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2-BLOCK SPRINGER FIBERS:
CONVOLUTION ALGEBRAS AND COHERENT SHEAVES

CATHARINA STROPPEL AND BEN WEBSTER

ABSTRACT. For a fixed 2-block Springer fiber, we describe the
structure of its irreducible components and their relation to the
Białynicki-Birula paving, following work of Fung.

We define a convolution algebra structure on the direct sum
of the cohomologies of pairwise intersections of irreducible com-
ponents and closures of Białynicki-Birula cells, and show this is
isomorphic to a generalization of the arc algebra of Khovanov de-
fined by the first author. We investigate the connection of this
algebra to Cautis & Kamnitzer’s recent work on link homology
via coherent sheaves and suggest directions for future research.
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INTRODUCTION

Many important algebras arising in representation theory (Hecke
algebras, universal enveloping algebras, etc.) have a geometric de-
scription based on convolution products.

Besides their intrinsic interest, realizing an algebra in terms of con-
volution allows for a geometric understanding of the representation
theory of that algebra, in particular, the construction of collections
of standard and costandard modules, indicating the existence of an
interesting representation theory along the lines of highest weight
categories or quasi-hereditary algebras. This approach has been ap-
plied with great success to the representation theory of Weyl groups,
Hecke algebras of various flavors and universal enveloping algebras,
as is ably documented in the book of Chriss and Ginzburg [CG97].

In the present paper, we present a construction of a convolution al-
gebra with a somewhat different flavor than the above examples (see
Section 4 for a precise description) associated with 2-block Springer
fibers. This algebra is related to the Ext-algebra of certain coherent
sheaves on a resolution of the corresponding Slodowy slice and to a
graphically defined algebra, called the arc algebra H•, introduced by
Khovanov [Kho00]. In fact, this arc algebra will be related to the
special case where the two Jordan blocks of N have the same size,
whereas the general case needs some more general version of the arc
algebra as introduced in [Str06] and [CK06]. In general, the struc-
ture of irreducible components of Springer fibers is not sufficiently
well understood to generalize this construction, though significant
progress on the structure of components and their intersections has
been achieved in the two column case studied in [MP06], in addition
to the two row case studied here.

Khovanov used his arc algebra to define a categorification of the
Jones polynomial ([Kho00]). A representation theoretic categorifica-
tion of the Jones polynomial was obtained in [Str05]. It is known
that after restriction to a suitable subcategory, this categorification
agrees with Khovanov’s ([Str06], [BS08a], [BS08c]). On the other
hand, Cautis and Kamnitzer ([CK08]) used the geometry of spaces
connected with two-row Springer fibers to define a related knot ho-
mology theory. We hope that our description of the convolution al-
gebra will ultimately shed some light on the connection between the
algebraic-representation theoretic categorification and the geometric
one.
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An analogous construction associating an algebra to a hypertoric
variety has been developed by the second author with Braden, Li-
cata and Proudfoot ([BLPW08]). Like the algebra we define, this hy-
pertoric algebra is quasi-hereditary and moreover Koszul (which is
known to be true for our algebra as well, [BS08b]). The Koszul dual
is the algebra associated via this convolution construction to the Gale
dual hypertoric variety.

For any nilpotent endomorphism N , we have the following (in
general, not smooth) subvariety of the full flag variety, which only
depends (up to isomorphism) on the conjugacy class of N :

Definition. The Springer fiber of a nilpotent map N : Cn → Cn is the
variety of all full flags F in Cn fixed under N (i.e. for any space Fi of the
full flag F , we have the property NFi ⊂ Fi−1 is satisfied).

We can also naturally associate a Springer fiber with any parabolic
subalgebra p of sln containing the standard Borel of all upper trian-
gular matrices, since, given p, we have a composition of n which, in
turn, determines a Jordan type, hence a nilpotent conjugacy class in
M(n × n, C). In the present paper, we restrict to the case where N is
nilpotent with two Jordan blocks (i.e. where p is maximal or, equiva-
lently, dim ker N = 2).

In Sections 1–3, we will concentrate on combinatorial and geomet-
ric preliminaries. We first recall the description of irreducible com-
ponents of these Springer fibers (following [Fun03]), and more gen-
erally consider the closure of cells in the Białynicki-Birula paving of
the Springer fiber. For all such closures, we verify Fung’s conjecture
that pairwise intersections of such are smooth, iterated P1-bundles
and explicitly determine their cohomology rings as quotients of the
cohomology ring of the full flag variety under the pullback mor-
phisms.

Then, in Section 4, we equip the direct sum of all these cohomolo-
gies (with appropriate grading shifts) with a non-commutative con-
volution product which turns it into a finite dimensional graded al-
gebra H•. In the case where the two Jordan blocks have the same
size, the underlying vector space is isomorphic to the one underly-
ing Khovanov’s arc algebra. In general we obtain the vector spaces
underlying the generalized versions of Khovanov algebras.

This definition was inspired by the multiplication in the Fukaya
category, where this algebra would be interpreted as the Ext-algebra
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of the objects corresponding to the components of the Springer fiber.
We hope to make this connection precise in future work.

The generalized versions of Khovanov’s algebra have a quasi-her-

editary cover H̃• described by the first author in [Str06]. For a de-
tailed description and further properties of these generalized Kho-
vanov algebras and their representation theory, we refer to [BS08a]

and [BS08b]. We construct a quasi-hereditary cover H̃• of our first
convolution algebra using a Białynicki-Birula paving of the Springer
fiber, with respect to a generic cocharacter of the maximal torus com-
muting with N . The set of fixed points for this torus action are in
natural bijection with the idempotents in the algebra H• (and hence
with indecomposable projective modules in the parabolic category
Op

0 or in the quasi-hereditary cover of the generalized arc algebra).
We denote by Yw the closures of Białynicki-Birula cells (that is, the
stable manifolds under the Morse flow of the moment map of this
cocharacter). Taking cohomology over C, we show that

(0.1) H̃• :=
⊕

w,w′

H•(Yw ∩ Yw′, Z)

equip the space on the left hand side with a natural convolution al-
gebra structure which is a graded algebra after appropriate grading
shifts on the left hand side.

We then show the main result of our paper.

Theorem. The algebra H• (resp. the extended version H̃•) and the gener-

alized arc algebra H• (resp. its quasi-hereditary cover H̃•) are isomorphic
as graded algebras.

Since Khovanov’s algebra (and its extended counterpart) are the
endomorphism rings of certain projectives in parabolic category Op

o,
by Koszul duality [BGS96, Theorem 1.1.3], this is isomorphic to an
Ext-algebra of simple modules in a singular block of category O for
a weight precisely fixed by Wp. This theorem then suggests that we
have an embedding of this singular category O into the Fukaya cat-
egory of the Slodowy slice Sn−k,k.

Finally in Section 5, we consider how our model (and thus, indi-
rectly, Khovanov’s algebra and category Op

0) is related to the sheaf-
theoretic model of Khovanov homology given by Cautis and Kam-
nitzer [CK08]. Their model associates a certain coherent sheaf i∗Ω(a)1/2

on a certain compact smooth variety related with Slodowy slices
to each crossingless matching a ∈ Cup(n). The variety naturally
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contains the Springer fiber we had considered previously, and the
sheaves in question are supported on the component we associated
with a. As our notation suggest, these sheaves arise from square
roots of canonical bundles (Theorem 5.2).

We show that, as a vector space, the Ext-algebra of these sheaves
can be identified with our algebra H• (and thus also with Khovanov’s
algebra):

Theorem. With the notation in Section 5 there is an isomorphism of graded
vector spaces

Ext•
Coh(Sn−k,k)(i∗Ω(a)1/2, j∗Ω(b)1/2) ∼= H•(a ∩ b)〈d(a, b)〉,

We have not been able to determine whether the Yoneda prod-
uct on this space isomorphic to the arc algebra H•. Obviously, this
would be a very interesting question to resolve. It might be a first
step to solve the question of whether the functorial tangle invariants
of Cautis and Kamnitzer ([CK08]) can be identified with the func-
torial tangle invariants of Khovanov ([Kho02]) and (equivalently) of
the second author ([Str05]).

The half-densities Ω(a)1/2 are simple objects in the heart C of a
certain t-structure on the category of coherent sheaves on the com-
pactification Zn. We describe the other simple objects in this heart,
and show that it carries a highest-weight structure with the same
Kazhdan-Lusztig polynomials as Khovanov’s algebra.

Conjecture. There is an isomorphism between C and category of finite di-
mensional modules over Khovanov’s algebra.
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PRELIMINARIES

In the following, all vector spaces and cohomologies are defined
over C. We abbreviate ⊗ = ⊗C. An algebra will always be a unitary
associative C-algebra. A graded vector space will always be Z-graded.
For a graded vector space M and i ∈ Z we denote by M〈i〉 the graded
vector space with homogeneous components (M〈i〉)j = Mj−i.

Let V be an n-dimensional complex vector space and N : V → V
be a nilpotent endomorphism of Jordan type (n − k, k). For ease,
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we assume 2k < n. Explicitly, we equip V with an ordered basis
{p1, . . . , pn−k, q1, . . . , qk} with the action of N defined by

N(pi) = pi−1, N(qi) = qi−1

where, by convention, p−1 = q−1 = 0. We let P = 〈p1, . . . , pn−k〉 and
Q = 〈q1, . . . , qk〉.

Let X be the variety of complete flags in V , and let Y be the fixed
points of exp(N) acting on X . So, Y consists of all complete flags
F0 ⊂ F1 ⊂ . . . ⊂ V such that N(Fi) ⊆ Fi−1.

The ordering on the basis equips V with a standard flag

{0} ⊂ 〈p1〉 ⊂ 〈p1, p2〉 ⊂ · · · ⊂ 〈p1, . . . pn−k, q1, . . . , qk−1〉 ⊂ V,

which is invariant under N.

1. IRREDUCIBLE COMPONENTS AND THEIR COHOMOLOGY

1.1. Matchings and tableaux. In order to describe the irreducible
components of Y , we will first have to define some combinatorial
machinery. This section will cover a number of results from the arti-
cle of Fung [Fun03], which will be necessary for later.

Definition 1.1. A standard tableaux is a filling of the Young diagram
of a partition such that the rows and columns are strictly decreasing (read
from the top left corner).

Definition 1.2. A crossingless matching is a planar diagram consisting
of n points, k cups, and n − 2k rays pointing directly downward such that
each point is attached to exactly one cup or ray, cups only pass below points,
not above them, and no cup or ray crosses any other. We say that a point at
the end of a cup is matched and one at the end of a ray is orphaned.

Given any standard tableau S of shape (n − k, k), we can asso-
ciate a crossingless matching m(S) of n points, numbered from left
to the right, such that the bottom row of the tableau contains all the
numbers which are at the left end of a cup, and the top row of the
diagram contains all the numbers which are at the right endpoint of
a cup, or are the endpoint of a ray.

Proposition 1.3. This assignment gives in fact a bijection between stan-
dard tableaux of shape (n-k,k) and crossingless matchings/cup diagrams of
n points with k cups and n − 2k rays.

Example 1.4. Let k = 2, n = 5. Then we have the following five standard
tableaux

5 4 3
2 1

5 4 2
3 1

5 3 2
4 1

5 3 1
4 2

5 4 1
3 2
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and the associated cup diagrams (with one orphaned point in each case):

• � �• •
� �

• • •� �• •� �• • •� �• • •� �• • •� �• � �• • • •
� �
•� �• •

Example 1.5. The following will be our running example, (and the nota-
tion should be kept in mind): Let k = 2, n = 4. Then we have two standard
tableaux

S(⋒) := 4 3
2 1

S(NN) := 4 2
3 1

,

the first corresponds to the cup diagram Cup(⋒) with two nested cups,
the second to the cup diagram Cup(NN) with two cups next to each other.
There are no orphaned points.

Given a tableaux S of shape (n−k, k) let S∨ be set of numbers in the
lower row of the tableau, and S∧ the set of numbers in the top row.
If S is standard, the cup diagram m(S) defines a map σ : S∨ → S∧

sending the beginning of a cup to its end.
Let δ(i) = (σ(i) − i + 1)/2 be the number of cups nested inside the

one connected i and σ(i) for any i ∈ S∨. We let c(i) be the column
number of i, i.e. the number of columns to the left (inclusive) of the
one which i lies in.

1.2. Components and matchings. Spaltenstein [Spa76] and Vargas
[Var79] established a bijection between the irreducible components
of Y and the standard tableaux of shape (n − k, k) which allowed
them to describe the components as closures of explicitly given lo-
cally closed subspaces:

Definition 1.6. Let S be a standard tableau of shape (n − k, k). The
associated irreducible component YS is the closure of the set of complete
flags F0 ⊂ · · · ⊂ Fn = V in Y such that for all i ∈ S∨, we have
Fi ⊆ Fi−1 + imN c(i)−1.

Alternatively, (see [Fun03]) one can use the following much more
handy definition: let ti be the number of indices smaller than or
equal to i in the top row, and similarly for bi and the bottom row,
then we have

Proposition 1.7. A complete flag {0} = F0 ⊂ · · · ⊂ Fn = V lies in YS

if and only if for all i ∈ S∨, we have N δ(i)(Fσ(i)) = Fi−1, and for each
i ∈ S∧ \ σ(S∨), we have Fi = N−bi(im Nn−k−ti+bi).

Note that the condition of being in a component associated to S
actually means that the spaces Fi where i labels either the right end
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of a cup in m(S) (i.e. i ∈ S∧) or an orphaned point, are completely
determined by the spaces Fi corresponding to the left endpoints of
the cups.

1.3. Cohomology of components. The variety X carries n tauto-
logical line bundles of the form Vi = Fi/Fi−1 where we use Fi to
denote the corresponding tautological vector bundle on X , and its
restriction to Y and YS . These line bundles generate Pic(X), and
their first Chern classes xi = c1(Vi) generate the cohomology ring
H•(X, C). This presentation is due to Borel and gives an isomor-
phism of H•(X, C) with the algebra of coinvariants for the obvious
action of the symmetric group Sn on C[x1, · · · , xn], that is,

H•(X, C) ∼= C[x1, · · ·xn]/(ǫ1(x), · · · , ǫn(x))

where ǫi is the i-th elementary symmetric polynomial in the vari-
ables xi (see e.g. [Ful97]).

Theorem 1.8. The cohomology ring of YS has a natural presentation of the
form

H•(YS, C) ∼= C[{xi}i∈S∨
]/({x2

i }i∈S∨
).

The pullback map i∗S : H•(X) → H•(YS) is surjective, and given in this
presentation by

i∗S(xi) =











xi i ∈ S∨

−xσ−1(i) i ∈ σ(S∨) ⊂ S∧

0 otherwise.

Proof. Since we know that YS is an iterated P1-bundle, with the maps
to P1 given by the line bundles Vi for i ∈ S∨, the cohomology ring
H•(YS, C) is generated by their first Chern classes (since these give
a generating set in the associated graded with respect to the filtra-
tion coming from the Leray-Serre spectral sequence). Since these line
bundles are pullbacks from X , the map i∗S is surjective.

We will find relations between these using the Chern classes of
related bundles. First, note that by the definition of YS, we have
exact sequences of vector bundles for each i ∈ S∨

0 −→ ker N δ(i) −→ Fσ(i)
Nδ(i)

−→Fσ(i) −→ Fσ(i)/Fi−1 −→ 0

0 −→ ker N δ(i)−1 −→ Fσ(i)−1
Nδ(i)

−→Fσ(i)−1 −→ Fσ(i)−1/Fi −→ 0

Since ker N δ(i) is a trivial subbundle of Fn, we obtain in K-theory

[Fσ(i)/Fi−1] − [Fσ(i)−1/Fi] = [Vσ(i) ⊕ Vi] = 0.



2-BLOCK SPRINGER FIBERS 9

The Chern classes of a bundle only depend on its class in K-theory,
so that the following equalities hold in H•(YS, C):

c1(Vσ(i) ⊕ Vi) = xσ(i) + xi = 0

c2(Vσ(i) ⊕ Vi) = xσ(i)xi = 0.

If i ∈ S∧ \ σ(S∨), then the bundles Fi and Fi−1 are both trivial, so
xi = 0.

Thus, the Chern classes xi for i ∈ S∨ generate the cohomology of
YS, and the relations which we claimed hold. These must be suf-
ficient, since the quotient by the relations we have proven above
and H•(YS) both have dimension 2k, the latter by [Fun03, Theorem
5.3]. �

Example 1.9. Let R ∼= C[X]/(X2). We have isomorphisms of graded rings

H•(YC(⋒)) ∼= C[x1, x2]/(x2
1, x

2
2)

∼= R ⊗ R,

and
H•(YC(NN)) ∼= C[x1, x3]/(x2

1, x
2
3)

∼= R ⊗ R.

2. THE BIAŁYNICKI-BIRULA PAVING AND STABLE MANIFOLDS

2.1. The torus action and fixed points. The torus (C∗)n of diagonal
matrices in the basis given by the pi’s and qi’s acts on the flag variety
X in the natural way and induces on the Springer fiber Y an action of
a maximal torus of ZG(N). This torus is 2-dimensional, and its action
is explicitly given by (r, s) · pi = rpi, (r, s) · qi = sqi for (r, s) ∈ (C∗)2.

This action has isolated fixed points which we want to label by row
strict tableaux of (n− k, k)-shape (i.e. tableaux which are decreasing
in the rows, but with no condition on the columns). To any arbitrary
row strict tableau w of shape (n−k, k) we associate the full flag F•(w)
such that

Fi(w) = 〈{pj, qr|j ≤ ti, r ≤ bi}〉,

where ti is the number of indices smaller than or equal to i in the top
row, and similarly for bi and the bottom row. Note that the standard

flag is of the form F•(w
n−k,k
dom ), where wn−k,k

dom is the row strict tableaux

with 1, 2, . . . , n − k in the first row; for example w3,2
dom = 3 2 1

5 4

and w2,2
dom = 2 1

4 3
To any row strict tableaux w of shape (n − k, k) we will later as-

sociate a crossingless matching m(w) of n points by the same rule as
before for standard tableaux (but the resulting matching might have
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in the extreme case only rays and no cups at all); see the paragraph
before Theorem 2.5 for a precise definition. There are

(

n
n−k

)

row strict
tableaux, which is also the same as the number of fixed points and Φ
defines an explicit bijection:

Lemma 2.1. The map Φ : w 7→ F•(w) defines a bijection between row
strict tableaux of shape (n − k, k) and torus fixed points of Y .

Proof. It is easy to check that F•(w) is in fact a point in Y , and obvi-
ously a fixed point, since all its component subspaces are spanned
by weight vectors. The map is Φ injective by construction.

On the other hand, if F is a T -fixed flag, then each of its constituent
subspaces Fi is spanned by the intersections Fi∩P and Fi∩Q. These,
in turn are invariant subspaces for N |P and N |Q. But these restric-
tions are regular nilpotents, so there is a unique invariant subspace
of any possible dimension, which is of the form 〈p1, . . . , pi〉 (and simi-
larly for qj). Thus, F is of the form F•(w) for some row-strict tableau,
and Φ is surjective. �

Let w, S be tableaux of shape (n−k, k), where w is row strict and S
is standard with associated cup diagram m(S). We consider the se-
quences a = a1a2a3 . . . an, where ai = ∧ if i ∈ w∧ and ai = ∨ if i ∈ w∨

and call it the weight sequence of w. For instance w3,2
dom has weight

sequence ∧ ∧ ∧ ∨ ∨. (We refer to Example 2.6 for concrete exam-
ples of weight sequences with their cup diagrams.) We can put the
weight sequence on top of the diagram m(S) and obtain a diagram
wm(S) where the upper ends of each cup or line are decorated with
an orientation. We call wm(S) oriented if these decorations induce a
well-defined orientation on m(S). For instance if m(S) is one of the
cup diagrams from Example 1.4 then w3,2

domm(S) is only oriented if
m(S) is the last diagram in the list. Note that the number of cups
in a cup diagram m(S), where S is a standard tableau, is always k,
hence for any orientation wm(S), the decoration at each orphaned
vertex will be a ∧.

Lemma 2.2. A fixed point F•(w) is in an irreducible component YS asso-
ciated with a cup diagram C if and only if wC is an oriented cup diagram.
In particular, any component contains exactly 2k fixed points.

Proof. Let first C be oriented with the orientation on all cups point-
ing from left to right (and all lines pointing up). This is exactly the
case when w = S is the standard tableaux associated with C. We
claim F•(w) satisfies the conditions of Proposition 1.7. If i is on the
top row, then there are exactly n − k − c(i) + 1 numbers smaller
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than or equal to i on the top row, and so Fi/Fi−1 is spanned by
pti = pn−k−c(i)+1 ∈ imN c(i)−1. If i is on the bottom row, then Fi/Fi−1 is

spanned by pn−c(i)+1 ∈ imN c(i)−1. The claim follows.
Consider now the general case. Let first i and σ(i) be the labels

for the two endpoints of a cup. The condition N δ(i)(Fσ(i)) = Fi−1 is
equivalent to exactly half of the indices between i and σ(i) (inclusive)
are contained in S∧ (or S∨ respectively). For cups connecting two
points next to each other this is directly equivalent to being oriented.
By induction on the length of the cup, we may assume that each cup
between i and σ(i) is oriented. Since there are no orphaned points
below a cup, getting exactly half ∧’s and half ∨, means the labels i
and σ(i) must carry the opposite orientations, i.e. the cup is oriented.

Now i ∈ S∧\σ(S∨) is the same as saying the point with label i is
orphaned. The necessary condition for F•(w) only depends on c(i),
which is the same for all w where wC is oriented, because it only
depends on the number of cups and lines to the left of the point i.
Hence the argument at the beginning of the proof implies the lemma.

�

Example 2.3. There are six row strict tableaux in case n = 4, k = 2, hence
six fixed points w1, w2, . . . , w6, corresponding to the six weight sequences

∧ ∧ ∨∨, ∧ ∨ ∧∨, ∨ ∧ ∧∨, ∧ ∨ ∨∧, ∨ ∧ ∨∧, ∨ ∨ ∧ ∧ .

The fixed point w1 is the standard flag. Now the component YS(NN) contains
wi, 1 < i < 6, whereas YS(⋒) contains the wi, i ∈ {1, 2, 5, 6}.

2.2. The paving. If we choose a cocharacter C∗ →֒ T which has the
same fixed points as the whole torus, then we can consider the be-
havior of points as t approaches infinity. We will fix the choice of
t 7→ (t−1, t), that is, subspaces are attracted toward the qi’s as t ap-
proaches ∞ and towards the pi’s as t approaches 0.

Definition. If F•(w) ∈ Y T is a torus fixed point, then we denote the
stable manifold or attracting set

Y0
w = {y ∈ Y | lim

t→∞
t · y = F•(w)},

and its closure Yw = Y0
w.

For each flag F in Y , we can obtain a flag F ′ (with no longer nec-
essarily distinct spaces) in P by taking the intersections Pi = Fi ∩ P ,
and similarly in V/P ∼= Q given by Qi = Fi/(Fi ∩ P ). We can define
the new flag F ′ by putting F ′

i := Pi + Qi ⊂ P ⊕ Q = V , which is
obviously T -equivariant.
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Proposition 2.4. A flag F in Y is contained in Y0
w if and only if the new

flag F ′ obtained from it by the procedure above is F•(w).

Proof. Obviously, the new flag F ′ only depends on the torus orbit
O containing F . Thus, for any point G in the closure of O we have
(Fi ∩ P ) ⊆ (Gi ∩ P ) and hence (F ′

i ∩ P ) ⊆ (G′
i ∩ P ) for any 1 ≤ i ≤ n,

since containing a vector is a closed condition on a subspace.
On the other hand, since P has minimal weight under C∗, no vec-

tor not in P is attracted to P as t → ∞, so the size of the intersection
with P can only stay the same or decrease in that limit. Thus inter-
section with P must be fixed under the limit. Since the image in Q
has complementary dimension, it must also be fixed. �

This makes it clear that Y0
w is a cell, since the set of vector spaces

projecting to a given one is a cell.
The structure of these stable manifolds can be understood in terms

of cup diagrams, in much the same way as the structure of the com-
ponents. To w we attach two (in general different) cup diagrams,
m(w) and C(w) as follows:

For each fixed point F•(w), there is the diagram m(w) with the
property that wm(w) has the maximal number of cups amongst all
cup diagrams C such that wC is oriented and contains only counter-
clockwise cups. This diagram will have kw ≤ k cups, with equality
kw = k if and only if w is standard. One can build this diagram
inductively by adding an arc between any adjacent pair ∨∧, and then
continuing the process for the sequence with these points excluded.
We then add lines to the remaining points. We call m(w) the cup
diagram associated with w.

Rather than adding these lines, we could complete to an oriented
cup diagram C(w) with k cups, by matching all the ∨’s in the only
possible way. Call the corresponding standard tableau S(w).

Theorem 2.5. Let w be a row strict tableau. Then Yw is the subset of
YS(w) containing exactly the flags which satisfy the additional property: if
i ∈ w∧ ∩ S(w)∨, then Fi coincides with the ith subspace of the fixed point
F•(w).

In particular, for any standard tableau S, we have YS = YS.

Proof. First we confirm that these relations hold on Y0
w (and thus on

Yw, since they are closed conditions).
Let F be a point in Y0

w. Let us first assume there is at least one
cup in m(w), so in particular a minimal one. This means there is
some index i ∈ w∨ with δ(i) = 1. The result we desire is that Fi+1 =
N−1(Fi−1).
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First, note that since the index i + 1 is marked with an ∧ in w, then
we must have

Fi+1 ⊃ Fi + N−1
P (Fi ∩ P ).

On the other hand, since i is marked with a ∧, we must have Fi ∩
P = Fi−1 ∩ P and it follows

N−1(Fi−1) ⊃ Fi + N−1
P (Fi−1 ∩ P ) = Fi + N−1

P (Fi ∩ P )

All of these spaces are of dimension i + 1, so we must have Fi+1 =
N−1(Fi−1).

Let w′ denote w with i, i + 1 removed. Applying N to all spaces
of dimension bigger than i + 1 provides a map qi : Y0

w → Y0
w′ which

extends to a map qi : Yw → Yw′ between the closures. The relation for
a cup in S(w′) pulls back to that for the corresponding cup of S(w).

Thus, by induction, we may reduce to the case where there are no
cups in m(w) (that is, w is a series of ∧’s followed by ∨′s). In this
case, our claim simply reduces to the claim that Yw = {F•(w)}. This
is indeed the case, since for any index in w∧, we must have Fi ⊂ P ,
and N acts regularly on P so all N-invariant subspaces are also T -
equivariant. Similarly, for any i ∈ w∨, we must have Fi ⊃ P , and
N acts regularly on V/P ∼= Q. Therefore F satisfies the required
relations.

On the other hand F•(w) obviously satisfies the conditions coming
from cups in C(w), and our requirement on elements of w∧ ∩ S(w)∨,
and any flag satisfying these relations is in the closure of Y0

w. �

Example 2.6. The cup diagrams m(wi) associated to the weights wi, 1 ≤
i ≤ 6 from Example 2.3 are as follows:

• • • • • •� �• • •� �• • • • • •� �• •� �• •� �• •
� �
•� �• •

On the other hand, the cup diagrams C(wi) for the weights wi, 1 ≤ i ≤ 6
are as follows:

•
� �
•� �• • •

� �
•� �• • •� �• •� �• •� �• •� �• •� �• •� �• •

� �
•� �• •

There are the two irreducible components

Yw5 = {F0 ⊂ F1 ⊂ N−1(F0) = 〈p1, q1〉 ⊂ F3 ⊂ N−1(F2) = C4} ⊂ Y

Yw6 = {F0 ⊂ F1 ⊂ F2 ⊂ N−1(F1) ⊂ N−2(F0) = C4} ⊂ Y
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and the additional stable manifolds

Yw4 = {F0 ⊂ 〈p1〉 ⊂ 〈p1, q1〉 ⊂ F3 ⊂ C4} ⊂ Yw5,

Yw3 = {F0 ⊂ F1 ⊂ 〈p1, q1〉 ⊂ 〈p1, p2, q1〉 ⊂ C4} ⊂ Yw5

Yw2 = {F0 ⊂ 〈p1〉 ⊂ F2 ⊂ 〈p1, p2, q1〉 ⊂ C4} ⊂ Yw6,

Yw1 = {F0 ⊂ 〈p1〉 ⊂ 〈p1, p2〉 ⊂ 〈p1, p2, q1〉 ⊂ C4} = {w1} ⊂ Yw6 .

2.3. The cohomology of stable manifolds. The proof of Theorem 2.5
with the result of Theorem 1.8 enables us to calculate the cohomol-
ogy of the stable manifolds Yw. Let m∨(w) (resp. σ(m∨(w))) be the
set of indices of vertices which are at the left (resp, right) end of a
cup in m(w) (i.e. those at which we have a free choice, and are not
constrained to match the fixed point).

Theorem 2.7. The cohomology ring of Yw has a natural presentation of the
form

H•(Yw, C) ∼= C[{xi}i∈m∨(w)]/({x2
i }i∈m∨(w))

with the surjective pullback map i∗w : H•(X) → H•(Yw) given in this
presentation by

(2.1) i∗S(xi) =











xi i ∈ m∨(w)

−xσ−1(i) i ∈ σ(m∨(w))

0 otherwise

Proof. Theorem 2.5 implies that the map in question is surjective and
gives the last case in (2.1). The second relation has to hold Theo-
rem 2.5 together with Theorem 1.8. Finally, the proof of Theorem 2.5
implies that the dimension of H•(Yw, C) equals 2a, where a is the
number of cups in m(w), hence there are not more relations and the
statement follows. �

Example 2.8. In the situation of Example 2.3 we have isomorphisms as
follows:

H•(Yw1)
∼= C,

H•(Yw2)
∼= C[x2]/(x2

2)
∼= R,

H•(Yw3)
∼= C[x1]/(x2

1)
∼= R,

H•(Yw4)
∼= C[x3]/(x2

3)
∼= R,

H•(Yw5)
∼= C[x1, x3]/(x2

1, x
2
3)

∼= R ⊗ R,
H•(Yw6)

∼= C[x1, x2]/(x2
1, x

2
2)

∼= R ⊗ R.

3. PAIRWISE INTERSECTIONS OF STABLE MANIFOLDS



2-BLOCK SPRINGER FIBERS 15

3.1. Fixed points of intersections. The first step in understanding
the structure of the intersection of stable manifolds is to calculate the
torus fixed points which lie in the intersection.

Let w and w′ be two row-strict tableau of shape (n − k, k) with
associated cup diagrams C = m(w) and D = m(w′). Let DC be the
diagram obtained by taking D, reflecting it in the horizontal line con-
taining the dots and putting it on top of the diagram C, identifying
the points with the same label. The result will be (up to homotopy)
a collection of lines and circles.

Definition. An orientation of DC or CD is a row strict tableau v such
that vD and vC are oriented. In particular, this requires the weight se-
quence for v to match the one for w at any unmatched points in C, and the
one for w′ at any unmatched points in D.

Lemma 3.1. Let Yw, Yw′ be stable manifolds in Y with associated cup di-
agrams C and D. Then the number of fixed points contained in Yw ∩ Yw′

equals the number of orientations of the diagram DC. In particular, the
number of fixed points is either

• zero (if there is at least one line where the orientations required by
orphaned points are incompatible),

• one (if all lines are oriented and there are no circles),
• or 2c (otherwise), where c is the number of circles in DC.

Proof. By Lemma 2.2 the number of fixed points in the intersections
is the number of weight sequences which give rise to an orientation
of C and D at the same time, and hence to an orientation of DC. For
each circle there are exactly two such choices of an orientation and
for each line there is a unique orientation. There is no orientation if
the endpoints of some line are contained in the same cup diagram.
The statement follows. �

Corollary 3.2. The intersection Yw ∩ Yw′ is

• non-empty if and only if DC has an orientation,
• a single point if and only if there is a unique such orientation.

Proof. The intersection Yw∩Yw′ is projective, and so it is either empty
or has a fixed point by Borel’s fixed point theorem. Moreover, if
Yw ∩ Yw′ contains a point x which is not a fixed point, then the limits
limt→0 t · x and limt→∞ t · x exist and are different torus fixed points,
since they have different moment map images. �

Example 3.3. Using the cup diagram in Example 2.6 one easily obtains
the following three sets telling when the intersection Ywi

∩ Ywj
is empty,
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contains exactly one fixed point, or contains exactly two fixed points re-
spectively:

(i, j) ∈ {(1, 3), (1, 4), (1, 5)},

(i, j) ∈ {(1, 2), (1, 6), (2, 3), (2, 4), (2, 5), (3, 4), (3, 6), (4, 6)}

(i, j) ∈ {(2, 6), (3, 5), (4, 5), (5, 6)}.

3.2. Structure of intersections. To fully describe the structure of the
intersections, we will require a bit more machinery. We first restate
once more the condition for a flag F• ∈ Y being contained in an
irreducible component YS. Consider the cup diagram C associated
to S, and let ǫ(a) = σ(a + 1).

Definition 3.4. Let i ∼ j (or more precisely i ∼C j) be the equivalence
relation on the set {1, 2, . . . n} obtained by taking the transitive closure of
the reflexive and symmetric relations i = j, or ǫ(i) = j or ǫ(j) = i (when ǫ
is defined). Note that the set of minimal representatives of the equivalence
classes equals S∨.

For all i, j such that ǫ(i) = j or vice versa, we have Fi = N (j−i)/2(Fj)
for any flag F ∈ YS . Since this condition is transitive, we obtain that
whenever i ∼ j, we have Fi = N (j−i)/2(Fj), and along with attaching
a fixed subspace to each orphaned vertex, this is a full set of relations
for YS .

Proposition 3.5. If b = σ(a), then b ∼ a − 1 and a ∼ b − 1.

Proof. The first relation is by definition. To get the second, note that
ǫ(a) < b (by the non-crossing condition), and either ǫ(a) = b − 1
(in which case we obtain the desired equivalence), or a < ǫ(a) <
ǫ2(a) < b (again, by non-crossing). Since there are finitely many in-
dices between a and b, we must have b− 1 = ǫℓ(a) for some ℓ, and so
a ∼ b − 1. �

Definition 3.6. Given two row strict tableaux w and w′ with associated
cup diagrams C and D, we let i ≈ j (or more precisely i ≈C,D j or i ≈w,w′ j)
be the transitive closure of the relations of the form i ∼C j and those of
the form i ∼D j. We let E(C, D) or E(w, w′) denote the set of minimal
representatives for ≈C,D with the subset Ec(C, D) = Ec(w, w′) given by all
points lying on a circle in DC.

Example 3.7. The equivalence classes for our running example are

∼S(NN): {0, 2, 4}, {1}, {3}, ∼S(⋒): {0, 4}, {1, 3}, {2}.
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There are two equivalence classes for ≈S(NN),S(⋒), namely {0, 2, 4} and
{1, 3}. The set of minimal representatives are

E(S(NN), S(⋒)) = {0, 1} and Ec(S(NN), S(⋒)) = {1}.

Example 3.8. We denote by S1, S2, . . . , S5 the five standard tableaux of
Example 1.4. The set of equivalence classes of ∼Si

are the following:

∼S1 : {{0, 4}, {1, 3}, {2}, {5}}, ∼S2 : {{0, 2, 4}, {1}, {3}, {5}},

∼S3 : {{0, 2}, {1}, {3, 5}, {4}}, ∼S4 : {{0}, {1, 3, 5}, {2}, {4}},

∼S5 : {{0}, {1, 5}, {2, 4}, {3}}

Now the equivalence classes for ≈S1,S4 are for instance

{{0, 4}, {1, 3, 5}, {2}}

with E(S1, S4) = {0, 1, 2} and Ec(S1, S4) = {2}, since 1 labels a point on
a line, whereas 2 labels a point on a circle. The flags contained in YS1 ∩ YS4

are exactly the flags in Y of the form

{0} ⊂ imN2 ⊂ F2 ⊂ N−1(F1) ⊂ N−2({0}) ⊂ N−2(F1) = C5.

Theorem 3.9. The set E(D, C) of minimal representatives of the equiva-
lence classes contains, apart from zero, exactly the left most points in either
a circle or line of DC.

Proof. Indeed, let a, b, c be the labels of three points in DC such that
a and b are connected via a cup and b and c via a cap. By Proposi-
tion 3.5, we have c ∼D b − 1 ∼C a, so c ≈C,D a.

Repeating this argument implies the following: If two points on a
circle in DC are joined by a path with an even number of arcs, then
they are equivalent. Thus all indices on any circle are equivalent
either to its leftmost point p, or to a point adjacent to p by a single
arc. Applying Proposition 3.5 again, this shows that each point in the
circle is equivalent to p or p−1, the latter of which must be equivalent
to the leftmost point in another circle or to 0, by induction. �

We note that the set E(D, C) can be equipped with a partial order
defined by a ≥ b if the circle a lies on is nested inside that b lies on.
This poset has a natural rank function r : E(D, C) → Z given by 0 on
all lines, 1 on all circles not nested inside any other, and thereafter
increasing with the depth of nesting. Recall that a flag indexed by a
ranked poset is a map of ranked posets from that poset to the ranked
poset of subspaces of a given vector space.

The equivalence relation ≈ allows us to prove Conjecture 7.1 of
[Fun03]:
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Theorem 3.10. The variety Yw∩Yw′ is canonically isomorphic to the space
of flags indexed by the ranked poset E(D, C) invariant under N .

In particular, it is an iterated fiber bundle of base type (P1, P1, . . . , P1)
where the numbers of terms is the number c of closed circles in DC (if c = 0,
the intersection is a point), and

H•(Yw ∩ Yw′) ∼= R⊗c

as graded vector spaces.

Proof. Since any comparable circles are on the same side of each line,
we can divide our poset into subsets consisting of the circles between
any adjacent lines. The space of flags indexed by this sub-poset in V
is isomorphic to space of such flags in V/Fℓ(a), where for a ∈ E(D, C),
we let ℓ(a) be the left-most point on the right-most line that a lies
on the right side of, and thus our claim is that our intersection is
isomorphic to the product of these spaces of flags.

Consider the subspaces Ga = N (a−r(a)+ℓ(a))/2(Fa)/Fℓ(a). This is a
subspace of V/Fℓ(a) of dimension r(a).

If a ≥ b, and r(a) = r(b) + 1, then we have a − 1 ≈ b, since either
a−1 = b, or a−1 lies on a circle with leftmost point a′. Since a′ ≥ b, we
have r(a′) > r(b), so a � a′. Thus, we have a − 1 ≈ a′ − 1, and by in-
duction, our claim follows. Thus Ga ⊃ N (a−r(a)+ℓ(a))/2(Fa−1)/Fℓ(a) =
Gb, since

a − r(a) = ((a − 1) − b) + (b − r(b))

and ℓ(a) = ℓ(b).
By induction, this establishes that Ga is indeed a flag over our

poset.
Conversely, we can define an element of our intersection, given

such a flag, by defining Fi by N−(i−r(i′))/2(Gi′ + Fℓ(i)) where i′ is the
representative of i in E(D, C).

This variety is an iterated P1-bundle, since forgetting the vector
space attached to a maximal element a obviously defines a map to
the set of flags indexed by a poset with this point removed. This
map is surjective, since the interval below a is a chain, so the space
attached to it can be chosen in increasing order. On the other hand,
the fiber of this map is P(N−1(Ga′)/Ga′) for a′ the unique element that
a covers in this poset (the circle immediately containing it). This is a
P1, since Ga′ ⊂ imN , for any a′ 6= a for simple dimensional reasons
(we must have r(a′) < r(a) ≤ k since no diagram can have have
more than k circles, and thus no more than 1 of rank k). This is thus
a general result for flags indexed by any poset where all intervals are
chains, and the rank is bounded by k. �
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This theorem has a natural generalization to intersections of arbi-
trary numbers of Ywi

, given by a rank function on the set of equiva-
lence classes of the relation generated by∼wi

for all i. Let E(w1, · · · , wn)
be the set of minimal elements of these equivalence classes. This can
be defined inductively by the following rule:

• If an equivalence class contains a line, r(i) = 0.
• If i ∈ E(w1, . . . , wn), and j ∈ E(w1, . . . , wn) is the minimal rep-

resentative of i − 1, then

r(i) =

{

r(i − 1) + 1 if i − 1 ≡ j (mod 2)

r(i − 1) if i − 1 6≡ j (mod 2)

This rank function will be of great importance in the next section.

3.3. The cohomology of pairwise intersections. Theorem 3.10 en-
ables us to calculate the cohomology H•(Yw ∩Yw′) of the intersection
of two stable manifolds as a module over the cohomology of H•(X),
and thus as a (H•(Yw), H•(Yw′))-bimodule.

For any 1 ≤ i, j ≤ n we set ǫ(i, j) = 0 if i and j are not on the

same circle in m(w)m(w′), and ǫ(i, j)w,w′ = ǫ(i, j) = (−1)a if i and
j lie on the same circle with a being the number of arcs in a path
between them. Note that, although a depends on the chosen path,
the number (−1)a does not.

Theorem 3.11. Assume the intersection Yw ∩ Yw′ is non-empty. Then the
cohomology ring H•(Yw ∩ Yw′) has the presentation

(3.1) H•(Yw ∩ Yw′) = C [{xi}] /({x2
i }),

where the index i runs through Ec(m(w),m(w′)). The pullback map

i∗w,w′ : H•(X) → H•(Yw ∩ Yw′)

is surjective and given by

i∗w,w′(xi) =
∑

j∈Ec(w,w′)

ǫ(i, j)xj

In particular, the image of xi is zero if and only if i does not lie on a closed
circle.

Proof. By Theorem 2.7 we know in particular ker i∗w,w′ ⊇ ker i∗w +
ker i∗w′ . Hence there is a well-defined map

f : H•(X)/(ker i∗w + ker i∗w′) → H•(Yw ∩ Y′
w).



20 CATHARINA STROPPEL AND BEN WEBSTER

By Corollary 3.10, f is surjective since the cohomology of the inter-
section is generated in degree two. Comparing dimensions (Theo-
rem 2.7 provides the dimension of the left hand side whereas Corol-
lary 3.10 gives the dimension of the right hand side), we see f must
be an isomorphism. �

Example 3.12. The only interesting cases for Ywi
∩ Ywj

where i 6= j (no-
tation as in Example 2.3) are

H•(Yw2 ∩ Yw6)
∼= C[x2]/(x2

2), H•(Yw3 ∩ Yw5)
∼= C[x1]/(x2

1),

H•(Yw4 ∩ Yw5)
∼= C[x3]/(x2

3), H•(Yw5 ∩ Yw6)
∼= C[x1]/(x2

1),

since in all other cases where the intersection is non-trivial we get C.

Similar bimodules have appeared previously: first in work of Kho-
vanov [Kho00], [Kho02] in the case 2k = n, for pairs of standard
tableaux; then in the general case in work of the first author [Str06]
and [BS08a]. Our construction agrees with the the latter two, and
so the cohomology rings of stable manifolds Yw are naturally iso-
morphic to the endomorphism ring of the indecomposable projec-
tive module corresponding to m(w) for the algebra denoted Kn−k,k of
[Str06], [BS08a]. The category of modules over this algebra is equiv-
alent to the category of perverse sheaves on the Grassmannian of
k-planes in Cn (see [Str06]) and related to the representation theory
(the so-called category O) of the general Lie algebra gl(n, C).

3.4. Background from category O. Let us briefly recall the construc-
tion of [Str06] and the connection to (parabolic) category O (for de-
tails on category O and its parabolic version see for example [BGG76]
and [Car80], or the recent book [Hum08, Chapter 9]):

The symmetric group Sn acts (from the right) on the set W (n −
k, k) of weight diagrams with n − k ∧’s and k ∨’s by permutation.
The stabilizer of the weight wdom = ∧ ∧ . . . ∧ ∨ . . .∨ is the Young
subgroup Sn−k × Sk of Sn. Hence we get a bijection between the
set W n−k,k of shortest coset representatives Sn−k × Sk\Sn and the set
W (n − k, k) under which wdom corresponds to the identity element
in Sn. On the other hand, the set W n−k,k labels in a natural way also

the simple modules in the principal block On−k,k
0 of the parabolic

category On−k,k for the Lie algebra gl(n, C).
These simple modules are exactly the simple highest weight mod-

ules L(x · 0) in the principal block of O for gl(n, C)) which are locally
finite with respect to the parabolic p = b + l, where b is the stan-
dard Borel given by upper triangular matrices and l ∼= gl(n − k, C)×
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gl(k, C) is the subalgebra of gl(n, C) given by all (n − k, k)-block ma-

trices. Let P (x · 0) ∈ On−k,k
0 be the (indecomposable) projective cover

of L(x · 0). We have now set up a bijection between the indecom-
posable modules P (x · 0) and the stable manifolds Yw by mapping
P (x · 0) to its weight diagram in W (n − k, k) which then in turn is
associated with some row strict tableau w = w(x) determining the
stable manifold Yw = Yw(x). Let Cup(x) be the corresponding cup
diagram.

The endomorphism algebra Kn−k,k of a minimal projective gen-

erator
⊕

x P (x · 0) in On−k,k
0 has the following description: Let x,

y ∈ W n−k,k. Then HomO(P (x · 0), P (y · 0)) = {0} in case the dia-

gram Cup(x) Cup(y) cannot be oriented. Otherwise there is an iso-
morphism of vector spaces

HomO(P (x · 0), P (y · 0)) = R⊗c(x,y),

where c(x, y) is the number of circles in the diagram Cup(x) Cup(y)
(with R⊗0 = C by definition). In particular, thanks to Theorem 3.10,

HomO(P (x · 0), P (y · 0)) ∼= H•(Yw(x) ∩ Yw(y))

as vector spaces.
The endomorphism algebra Kn−k,k can be equipped with a Koszul

grading ([BGS96]). Let P̃ (x · 0) be the standard graded lift of P (x ·
0). This is a graded Kn−k,k-module whose head is concentrated in
degree zero and which is isomorphic to P (x · 0) after forgetting the
grading. Since P (x · 0) is indecomposable, such a standard graded
lift is unique up to isomorphism ([BGS96, Lemma 2.5.3]). Then the

space HomKn−k,k(P̃ (x·0), P̃ (y ·0)) is a graded vector space isomorphic
to

(3.2) H•(Yw(x) ∩ Yw(y))〈d(x, y)〉,

where d(x, y) = n − c(x, y). In particular, EndKn−k,k(P̃ (x · 0)) ∼=
H•(Yw(x)). The multiplication in Kn−k,k was defined using a TQFT-
procedure generalizing Khovanov’s (see [Str06], [BS08a], [Kho00]).
From the definitions it follows in particular,

EndKn−k,k(P̃ (x · 0)) ∼= H•(Yw(x))

as graded algebras.
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3.5. An isomorphism of bimodules. In [Str06, Conjecture 5.9.2], it
was conjectured that for any two standard tableaux S and S ′, the co-
homology H•(YS ∩YS′) is isomorphic, as a bimodule (with the above
identifications), to the Hom-space between the corresponding inde-
composable projective modules over the algebra Kn−k,k. We have the
following more general result:

Theorem 3.13. There are isomorphisms of graded algebras

(3.3) Ψx : EndKn−k,k(P̃ (x · 0)) ∼= H•(Yw(x)), x ∈ W n−k,k

such that under these identifications one can find isomorphism of graded
bimodules

Ψx,y : HomKn−k,k(P̃ (x · 0), P̃ (y · 0)) ∼= H•(Yw(x) ∩ Yw(y))〈d(x, y)〉

for any x, y ∈ W n−k,k.

Proof. Let x ∈ W n−k,k and consider the circle diagram Cup(x) Cup(x)
and pick some odd vertex in each circle. If I(x) denotes the set of
these vertices, then H•(Yw(x)) ∼= C[{xi}i∈I(x)]/({x2

i }i∈I(x)). This fol-
lows from Theorem 2.7 by mapping xj for j ∈ w∨ to ajxi, where i
lies on the same circle as j and aj = 1 if j is odd, whereas aj = −1
if j is even. On the other hand C[{xi}i∈I(x)]/({x2

i }i∈I(x)) ∼= Rc(x,x) ∼=

EndKn−k,k(P̃ (x · 0)) by mapping the xi to the X associated with the
circle where i lies on. These isomorphisms define graded algebra iso-
morphisms Ψx of the form (3.3). Similarly we define an isomorphism
of vector spaces

HomKn−k,k(P̃ (x · 0), P̃ (y · 0)) ∼= R⊗c(x,y)

∼= C[{xi}i∈I(x,y)]/({x2
i }i∈I(x,y)) = H•(Yw(x) ∩ Yw(y))〈d(x, y)〉

by choosing a set I(x, y) of odd vertices, one for each circle in Cup(x) Cup(y).
Hence we have the family Ψx,y of isomorphisms of vector spaces,
which we claim are isomorphisms of bimodules.

To see this let 1⊗ . . . 1⊗X ⊗1 . . . 1 be the element in R⊗c(x,x) where
the X-factor corresponds to a circle C with leftmost vertex labeled
by say m. It acts on R⊗c(x,y) by multiplication with X on the fac-
tor corresponding to the circle containing the vertex m. Under the
isomorphism Ψx,y it corresponds to multiplication with arxr, where
r ∈ I(x, y) is on the same circle as m.

Under the isomorphism Ψx the element 1 ⊗ . . . 1 ⊗ X ⊗ 1 . . . 1 is
mapped to aixi, where i ∈ I(x) is the chosen vertex on the circle C,
hence acts by multiplication with aixi on

H•(Yw(x) ∩ Yw(y))〈d(x, y)〉 = C[{xi}i∈I(x,y)]/({x2
i }i∈I(x,y)).
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Since all the elements in I(x) and I(x, y) are odd, this is the same
(thanks to the relations in H•(Yw(x) ∩ Yw(y)) as multiplication with
arxr where r ∈ I(x, y) lies on the same circle as i.

Hence the isomorphisms Ψx,y are equivariant with respect to the
left action. The arguments for the right action are completely analo-
gous. �

4. CONVOLUTION ALGEBRAS

4.1. Definition of convolution. The purpose of this section is to in-
troduce an algebra structure on the direct sum of all bimodules H•(Yw∩
Yw′) via a convolution product and compare it with the algebra Kn−k,k.

Let Ỹ be the disjoint union of the stable manifolds Yw over all

weights w, and let Ỹ be the disjoint union of the components YS over

all standard tableaux S, equipped with the obvious maps Ỹ → Y and

Ỹ → Y , so

Ỹ :=
⊔

w

Yw → Y, Ỹ :=
⊔

S

YS → Y.

The cohomology groups

H•(Ỹ ×Y Ỹ) ∼=
⊕

w,w′

H•(Yw ∩ Yw′)

H•(Ỹ ×Y Ỹ ) ∼=
⊕

S,S′

H•(YS ∩ YS′)

both have a natural product structure defined by the following con-
volution product, given by pulling, cupping and pushing on the di-
agram.

(4.1)

Ỹ ×Y Ỹ

Ỹ ×Y Ỹ

Ỹ ×Y ỸỸ ×Y Ỹ ×Y Ỹ

p12
llYYYYYYYYYYYYYY

p23rreeeeeeeeeeeeee

p13
//

More explicitly, the product of two classes α ∈ H•(Yw ∩ Yw′) and
β ∈ H•(Yw′ ∩Yw′′), is given by first taking their pullbacks to H•(Yw ∩
Yw′ ∩ Yw′′), then taking their cup product and afterwards pushing
forward to obtain the product α ∗ β ∈ H•(Yw ∩ Yw′′).

Unlike pullback, which is an entirely natural operation, pushfor-
ward depends on the orientation of the manifolds in question (or
more naturally, on an orientation of the normal bundle to one in the
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other). Now, since all the varieties we consider have canonical com-
plex structures, one might be inclined to guess that the complex ori-
entation is the best choice. Unfortunately, if all varieties are given
the complex orientation, then the convolution product will not be
associative (see Section 4.3 for an explicit description). Rather, we
must choose an orientation different from the complex one.

Let {w1, . . . , wn} be a list of weight diagrams, and let E(w1, . . . , wn)
be the set of minimal representatives for the equivalence relation
generated by ∼wi

for all i. We let

ϑ(w1, . . . , wn) =
∑

i∈E(w1,...,wn)

i.

All these equivalence relations preserve the parity of the indices.
Thus, modulo 2, ϑ could be calculated by any transversal to the
equivalence classes.

Definition 4.1. The cotangent orientation of Yw1 ∩ · · · ∩ Ywn
is the

complex orientation twisted by (−1)ϑ(w1,...,wn).

Example 4.2. The cotangent orientation of YNN is the complex orientation,
whereas the cotangent orientation of Y⋒, and YNN ∩ Y⋒ = Y⋒ ∩ YNN is the
opposite of the complex orientation.

Note that ϑ(w1, . . . , wn) = ϑ(wi, w1, . . . , wn) for any 1 ≤ i ≤ n. In
particular, the product H•(Yw ∩ Yw)⊗H•(Yw ∩Yw) → H•(Yw ∩Yw) is
the usual cup product; and the product H•(Yw∩Yw)⊗H•(Yw∩Yw′) →
H•(Yw ∩ Yw′) together with the two products

H•(Yw ∩ Yw) ⊗ H•(Yw ∩ Yw′) → H•(Yw ∩ Yw′)

H•(Yw ∩ Yw′) ⊗ H•(Yw′ ∩ Yw′) → H•(Yw ∩ Yw′)

define the usual bimodule structure on H•(Yw ∩ Yw′) coming from
the pullback maps H•(Yw) → H•(Yw ∩ Yw′) and H•(Yw′) → H•(Yw ∩
Yw′) respectively. Therefore, we again obtain the bimodules from
Theorem 3.13.

It is easy to see that this convolution does not define a multiplica-
tion of graded algebras. To get around this problem we simply apply
a grading shift (exactly as in (3.2)), and define the grading-shifted

versions H•(Ỹ ×Y Ỹ) by

H(Ỹ ×Y Ỹ) :=
⊕

w,w′

H•(Yw ∩ Yw′)〈d(w, w′)〉(4.2)

H(Ỹ ×Y Ỹ ) :=
⊕

S,S′

H•(YS ∩ YS′)〈d(S, S ′)〉,(4.3)
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where for any row strict tableaux w and w′, we have c(w, w′), the
number of circles obtained by putting m(w′) on top of m(w) and then

define d(w, w′) = n−c(w, w′). In other words, H(Ỹ×Y Ỹ) = H•(Ỹ×Y Ỹ)
as a vector space, but the grading is slightly changed by exactly the
grading shift also appearing in Theorem 3.13.

4.2. An isomorphism.

Theorem 4.3. The bimodule isomorphism Kn−k,k ∼= H(Ỹ ×Y Ỹ) given in
Theorem 3.13 is in fact an algebra isomorphism, where the latter is given
the convolution multiplication. In the case n = 2k, this induces an isomor-

phism of subalgebras Hk,k ∼= H(Ỹ ×Y Ỹ ).

Proof. For purposes of the proof, it will be convenient to use coho-
mology classes zi = (−1)ixi as our generators, rather than xi.

Let w′, w, w′′ be row strict tableaux, and C ′ = m(w′), C = m(w), C ′′ =
m(w′′) be their cup diagrams. Since we know that the multiplication
map

H•(Y′
w ∩ Yw) ⊗ H•(Yw ∩ Yw′′) → H•(Yw′ ∩ Yw′′)

is a map of H•(Y′
w)−H•(Yw′′)-bimodules, we only need to check the

statement on a chosen set of generators.
Let w′1w ⊗ w1w′′ ∈ H•(Yw′ ∩ Yw) ⊗ H•(Yw ∩ Yw′′) be the identity

element with respect to the cup product structure, i.e. an element
of lowest possible degree. By the surjectivity of pullback to intersec-
tions, this element is a generator for the bimodule structure coming
from convolution.

The convolution w′1w ⋆ w1w′′ is, by definition, the Poincare dual to
the fundamental class of Yw′ ∩ Yw ∩ Yw′′ in H•(Yw′ ∩ Yw′′).

We define a series of subvarieties Yw′ ∩Yw′′ = Y0 ⊇ Y1 ⊇ . . . ⊇ Yℓ =
Yw′ ∩ Yw ∩ Yw′′ as follows:

Yi =

{

Yi−1 if i ∈ w∨,

{F• ∈ Yi−1 | N δ(i)(Fi) = Fσ−1(i)−1} if i ∈ σ(w∨).

It’s important to keep in mind that we take each Yi with the cotan-
gent orientation given by letting E(Yi) be the set of minimal repre-
sentatives for the equivalence relation given by ∼w′ ,∼w′′ and those
cups in w where the right end has index ≤ i.

We compute inductively the Poincare dual class [Yℓ]
∗ of [Yℓ] ∈

H•(Y0), starting from the identity element [Y0] ∈ H•(Y0) with respect
to the cup product. Assume we know [Yi−1] (and therefore [Yi−1]

∗)
already.
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Let us first assume i is on an arc in C. Of course, if Yi = Yi−1 then
[Yi] = [Yi−1] ∈ H•(Yw ∩ Yw′′). Otherwise, we must have a cup from
σ−1(i) to i in the cup diagram C with σ−1(i) < i. Then Yi is either
empty (in which case Yw ∩Yw′ ∩Yw′′ is empty, and there is nothing to
prove), or a divisor of Yi−1, defined by the vanishing of the map

N δ(σ(i)) : Vi → Vσ−1(i)−1.

This presentation implicitly gives an orientation on Yi, since we’ve
written it as the zero set of a holomorphic map. We must also ac-
count for the twist of our orientation. We know that E(Yi−1)\E(Yi) =
{a} is a singleton, and since all our equivalence relations preserve
parity, a ≡ i (mod 2). Thus, this presentation gives the correct orien-
tation if i is even and its opposite if i is odd.

In particular, [Yi]
∗ ∈ H•(Y0) is the cup product of [Yi−1]

∗ and (−1)ic1(Vi⊗
V ∗

σ−1(i)) = (−1)i(xi − xσ−1(i)) = zi + zσ−1(i).

If i is labeling a point on a line in C, then Vi−1 is a trivial bundle,
and Yi is defined by the requirement that Vi = Vi−1 + im N c(i). If
i /∈ EC′,C′′ , then this will already be satisfied by all points in Yi−1, and
we have Yi = Yi−1.

Otherwise, we have a natural map Vi → N−1(Vj−1)/(Vi + im N c(j))
on Yi−1 which Yi is the vanishing set of. By an analogous argu-
ment concerning the orientations as above, [Yi]

∗ is the cup product
of [Yi−1]

∗ and (−1)ic1(V
∗
i ) = (−1)ixi = zi. �

4.3. Comparison with the natural choice of orientation. For the
sake of completeness we would like to indicate (without proof) in
which sense the convolution algebra with our choice of cotangent
orientation differs from the convolution algebra obtained when we
choose the natural complex orientation. The difference will depend
on a parameter α, where we set α = 1 in case we chose the natural
complex orientation, and α = −1 for the cotangent orientation.

Theorem 4.4. Let w′, w, w′′ be standard tableaux, with the corresponding
cup diagrams C ′ = m(w′), C = m(w), C ′′ = m(w′′). The image of

w′1w ⊗ w1w′′ ∈ H•(Yw′ ∩ Yw) ⊗ H•(Yw ∩ Yw′′)

in H•(Yw′ ∩ Yw′′) under the convolution product (in either case) can be
calculated as follows: Place C ′C over CC ′′ and consider the minimal cobor-
dism C′ from this collection of circles to the collection of circles given by
C ′C ′′ (see [Kho00], [BS08a]).

If we consider this cobordism as a union of saddle moves corresponding
to the set S∨ with respect to w (with some fixed order compatible with the
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nesting) then w′1w ⊗ w1w′′ goes to the product
∏

i∈S∨
ϕ(i) where

ϕ(i) =



















1 if the saddle of i joins two circles

αxi + xσ(i) if the saddle of i creates two circles, and γσ(i) contains γi

xi + αxσ(i) if the saddle of i creates two circles, and γi contains γσ(i)

αxi + αxσ(i) otherwise

where γj denotes the created circle containing the vertex labeled by j for any
j.

Proof. omitted. �

Example 4.5. If, for instance, C ′ = Cup(⋒) = C ′′, C = Cup(NN) then
we have the following possible sequence of diagrams describing C′

(which is in this case a pair of pants joining two circles to one circle
followed by a pair of pants which splits this one circle into two)

•
� �

� �• •

� �
� �•

• � �
� �
• •

� �
� �
•

→
•

� �
� �• •

� �
•

• � �
� �
• •

� �
•

→
•

� �
• •

� �
•

• � �• •
� �

•

The element w′1w ⊗ w1w′′ is then mapped to (x1 + αx2)w′1w′′ , since
the only place where a circle is split into two is at the cup/cap pair at-
tached to the vertices 1 and 2 (from the left). Alternatively we could
have chosen the sequence where we first remove the cup/cap pair
attached to the vertices 1 and 2, so that w′1w ⊗ w1w′′ is then mapped
to (x3 + αx4)w′1w′′ which equals (x1 + αx2)w′1w′′ in H•(Yw′ ∩ Yw′′).
The result will always be independent from the chosen sequence,
since any such sequence describes the convolution product. If we
swap the roles of C ′ and C ′′ then w′1w ⊗ w1w′′ would be mapped to
(αx1 + αx3)w′1w′′ in H•(Yw′ ∩ Yw′′).

If α = −1, then the resulting algebra is not associative, if α = 1
then this is exactly Khovanov’s arc algebra (with the extension from
[Str06]). It seems natural to search for a topological construction
making transparent the difference between these two algebra struc-
tures on the same vector space. Our suggestion is to use a TQFT-like
procedure like Khovanov’s, but one which is sensitive to the embed-
ding of cobordisms in 3-space. This is what we propose to call an
embedded 2-dimensional TQFT.

Equivalently, one can say that our cobordisms keep track of the
nestedness of the circles. In particular, there will be two types of pair
of pants cobordisms, namely one which connects one circle with two
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disjoint, not nested circles in the usual embedding for trousers and
a second “unusual” one which connects one circle with two disjoint,
but nested circles, with one of the trouser legs pushed down the mid-
dle of the other.

For instance, the minimal cobordism displayed in the previous
section would be a composition of a usual pair of pants connecting
two circles to one followed by a generalized pair of pants splitting
one circle into two nested circles. We now define an embedded ver-
sion of Khovanov’s algebra by assigning the following maps to the
pair of pants morphisms:

• To a usual pair of pants joining two (not-nested) circles to one
circle, we associate the multiplication m : R⊗R → R, 1⊗1 7→
1, X ⊗ 1 7→ X 1 ⊗ X 7→ X , X ⊗ X 7→ 0.

• To the reverse cobordism, splitting one circle into two (not-
nested) circles, we associate the comultiplication ∆ : R →
R ⊗ R, 1 7→ −X ⊗ 1 − 1 ⊗ X , X 7→ −X ⊗ X .
(So far it is exactly the setup of [Kho00], except that our −X
is X there.)

• To the “unusual” pair of pants joining two nested circles to
one circle, we associate the map m′ : R ⊗ R → R, 1 ⊗ 1 7→ 1,
X ⊗ 1 7→ X , 1 ⊗ X 7→ −X , X ⊗ X 7→ 0, where the first tensor
factor is associated with the outer circle and the second with
the inner circle.

• To the reverse cobordism, we associate the linear map ∆′ :
R → R ⊗ R, 1 7→ X ⊗ 1 − 1 ⊗ X , X 7→ −X ⊗ X , where again
the first tensor factor is outer and the second is inner.

Keeping track of the nestedness using the rules above describes ex-
actly the (non-associative) multiplication on the convolution algebra
with the ordinary complex orientation.

5. COHERENT SHEAVES AND CUP FUNCTORS

In this section, we want to connect our approach with the one of
[CK08], where an alternative (geometric) categorification of the Jones
polynomial was obtained. It agrees on the K0-group level with the
Reshetikhin-Turaev tangle invariant [RT90] associated with Uq(sl2),
hence also with the decategorification of [Str05] which in turn re-
stricts to Khovanov’s functorial invariant. The precise categorical or
functorial connection between the geometric and algebraic-representation
theoretic picture is however open at the moment. In the follow-
ing, we give some partial results which indicate that the geometric
picture might differ slightly from the algebraic one. We note that
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our results partially overlap with those obtained independently in
[Ann08].

5.1. Geometric background. Now, we consider the Springer fiber as
a Lagrangian subvariety inside a larger smooth space. This ambient
space is best defined as the pre-image under the Springer resolution
of a normal slice to the nilpotent orbit through N at N . We denote
this space by Sn−k,k. Our Springer fiber is included as the fiber over
N . The interested reader can consult [MV07] for details. For our
purposes, the only important fact about the varieties is that they are
smooth, and each component of the Springer fiber is a Lagrangian
subvariety inside Sn−k,k. These spaces were for instance used in the
geometric construction of knot invariants via Floer homology in the
work of [SS06] and [Man07].

In the case where n = 2k, this variety has a more convenient de-
scription, which played an important role in the work of Cautis and
Kamnitzer [CK08], who used a compactification of it to define ho-
mological knot invariants. So from now on let n = 2k. Let M be
the nilpotent endomorphism of C2n with two equally sized Jordan
blocks. Let {p1, p2, . . . pn, q1, q2, . . . qn} be the basis of C2n such that M
has Jordan Normal Form (with Mpi = pi−1 and Mqi = qi−1) with the
C∗-action as before on V . Now define the space of flags

Zn = {F0 ⊂ Fi ⊂ . . . Fn−1 ⊂ Fn ⊂ C2n | dimC Fi = i, MFi ⊂ Fi−1}.

We can identify our original vector space V with the span of the
pi, qi for 1 ≤ i ≤ n, with the endomorphism M restricting to the
nilpotent endomorphism N . Thus, we can identify Y with the subset
of Zn where Fn = V . Furthermore, Sk,k can be identified with the
subset of Zn where the projection of Fn onto V (by forgetting the
coordinates with higher indices) is an isomorphism.

In [CK08, Section 4], the authors define functors between the bounded
derived categories D(Zn′) of (C∗-equivariant) coherent sheaves on
Zn′ (for varying n′) which provide a categorified tangle/knot invari-
ant, in the following sense: to each (n1, n2)-tangle, there is an asso-
ciated functor from D(Zn1) to D(Zn2) which is a tangle invariant, up
to isomorphism, and decategorifies to the Reshetikhin-Turaev tangle
invariant associated with (the quantum group of) sl2 on the level of
the K0-group.
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In fact, for all k, the space Sn−k,k is embedded in Zn matching the
obvious inclusion of the Springer fiber (see [MV07]). The compacti-
fication obtained by closing this embedding seems to be a likely can-
didate for extending [CK08] beyond the case of blocks of equal size.
However, we will not pursue this idea further in this paper.

Let Coh(Zn) be the category of coherent sheaves on Zn with its
bounded derived category Db(Zn).

For our purposes, the C∗-action carefully tracked in [CK08] is un-
necessary, so we will ignore it. Since all the functors of concern
are defined by Fourier-Mukai transforms, they have non-equivariant
analogues.

Note that, Z0 is just a point, and so Coh(Z0) is the category of vector
spaces over C.

If C is a cup diagram corresponding to a standard tableau S with
two rows of size k, we can view it as a (0, 2k) tangle and consider the
associated functor

ϕC : Db(Z0) = Db(Vect) → Db(Zn)

as defined in [CK08] (the interested reader may note Equation (5.2)
below serves as an inductive definition of this functor). In general,
the functors associated with crossingless tangles are not exact in the
standard t-structure on Coh(Zn) (though of course, they are exact in
the triangulated sense). In the special case of a (0, 2k)-tangle, the
situation is much easier: First of all, the functor maps a vector space
to an actual sheaf (i.e. is exact in the usual t-structure), hence defines
(or comes from) a functor

ϕC : Coh(Z0) = Vect → Coh(Zn).(5.1)

Secondly, as with any exact functor from vector spaces to any abelian
category, ϕC is already determined by its value on C.

5.2. Half-densities. We let Ω1/2(YS) denote a square-root of the canon-
ical bundle on the component YS . This sheaf exists by the theorem
below (but more generally, it exists at least as a twisted sheaf) and is
unique, since the Picard group of any iterated P1-bundle is torsion-
free.

Lemma 5.1. Each component YS carries a unique square-root of the canon-
ical bundle. In fact, Ω1/2(YS) ∼=

⊗

i∈S∨
Vi.

Proof. Abbreviate A = YS. As in any bundle, one can always com-
pute the canonical bundle on the total space as the product of the
canonical bundle on the base and the relative canonical bundle. Since
each component is fibered over one for a smaller diagram, to show
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the result by induction, we need only show that the relative canoni-
cal bundle of that fibration has a square root.

Let i be an index such that σ(i) = i + 1. In this case, our fibration
is

qi : A → A′,

where A′ is the component for our cup diagram with the cup from
i to i + 1 deleted. Since V −1

i is isomorphic to O(1) on the fibers, we
have that our fibration is the projectivization of the bundle qi∗V

−1
i

∼=
Vj ⊕ V −1

j where j is the left end of the cup immediately nested over
i. Thus, we have an exact sequence

0 → ΩA/A′ → Hom(q∗
i (Vj ⊕ V −1

j ), Vi) → Hom(Vi, Vi) → 0

The multiplicativity of determinants in exact sequences shows that

ΩA/A′
∼= det(ΩA/A′) ∼= det

(

Hom(q∗
i (Vj ⊕ V −1

j ), Vi)
)

∼= V 2
i

Thus, Ω
1/2
A/A′

∼= Vi. On the other hand, q∗
i ΩA′

∼=
⊗

j∈S∨\{i}
Vi. Thus, the

result follows by induction. �

In fact, these square roots are exactly the images of the 1-dimensional
vector space under the functors ϕC associated to cup diagrams:

Theorem 5.2. Let W be any finite dimensional vector space. Then

ϕC(W ) ∼= W ⊗C Ω1/2(YS).

Proof. Our proof is by induction. Assume that the result is true for all
smaller n, in particular for the corresponding cup diagrams with less
than n points. This set of diagram include for instance the diagram
C ′ which is C with one of its minimal cups removed. Denote by
S ′ the corresponding standard tableaux and let j and j + 1 be the
endpoints of this cup.

Then if i = ij is the inclusion of the locus where N(Fj+1) = Fj−1

holds, and q = qj is the projection defined on this locus to Zn−2

given by forgetting Fj and Fj+1 as well as applying N to all sub-
spaces larger than Fj+1, we have ([CK08, 4.2.1]) the equation

(5.2) ϕC(W ) = i∗(Vj ⊗ q∗(ϕC′(W )).

By induction, our proposition holds for C ′, so this equation becomes

ϕC(W ) = i∗(Vj ⊗ q∗(W ⊗C Ω1/2(YS′)).

On the other hand, we have the usual exact sequence of normal
bundles

0 → q∗NYS′/Yn−2 → NYS/Yn
→ V ∗

j+1 ⊗ Vj

∣

∣

YS
→ 0.
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Since V ∗
j+1|Xj

n

∼= Vj |Xj
n
, we see that Ω(YS) ∼= q∗Ω(YS′) ⊗ V ⊗2

j , so

Ω1/2(YS) ∼= q∗Ω1/2(YS′) ⊗ Vj . Applying this in equation (5.2), we ob-
tain the desired result. �

On the way of trying to connect the different categorifications of
the Turaev-Reshetikhin tangle invariants one could hope for an iso-
morphism of rings

Ext•Coh(Sn−k,k)(i∗Ω
1/2(A), i∗Ω

1/2(A)) ∼= End(P̃ (x · 0))

where P (x · 0) is the indecomposable projective module associated
with a component A under the isomorphisms of (3.3), or more gen-
erally a formula like

(5.3) Ext•
Coh(Sn−k,k)(i∗Ω

1/2(A), i∗Ω
1/2(B)) ∼= End(P̃ (x · 0), P (y · 0)).

as graded vector spaces (up to our usual shifts). On the other hand,
based on work, such that of Leung ([Leu02]), one might expect that

(5.4) Ext•
Coh(Sn−k,k)(i∗OA, i∗OA) ∼= H∗(A)

or more generally

(5.5) Ext•
Coh(Sn−k,k)(i∗OA, i∗OB) ∼= H•(A ∩ B)

as graded vector spaces (up to our usual shifts), where OA denotes
the structure sheaf on A. In the following we will show that, in fact,
all of the above statements are true, except the last one (which might
appear as a surprise).

The importance of these square roots of canonical bundles (the so-
called half-densities) in connection with derived categories of coher-
ent sheaves and the failure of (5.5) have previously been noticed by
physicists in connection with the so-called Freed-Witten anomaly,
(see [FW99]).

A mathematical manifestation of this phenomenon appears when
considering the spectral sequences computing the Ext•-groups of the
square roots of the canonical sheaves in contrast to the ones comput-
ing the Ext•-groups of the structure sheaves of these varieties, as
carefully explained for instance in papers such as [KS02], [Sha04].

The crucial point hereby is that by the adjunction formula for the
canonical bundle on a subvariety ([Huy05, Proposition 2.2.17]), us-
ing half-densities instead of structure sheaves compensates for the
appearance of the normal bundle in the E2-term of the spectral se-
quence of [KS02] which we use below.

Let now n = (n − k) + k as usual. Let A, B be components in
the corresponding Springer fiber Y included in the resolution to the
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Slodowy slice Sn−k,k. Let i : A →֒ Sn−k,k, and j : B →֒ Sn−k,k be the
natural inclusions. The formula (5.3) is by Theorem 3.13 equivalent
to the following result:

Theorem 5.3. There is an isomorphism of graded vector spaces

Ext•Coh(Sn−k,k)(i∗Ω(A)1/2, j∗Ω(B)1/2) ∼= H•(A ∩ B)〈d(A, B)〉,

Proof. First, note that since Sn−k,k is holomorphic symplectic and the
components of the Springer fiber are Lagrangian, so the symplec-
tic form induces an isomorphism between the normal bundle and
cotangent bundle. Further, this shows that on an intersection, the
quotient

TSn−k,k
|A∩B/(TA|A∩B + TB|A∩B)

will be the cotangent bundle T ∗
A∩B .

Given these facts, the result follows almost immediately from [CKS03,
Theorem A.1] (though the theorem appeared with a less complete
proof in [KS02]). In our case, this gives a spectral sequence

Hp(A∩B,∧qT ∗
A∩B) ∼= Hp,q(A∩B) ⇒ Ext

p+q+d(A,B)
Coh(Sn−k,k) (i∗Ω(A)1/2, j∗Ω(B)1/2)

where Hp,q denotes the usual Dolbeaut cohomology. The first Chern
classes of line bundles (which lie in H1,1(A ∩ B)) generate Hp,q(A ∩
B), so it has only (p, p) Dolbeaut cohomology. Thus, this spectral
sequence has no non-trivial differentials, and we obtain the desired
isomorphism. �

Corollary 5.4. There is an isomorphism of graded vector spaces

Ext•
Coh(Sn−k,k)

(

⊕

A

iA∗Ω(A)1/2,
⊕

A

iA∗Ω(A)1/2
)

∼= H(Ỹ ×Y Ỹ ),

where the sum runs over all irreducible components A.

Of course, both the left and right side of this isomorphism have
natural ring structures given by Yoneda product and by convolu-
tion. The statement of the following conjecture together with Theo-
rem 4.3 would give a very explicit description of the Ext-algebra of
half-densities:

Conjecture 5.5. There is an isomorphism of algebras

Ext•Coh(Sn−k,k)

(

⊕

A

iA∗Ω(A)1/2,
⊕

A

iA∗Ω(A)1/2
)

∼= H(Ỹ ×Y Ỹ ).

Remark 5.6. Of course, this Ext-algebra is, as a vector space, also iso-
morphic to Khovanov’s arc algebra, and at the moment, the authors
are unsure as to which product on this vector space corresponds to
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Yoneda’s. Having clarified this conjecture it wouldn’t be too difficult
to extend it to (4.2).

An affirmative or negative answer to this conjecture would direct
us toward further questions on the correct geometric perspective on
knot homology:

Question 5.7. Is it possible to construct a functorial tangle invariant
and categorification of the Jones polynomial using our new convolu-
tion algebras? If so what is the relation to previous geometrical ones
([CK08], [SS06], [Man07]) and to algebraic/representation theoretic
approaches ([Kho02], [Str05])?

As was noted in [Ann08], these half-densities are so-called exotic
sheaves as introduced by Bezrukavnikov [Bez06]. This suggests that
the conjecture and questions above could be investigated using the
noncommutative Springer resolution and related techniques of alge-
braic geometry.

We can perform a partial verification of Conjecture 5.5, consider-
ing only a single component at a time.

Theorem 5.8. Let A be an irreducible component of Y and i : A →֒ Sn−k,k

the inclusion. Let OA be the structure sheaf on A. Then there are isomor-
phisms of graded rings

Ext•Coh(Sn−k,k)(i∗Ω
1/2(A), i∗Ω

1/2(A)) ∼= Ext•Coh(Sn−k,k)(i∗OA, i∗OA) ∼= H•(A).

Remark 5.9. Note that thanks to (3.3) the rings appearing in the the-
orem can also also be identified with the endomorphism rings of
indecomposable projective and at the same time injective modules
in the associated parabolic category O for sln. Based on the results
of this paper, the slight generalization from components to arbitrary
stable manifolds shouldn’t be too difficult.

Proof of Theorem 5.8. The first isomorphism follows from the fact that
Ω1/2(A) deforms to a global line bundle on Sn−k,k, the pullback of
∏

i∈S Vi from Zn. (It’s worth noting, this isomorphism does not hold
in general.

To compute the Ext-algebra on the left hand side we first com-
pute the Ext-sheaves Ext•(i∗OA, i∗OA). The irreducible component
A is smooth, hence a local complete intersection ([Har77, Example
8.22.1]). Since we can work locally, we might assume that A is the
zero locus of a regular section s ∈ H0(E) for some bundle E on Z.
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Then we have the Koszul resolution
(5.6)

0 →
∧n

E∗ →
∧n−1

E∗ → . . .
∧1

E∗ → E∗ → OZ → i∗OC → 0.

where the differential maps f1 ∧ f2 ∧ . . . ∧ fr ∈
∧r

E∗ to

∑

i=1r

(−1)i−1fi(s)f1 ∧ f2 ∧ . . . ∧ fi−1 ∧ fi+1 ∧ . . . ∧ fr.

The Koszul complex is exact, since s is a regular section ([GH78, page
688]).

The beginning of the resolution (5.6) defines a surjection

(5.7) E∗ → I → 0

where I is the ideal sheaf of A in Z. Tensoring with i∗OA, we get
a surjection i∗E

∗ → I/I2 = N ∗
A/Z . This map is an isomorphism for

dimension reasons.
Now Ext•(i∗OA, i∗OA) can be calculated as the cohomology sheaves

of the complex i∗∧• E. Since i∗s = 0, the differentials in this complex
are all zero, hence

(5.8) Ext•(i∗OA, i∗OA) ∼= ∧∗NA/Z

as graded vector spaces.
We have to compare the ring structure. We first claim that there is

a map of differential graded algebras

c :
∧•

E → Ext•(i∗OA, i∗OA)

sending ξ ∈ ∧rE to the contraction with ξ, denoted cξ. The differ-
entials in the Koszul complex (5.6) are given by contraction cs with
the section s, and cξ and cs super commute. Therefore c(ξ) is a chain
map of degree k. Since contraction satisfies cξ ◦ cζ = cξ∧ζ , the map
c intertwines the wedge product on the source space with the com-
position in the target space. Passing to cohomology, we obtain that
(5.8) is an isomorphism of algebras.

Since the component A is Lagrangian inside Z, we have a canoni-
cal isomorphism between the normal bundle of A in Z and the cotan-
gent bundle of A, in formulas NA/Z

∼= T ∗
A.

Now consider the cohomology H•(A,∧•T ∗A). By the Hodge de-
composition, this is quasi-isomorphic as a differential graded alge-
bra to harmonic forms on A, equipped with wedge product. On
the other hand, by de Rham’s theorem, this is also isomorphic to
H•(A, C) equipped with the cup product.



36 CATHARINA STROPPEL AND BEN WEBSTER

Now we have the local-global spectral sequence

Ep,q
2 : Hp(A,∧•T ∗A) = Hp(A,∧qNA/Z) = Hp(A, Ext•(i∗OA, i∗OA))

=⇒ Ext•Coh(Sn−k,k)(i∗OA, i∗OA).

This sequence collapses due to the Hodge diamond only having di-
agonal support, as in the proof of Theorem 5.3, and thus induces a
ring isomorphism from H•(A) to the ring Ext•

Coh(Sn−k,k)(i∗OA, i∗OA).
�

6. EXOTIC SHEAVES AND HIGHEST WEIGHT CATEGORIES

In fact, we would like to propose a correspondence between weight
sequences and certain sheaves on Zn, which extends that sending a
full crossingless matching on n points to half-densities on the corre-
sponding component of the Springer fiber.

Let w be a weight sequence of length n. We denote by r(w) be the
number of cups in C(w). Let

Zw = {F∗ ∈ Zn|Fi−1 = N δ(i)Fσ(i) for i and σ(i) connected in C(w)}.

with its embedding j = jw : Zw → Zn. If r(w) = 1 we have the map
q : Zw → Zn−2 as in (5.1), and in general a map p : Zw → Zn−2r(w) by
taking compositions of such maps, one for each cup.

Consider the line bundle Vw =
⊗

i∈w∨
Vi on Zw and set Sw = j∗Vw.

In the setup of [CK08], the latter has the following description: to
the cup diagram C(w), Cautis and Kamnitzer associated a functor
F : Db(Zn−2r(w)) → Db(Zn) and (by comparing the definitions) we
have j∗Vw = F (Vw̃), where w̃ is the induced weight sequence on the
orphaned points of C(w).

We have the following two extreme cases:

• If r(w) = 0, then F is just the identity functor and we have
Sw = Vw.

• If r(w) = k, then Zw is just a point and in fact, Sw = ϕC(w)(C)
as in Theorem 5.2.

Let Θw be the set of weight diagrams which differ from w by switch-
ing the signs on opposite ends of any number of cups in Cup(w). For
an object M ∈ Db(Zn) we denote by [M ] its class in K0(D

b(Zn)). Then
the following holds

Proposition 6.1.

(6.1) [Sw] =
∑

w′∈Θw

(−1)ℓ(w)−ℓ(w′)[Vw′]
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In particular, the classes of [Sw] and [Vw] span the same sublattice of the
Grothendieck group.

Proof. We induct on the number of cups in C(w). If this is 0, we have
reduced to the fact that Sw

∼= Vw in this case. Otherwise, we can
write Sw = ϕi(Sv) where i is on the left end of a minimal cup in C(w)
and v is the induced weight sequence on S − {i, i + 1}. Now, we can
assume that [Sv] =

∑

v′∈Θv
(−1)ℓ(v)−ℓ(v′)[Vv′ ]. Let v+ be v with the cup

at i, i + 1 added and marked with ∨∧, and v− be the same, but with
∧∨ at i, i+1 instead. Then, as we noted previously, we have an exact
sequence

(6.2) 0 → Vv− → Vv+ → ϕi(Vv) → 0

and thus in the Grothendieck group, [ϕi(Vv)] = [Vv+ ] − [Vv− ].
Note that Θw = Θ+

v ⊔Θ−
v , and ℓ(v) ≡ ℓ(v+) ≡ ℓ(v−) + 1 (mod 2) so

[Sw] = [ϕi(Sv)] =
∑

v′∈Θv

(−1)ℓ(v)−ℓ(v′)
(

[V(v′)+ ] − [V(v′)−]
)

=
∑

w′∈Θw

(−1)ℓ(w)−ℓ(w′)[Vw′]

�

Remark 6.2. Proposition 6.1 should be compared with [BS08a, (5.12)]
which implies that [Sw] =

∑

w′∈Θw
dw,w′(−1)[Vw′], where dw,w′ is a

Kazdhan-Lusztig polynomial (arising from perverse sheaves on Grass-
mannians).

By the Cellular Fibration Lemma [CG97, Lemma 5.5.1] and [CK08,
Theorem 6.2], the Vw’s generate Db(Zn), and in fact are a basis of the
Grothendieck group. As a consequence of Theorem 6.1 we have the
following:

Corollary 6.3. The objects Sw generate the category Db(Zn) and are a basis
of its Grothendieck group.

By Remark 6.2, the transformation matrix between the two bases
is given by Kazhdan-Lusztig polynomials.

Following ideas of Bezrukavnikov, we now define a t-structure on
Db(Zn) (not the standard one) for which the Sw form a complete set of
simple objects in the heart. This heart will then be equivalent to the
category of finite dimensional modules over our convolution algebra
Kn. The algebra Kn is quasi-hereditary with the standard modules
given by the line bundles Vw’s.

First, we define the necessary ordering on the set of weights. This
is the standard ordering on weights which can be explicitly given
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in this case by saying that w ≤ v if for each i, there are more ∨’s in
the last i indices for v than w. Alternatively, it’s the partial ordering
generated by the basic relation that changing ∧∨ to ∨∧ is getting
smaller in the ordering.

Lemma 6.4. The full additive category generated by the Sw’s is semisimple.
Let still be n = 2k. Let w, w′ weights. Then HomDb(Coh(Zn)(Sw,Sw′) = {0}
for w 6= w′ and HomDb(Coh(Zn))(Sw,Sw′) = C otherwise.

Proof. Claim: let d(w, w′) be as in (3.2) then either Exti
Coh(Zn)(Vw, Vw)

is trivial or its minimal nonzero degree is i = d(w, w′)1, and so the
lemma follows directly. Note that in case w, w′ correspond to stan-
dard tableaux, then the claim is clear by Theorem 5.3. It of course
also holds for n = 2.

Assume first w is minimal in the partial order ≤ and w′ is arbitrary.
If w = w′, then Exti

Coh(Zn)(Sw,Sw) ∼= Exti
Coh(Zn)(Vw, Vw) ∼= H i(V ∗

w ⊗

Vw) ∼= H i(OZn
) = C and the statement follows. If w 6= w′ then C(w′)

has at least one minimal cup connecting say i and i+1. Using the ad-
junctions [CK08, Lemma 4.4] for cup and cap functors in [CK08] we
can remove this cup in expense of applying a cap functor Fi[1] to Vw.
Let a, b be the i-th and i + 1-st labels of w and denote by v the weight
which is obtained from w by removing these these two points. Then
by [CK08, 6.3] we have the following four cases: FiVw = 0 if ab = ∨∨
or ab = ∧∧, and then of course Exti

Coh(Zn)(Vw, Vw) = {0}. We have
FiVw

∼= Vv[1] if ab = ∧∨, in which case the claim follows by induction
(note that we removed a clockwise cup/cap). We have FiVw

∼= Vv if
ab = ∨∧, in which case the claim follows by induction noting that
we removed a counter-clockwise cup/cap. Hence the statement is
true for minimal w. Assume w is not minimal. Choose a minimal
cup in C(w) say at the vertices i, i + 1. Applying again adjunction
properties, we can remove this cup by the expense of a cap func-
tor Fi[−1]. If this cap creates a circle, we have Ext•

Coh(Zn)(Vw, Vw′) ∼=

Ext•
Coh(Zn)(Vv, Vv′) ⊕ Ext•+2

Coh(Zn)(Vv, LBv′) by [CK08, Corollary 5.10].

Since d(w, w′) = d(v, v′), the statement follows. If this cap does not
create a circle, and Ext•Coh(Zn)(Vw, V ′

w) 6= {0}, then using again [CK08,

1Have to correct the definition of d(w,w’) earlier
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Corollary 5.10] and adjointness properties we get

Ext•+1
Coh(Zn)(Vw, V ′

w) ⊕ Ext•−1
Coh(Zn)(Vw, V ′

w)

∼= Ext•Coh(Zn)(GiFiVw, V ′
w)

∼= Ext•
Coh(Zn)(GiFiVx, V

′
w)

∼= Ext•
Coh(Zn)(Vx, FiGiV

′
w)

∼= Ext•+1
Coh(Zn)(Vw, Vz) ⊕ Ext•−1

Coh(Zn)(Vw, Vz),

where z is obtained from w′, and x is obtained from w, by swapping
the labels at the vertices i and i + 1. In particular,

Ext•Coh(Zn)(Vx, V
′
w) ∼= Ext•Coh(Zn)(Vw, Vz).

On the other hand d(x, w′) = d(w, z). (To see this assume first vertex
l and k are connected to the vertices i and i + 1 via a cup diagram in
C(w′). �

The following is now a direct consequence of [Bez03, Lemma 3]:

Theorem 6.5. There exists a unique t-structure of Db(Coh(Zn)), such that
the Sw’s form the simple objects.

Proof. We only have to verify the assumptions of [Bez03, Lemma 3].
These are however just Lemma 6.4 together with the observation that
the Sw’s are sheaves (so that HomDb(Coh(Zn))(Sw,Sw′[l]) = {0} for any
positive l). �

Following Bezrukavnikov, we call this the exotic t-structure. We
call the heart of this t-structure the category of exotic sheaves Exn.
The main result of this section is the following:

Theorem 6.6. There is a highest weight structure on Exn such the the
sheaves Vw are standard.

Lemma 6.7. The sheaf Vw is exotic, and its composition factors are all of
the form Sw′ for w′ ≤ w, with Sw appearing exactly once.

Proof. We induct on both the number of points, and the ordering
given above. Our base case is still that where C(w) is empty, where
this is obvious.

As we noted before, we can write w as v+ for some sequence v on
fewer points. As we noted before, we have the exact sequence (6.2).
Now, by induction on the number of points ϕi(Vv) is exotic, and has
the desired composition series (since Sv appears once in Vv, we have
Sw = ϕi(Sv) appearing once), and by induction on the partial order,
Vv− is exotic, and all its composition factors are strictly smaller than
w. �
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Lemma 6.8. The line bundles Vv form an exceptional sequence, that is, we
have Ext•

Coh(Zn)(Vw, Vv) = 0, for all v � w.

Proof. As usual, we have Exti(Vw, Vv) ∼= H i(V ∗
w ⊗ Vv). Thus our prob-

lem reduces to computing the cohomology of certain line bundles.
Consider the map π : Zn → Zn−1 given by forgetting the top space.

We note that if ǫ = (ǫ1, . . . , ǫn−1) is a vector valued in {1, 0,−1}, then

π∗(Vǫ ⊗ V j
n ) ∼=











Vǫ ⊗ Sym−j(W ) j ≤ 0

0 j = 1

Vǫ ⊗ Symj−2(W )[−1] j ≥ 2

where W ∼= π∗Vn is a rank 2 vector bundle which is an extention

0 → V −1
n−1 → W → Vn−1 → 0.

Thus, if a vector bundle is an extension of line bundles of the form
Vǫ ⊗ V j

n [m], for |j − 1| ≤ k, then its pushforward is an extension of

ones of the form V ǫ1
1 ⊗· · ·⊗V

ǫn−2

n−2 ⊗V j′

n−1[m
′] where |j′−1| ≤ k+ ǫn−1.

Applying this inductively, we see that the ℓ − n-fold pushforward
πℓ,n
∗ V ∗

w ⊗ Vv is an extension of line bundles of the form Vǫ ⊗ V j
n [m]

where |j−1| ≤ gn +1 where gn is the difference between the number
of ∨’s in the last ℓ − n places of w and those in those places in v.
If this number is ever negative, then j = −1, so the ℓ − n + 1-fold
pushforward is trivial. Thus, if this pushforward is non-trivial, we
must have this number always non-negative, that is, we must have
v ≥ w. �

Proof of Theorem 6.6. Lemmata 6.7 and 6.8 show the line bundles Vw’s
are standard covers of the simple modules Sw. This shows that an
object has negative Ext vanishing with all Vw if and only if it does
with Sw (since Exti(Sw, X) = Exti(Vw, X) for i < 0 if Exti(Sv, X) = 0
for all i < 0 and v < w), and the Serre subcategory generated by
{Vv[i]}i≥0 is the same as that generated by {Sv[i]}i≥0. That is, the
exotic t-structure is exactly the one which Bezrukavnikov calls the
t-structure of the exceptional sequence {Vv}. By [Bez03, Proposition
2], the heart of this t-structure is highest weight, with {Vw} as its
standards. �
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Zürich, 2006, pp. 1119–1144.

[BGG76] I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, A certain category of
g-modules, Funkcional. Anal. i Prilozen. 10 (1976), no. 2, 1–8.

[BGS96] A. Beilinson, V. Ginzburg, and W. Soergel, Koszul duality patterns in rep-
resentation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527.

[BLPW08] Tom Braden, Anthony Licata, Nicholas Proudfoot, and Ben Webster,
Gale duality and Koszul duality, arXiv:0806.3256.

[BS08a] J. Brundan and C. Stroppel, Highest weight categories arising from Kho-
vanov’s diagram algebra I: Cellularity, 2008, arXiv:0806.1532.

[BS08b] , Highest weight categories arising from Khovanov’s diagram algebra
II: Koszulity, 2008, arXiv:0806.3472.

[BS08c] , Highest weight categories arising from Khovanov’s diagram algebra
III: Category O, 2008, preprint.

[Car80] A. Rocha - Caridi, Splitting criteria for g-modules induced from a para-
bolic and the Bernstein-Gelfand-Gelfand resolution of a finite-dimensional,
irreducible g-module, Trans. Amer. Math. Soc. 262 (1980), no. 2, 335–366.

[CG97] N. Chriss and V. Ginzburg, Representation theory and complex geometry,
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