximal parabolic!). In the graded picture we have θ̃s θ̃t θ̃s ∼= F̃sts〈i〉 ⊕ θ̃s〈 j〉
for some i , j ∈ Z. Since we did not prove Remark 3.13, we determine i and j
directly. By Theorem 2.4, θ̃s θ̃t θ̃s M̃(e) surjects onto M̃(sts), and therefore, i = 0.
Corollary 2.5 shows that M̃(e)〈k〉 occurs as a submodule in θ̃s θ̃t θ̃s M̃(e) for k = 3, 1.
By Theorem 2.4, M̃(e)〈3〉 is a submodule of θ̃t θ̃s M̃(e)〈1〉. The latter is contained in
θ̃s θ̃t θ̃s M̃(e) ∼= P̃(sts)⊕ P̃(s)〈 j〉; hence, it must be a submodule of P̃(sts). Therefore,
M̃(e)〈1〉 is a submodule of θ̃s M̃(e)〈 j〉. Theorem 2.4 implies j = 0. Formula (4.3) fol-
lows.

If st 6= ts and sts 6= tst , then θsθtθsθt ∼= Ftsts ⊕ θts ⊕ θts by Theorem 3.1.
The same arguments as above show that Ftsts = 0 when restricted to O

p
0 and

that θ̃t θ̃s θ̃t θ̃s ∼= F̃stst ⊕ θ̃ts〈i〉 ⊕ θts〈 j〉 for some i , j ∈ Z. Corollary 2.5 implies
that M̃(e)〈4〉 ⊕ M̃(e)〈2〉 ⊕ M̃(e)〈2〉 occurs as a submodule in θ̃t θ̃s θ̃t θ̃s M̃(e). Since
P̃(sts)〈1〉 is a submodule of θ̃t P(sts) (hence of P̃(stst)), the module M̃(e)〈4〉 is a
submodule of P(tsts). Theorem 2.4 shows that M̃(e)〈2〉 is a submodule of θ̃t θ̃s M̃(e).
We get i = j = 0. The theorem follows.

For W of type A and N ∈ N>0, the N -generalised Temperley-Lieb algebra HN is
defined as H /IN , where IN is the Z[v, v−1

]-span of all (Kazhdan-Lusztig) basis
elements indexed by tableaux with more than N columns (see [H], [Li], [BK]). In
particular, H1 ∼= Z[v, v−1

] and H2 is the ordinary Temperley-Lieb algebra.

PROPOSITION 4.2
Let n > 1. Let p = pS ⊂ sln+1 be a parabolic subalgebra and N ≥ n− |S| + 1. Then
the corresponding 8p from (3.1) factors through HN .

Proof
This is just a reformulation of, say, [H, Section 3], [M], or [BK, Theorem 3.1].
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Remark 4.3
• Via (3.1), Proposition 4.2 provides an injection

HN → EndZ[v,v−1]

( ⊕
N pS

)
,

where the sum runs over all S ⊂ π satisfying |S| ≥ n − N + 1 (see [M] or
[H]).

• The description of IN in terms of Kazhdan-Lusztig basis elements (see [H],
[Li]) provides many F ∈ P which become zero after restricting to O

p
0 . In

particular, the case I2 = ({H sts), st 6= ts}) and the relation CsCt Cs = H sts+

Cs imply Theorem 4.1 for type A.
• It is not clear whether the HN have a diagrammatical/topological interpreta-

tion. However, the generalised Temperley-Lieb algebras of types B and D are
known to have a description via decorated tangles (see, e.g., [G]). This might
be of topological interest.

5. Type A: Maximal parabolic subalgebras
In general, an indecomposable projective functor does not stay indecomposable when
restricted to parabolic subcategories (see Example 3.7(c)). However, this section is
devoted to a proof of the following result (conjectured in [BFK]).

THEOREM 5.1 (Indecomposability)
Let n > 1. Let p ⊂ g = sln be a maximal parabolic subalgebra. Let F ∈ P be
indecomposable. Then its restriction to O

p
0 is indecomposable or zero.

For w ∈ W with a reduced expression [w] = si1si2 · . . . · sir , let θ[w] = θsir
θsir−1

·

. . . · θsi1
. If g = sln , then w ∈ W = Sn is braid-avoiding if some (resp., any) reduced

expression does not contain a substring of the form sts with noncommuting simple
reflections s and t . In this case, θ[w] ∈ P is indecomposable (see [BW, Theorem1])
and hence isomorphic to Fw. In particular, it is independent of the chosen reduced
expression.

In the following we study the case g = sln with corresponding category O(sln).
We always consider the Weyl group of sln as generated by si = sαi , 1 ≤ i ≤ n, such
that si s j = s j si if and only if |i− j | > 1. To simplify notation, set Oi (sln) = O(sln)λ,
where λ ∈ h∗ is dominant and integral such that Wλ = {e, si }. For 1 ≤ k ≤ n, let
Sk = π\{αk}, and set S0 = Sn+1 = π . We denote by Ok(sln) the main block of the
corresponding parabolic category O Sk . To make formulas easier, Ok(sln) denotes the
zero category if k < 0 or k > n + 1. We also use the notation Ok

i (sln) for the full
subcategory of Oi (sln) defined by all locally pSk -finite modules. Let θ i

0 : O0(sln) −→

Oi (sln) (resp., θ0
i : O

i (sln) −→ O0(sln)) denote the translation onto/out of the i th
wall, and let θi = θsi denote the translation through the i th wall.
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The following observation simplifies the proof of Theorem 5.1.

LEMMA 5.2
Let n > 1, and let p ⊂ g = sln be a maximal parabolic subalgebra. Let F = Fw ∈P

be indecomposable with w not braid-avoiding. Restriction to O
p
0 gives Fw = 0.

Proof
Let w = b(sts)a be minimal with simple reflections s, t . Then Fw ∈ P is a direct
summand of θ[a]θ[sts]θ[b] ∼= θ[a]Fstsθ[b]⊕θ[a]θsθ[b]. If Fw occurs in the first summand,
then Fw = 0 when restricted to O

p
0 since Fsts becomes zero after restriction (see the

proof of Theorem 4.1). On the other hand, by construction, it cannot occur in the
second summand (see (3.6)) because l(asb) ≤ l(w)− 2. The lemma follows.

The following lemma describes Supp(F) for certain F ∈Pp.

LEMMA 5.3
Let n > 1, and let p ⊂ g = sln be a maximal parabolic subalgebra. Let x ∈ W p and
w ∈ W with reduced expression [w] = si1si2 · . . . · sir .
(1) If i j+1 = i j + 1 for all 1 ≤ j < r or if i j+1 = i j − 1 for all 1 ≤ j < r , then

θ[w]L(x) 6= 0 ⇐⇒ θsi1
L(x) 6= 0 ⇐⇒ x > xsi1 .

(2) If si j sik = sik si j for all 1 ≤ j, k ≤ r , then

θ[w]L(x) 6= 0 ⇐⇒ (xsi j < x for 1 ≤ j ≤ r).

Proof
(1) Let F = θir−1θsir−2

· . . . · θsi1
. The definition of θ[w] and Theorem 4.1 give

0 6= θ[w]L(x)⇒ 0 6= F L(x) = θir−1θir F L(x)⇒ θ[w]L(x) 6= 0.

Inductively, the first equivalence follows. The second is well known (see [J2,
Formulas 4.12(3), 4.13(3)]).

(2) We have already verified the implication from left to right. If x satisfies the
condition on the right-hand side, it is [θ[w]L(x)] = [θsir

· . . . · θsi2
L(x)] +

[θsir
· . . . · θsi2

M] for some module M (see [J2, Formulas 4.12(3), 4.13(3′)]. By
the induction hypothesis, the first summand is nontrivial, and the statement
follows.

PROPOSITION 5.4
Let n > 1. Let pm ⊂ sln be a maximal parabolic subalgebra (1 ≤ m ≤ n). Letw ∈ W
be of the form described in Lemma 5.3(2). The following hold.
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(a) For any x ∈ W p, Fw(Mp(x)) is indecomposable or zero.
(b) The restriction Fw = θ[w] to O

p
0 is indecomposable.

Proof
(a) If xsi j 6∈ W p for some j ∈ {1, 2, . . . , r}, then FwMp(x) = 0. By Proposition 1.5,
we may assume xsi j > x and xsi j ∈ W p for 1 ≤ j ≤ r . In particular, xsi j is braid-
avoiding (see Proposition A.2). Since all the si j are pairwise commuting, the expres-
sion xw is minimal and braid-avoiding as well (see [BW, Lateral Convexity]). Hence,
FwMp(x) is a homomorphic image of FwP(x) ∼= θ[w]θ[x]M(e) ∼= θ[xw]M(e) ∼=
P(xw) (we use [BW, Theorem 1] and Theorem 3.1). In particular, FwMp(x) is inde-
composable.

(b) It remains to check that X = {x ∈ W p
| L(x) ∈ Supp(Fw)} satisfies property

(2) of Theorem 3.9. Assume that there is a decomposition X = X1 ∪ X2 such that
Comp(X1)∩Comp(X2)∩X = ∅. We first consider the special case r = 1. Let i1 = i ;
hence, X = {x ∈ W p, xsi < x}. With the notation of Proposition A.2, the elements
of X are exactly those containing i but not i − 1. Let x = k1 F k2 F · · · F km ∈ X
with k j = i . We consider x j

o = (i + j − 1) F (i + j − 2) F · · · F (i + 1) Fi . It is
not difficult to see that there exists a chain x j

o , x j
1 , . . . , x j

p = x , where x j
l ∈ X and

l(x j
l+1) = l(x j

l )+ 1 for 0 ≤ l < p. Therefore, x j
o ∈ Xa ⇒ x ∈ Xa for a = 1, 2.

We choose j minimal such that x j
o 6= e. Let x j

o ∈ X1, say. We show that X ⊂ X1

and hence that X2 = ∅. If i + j − 1 = n, then j is also maximal such that x j
o 6= e

and we are done. Otherwise, let y = (i + j) F (i + j − 1) F · · · F (i + 2) F i ; that is,
let y ∈ X1 and x j+1

o = ysi+1si . On the other hand, we have

[θiθi+1 Mp(y)] = [Mp(x j+1
o )] + [Mp(ysi+1)] + [Mp(y)] + [M(ysi )].

In particular,

0 6= [θi+iθi Pp(y) : Mp(y)] = [Pp(x j+1
o ) : Mp(y)] = [Mp(y) : L(x j+1

o )].

(Note that the first equality uses the fact that x j+1
o is braid-avoiding and [BW, Theo-

rem 1].) Therefore, x j+1
o ∈ X1 because y ∈ X1. Inductively, all x j

o are contained in
X1. Hence X ⊆ X1. This means that the assumptions of Theorem 3.9 are satisfied,
and Fw = θi is indecomposable.

Let us now consider the general case. By Lemma 5.3, L(x) ∈ X if and only
if xsk < x for all simple reflections sk occurring in a reduced expression of w. In
the notation of Proposition A.2, the expression for x contains all such k but none of
the k − 1. Arguments similar to those above show that a nontrivial decomposition
X = X1 ∪ X2 such that Comp(X1) ∩ Comb(X2) ∩ X = ∅ does not exist.

We omit most details, but we do not omit them completely. We assume i j > i j ′
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if j < j ′. For J a sequence of numbers n ≥ j1 > j2 > · · · > jk ≥ m, let

X J
=

{
x = x1 F x2 F · · · F xm ∈ X

∣∣ x jk = ik, 1 ≤ k ≤ r
}

be the elements of X , where the important numbers occur exactly at the places given
by J . Again, it is easy to see from Proposition A.2 that X J is a finite set of the form
x J

0 < x J
1 < · · · < x J

|X J |
, so that l(x J

b+1) = l(x J
b ) + 1 for 0 ≤ b < |X J

|. This

implies, in particular, x J
0 ∈ X1 ⇐⇒ x J

b ∈ X1 for any b. We fix now some J
such that X J

6= ∅. Assume jl+1 6= jl + 1 for some l. Without loss of generality let
x jl+1 = il − 2. We consider the following two cases.
(I) Assume that there exists x ∈ X J of the form x = x1 F · · · F xm such that

x jl−1 > il + 1. Then y = xsil+1sil−1sil ∈ X J ′ , where j ′l = jl + 1, and j ′i = ji
otherwise. On the other hand, [θk Mp(x) : Mp(x)] 6= 0 for k = il+1, il−1, il .
Hence, [θil θil−1θil+1 Mp(x) : Mp(x)] 6= 0. Since x , y are braid-avoiding,
we get (see [BW]) Pp(y) ∼= θir θir−1θir+1 Pp(x). In particular, 0 6= [Pp(y) :
Mp(x)] = [Mp(x) : L(y)]. We have that if x ∈ X J , y ∈ X J ′ , then x ∈
X1 ⇐⇒ y ∈ X1.

(II) Let z be minimal such that xi = xi+1 + 1 for z ≤ i ≤ jl . Let x ′ = s jz+1s jz ·

. . . · s jl+2. Note that xx ′ ∈ X J and y = xx ′s jl+1s jl−1s jl ∈ X J ′ , as above.
Direct calculations give [θ[x ′]Mp(x) : Mp(xx ′)] 6= 0. Applying the earlier
arguments to xx ′ gives [Pp(y) : Mp(xx ′)] = [Mp(xx ′) : L(y)] 6= 0.

Inductively, it follows that X i = ∅ for some i ∈ {1, 2}. Therefore, the assumptions of
Theorem 3.9 are satisfied. The proposition follows.

LEMMA 5.5
Let g = sln , and let e 6= w ∈ W be braid-avoiding. Then there exists a reduced
expression w = si1si2 · . . . · sir such that (at least) one of the following properties is
satisfied:
(i) si j sik = sik si j for 1 ≤ j, k ≤ r ;
(ii) si1si2 6= si2si1;
(iii) sir sir−1 6= sir−1sir .

Proof
Write w = d1d2 · · · dn minimal such that d1d2 · · · dm ∈ 〈s1, s2, . . . , sm〉 and dm ∈

〈s1, s2, . . . , sm−1〉\〈s1, s2, . . . , sm〉 is a distinguished coset representative of minimal
length for any m ∈ {1, 2, . . . , n}. By Proposition A.2, dm = smsm−1 · . . . · sm−k

for some k or dm = e. Pick (if it exists) j ∈ {1, 2, . . . , n} minimal such that d j ,
d j+1 6= e. By assumption, d j−1 = e, and hence, we get a minimal expression w =
ds j s j+1w

′d j+2 · · · dn for some w′ ∈ W and d ∈ 〈s1, s2, . . . , s j−2〉. Therefore, w =
s j s j+1x for some x ∈ W , and w satisfies (2).
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If j as above does not exist, we proceed by induction on the length of w. Without
loss of generality, let dn 6= e. If l(dn) > 1, then obviously (iii) holds; otherwise, dn =

sn (and dn−1 = e), and therefore, w = xsn = snx for some x ∈ 〈s1, s2, . . . , sn−2〉.
Certainly, x is braid-avoiding. The lemma follows from the induction hypothesis.

Proof of Theorem 5.1
By Lemma 5.2, we may assumew ∈ W to be braid-avoiding. Ifw = e or ifw satisfies
the assumptions of Proposition 5.4, we are done. Otherwise, we prove the statement
by induction on the length of w. Let us assume that w has a minimal expression of
the form w = w′ts with noncommuting s, t ∈ S ; in particular, Fw ∼= θsθt Fw′ . Let
Fw ∼= G1⊕G2 for some nontrivial Gi when restricted to O

p
0 . Considered as a functor

on O
p
0 , we have θt Fw ∼= θtθsθt Fw′ ∼= θt Fw′ ∼= Fw′t ; hence, it is indecomposable by

the induction hypothesis. This implies θt Gi = 0 for i = 1, say. Note that θs Fw ∼=
Fw ⊕ Fw. We claim that

θs G1 ∼= G1 ⊕ H (5.1)

for some H ∈ Pp such that
[
[H ]

]
=

[
[G1]

]
. Let us believe this for a moment.

Then θsθtθs G1 ∼= θs G1 ∼= G1 ⊕ H 6= 0. Hence, θtθs G1 6= 0. On the other hand,[
[θtθs G1]

]
=

[
[θt (G1 ⊕ G1)]

]
. Therefore, θt G1 6= 0. This gives a contradiction. To

prove (5.1), we fix an embedding i : G1 → Fw together with a split j and consider
the diagram

G1 i
//

α

��

Fw
jss

β

��
θs G1

θs i // θs Fwθs jll

β ′

UU

The vertical maps α and β are the adjunction morphisms, so the inner diagram com-
mutes. The isomorphism θ2

s
∼= θs ⊕ θs provides a split β ′ of β. The composition

φ := j ◦β ′ ◦ θs i is then a split of α because φ ◦α = j ◦β ′ ◦ θs i ◦α = j ◦β ′ ◦β ◦ i =
j ◦ i = id. This gives an isomorphism as in (5.1) for some H ∈ Pp. Let Q ∈ O

p
0

be projective; then G1(Q) ∼=
⊕

x∈Wp P(x)αx for some αx ∈ N. Moreover, αx = 0
if xs > x . If x , xs ∈ W p such that x > xs, then θs Pp(x) ∼= Pp(x) ⊕ Pp(x).
(Note that θs P(x) is projective and that its head is isomorphic to L(x) ⊕ L(x).) On
the other hand, αx 6= 0 implies x , xs ∈ W p (as in the proof of Proposition 1.5).
We get [θs G1(Q)] = [(G1 ⊕ G1)(Q)] for any projective object Q ∈ O

p
0 ; hence,[

[θs G1]
]
=

[
[G1 ⊕ G1]

]
. The claim follows.

By Lemma 5.5, we are left with the case where w = tsw′ with noncommuting s,
t ∈ S . Arguments similar to those above prove the indecomposability.

Remark 5.6
Applying the same induction arguments as in the proof of Theorem 5.1 shows the in-
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decomposability of F(Mp(x)) for any indecomposable F ∈ P and x ∈ W p. More-
over, using only the description from Proposition A.2, one can easily deduce that with
the assumptions of Lemma 5.3(1), θ[w]Mp(x) ∼= θsi1

Mp(y) for some y ∈ W p. So the
indecomposability of Fw in this case follows directly from the proof of Proposition 5.4
using Lemma 5.3(1).

THEOREM 5.7
Let p ⊂ sln be maximal parabolic. Then Conjecture 3.3 holds, and we have equality
in (3.2).

Proof
Let F =

⊕
w∈W (Fw |Op

o
)αw and G =

⊕
w∈W (Fw |Op

o
)βw such that

[
[F]

]
=

[
[G]

]
. By

Lemma 5.2, we may assume αw = 0 = βw for non-braid-avoiding w. The specialisa-
tion of H /T L at v = 1 is semisimple (see, e.g., [W]); hence, N

p
v=1
∼=

⊕r
i=1 L i for

some simple H /(T L)v=1-modules L i . Since (see [W]) AnnH /(T L)v=1 L i = C{H x |

x ∈ W [i]} for some W [i] ⊂ W , we get αw = βw for all w /∈ I :=
⋂r

i=1 W [i]. Hence,
F ∼=

⊕
w/∈I (F|Op

o
)αw ∼= G. On the other hand, it also shows that # Ind(g, p) = |{Hw |

w /∈ I } = R(g, p). The theorem follows.

6. The Temperley-Lieb 2-category
In this section we describe a functor from the Temperley-Lieb category into a cate-
gory given by projective functors with their natural transformations. Let O(sln)

max
=⊕n

k=0 Ok(sln). In [BFK], the authors consider functors⋂
i,n

: O(sln)
max
−→ O(sln−2)

max,

⋃
i,n

: O(sln)
max
−→ O(sln+2)

max,

which are given on each summand as follows. Let

k⋂
i,n

: Ok(sln) −→ Ok−1(sln−2),

k⋃
i,n

: Ok(sln) −→ Ok+1(sln+2)
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be defined as

k⋂
i,n

= ζn,kθ
1
0 θ2θ3 · · · θi ,

k⋃
i,n

= θiθi−1 · · · θ2θ
0
1 ζ
−1
n+2,k,

for any 0 < k ≤ n (and 0 ≤ k < n, resp.) and zero otherwise. Here, ζn,k :

Ok
1 (sln)→̃Ok−1(sln−2) denotes the Enright-Shelton equivalence (see [ES, Chapter

11]). Let ζn =
⊕

k ζn,k . The next statement follows directly from the definitions.

LEMMA 6.1
There are adjoint pairs of functors

( ⋂
i,n,

⋃
i,n−2

)
and

( ⋃
i,n−2,

⋂
i,n

)
.

We prove the following result conjectured in [BFK].

THEOREM 6.2
Let j ≥ i . There are isomorphisms of functors⋂

i+1,n+2

⋃
i,n

∼= ID, (6.1)

⋂
i,n+2

⋃
i+1,n

∼= ID, (6.2)

⋂
j,n

⋂
i,n+2

∼=

⋂
i,n

⋂
j+2,n+2

, (6.3)

⋃
j,n−2

⋂
i,n

∼=

⋂
i,n+2

⋃
j+2,n

, (6.4)

⋃
i,n−2

⋂
j,n

∼=

⋂
j+2,n+2

⋃
i,n

, (6.5)

⋃
i,n+2

⋃
j,n

∼=

⋃
j+2,n+2

⋃
i,n

, (6.6)

⋂
i,n+2

⋃
i,n

∼= ID⊕ ID . (6.7)

Proof
By adjointness (see Lemma 6.1), it is enough to prove (6.1), (6.2), (6.3), (6.4), and
(6.7). As already mentioned in [BFK], the isomorphisms (6.1) and (6.2) follow from
the definitions of the functors and [BFK, Lemma 4]. The formula (6.7) can be verified
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as follows: ⋂
i,n+2

⋃
i,n

= ζn+2θ
1
0 θ2 · · · θi−2(θi−1(θiθi )θi−1)θi−2 · · · θ2θ

0
1 ζ
−1
n+2

∼= ζn+2θ
1
0 θ2θ

0
1 ⊕ ζn+2θ

1
0 θ2θ

0
1 ζ
−1
n+2

∼= ID⊕ ID .

The first isomorphism follows from θ2
i
∼= θi ⊕ θi and relation (4.3). The second

isomorphism follows from [BFK, Lemma 4]. The rest of the section is devoted to
proving formulas (6.3) and (6.4) (see Propositions 6.6 and 6.4).

LEMMA 6.3
Let j ≥ i . Then⋃

j,n−2

⋂
i,n

∼= θ jθ j−1 · · · θi and
⋃

i,n−2

⋂
j,n

∼= θiθi+1 · · · θ j .

Proof
Using again Theorem 4.1, we get⋃

j,n−2

⋂
i,n

∼= θ jθ j−1 · · · θ2θ
0
1 ζ
−1
n ζnθ

1
0 θ2θ3 · · · θi

∼= θ jθ j−1 · · · θ2θ1θ2 · · · θi

∼= θ jθ j−1 · · · θi ;⋃
i,n−2

⋂
j,n

∼= θiθi−1 · · · θ2θ
0
1 ζ
−1
n ζnθ

1
0 θ2θ3 · · · θ j

∼= θiθi−1 · · · θ2θ1θ2 · · · θ j

∼= θiθi+1 · · · θ j .

PROPOSITION 6.4
Let j ≥ i . There exists an isomorphism⋃

j,n−2

⋂
i,n

∼=

⋂
i,n+2

⋃
j+2,n

.

Proof
First we claim ⋂

j,n+2

⋃
j+2,n

⋂
i,n+2

⋃
j+1,n

∼=

⋂
i,n+2

⋃
j+2,n

. (6.8)
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By Lemma 6.3 and Theorem 4.1, we are able to handle the left-hand side of the for-
mula:

LHS ∼= ζn+2θ
1
0 θ2θ3 · · · θ j (θ j+2θ j+1 · · · θi )

⋃
j+1,n

∼= ζn+2θ
1
0 θ j+2θ2θ3 · · · θi−1(θiθi+1 · · · θ jθ j+1θ j · · · θi )

⋃
j+1,n

∼= ζn+2θ
1
0 θ j+2θ2θ3 · · · θi−1(θi )(θ j+1θ j · · · θ2θ

0
1 ζ
−1
n+2)

∼= ζn+2θ
1
0 θ2θ3 · · · θi−1(θi )(θ j+2θ j+1θ j · · · θ2θ

0
1 ζ
−1
n+2).

The last line is by definition the right-hand side of formula (6.8). We now prove the
statement by induction on a = j − i . By induction hypothesis and Lemma 6.3, we get⋂

i,n+2

⋃
j+2,n

∼=

⋂
j,n+2

⋃
j+2,n

⋂
i,n+2

⋃
j+1,n

∼=

⋃
j,n−2

⋂
j,n

⋃
j−1,n−2

⋂
i,n

∼= θ j (θ j−1 · · · θi )

∼=

⋃
j,n−2

⋂
i,n

.

It remains to check the starting point of the induction, that is,
⋂

i,n+2
⋃

i+2,n
∼= θi .

We first note that the functor in question is a projective functor. To see this, consider
the construction of ζn,k (see [ES]). It is a composite of four functors3i . Two functors
(i = 1, 3) are given by tensoring with a finite-dimensional representation, and two
functors are given by compositions of parabolic induction and Zuckerman’s functor.
In particular, if E is a finite-dimensional g-module, then ζn(• ⊗ E) ∼= (• ⊗ E ′)ζn for
some finite-dimensional module E ′. That means that projective functors are sent to
projective functors via the equivalence.

Direct calculations (using the explicit formula [ES, Section 11]) show that[ ⋂
i,n+2

⋃
j+2,n

(
Mp(e)

)]
= [Mp(e)⊕ Mp(si )]

if p = pi and zero otherwise. Hence, the projective functor
⋂

i,n+2
⋃

j+2,n contains
θi as a direct summand.

Hence, it is sufficient to show that
⋂

i,n+2
⋃

j+2,n(M
p(x)) has a generalised

Verma flag whose length is equal to the length of a generalised Verma flag of
θi (Mp(x)) for any x ∈ W p. We claim that

⋂
i,n+2

⋃
i+2,n Mp(λ) has a generalised

Verma flag of length 2 or 0 for any Mp
∈ O(sln)

max; equivalently, θ1
0 θi+2θ2θ

0
1 Mp(λ)
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has such a flag for any Mp(λ) ∈ O1(sln+2)
max. Since

θ0
1 θ

1
0 θi+2θ2θ

0
1 θ

1
0 Mp(x) ∼= θi+2θ1θ2θ1 Mp(x) ∼= θi+2θ1 Mp(x)

always has a Verma flag of length 4 or 0, the claim follows (see [J2, Formulas 4.12(2),
4.13(1)]). To get an isomorphism

⋂
i,n+2

⋃
j+2,n

∼= θi , it is therefore enough to show
that ⋂

i,n+2

⋃
j+2,n

Mp(λ) 6= 0

implies θi Mp(λ) 6= 0 for any parabolic Verma module Mp(λ).
Since ζ−1

n,k is an equivalence, it induces a natural map φ such that ζ−1
n,k L(x) ∼=

L(φ(x)). There is an explicit formula in [ES, Proposition 11.2], namely, φ(x) = wx�r
for a certain w ∈ W (depending on k) and r = snsn−1 · . . . · s2. (The symbol x� means
that we have to renumber the indices i  i + 1 in a reduced expression of x .) In
particular, xsi is a distinguished coset representative if and only if

w
(
(xsi )

�)
r = (wx�r)r−1(si )

�r = wx�r(si+1)
�
= wx�rsi+2

is so. On the other hand,⋂
i,n+2

⋃
j+2,n

(
Mp(x)

)
∼= ζnθ

1
0 θi+2θ2θ

0
1 ζ
−1
n+2

(
Mp(x)

)
6= 0

implies θi+2 M(φ(x)) 6= 0. Therefore, we get⋂
i,n+2

⋃
j+2,n

Mp(λ) 6= 0⇒ θi Mp(λ) 6= 0.

The theorem follows.

LEMMA 6.5
Let j ≥ i . There are isomorphisms of functors⋃

i,n−2

⋂
j,n

∼=

⋂
j+2,n+2

⋃
i,n

, (6.9)

⋃
j+2,n

⋃
i,n−2

⋂
i,n

⋂
j+2,n+2

∼= θiθ j+2, (6.10)

⋃
j+2,n

⋃
i,n−2

⋂
j,n

⋂
i,n+2

∼= θiθ j+2. (6.11)

Proof
Formula (6.9) is clear since the adjoint functors are isomorphic (see Lemma 6.1 and
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Proposition 6.4). Therefore, with Lemma 6.3 we get⋃
j+2,n

( ⋃
i,n−2

⋂
j,n

) ⋂
i,n+2

∼=

⋃
j+2,n

⋂
j+2,n+2

⋃
i,n

⋂
i,n+2

∼= θ j+2θi .

This shows formula (6.11). Proposition 6.4, Lemma 6.3, and Theorem 4.1 imply⋃
j+2,n

( ⋃
i,n−2

⋂
i,n

) ⋂
j+2,n+2

∼=

⋃
j+2,n

⋂
i,n+2

⋃
i+2,n

⋂
j+2,n+2

∼= (θ j+2θ j+1 · · · θi )(θi+2θi+3 · · · θ j+2)

∼= θ j+2θ j+1 · · · θi+2θi+1θi+2 · · · θ j+2θi

∼= θ j+2θi .

This proves formula (6.10).

Finally, we can do the last step of proving Theorem 6.2.

PROPOSITION 6.6
Let j ≥ i . There exists an isomorphism of functors⋂

j,n

⋂
i,n+2

∼=

⋂
i,n

⋂
j+2,n+2

.

Proof
Let F =

⋂
i,n

⋂
j+2,n+2

⋃
j+2,n

⋃
i,n−2. Applying relation (6.7) twice, we get F ∼=⊕2

m=1
⋂

i,n
⋃

i,n−2
∼=

⊕4
m=1 ID. Lemma 6.5 implies

F
⋂
i,n

⋂
j+2,n+2

∼=

⋂
i,n

⋂
j+2,n+2

θiθ j+2 ∼= F
⋂
j,n

⋂
i,n+2

.

In other words,
4⊕

l=1

⋂
i,n

⋂
j+2,n+2

∼=

4⊕
l=1

⋂
j,n

⋂
i,n+2

.

The proposition follows from Corollary 3.5.

As a preparation for the next section, we prove the following result. (It contains, in
fact, a refinement of formula (6.7).)

PROPOSITION 6.7
(1) The functors

⋂
i,n and

⋃
i,n are gradable.
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(2) There are graded lifts
⋂̃

i,n ,
⋃̃

i,n with isomorphisms of graded functors (where
j ≥ i) ⋃̃

j,n−2

⋂̃
i,n

∼= θ̃ j θ̃ j−1 · · · θ̃i ,

⋃̃
i,n−2

⋂̃
j,n

∼= θ̃i θ̃i+1 · · · θ̃ j ,

⋂̃
i,n+2

⋃̃
i,n

∼= ID〈1〉 ⊕ ID〈−1〉.

With these choices, the remaining isomorphisms of Theorem 6.2 are compati-
ble with the grading.

Proof
(1) Let G be one of the functors in question. In [Ry], it is proved that the Enright-
Shelton equivalence is compatible with the grading. All the other functors occurring
in the definition of G are gradable by the results of [St]. This defines graded lifts

⋂̃
i,n

and
⋃̃

i,n . In the following, concerning the notation, we do not distinguish between
the Enright-Shelton equivalence and its graded lift.

(2) The first two isomorphisms follow from the proofs of Lemma 6.3 and Theo-
rem 4.1 since we have canonically θ̃0

1 θ̃
1
0
∼= θ̃1 (see [St, Corollary 8.3]). To get the third

isomorphism, we first note that
⋂̃

i,n
⋃̃

i,n−2
∼= ID〈 j〉 ⊕ ID〈k〉 for certain j , k ∈ Z.

Therefore,

θ̃i 〈 j〉 ⊕ θ̃i 〈k〉 ∼=
⋃̃

i,n−2

⋂̃
i,n

〈 j〉 ⊕
⋃̃

i,n−2

⋂̃
i,n

〈k〉

∼=

⋃̃
i,n−2

(ID〈 j〉 ⊕ ID〈k〉)
⋂̃
i,n

∼=

⋃̃
i,n−2

⋂̃
i,n

⋃̃
i,n−2

⋂̃
i,n

∼= (θ̃i )
2 ∼= θ̃i 〈1〉 ⊕ θ̃i 〈−1〉.

(The last isomorphism is given by Theorem 4.1.) This implies { j, k} = {−1, 1} and
provides the third isomorphism. We have to check the compatibility of (6.1). Since
a graded lift of an indecomposable exact functor is unique up to isomorphism and
grading shift (see [St, Lemma 1.5]), we may assume

F = (ζn,k θ̃
1
0 θ̃2 · · · θ̃i+1)(θ̃i · · · θ̃2θ̃

0
1 ζ
−1
n,k )
∼= ID〈l〉
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for some l ∈ Z. Using again Theorem 4.1 and the isomorphism θ̃0
1 θ̃

1
0
∼= θ̃1, we get

θ̃1〈l〉 ∼= θ̃0
1 θ̃

1
0 〈l〉

∼= θ̃1
0 ζ
−1
n,k Fζn,k θ̃

1
0

∼= θ̃1θ̃2 · · · θ̃i+1θ̃i · · · θ̃2θ̃1

∼= θ̃1θ̃2θ̃1 ∼= θ̃1.

The indecomposability of θ1 therefore implies l = 0. The compatibility with the grad-
ing for isomorphism (6.2) can be proved in an analogous way. To see that isomorphism
(6.4) is compatible with the grading, it is by induction sufficient to consider the case
i = j (see formula (6.8) and its proof). Then

⋃̃
i,n−2

⋂̃
i,n
∼= θ̃i is self-adjoint (see

[St, Corollary 8.5]). Assume θ̃i ∼=
⋂̃

i,n+2
⋃̃

i+2,n〈l〉 for some l ∈ Z. The adjointness

properties of θ̃1
0 and θ̃0

1 (see [St, Corollary 8.3]) directly imply that
⋂̃

i,n+2
⋃̃

i+2,n is
self-adjoint; hence, l = 0.

Let us consider (6.6). We fix 0 ≤ k ≤ n. We first claim that the restriction, call it
R, of F =

⋃
i,n+2

⋃
j,n to Ok(sln) is indecomposable. Assume R = F1 ⊕ F2. There

are isomorphisms of functors

F
⋂

j,n+2

⋂
i,n+4

∼=

⋃
i,n+2

⋃
j,n

⋂
j,n+2

⋂
i,n+4

∼=

⋃
i,n+2

⋂
j,n+4

⋃
j+2,n+2

⋂
i,n+4

∼= (θiθi+1 · · · θ j )(θ j+2θ j+1 · · · θi )

∼= (θiθi+1 · · · θ j )(θ j+1 · · · θi )θ j+2

∼= θiθ j+2.

In particular, its restriction to Ok+2(sln+4) is indecomposable; hence,

Fm

k+1⋂
j,n+2

k+2⋂
i,n+4

= 0

for m = 1, say. This implies

F1 ∼= F1

k+1⋂
j,n+2

k+2⋂
i,n+4

k+1⋃
i+1,n+2

k⋃
j+1,n

= 0.

Hence, R is indecomposable; therefore, there exists l ∈ Z such that⋃̃
i,n+2

⋃̃
j,n

∼=

⋃̃
j+2,n+2

⋃̃
i,n

〈l〉.
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Using the graded versions of (6.1) and (6.4), we get isomorphisms⋃̃
j,n

∼=

⋂̃
i+1,n+4

⋃̃
j+2,n+2

⋃̃
i,n

〈l〉

∼=

⋃̃
j,n

⋂̃
i+1,n+2

⋃̃
i,n

〈l〉

∼=

⋃̃
j,n

〈l〉.

Hence, l = 0. The compatibility with the grading of the remaining two isomorphisms
(6.3) and (6.5) then follows easily by adjointness properties.

7. Tangles and knot invariants
Any tangle in R3 has a generic plane projection that is isomorphic to a concatenation
of elementary tangles t1

i , t2
i , t3

i , as depicted below, and the right basic braid t4
i . We

associate now to each tangle diagram a certain complex of projective functors and
prove that this assignment is compatible with concatenation and well defined up to
isomorphism.

We consider Db(Õ(sln)
max), the bounded derived category of the graded version

of O(sln)
max. (More precisely, for 0 ≤ k ≤ n, let Pk

n be a minimal projective generator
of Ok(sln) with endomorphism ring Ak

n equipped with the grading from [BGS] or
[B1]. Then

⊕
k Ok(sln) ∼=

⊕
k mof−Ak

n , and Db(Õ(sln)
max) denotes the bounded

derived category of
⊕

k gmof−Ak
n .)

For an exact endofunctor F of O(sln)
max, we also denote by F its extension to

Db(O(sln)
max). As suggested in [BFK], we associate functors to elementary tangles

as follows:

t1
i :

1 2 i−1 i i+1 i+2 n−1 n

· · · · · ·

 
⋂̃

i,n
: Db(Õ(sln)max)

−→ Db(Õ(sln−2)
max),
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t2
i :

1 2 i−1 i n−1 n

· · · · · ·

 
⋃̃

i,n
: Db(Õ(sln)max)

−→ Db(Õ(sln+2)
max),

t3
i :

1 2 i−1 i i+1 i+2 n−1 n

· · · · · ·

 Ci := Cone(ID〈1〉
adj
→ θ̃i )〈1〉 : Db(Õ(sln)max)

−→ Db(Õ(sln)max).
Note that Ci is the left derived functor of the graded version of the shuffling functor
studied by Irving [I2]. These derived shuffling functors also occur in the context of
tilting complexes (see [R]). Let Ki be the adjoint functor of Ci . The main properties
of these functors are the following (see [MS]).
(P1) They define auto-equivalences of derived categories; that is, CiKi ∼= ID ∼=

KiCi .
(P2) Let w = s1s2 · . . . · sr be a reduced expression. Up to isomorphism, the com-

position Cw = Cs1Cs2 · . . . · Cir is independent of the choice of the reduced
expression.

We associate to the right basic braid t4
i the functor Ki . We call a tangle with m

bottom and n top points an (m, n)-tangle. To a presentation tα of a tangle t as a com-
position of elementary tangles, we associate T (tα), the corresponding composition
of functors. (If t ′ is an (m, n)-tangle and t is an (n, n′)-tangle, the composition t t ′ is
given by putting t above t ′.) We state the main result (see [BFK, Conjecture 4]).

THEOREM 7.1
Let t be an (m, n)-tangle with representations tα , tβ and corresponding functors
T (tα), T (tβ). Then

T (tα) ∼= T (tβ)〈3r〉[r ] : Db(Õ(slm)max)
−→ Db(Õ(sln)max)

for some r ∈ Z. In particular, up to grading and degree shifts, T (tαt ′α′)
∼=

T (tα)T (t ′α′) for any two tangles t , t ′ with representations tα and tα′ , respectively,
so that the concatenation corresponds to the composition of functors.
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Proof
In Theorem 6.2 we proved that for tangles without crossings, T (tα) ∼= T (tβ) if
α ∼= β via isotopies of plane diagrams. It remains to check compatibility with the
isotopies depicted in Figure 1, its vertical flip, and whether the assignment is stable
under Reidemeister moves (see, e.g., [K], [Tu]).

∼
=

∼
=

Figure 1. Tangle isotopies

(I) Addition/removal of a left-twisted curl. Using Proposition 6.7, we get isomor-
phisms

T (t1
i,nt3

i,n) =
⋂̃
i,n

◦ Ci,n ∼= Cone
(⋂̃

i,n

〈1〉
adj
−→

⋂̃
i,n

θ̃i

)
〈1〉

∼= Cone
(⋂̃

i,n

〈1〉
adj
−→

⋂̃
i,n

〈1〉 ⊕
⋂̃
i,n

〈−1〉
)
〈1〉

∼=

⋂̃
i,n

〈−1〉〈1〉

∼= T (t1
i,n).

(II) Addition/removal of a right-twisted curl. We have

T (t1
i,nt4

i,n) =
⋂̃
i,n

◦Ki,n〈−1〉 ∼= Cone
(⋂̃

i,n

θ̃i
adj
−→

⋂̃
i,n

〈−1〉
)
〈−1〉

∼=

⋂̃
i,n

〈1〉〈−1〉

∼= T (t1
i,n).

(III) Tangency moves.

T (t3
i,nt4

i,n) = CiKi ∼= ID and T (t4
i,nt3

i,n) = KiCi ∼= ID

by property (P1).
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(IV) Triple point move. We have T (t3
i,nt3

i+1,nt3
i,n)
∼= T (t3

i+1,nt3
i,nt3

i+1,n) by prop-
erty (P2) and therefore also T (t4

i,nt4
i+1,nt4

i,n)
∼= T (t4

i+1,nt4
i,nt4

i+1,n) by property
(P1).

(V) Height shifting. Property (P2) implies C jCi ∼= CiC j and implies also isomor-
phisms such as K jCi ∼= CiK j if |i − j | ≥ 2 by property (P1).

To see compatibility with Figure 1, we recall the equivalence

Õ(sln)
max ∼=

⊕
k

gmof−Ak
n .

The functors Ci and Ki are given by the tilting complexes (ID〈1〉
adj
−→ θi )〈1〉 and

(θi
adj
−→ ID〈−1〉)〈−1〉, respectively (see [R], [MS]). Let us consider the first image

from Figure 1. By (6.1) and (6.2), it is sufficient to verify Ki θ̃i+1 ∼= Ci+1θ̃i θ̃i+1 up to
shifts. The left-hand side is described by tensoring with the tilting complex T given
by

(T0 = θ̃i θ̃i+1

f :=adjθ̃i+1
−−−−−−→ θ̃i+1〈−1〉 = T−1)〈−1〉,

whereas the right-hand side is given by tensoring with G defined as

(G1 = θiθi+1〈1〉
g:=adjθ̃i θ̃i+1
−−−−−−−→ G0 = θ̃i+1θ̃i θ̃i+1)〈1〉.

We claim that (with Theorem 4.1) T〈3〉[1] ∼= G. To avoid explicit calculations, let
us consider for a moment the translation functors as endofunctors of gmof−A, the
graded version of O0. The isomorphism θ̃i+1θ̃i θ̃i+1 ∼= F̃si+1si si+1 ⊕ θ̃i+1 gives a
natural transformation p : θ̃i+1θ̃i θ̃i+1 → θ̃i+1, homogeneous of degree zero. Us-
ing Corollary 8.8, which is proved later, we get that R = Hom(θ̃i θ̃i+1, θ̃i+1) ∼=

Hom(θ̃i+1θ̃i θ̃i+1, ID) is strictly positively graded and R1 ∼= C. Hence, g ◦ p = λ · f
for some λ ∈ C. Restricting to the parabolic categories, p becomes an isomorphism
(see Theorem 4.1), and the maps λ−1

· id and p define the required isomorphism.
Compatibility with the second image in Figure 1 and the vertically flipped images is
proved in an analogous way. In any case, we get an isomorphism up to a shift 〈3〉[1].
(Compatibility with the vertically flipped images follows also by adjointness proper-
ties.)

Remark 7.2 (Oriented tangles)
The Z-indeterminacy in Theorem 7.1 can be removed by working with oriented tan-
gles (an analogy to the approach in [Kh2]). For this we assign to the right basic braid
t4
i the functor Ki 〈3〉[1], and then for any representation tα of a tangle t in terms of

elementary tangles, we have a corresponding composition of functors, say, T̂ (tα).
Now, any oriented tangle t̃ can be presented as a concatenation t̃α of elementary
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oriented tangles. Assume t̃α = tα after forgetting the orientation. Then we define
Tor (t̃α) = T̂ (α̃)〈−3p〉[−p], where p denotes the number of positively oriented
crossings (see [Kh1, Figure 49]). Using Theorem 7.1 and the relations in [Tu], one
easily checks that the functor Tor (t̃α) (now up to isomorphism!) does not depend on
the chosen representation t̃α . Hence, it defines an invariant of oriented tangles.

Remark 7.3 (Kauffman bracket and Jones polynomial)

If we renormalise by taking Ci := Cone(ID〈1〉
adj
→ θ̃i ) and Ki := C−1

i [1]〈1〉, then
we have the following equalities in the Grothendieck group:

[⋂̃
i,n+2

⋃̃
i,n

]
= (v +

v−1)[ID], [Ci ] = [θ̃i ] − v[ID], and [Ki ] = [ID] − v[θ̃i ]. These can be considered as
Kauffman brackets in the normalisation of [Kh1]. Given a tangle t with c j crossings
of type t j

i for j = 3, 4, we can define K (t) :=
[
T (t)〈c4 − 2c3〉[c3]

]
. Then K (t)

satisfies the skein relations for the scaled Kauffman bracket (as in [Kh1]), which is,
up to a normalisation, the Jones polynomial.

Remark 7.4
Using the main result of [Ry], that translation and Zuckerman’s functors are Koszul
dual to each other, [BFK, Conjecture 1] follows directly. On the other hand, it is
not clear if one really needs Ryom-Hansen’s result to prove the conjecture. All our
arguments can easily be transferred to the singular case with one exception. It does
not seem to be obvious how to translate the starting point for the induction in the proof
of Proposition 6.4.

8. Cobordisms and natural transformations
To each tangle, hence in particular to a closed loop/circle, we assign a functor. The
goal of this section now is to describe a functor from the category C OB of 2-
cobordisms into a category given by projective functors. The objects of C OB are
disjoint unions of labelled oriented closed one-dimensional manifolds, that is, a dis-
joint union of labelled oriented circles. (We also allow the empty set, i.e., no circle.)
A surface between n oriented circles n and m oriented circles m is a surface S with an
orientation-preserving isomorphism φS between the boundary δS of S and the union
nr
tm, where nr denotes the manifold n but with reversed orientation. Two surfaces

S and T between n and m are equivalent if there is an isomorphism of surfaces (resp.,
a diffeomorphism) ψ : S→̃T such that the following diagram commutes:

δS
φS //

ψ|δS

��

nr
tm

δT
φT

66nnnnnnnnnnnnn
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A morphism 6 : n → m in C OB is an equivalence class of surfaces S : n → m
between n and m. The morphisms in C OB are generated by gluing copies of the six
basic surfaces depicted in Figure 2 subject to certain relations. For details we refer to
[A, Section 4].

2

2

S S
1

1

S
0

1

S
2

1
S

2

1

S
1

0

S
2

1
S

1

2
S

1

0

S
0

1
S

2

2
S

1

1

Figure 2. Basic cobordisms

8.1. Basic cobordisms
We fix n ∈ N and write ζn+2 = ζ . Recall that we assigned to an occurring circle the
composition ⋂

i,n+2

⋃
i,n

= (ζ θ1
0 θ2 · · · θi )(θiθi−1 · · · θ2θ

0
1 ζ
−1). (8.1)

Since this is (up to isomorphism) independent of i , we choose i = 2 and set G = ζθ1
0 ,

F = θ0
1 ζ
−1. Note that Gθ2 F ∼= ID and θ2 FGθ2 ∼= θ2θ

0
1 ζ ζ
−1θ1

0 θ2 ∼= θ2θ1θ2 ∼= θ2

as endofunctors on Omax(sln). Let adj : ID → θ2 and adj : θ2 → ID denote the
adjunction morphisms. Since θ̃2θ̃2 ∼= θ̃2〈1〉 ⊕ θ̃2〈−1〉, there are a monomorphism
α̃′ : θ̃2 → θ̃2θ̃2 and also an epimorphism β̃ ′ : θ̃2θ̃2 → θ̃2 of degree −1. Let α′

and β ′ denote the corresponding morphisms of functors after forgetting the grading.
There is an isomorphism of graded functors σ̃ ′ : θ̃2θ̃2θ̃2 ∼= θ̃2〈2〉 ⊕ θ̃2 ⊕ θ̃2 ⊕ θ̃2〈−2〉
obtained by switching the two middle summands. Let σ ′ denote the corresponding
isomorphism after forgetting the grading. To each basic cobordism we assign a natural
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transformation:

8(S2
1) = 1 : θ2θ2

θ2 adjθ2(•)
−−−−−→ θ2θ2θ2,

8(S1
2) = µ : θ2θ2θ2

θ2adjθ2(•)
−−−−−→ θ2θ2,

8(S1
0) = i : θ2

α′
−→ θ2θ2,

8(S0
1) = ε : θ2θ2

β ′

−→ θ2,

8(S2
2) = σ

′
: θ2θ2θ2

σ ′
−→ θ2θ2θ2,

8(S1
1) = id : θ2θ2

id
−→ θ2θ2. (8.2)

If S = S1 t S2 t · · · t Sr is a disjoint union of basic cobordisms Si : mi → ni ,
then 8(S) : (θ2)

m1+m2+···+mr+1
−→ (θ2)

n1+n2+···+nr+1 is inductively defined as the
composite

(θ2)
n1

(
8(S2 t · · · t Sr )

)
◦8(S1)(θ2)

m2+m3+···+mr+1 .

Let Pmax
n denote the category of projective functors on Omax(sln).

8.2. A functor from C OB to the functor category
With the notation above, we get the following result.

THEOREM 8.1 (Cobordisms as natural transformations)
There is a functor CAT = CATn : C OB→Pmax

n given by

m 7−→ G(θ2)
m+1 F

on objects and on disjoint unions of basic morphisms as

CAT(S) = G8(S)F(•).

To make computations easier, we use Soergel’s functor V : O0 −→ C − mof, where
C − mof denotes the category of finitely generated modules over the coinvariant al-
gebra C = S(h)/(S(h)+)W . We recall its main properties, give explicit formulas,
and then prove Theorem 8.1 (for details, see [S1], [S3]). The functor V is exact and
fully faithful on projectives. For a simple reflection s, there is a natural isomorphism
Vθs ∼= C ⊗Cs V, where Cs denotes the invariants of C under s. Note that C is a free
Cs-module. A basis is given by 1 and by X , the coroot corresponding to s.

LEMMA 8.2
The adjunction morphisms correspond under V to the natural transformations given
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by the following morphisms of C-modules:

m N : C ⊗Cs N −→ N , c ⊗ n 7−→ cn,

δN : N −→ C ⊗Cs N , 1⊗ n 7−→ 1⊗ Xn + X ⊗ n,

for c ∈ C , n ∈ N ∈ C −mof.

Proof
The first adjunction morphism is given as the preimage of the identity under the
canonical isomorphism

HomC (C ⊗Cs N , N ) −→ HomCs (N , N ),

f 7−→
(
n 7→ f (1⊗ n)

)
,(

c ⊗ n 7→ c f (n)
)
←− [ f. (8.3)

Hence m N (c ⊗ n) = cn. To prove the second statement, we use the isomorphisms

HomCs (N , N ) ∼= HomCs (N∗, N∗) ∼= HomC (C ⊗Cs N∗, N∗)
9
∼= HomC

(
(C ⊗Cs N )∗, N∗

)
∼= HomC (N ,C ⊗Cs N ).

The second isomorphism is given by (8.3). According to [S3, Lemma 2.9.2], there is
an isomorphism ψ : C ⊗Cs N∗→̃(C ⊗Cs N )∗ of C-modules given by ψ(1⊗ f )(1⊗
n) = 0 andψ(1⊗ f )(X⊗n) = f (n) for f ∈ N∗, n ∈ N . This defines9. All the other
maps are given by duality. Since m N∗(1⊗ f ) = f , we get 9(m N∗)(ψ(1⊗ f )) = f .
On the other hand, δ∗(ψ(1⊗ f )(n)) = ψ(1⊗ f )(δ(n)) = ψ(1⊗ f )(1⊗Xn+X⊗n) =
ψ(1⊗ f )(X ⊗ n) = f (n). This proves, in fact, that δ is the adjunction morphism.

Via V, the isomorphism θsθs ∼= θs ⊕ θs becomes the following.

LEMMA 8.3
There are natural isomorphisms of C-modules

QN : C ⊗Cs C ⊗Cs N −→ C ⊗Cs N ⊕ C ⊗Cs N ,

1⊗ 1⊗ n 7−→ (1⊗ n, 0),

X ⊗ 1⊗ n 7−→ (X ⊗ n, 0),

1⊗ X ⊗ n 7−→ (−X ⊗ n, 1⊗ n),

X ⊗ X ⊗ n 7−→ (−X2
⊗ n, X ⊗ n).

Hence, β ′ corresponds to β = p2 ◦ Q, where p2 denotes the projection onto the
second summand, and α′ corresponds to α = Q−1

◦ i1, where i1 denotes the inclusion
of the first summand.
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Proof
The inverse map is defined by (1 ⊗ n, 0) 7→ 1 ⊗ 1 ⊗ n and (0, 1 ⊗ n) 7→ 1 ⊗ X ⊗
n + X ⊗ 1⊗ n.

The permutation morphism σ becomes under V the following isomorphism.

LEMMA 8.4
There is an isomorphism of functors

σ : C ⊗Cs C ⊗Cs (C ⊗Cs •) −→ C ⊗Cs C ⊗Cs (C ⊗Cs •)

given by σ = Q−1
C⊗Cs (•) ◦ (Q

−1
⊕ Q−1) ◦ (id⊕σ ⊕ id) ◦ (Q⊕ Q) ◦ QC⊗Cs (•), where

σ : (C ⊗Cs N )⊕ (C ⊗Cs N )→̃(C ⊗Cs N )⊕ (C ⊗Cs N ), σ(x, y) = (y, x).

Proof
This follows directly from Lemma 8.3.

Proof of Theorem 8.1
By [A, Proposition 12], we first have to check that 1, µ, ε, i , and σ satisfy formally
the properties of a (co)associative and (co)commutative (co)multiplication, a (co)unit,
and a permutation map. Second, we have to show that θ2µ◦1θ2 = 1◦µ : θ2θ2θ2 −→

θ2θ2θ2.
• Associativity, that is, CAT(S1

2 ◦ (S
1
2 t S1

1)) = CAT(S1
2 ◦ (S

1
1 t S1

2)). It is enough
to verify

adj adjθ2(•)
= adj θ2 adj(•) : (θ2)

2
→ ID .

We claim that this holds even on O0. Let N ∈ C−mof. Let c⊗d⊗n ∈ C⊗Cs C⊗Cs N .
We calculate m ◦ (m ⊗ id)(c ⊗ d ⊗ n) = m(cd ⊗ n) = cdn. On the other hand,
m ◦ (id⊗m)(c ⊗ d ⊗ N ) = m(c ⊗ dn) = cdn. The associativity follows.
• Coassociativity. Since

(δ ⊗ id) ◦ δ(1⊗ n) = δ ⊗ id
(
1⊗ (X ⊗ n)+ X ⊗ (1⊗ n)

)
= 1⊗ X ⊗ X ⊗ n + X ⊗ 1⊗ X ⊗ n

+ 1⊗ X2
⊗ 1⊗ n + X ⊗ X ⊗ 1⊗ n

= 1⊗ 1⊗ X2
⊗ n + 1⊗ X ⊗ X ⊗ n

+ X ⊗ 1⊗ X ⊗ n + X ⊗ X ⊗ 1⊗ n

= id⊗δ(1⊗ X ⊗ n + X ⊗ 1⊗ n)

= (id⊗δ) ◦ δ(1⊗ n),

it follows that CAT((S2
1 t S1

1) ◦ S2
1) = CAT((S1

1 t S2
1) ◦ S2

1).
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• Unit, that is, CAT(S1
2 ◦ (S

1
1 t S1

0)) = CAT(S1
1) = CAT(S1

2 ◦ (S
1
1 ◦ S1

0)). For the
first equality, it is enough to check adjθ2

◦ α′ = id : θ2 → θ2. This, however, is true
since (m ⊗ id) ◦ α(1⊗ n) = (m ⊗ id)(1⊗ 1⊗ n) = 1⊗ n by Lemma 8.3. Similarly,
(id⊗m) ◦ α(1⊗ n) = id⊗m(1⊗ 1⊗ n) = 1⊗ n, proving the second equality.
• Counit. We omit showing explicitly the dual statement for the counit.
• Commutativity, that is, µ ◦ σ ′ = µ. This follows from the commutativity of the

diagram

θ2θ2θ2

θ2adjθ2 ))SSSSSSSSSSSSSSS
σ ′ // θ2θ2θ2

θ2adjθ2
��

θ2θ2 = θ2 ID θ2

or, more generally, from the commutativity of

C ⊗Cs C ⊗Cs (C ⊗Cs N )

id⊗m⊗id ++XXXXXXXXXXXXXXXXXXXXXX
σ // C ⊗Cs C ⊗Cs (C ⊗Cs N )

id⊗m⊗id
��

C ⊗Cs C ⊗Cs ⊗N

Direct calculations using Lemmas 8.3 and 8.4 show that σ(c1 ⊗ c2 ⊗ c3 ⊗ n) =
c1 ⊗ c3 ⊗ c2 ⊗ n for ci ∈ {1, X}, n ∈ N . Therefore,

(id⊗m ⊗ id) ◦ σ(c1 ⊗ c2 ⊗ c3 ⊗ n) = c1 ⊗ c3c2 ⊗ n = c1 ⊗ c2c3 ⊗ n

= id⊗m ⊗ id(c1 ⊗ c2 ⊗ c3 ⊗ n).

The commutativity follows.
• Cocommutativity. This follows from the calculations

σ ◦ (id⊗ δ ⊗ id)(c ⊗ 1⊗ n) = σ(c ⊗ 1⊗ X ⊗ n + c ⊗ X ⊗ 1⊗ n)

= c ⊗ X ⊗ 1⊗ n + c ⊗ 1⊗ X ⊗ n

= (id⊗ δ ⊗ id)(c ⊗ 1⊗ n)

and

σ ◦ (id⊗δ ⊗ id)(c ⊗ X ⊗ n) = σ(c ⊗ X ⊗ X ⊗ n)+ c ⊗ 1⊗ X2
⊗ n

= c ⊗ X ⊗ X ⊗ n + c ⊗ 1⊗ X2
⊗ n

= (id⊗ δ ⊗ id)(c ⊗ 1⊗ n).

• To prove the remaining relation, it is enough to check the commutativity of

θ2θ2θ2
µ=θ2adjθ2 //

1θ2=θ2 adjθ2θ2
��

θ2θ2

1=θ2 adjθ2
��

θ2θ2θ2θ2
θ2µ=θ2θ2adjθ2 // θ2θ2θ2
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or just the commutativity of one of the following diagrams (with arbitrary N ∈ C −
mof):

θ2
adj //

adjθ2
��

ID

adj
��

C ⊗Cs N m //

δC⊗Cs

��

N

δ

��
θ2θ2θ2adj

θ2adj // θ2 C ⊗Cs C ⊗Cs N
id⊗m // C ⊗Cs N

Let 1⊗ n ∈ C ⊗Cs N . Since δ ◦m(1⊗ n) = δ(n) = 1⊗ Xn + X ⊗ n and (id⊗m) ◦
δ)(1⊗ n) = (id⊗m)(1⊗ X ⊗ n + X ⊗ 1⊗ n) = 1⊗ Xn + X ⊗ n, the last diagram
above commutes. This proves θ2µ ◦1θ2(•) = 1 ◦ µ.

Therefore, the assignment of the theorem is well defined and defines a functor as
described.

Remark 8.5 (Gradings and Euler characteristic)
All the occurring functors assigned to closed oriented labelled 1-manifolds are grad-
able. Choosing the standard lifts, by construction the natural transformations assigned
to the basic cobordisms become homogeneous with the degrees deg1̃ = degµ̃ = 1,
deg(ĩ) = deg(ε̃) = −1, degσ̃ ′ = deg id = 0. Let S = S1S2 · · · Sr : n → m be a
surface between two disjoint unions of labelled oriented closed 1-manifolds given as a
product of disjoint unions of surfaces Si (1 ≤ i ≤ r ) from Figure 2 with correspond-
ing natural transformations 8(Si ). Set deg(S) =

∑r
i=1 deg8(Si ). The relations in

[A] directly imply that deg(S) is well defined, that is, constant on equivalence classes.
If χ(S) denotes the Euler characteristic of S, we get

χ(S) = −deg(S).

Remark 8.6
If a surface between two closed oriented 1-manifolds contains a punctured genus >
l(wo) surface, where wo is the longest element in the Weyl group corresponding to
sln , then CATn(S) = 0. To verify this, one has to consider the composition g =
(m ◦ δ)l(wo). Since VP for any projective module P ∈ O0(sln) has a natural grading
(see [S1]), g induces a homogeneous endomorphism of degree (l(wo) · deg(X)) on
C ⊗Cs VP for any P ∈ O0(sln). On the other hand, however, VPi 6= 0 ⇒ l ≤ i ≤
l + l(w0) · (deg(X)) for some l ∈ Z (e.g., by [S1] again).

We finish with a small result describing homomorphisms between translation functors
on the graded version of the main block of O via bimodules over the coinvariant
algebra (see also [B2]). Let C be given the even grading induced from S(h), where
S(h)2 = h. Let x ∈ W with a reduced expression [x] = s1s2 · . . . · sr . Let θ̃[x] =
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θ̃sr · · · θ̃s2 θ̃s1 be considered as an endofunctor of gmof−A. We denote C[x] = C ⊗Csr

C ⊗Csr−1 · · · ⊗Cs2 C ⊗Cs1 • as a functor on graded C-modules.

PROPOSITION 8.7
Let x , w ∈ W with fixed reduced expressions [x] and [w], respectively. There is a
natural isomorphism of graded vector spaces

Hom(θ̃[x], θ̃[w]) ∼= HomC−gmof−C
(
C[x](C)〈−l(x)〉,C[w](C)〈−l(w)〉

)
.

Proof
The results of [S1] give a natural map

8 : Hom(θ̃[x], θ̃[w])→ HomC−gmof
(
C[x]〈−l(x)〉,C[w]〈−l(w)〉

)
,

f 7→ V̂ fVP̃(w0)
,

where V̂ denotes the functor Homgmof−A(P̃(w0), ·) : gmof−A → gmof−C . Since
f is a natural transformation, we have f ◦ C[x](g) = C[w](g) ◦ f for any endo-
morphism g ∈ Endgmof−A(P̃(wo)) = C . Hence, 8( f ) is a morphism of graded
C-bimodules. The morphism8 is injective since any projective object Q ∈ gmof−A
has a copresentation of the form

Q ↪→
⊕
i∈I1

P̃(w0)〈i〉 →
⊕
i∈I2

P̃(w0)〈i〉

for some finite multisets I1, I2. Any homomorphism in the target space of 8 defines
a natural transformation between functors C[x]〈−l(x)〉 and C[w]〈−l(w)〉 on the cat-
egory of graded C-modules. By Soergel’s structure theorem [S1, Struktursatz 9], we
therefore get a natural transformation g between the functors θ̃[x] and θ̃[w] restricted
to projective objects. For arbitrary N ∈ gmof−A, we choose a projective resolu-
tion P•. Since g is a natural transformation, it provides a morphism of resolutions
θ̃[x]P• → θ̃[w]P• inducing a unique morphism gN : θ̃[x]N → θ̃[w]N . By standard
arguments, gN does not depend on the actual choice of the projective resolution, and
these maps define a natural transformation of functors. Hence,8 is surjective, and the
statement of the proposition follows.

We give the following example needed in the proof of Theorem 7.1.

COROLLARY 8.8
Let x = sts = tst for noncommuting simple reflections s and t . Fix [x] = tst . Then
R = Hom(θ̃[x], ID) is strictly positively graded (i.e., Ri = 0 for i ≤ 0) and R1 = C.
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Proof
Direct calculations show that C[x](C) is generated as a C-bimodule by 1⊗ 1⊗ 1⊗ 1
and 1⊗X⊗1⊗1, where X denotes the coroot corresponding to s. Hence, C[x](C)〈−3〉
is generated in degrees −3 and −1. Since C is positively graded with C0 = C, the
statement follows because there is a nontrivial transformation of degree 1 (namely,
p ◦ adjθ̃s θ̃t

occurring in the proof of Theorem 7.1).

A. Appendix. Explicit calculations in Type A
We consider the special example where g = sln and p = pm ∼= slm × sln−m is a
maximal parabolic subalgebra.

Distinguished coset representatives
We first explicitly describe distinguished coset representatives. Let W (n) = 〈s1, . . . ,

sn〉 be the Weyl group of type An .

LEMMA A.1
Let n ≤ 1. Then

W (n)p1 = {e, s1, s1s2, . . . , s1s2 · · · sn}, (A.1)

and all the expressions are reduced.

Proof
The expressions in (A.1) are obviously reduced since no braid relation or commutator
relation can be applied. For n = 1 or n = 2, the assertion is true. Let us assume the
lemma to be true for type An−1. For 2 < j ≤ n, we get

l
(
s j (s1s2 · · · sk)

)
= l(s1s j s2 · · · sk) = 1+ l(s j s2 · · · sk)

> 1+ l(s2 · · · sk) = l(s1s2 · · · sk)

by the induction hypothesis. On the other hand, l(s2(s1s2 · · · sk)) = l(s2s1s2) +

l(s3s4 · · · sk) = 3+ l(s3 · · · sk) = 1+ l(s1s2s3 · · · sk). Hence, the elements of the set
(A.1) are distinguished coset representatives. Since |W (n)p1 | =

|W (n)|
|W (n)p1 |

, the lemma
follows.

Let S(n + 1,m) be the set of all subsets of order m of {0, 1, . . . , n}. We write
i1 F i2 F · · · F ik to denote the element {i1, . . . , ik} ∈ S(n, k) with i1 > i2 > · · · > ik .
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PROPOSITION A.2
Let m ∈ {1, . . . , n}. There is a bijection of sets

9(n,m) : S(n + 1,m) −→ W (n)pm ,

i1 F i2 F · · · F ik 7−→ (smsm+1 · · · si1)(sm−1sm · · · si2) · · · (s1s2 · · · sim ),

(A.2)

where, by definition, s j s j+1 · . . . · sr = e if r < j . All the expressions occurring in the
image of this map are reduced.

We write just w = i1 F i2 F · · · F ik if they correspond via the bijection above. More-
over, we abuse notation and write just i1 F i2 F · · · F il with l < m if s j s j−1 · . . . ·sr = e
for j > l.

Proof
For n = 2, or for n arbitrary but m = 1, the proposition holds by Lemma A.1. Now
let 1 ≤ m < n. We assume that the claim holds for 9(n′,m′) if either n′ < n or
n′ = n and m′ < m. Lemma A.1 successively shows that the occurring expressions
are reduced.

Let

w = (smsm+1 · · · si1)(sm−1sm · · · si2) · · · (s1s2 · · · sim )

= (smsm+1 · · · si1)y = w
′(s1s2 · · · sim ).

To show that w ∈ W pm , we consider two cases.
• For j ∈ {2, 3, . . . , n}\{m}, we have

l(s jw) = l(s jw
′)+ ik = l(w′)+ 1+ ik = l(w)+ 1

by the induction hypothesis.
• For j = 1, by the induction hypothesis,

l(s1w) = l(s1smsm+1 · · · si1)+l(y) = 1+l(smsm+1 · · · si1)+l(y) = 1+l(w).

Hence, all the elements occurring in the image of 9(n,m) are distinguished coset
representatives. The remaining thing we have to prove is the injectivity of the map.
Let us assume 9(n,m)(i1 F · · · F im}) = 9(n,m)( j1 F · · · F jm). Since smax{i1, j1} has
to occur on both sides, we conclude that i1 = j1; hence,

(sm−1sm · · · si2) · · · (s1sn−1 · · · sik ) = (sm−1sm · · · si2) · · · (s1sn−1 · · · sik ).

The same argumentation gives successively i2 = j2, . . . , ik = jk . The theorem fol-
lows.
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